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Abstract. TS1We developed a new approach for mapping
landslide hazards by combining probabilities of landslide
impacts derived from a data-driven statistical approach and
a physically based model of shallow landsliding. Our sta-
tistical approach integrates the influence of seven site at-5

tributes (SAs) on observed landslides using a frequency ratio
(FR) method. Influential attributes and resulting susceptibil-
ity maps depend on the observations of landslides consid-
ered: all types of landslides, debris avalanches only, or source
areas of debris avalanches. These observational datasets re-10

flect the detection of different landslide processes or com-
ponents, which relate to different landslide-inducing factors.
For each landslide dataset, a stability index (SI) is calcu-
lated as a multiplicative result of the frequency ratios for
all attributes and is mapped across our study domain in the15

North Cascades National Park Complex (NOCA), Washing-
ton, USA. A continuous function is developed to relate local
SI values to landslide probability based on a ratio of landslide
and non-landslide grid cells. The empirical model probability
derived from the debris avalanche source area dataset is com-20

bined probabilistically with a previously developed physi-
cally based probabilistic model. A two-dimensional binning
method employs empirical and physically based probabilities
as indices and calculates a joint probability of landsliding
at the intersections of probability bins. A ratio of the joint25

probability and the physically based model bin probability
is used as a weight to adjust the original physically based
probability at each grid cell given empirical evidence. The
resulting integrated probability of landslide initiation haz-
ard includes mechanisms not captured by the infinite-slope30

stability model alone. Improvements in distinguishing poten-
tially unstable areas with the proposed integrated model are
statistically quantified. We provide multiple landslide hazard
maps that land managers can use for planning and decision-
making, as well as for educating the public about hazards 35

from landslides in this remote high-relief terrain.

1 Introduction

Most mountain ranges are susceptible to landsliding due to
their steep geomorphology, loose-soil development, geology,
and high precipitation (e.g., Coe, 2016). Landslides disrupt 40

aquatic habitats (May et al., 2009; Pollock, 1998), damage
infrastructure such as roads, utilities, and dams (Ghirotti,
2012; Baum et al., 2008), and harm people (Wartman et al.,
2016; Taylor and Brabb, 1986). Landslide hazards are ex-
pected to increase globally with growing climatic extremes 45

(Coe, 2016; Haeberli et al., 2016; Crozier, 2010).
Maps of landslide hazards, quantified as a probability of

landslide initiation or impact, can be obtained using empir-
ical methods that statistically relate the location of existing
landslides to other environmental variables and physically 50

based models based on geotechnical slope stability equa-
tions driven by hydro-climatic inputs (Bordoni et al., 2015;
Mancini et al., 2010; Sidle and Ochiai, 2006; El-Ramly et
al., 2002). While detailed quantitative and categorical cli-
matic, geologic, ecologic, and pedologic information can be 55

used in statistical models, physically based models are lim-
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2 R. Strauch et al.: A new approach to mapping landslide hazards

ited to geotechnical stability analyses driven by soil pore wa-
ter pressure, and they often neglect geological factors such
as bedrock, faulting, and complexities of microclimatic con-
ditions. To date, data-driven empirical research on landslide
hazard mapping (Corominas et al., 2014 TS2 ; Lee, 2007 TS3 ;5

Chung and Fabbri, 2002 TS4 ) has been typically conducted
independently from hydroclimate-driven modeling of land-
slides that largely focus on hydrologic controls on lands-
liding (Wooten et al., 2016; Cevasco et al., 2014). There is
a need for unifying these two lines of research to provide10

regional-scale landslide prediction for resource management
and hazard mitigation strategies. In this paper we develop
a statistical approach to combine the probability of landslide
initiation obtained from an observation-based statistical map-
ping method and a physically based model. The proposed ap-15

proach is illustrated in the North Cascades region of the state
of Washington, USA.

Data-driven statistical landslide susceptibility approaches
assess the inherent or quasi-static stability of hillslopes de-
rived from statistical associations (e.g., correlations) between20

site attributes (SAs) (e.g., soil, geology, and topography) and
an inventory of past landslides that includes landslide type
and locations (e.g., Dai and Lee, 2002; Gupta and Joshi,
1990; Pachauri and Pant, 1992; Kirschbaum et al., 2012).
These models focus on prevailing conditions that predispose25

hillslopes to failure (Hungr et al., 2014), typically provid-
ing general indices of relative landslide susceptibility or spa-
tial probabilities applicable to the study location and cannot
represent causal factors or triggering conditions that change
in time (Van Westen et al., 2006; Sidle and Ochiai, 2006).30

The outcome of such analyses depends on the completeness
of observations, hindering the use of such techniques over
large areas where complete inventories are typically lack-
ing. Since empirical models are based on observations of past
landslides, the preconditioning relationships are assumed to35

prevail into the future until an updated study is completed
(Lepore et al., 2012).

Physically based models require considerable data on the
spatial-temporal characteristics of the landscape and trigger-
ing hydro-meteorologic events. These models are also usu-40

ally restricted to a specific type of landslide and can be lim-
ited in representing local geologic, soil, and hydrologic con-
ditions that may be difficult to observe and map in the field
and parameterize in model theory. Data-driven statistical
methods could be used to condition physically based model45

results to incorporate the influence of environmental and geo-
logic factors that are not represented in process theory. Link-
ing these empirically based and physically based models may
improve the spatial-temporal patterns of landslide hazard at
medium-to-large scales where landslide inventories exist to50

provide support tools for authorities addressing risk man-
agement. Additional descriptions of the advantages and dis-
advantages of data-driven and physically based models and
landslide hazards assessments can be found in reviews by

Ercanoglu and Sonmez (2019), Reichenbach et al. (2018), 55

Hungr (2018), and Aleotti and Chowdhury (1999).
This paper describes research designed to address the fol-

lowing questions: (1) How can we quantify the relative con-
tributions of local topography, geology, and ecology on land-
slide frequency and derive spatial probabilities of landslid- 60

ing using a statistical model? (2) How would probabilities
of landslide initiation derived from empirical observations
compare with those derived from a physically based model?
(3) How can we combine empirical and physically based
models for landslide susceptibility to improve the prediction 65

of landslide hazards?
The empirical approach for landslide susceptibility we

used is based on a modification of the frequency ratio (FR)
statistical concept which has been found to perform as well as
more rigorous statistical approaches such as logistic regres- 70

sion (Hong et al., 2017; Wu et al., 2017; Bellugi et al., 2015;
Lepore et al., 2012; Kirschbaum et al., 2012; Lee and Prad-
han, 2007; Lee et al., 2007). As for the mechanistic model,
we used the results of Strauch et al. (2018), who developed
a Monte Carlo solution to the infinite-slope stability equa- 75

tion coupled with a steady-state topographic flow-routing ap-
proach to map the annual probability of shallow landsliding.
The uncertainty of soil depth in Strauch et al. (2018) was con-
strained by a soil development model, and subsurface flow
recharge was obtained from a regional macro-scale hydro- 80

logic model that produced historical hydrologic simulations
(Hamlet et al., 2013).

Building on the advantages from the empirical and pro-
cess models, we combined the two models to develop a map
of landslide hazards. The integrated map can be developed 85

to identify landslide hazards that may originate from the ini-
tiation of landslides, and it can be used to inform models of
transport and deposition (i.e., runout) about landslide mate-
rial (Fig. 1). The focus of the study was to determine if an
empirical-based model of landslide hazards could be used 90

to improve an existing physically based model for shallow
landslide probability. The organization of this paper is as fol-
lows. Our methodology is discussed in Sect. 2, including the
empirical method, model application, data compilation, and
model integration approach. Section 3 details our results of 95

the empirical application and integrated hazard model as well
as various hazard maps developed. We end with some overall
concluding thoughts in Sect. 4.

2 Methodology

2.1 Frequency ratio 100

We characterized the susceptibility of hillslopes to landslides
using an empirically based frequency ratio approach (Lee
et al., 2007; Kirschbaum et al., 2012). We used the term
landslides broadly, covering all types of mapped landslides
in our landslide inventory, with their source, transport and 105
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R. Strauch et al.: A new approach to mapping landslide hazards 3

Figure 1. Primary landslide features of the Goodell Creek land-
slide (October 2003) showing source, transport, and deposition ar-
eas illustrated over an aerial image from Google Earth. Base of the
landslide is about 1 km across. Location in the North Cascades Na-
tional Park Complex is about 4 km north of Newhalem, Washing-
ton. Source: © Google Earth, 48◦41′55.72′′ N, 121◦17′01.31′′W,
imagery data from 23 June 2006, viewed towards the southwest.

depositional zones (Fig. 1). The FR approach is related the
density ratio of historical landslides within selected surface
attributes, SAs. We considered seven SAs in our analysis:
slope, elevation, aspect, curvature, land use–land cover (land
cover), lithology, and rating on a topographic wetness index.5

Slope, curvature, and lithology directly affect the forces
and geotechnical properties in surface sediments. Land cover
provides a surrogate for root cohesion, and a topographic
wetness index has been used as a surrogate for soil pore water
pressure (Borga et al., 2002). Elevation can represent the ef-10

fects of climate, weathering, vegetation, ground motion, and
glacial processes, if any, as well as coincide with variability
in slope, soil depth, and land use (Sidle and Ochiai, 2006).
Aspect provides an indication of solar insolation, vegetation
type and cover density, snow and ice loading, and soil mois-15

ture levels via evapotranspiration (Beaty, 1956; Gokceoglu et
al., 2005).

Each SA is indexed by attribute type, m (e.g., m= slope,
lithology, vegetation), and its subcategory is indexed by n.
Subcategories of each SA can be a categorical variable such20

as the type of lithology, soil, and vegetation or a quantitative
variable defined with certain ranges such as slope and aspect
over the study domain, SD. For a given SA, identified by m
and its subcategory, n, FRm,n|SAm,n is calculated (Eq. 1) as
the ratio of the observed landslide area, LA, in each SA m25

and subcategory n (LASAm,n ) with respect to the area of the
SAm,n (ASAm,n ) to the regional landslide density, Po (Eq. 2)
(Miller and Burnett, 2007).

FRm,n|SAm,n =
LASAm,n/ASAm,n

Po
, (1)

where 30

Po =
LASD

ASD
. (2)

The term in the numerator of Eq. (1) gives an empirical
probability of a landsliding impact within SAm,n. Po can also
be referred to as a regional background probability, such that
in the absence of any other information, Po represents the 35

probability of landsliding at any point in the domain. The
interpretation of FR is as follows (Lepore et al., 2012):

– FR< 1 indicates proportionally less landslide area with
subcategory n of SA m, SAm,n; hence, there are lower
odds of a landslide than in the entire SD. 40

– FR= 1 means there is the same proportion of landslide
area with SAm,n as in the SD, and thus, the odds of
a landslide are the same for the SAm,n subcategory as
the SD.

– FR> 1 reveals a higher percentage of landslide area 45

with SAm,n than in the entire SD, so there is a propen-
sity for failures to occur with this SA.

FR in Eq. (1) is developed for a population of spatially
distributed locations that has the same attribute of a given
SAm,n. A given point on the landscape would have as many 50

FR values as the number of SAs used. To develop an index
that incorporates all the FR values for a given point on the
landscape, we used an empirical susceptibility index, SI, de-
fined at the grid cell scale, SIc, as the product of the FR values
for all SAs of that grid cell and their associated subcategory. 55

SIc =
m∏

FRm,n|SAm,n (3)

A multiplicative FR is used because in certain subcategories,
there may be no landslide observations (e.g., low slope an-
gle), and in such cases the hillslope would be stable regard-
less of other soil and vegetation properties. SIc is a measure 60

that relates local static (or slowly changing) site character-
istics to the relative frequency of landslides. Since SIc is a
data-driven index, the probability of landsliding would in-
crease as SI grows.

In order to develop a continuous relationship between SIc 65

and the probability of landslide at a grid cell, P (LSc|SIc), we
binned the population of SIc values across the landscape into
SIr bins, where r is the number of SI bins. We then estimated
the probability of landsliding for an SI bin, SIr , P (LSr |SIr ),
as the ratio of the number of grid cells with landslides in each 70

SI bin, N (LS)r , to the total number of grid cells within each
SI bin, Nr (Eq. 4).

P (LSr |SIr)=
N(LS)r
Nr

(4)

www.nat-hazards-earth-syst-sci.net/19/1/2019/ Nat. Hazards Earth Syst. Sci., 19, 1–19, 2019



4 R. Strauch et al.: A new approach to mapping landslide hazards

To calculate the spatially continuous empirical probability
of landsliding at each grid cell of a digital elevation model
(DEM), P (LSc|SIc), we fit empirical functions that relate
P (LSr |SIr ) to SIr . These functions are then used for map-
ping the empirical probability of landsliding at the cell scale,5

P (LSc|SIc), based on its empirically derived SIc value in
Eq. (3).

We included all SAs to develop empirical models relat-
ing SI to landslide probability, similar to Kirschbaum et
al. (2012) and Lepore et al. (2012). We repeated the analysis10

described above three times: first, considering all landslide
types and including their source, transport, and depositional
zones, as is commonly done in multi-factor analyses (Sidle
and Ochiai, 2006; Ayalew et al., 2004; Carrara et al., 1995);
second, focusing on debris avalanches, with all three of their15

zones (Fig. 1); and third, considering only the source (ini-
tiation) areas of debris avalanches. These source areas were
identified as the upper 20 % by elevation within mapped de-
bris avalanche polygons, which appeared to align with in-
spections of aerial imagery of selected debris avalanches.20

This tiered approach can be used to quantify the relative con-
tributions of different landslide features to overall landslide
hazards in a region as well as inform the variability in hazard
identification given a landslide dataset.

2.2 Model integration25

Here we develop a method to combine the empirical proba-
bility for landslide initiation based on SI, P (LSc|SIc), with
the probability of landslide initiation based on a previously
developed physically based model using Landlab (Strauch et
al., 2018; Hobley et al., 2017). The physically based model30

employs a Monte Carlo solution of the infinite-slope stability
model that evaluates the localized (model grid cell) factor of
safety (FS) and calculates the annual probability of failure at
a cell, P (FSc ≤ 1), as the number of Monte Carlo iterations,
where the probability of failure is less than or equal to 1 di-35

vided by the total number of iterations. Precipitation is con-
sidered in the physically based model through its use as in-
put into a macro-scale hydrology model, such as the Variable
Infiltration Capacity model (Liang et al., 1994), which pro-
duces a spatially distributed recharge field used to drive the40

steady-state subsurface flow model in the component. Other
hydro-geophysical stochastic inputs into the stability model
are selected from distributions, while slope and specific con-
tributing area are deterministic variables.

In combining probabilities, we focus on the landslide45

initiation areas, as the physically based model we used
would only be applicable for landslide initiation. Empirical
P (LSc|SIc) and modeled P (FSc ≤1) probabilities of land-
slide impacts at each cell defined across the landscape are
treated as indices representing the likelihood of landslides.50

The method we propose for an integrated probability uses
the cell count of observed landslide initiation points within

bins of the empirical, P (LSc|SIc)b, and modeled probabili-
ties, P (FScł1)b of landsliding.

If we treat the empirical probability as an index, the proba- 55

bility of landslide initiation within a bin j of a empirically de-
rived probability of landslide initiation,Ej = P (LSc|SIc)b,j ,
is calculated as

P
(
LS|Ej

)
=
N(LS)j
Nj

, (5)

where N (LS)j is the number grid cells with observed land- 60

slides and Nj is the number of grid cells both in bin j of Ej .
Similarly, the probability of landslide initiation within a bin i
of a physically based modeled probability of landslide initi-
ation, Mi = P (FSc ≤ 1)b,i , is calculated as

P (LS|Mi)=
N(LS)i
Ni

, (6) 65

whereN (LS)i is the number of grid cells with observed land-
slides and Ni is the number of grid cells both in bin i of Mi .
If the observed landslide data are representative of the actual
landslide frequency over the duration when the probability
of landsliding is modeled, an ideal model that correctly rep- 70

resents all environmental variables associated with landslide
initiation would give P (LS|Mi)=Mi . Assuming unbiased
landslide mapping in the field, a greater difference between
these two relative-frequency probabilities would suggest a
weaker model representation of the process, especially when 75

the physically based model is run to represent landslide risk
for a given climatology.

Modeled probabilities may be improved when information
contained in empirical probabilities is introduced. The proba-
bility of landslide initiation in areas shared by any two select 80

bins (e.g., co-bins) of empirically derived,Ej , and physically
based modeled, Mj , probabilities is calculated as the joint
probability

P
(
LS|Ej ∩Mi

)
=
N(LS)j,i
Nj,i

, (7)

where N (LS)j,i is the number of grid cells with observed 85

landslides and Nj,i is the number of grid cells in the joint
bin j empirical probability data and bin i modeled probabil-
ity data. An illustration of this estimation is given in Fig. 2.
The conceptual example shows how relatively low landslide
probability predictions by a process model in the Mi = 0– 90

0.2 bin range can be modified due to differences in the em-
pirical preconditioning of the landscape (e.g., rock type) to
landslides represented in Ej . The intersection ofMi = 0–0.2
with Ej = 0.2–0.3 yields a higher empirical probability of
landsliding. The influence of vegetation change and extreme 95

weather events (e.g., eco-hydrometeorologic controls) that
were not part of the initial empirical dataset used for estimat-
ingEj bins can be captured by the physically based model. In
this case the model predicts a high probability Mj = 0.8–1,

Nat. Hazards Earth Syst. Sci., 19, 1–19, 2019 www.nat-hazards-earth-syst-sci.net/19/1/2019/



R. Strauch et al.: A new approach to mapping landslide hazards 5

Figure 2. Illustration of the proposed landslide probability con-
ditioned on estimated spatially distributed SI-based empirical and
modeled probabilities as binned indices EJ and Mi , which form a
joint space. P (LS|Ej ∩Mi ) is defined as the ratio of the number
of landsliding cells to the number of cells that jointly fall into the
given Ej and Mi bins.

while Ei remained in the low probability range in Ei = 0.0–
0.1. The intersection of the Mj and Ei land surface charac-
terization captures the landscape where landslides were ob-
served.

We propose that the ratio of P (LS|Ej∩Mi) and P (LS|Mi)5

can be used as a correction to P (FSc ≤ 1). As model pre-
dictions improve, this ratio should get closer to 1, especially
when the model is used to map landslide probability for a
given climatology in a region. When the physically based
model is run for studying a specific rainfall event, this ratio10

quantifies the relative roles other factors could play in land-
slide initiation. Thus, we propose that the probability of land-
sliding at each grid cell, c, given the corresponding Mj and
Ei bins that a cell belongs to, can be estimated as

P(LS)c,j,i = P (FSc ≤ 1)×
P
(
LS|Ej ∩Mi

)
P (LS|Mi)

. (8)15

If we let ω represent the bin-based ratio on the right-hand
side of Eq. (8) as a weighting factor based on observations of
landslides, then we can simplify this notation to

P(LS)c,j,i = P (FSc ≤ 1)×ω. (9)

This gives the probability of landslide initiation, represented20

as an adjusted modeled probability of landslide initiation
at a grid cell given that empirical observations correlated
with site characteristics. In the reminder of the paper we use
P (FSc ≤ 1) to refer to the physically based shallow landslide
probability from Strauch et al. (2018) and P (LS) to refer to25

the adjusted model probability using the proposed empirical-
adjustment methodology.

A hypothetical example shown in Table 1 demonstrates
calculating the relative frequencies, the resulting calculated
weight, and the adjusted P (LS) (Eq. 9). The calculation of30

relative frequency is based on binning modeled and empiri-
cal probabilities, counting landslide and non-landslide cells
within each bin, and calculating a weighting term, ω, which
is then used to adjust the original modeled probability given
empirical evidence. Weights can be greater than 1, and the 35

final probability will be increased when the weight is greater
than or equal to 1 and decreased when the weight is less than
1. The final adjusted probabilities are limited to unity in the
integrated model. For example, a weight of 2 and a modeled
probability of 0.2 would result in a doubling of the final prob- 40

ability to 0.4 given empirical information.

2.3 Model application

2.3.1 Study area

Our study area is within the geographical limits of the North
Cascades National Park Complex (NOCA) managed by the 45

U.S. National Park Service (Fig. 3). NOCA has experienced
damaging and disruptive landslides that have impacted in-
frastructure and disrupted public use of the park. NOCA is
approximately 2757 km2, with 93 % wilderness (e.g., no mo-
torized or mechanized devices) (DOI-NPS, 2012), which is 50

ideal for studying landslides primarily triggered by natural
causes. The north–south-oriented Cascade Mountains have
an elevation range of 100 to 2800 m at the study site, with
jagged bedrock peaks and over 300 alpine glaciers. The land-
scape has been shaped by Ice Age continental and alpine 55

glaciers and mass wasting, fluvial and tectonic uplift pro-
cesses that continue today (LaHusen et al., 2016; Mustoe and
Leopold, 2014; Collins and Montgomery, 2001; Riedel et al.,
2007; Pelto and Riedel, 2001). The bedrock geology in the
park is dominated by gneiss and granite, with lower-grade 60

metamorphic rocks schist and phyllite on the western edge
of the park and Mesozoic sedimentary rocks on the eastern
flank (Tabor and Haugerud, 1999). The placement of granite
at depth along faults led to hydrothermal alteration of some
overlying rocks and the clustering of large landslides. Soils 65

in the park are generally coarse-grained and relatively young
due to active slope processes, but soil age, thickness, and dis-
tribution are highly variable. Soils formed in glacial deposits
from the last glaciation are also widespread, and many soils
are classified based on the amount of volcanic ash they con- 70

tain.
The orographic uplift of Pacific Ocean air masses gen-

erates a spatial precipitation gradient with an average of
4575 mm of precipitation falling annually on the highest el-
evations west of the crest, while lowlands east of the crest 75

receive a mean annual precipitation of 708 mm (Mustoe and
Leopold, 2014; Roe, 2005). Air temperatures vary highly de-
pending on the season and elevation with the warmest month
typically being August and the coldest month being January;
corresponding average daily temperatures are about 25 and 80

4 ◦C, respectively, for these months in Newhalem, Washing-
ton.
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6 R. Strauch et al.: A new approach to mapping landslide hazards

Table 1. Hypothetical example of calculating relative frequencies, weight, and P (LS) during model integration. TS5

Ej bins Observed landslides/total cell count (relative frequency) Total

0.2–0.3 206/870 5/24 3/14 5/14 2/10 221/932
0.1–0.2 11107/87104 309/2001 193/1220 137/856 96/657 11842/91838
0–0.1 48513/1848950 1757/51679 1157/33084 793/24928 742/21410 52962/1980051

Total 59826/1936924 2071/53704 1353/34318 935/25798 840/22077 65025/2072821

Mi bins 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5

An example calculation of P (LS) using the above data: a cell having a modeled probability of P(FSc ≤ 1)= 0.12 and an empirical probability of
P(LSc |SIc)= 0.08 equates to P (LS|Ej )= 52 962/1 980 051= 0.027 (Eq. 5), P (LS|Mi )= 2071/53 704= 0.039 (Eq. 6),
P (LS|Ej ∩Mi )= 1757/51 679= 0.034 (Eq. 7), ω = 0.034/0.039= 0.87, and P (LS)c,i,j = 0.12× 0.87= 0.105 (Eq. 9).

Figure 3. Four landslide types mapped within the North Cascades National Park Complex (NOCA) in Washington, USA. The number and
their total area of each type is given in parentheses. Insert provides an example of mapping over an aerial image (© Google Earth) taken at
48◦27′20.21′′ N, 120◦44′47.09′′W with imagery data from 27 August 2006.

NOCA is dominated by forest vegetation, particularly
coniferous tree species, up to about 2000 m (Strauch et al.,
2018; Agee and Kertis, 1987). A patchwork of shrubs, herba-
ceous vegetation, and barren land is found above this ele-
vation, which is common in alpine environments and in the5

paths of frequent snow avalanches. Above 2400 m there is
mostly bare rock, snow, and ice. The underlying geology is
composed of a primarily old Mesozoic crystalline and meta-
morphic rock originating far to the south (Haugerud and Ta-
bor, 2009).10

Landslide (LS) inventory data are the most requisite in-
formation needed for an empirical statistical analysis (Lep-
ore et al., 2012). Landslides were mapped in the 2768 km2

park as discreet landforms during a comprehensive park-
wide landslide inventory (Fig. 3; Riedel and Probala, 2005).15

Landslides were identified using stereo pair air photos, which

have been taken since the 1960s at 1 : 24000 and 1 : 12000
scales, 7.5 min topographic maps, bedrock geology maps,
and field investigations (e.g., Riedel et al., 2012). The min-
imum mapping unit was approximately 1000 m2 except for 20

some smaller slump units. Landslide linework was trans-
ferred to a digital format, peer-reviewed, and the polygons
were edited into their final form in geographical-information-
system (GIS) software using National Agriculture Imagery
Program (NAIP) imagery and a 10 m DEM and, in some 25

cases, lidar. Where areas were mapped by traditional meth-
ods, and lidar later became available, the original approach
captured most (∼ 75 %) of the landslides. Dense vegetation
cover and a lack of access limited identification of some ex-
isting landslides. Larger, more recent debris avalanches that 30

left large deposits on the valley floor were more easily recog-
nized and mapped. Ancient landslides that occurred before

Nat. Hazards Earth Syst. Sci., 19, 1–19, 2019 www.nat-hazards-earth-syst-sci.net/19/1/2019/



R. Strauch et al.: A new approach to mapping landslide hazards 7

the last glacial period 16 000 years ago were generally not
mapped because their deposits were buried or reworked by
subsequent continental glaciation.

The landform mapping study identified six different types
of mass wasting: rock fall/topple, debris avalanche, debris5

torrent, slump/creep, sackung, and snow avalanche-impacted
landforms (SAILs) of which four are described in Table 2
(Riedel et al., 2012). The single sackung mapped in NOCA
represents a gravitational spreading or slope deformation,
sometimes found near ridge tops. All landslide types were in-10

cluded in the analysis except for the rare sackung and SAILs,
which are created by a snow avalanche impacting uncon-
solidated sediments rather than slope instability. The idea is
to capture more spatial variability and geologic controls on
observed landslides by using all the data we obtained that15

was available from the inventory for the four common land-
slide types. There are 1618 landslides mapped in NOCA:
falls/topples (68 %), debris avalanches (17 %), debris tor-
rents (10 %), slumps/creeps (4 %), and one sackung (< 1 %)
(Fig. 3; sackung not shown).20

2.3.2 Study domain and parameters

We constrained our analysis to soil-mantled landscapes by
excluding high-elevation areas covered by glaciers, perma-
nent snowfields, and exposed bedrock, as well as wetlands
and other water surfaces, based on landform mapping and25

maps of lithology and land cover. We also exclude slopes
less than 17◦ because this slope threshold was found to gen-
erally separate colluvial mass wasting and debris transport
processes from fluvial processes in this region (Strauch et al.,
2018). The area included in the analysis covers about 79 %30

of NOCA’s land area.
The seven site attributes investigated using the frequency

ratio approach as they relate to mapped landslide activity
vary across the NOCA study area. Slope, total curvature
(Laplacian of elevation), and aspect attributes were derived35

using ArcGIS from a 30 m DEM acquired from the Na-
tional Elevation Dataset (NED) (USGS, 2014a). A resolu-
tion of 30 m was chosen for comparability with other studies
and landslide size (e.g., Strauch et al., 2018; Lepore et al.,
2012). Elevation ranges from 107 to 2794 m with 85 % of the40

park between 500 and 2000 m. Subcategories for elevation
were based on 200 m increments with lumping at the ends
(e.g., < 400 and > 2200 m). Slope subcategories were set at
5◦ increments with ending subcategories for slopes at 17–
25 and > 50◦. The curvature was divided into three subcat-45

egories: convex/diverging, flat, or concave/converging. The
aspect (i.e., facing direction of slope) was classified into eight
compass orientations (i.e., N, NE, E, SE, S, SW, W, NW).
The park’s complex topography results in a roughly equal
distribution among the cardinal and intercardinal directions50

of aspect; however, the southwest quadrant is slightly more
common.

The DEM also provides the information needed to de-
rive a distributed wetness index (Beven and Kirkby, 1979;
O’Loughlin, 1986), calculated as the natural log of the ra- 55

tio of the specific catchment area [L] to the sine of the local
slope. This index has been used for quantifying the contribu-
tion of pore water pressure to destabilizing forces in landslide
modeling (e.g., Borga et al., 2002; Gokceoglu et al., 2005).
The wetness index was divided into five subcategories based 60

on 20 % quantiles: low, low-medium, medium, medium-
high, and high wetness. The land cover was acquired from
the 2014 National Land Cover Database (NLCD), which is
based on 2011 Landsat satellite imagery (Jin et al., 2013;
USGS, 2014b). We categorized this into forest, shrubland, 65

herbaceous, water, wetland, snow/ice, barren, and developed
(e.g., roads, campgrounds). Based on this classification, for-
est, shrubs, and herbaceous vegetation represent 54 %, 15 %,
and 10 % of the park, respectively. Barren land and snow or
ice together cover 17 %, typically at the high elevations. Wa- 70

ter and wetlands cover about 2.5 %, while the developed area
is less than 0.5 %.

Lithology provides a description of the rock and deposits
that indicates composition, strength, and age, which can in-
fluence the hillslope strength and water redistribution. Wash- 75

ington State Department of Natural Resources (WADNR)
provides lithology in its surface geology maps that display
rocks and deposits as geologic map units (WADNR, 2014).
This source of information was chosen because it is avail-
able for all of Washington, facilitating future applications. 80

There are 48 lithology map unit types within NOCA. These
were aggregated into seven subcategories, based on similari-
ties in origin and generally increasing strength, called (1) un-
consolidated sediment, (2) ultramafic, (3) weak metamorphic
foliated, (4) sedimentary rock, (5) hard metamorphic, (6) in- 85

trusive igneous, and (7) volcanic/extrusive igneous (Table 3).
Water and ice were not classified. Both land cover and lithol-
ogy were rasterized to the same DEM grid resolution us-
ing ArcGIS based on the dominant type of attribute in each
grid cell. Among the seven types of lithology, hard metamor- 90

phic is most common (41 % of NOCA), while ultramafic,
sedimentary rock, and volcanic/extrusive igneous combined
make up less than 5 %.

3 Results and discussion

3.1 Frequency ratio analysis 95

The results of the FR analyses for each site attribute are pre-
sented in Fig. 4. We discuss the role of SA starting with de-
bris avalanche source areas as they are hypothesized to repre-
sent the initiation processes of shallow landslides that trans-
form into debris avalanches. The SAs that impact shallow 100

landslide initiation could arguably play common controls on
the initiation of other types of slope failures. The frequency
analysis shows a clear and growing control of local slopes

Pl
ea

se
no

te
th

e
re

m
ar

ks
at

th
e

en
d

of
th

e
m

an
us

cr
ip

t.

www.nat-hazards-earth-syst-sci.net/19/1/2019/ Nat. Hazards Earth Syst. Sci., 19, 1–19, 2019



8 R. Strauch et al.: A new approach to mapping landslide hazards

Table 2. Landslides mapped as part of a comprehensive landform mapping study used in hazard analysis (Riedel and Probala, 2005 TS6 ).

Type of mass Process Mapping
wasting

Debris Extremely rapid-moving mixture of rock, soil, Includes headwall scar,
avalanche and vegetation, generally originating from path, and deposit

glacially sourced areas, over-steepened valley
walls, and in many cases hydrothermally
altered bedrock

Debris torrent Channelized rapid and/or sudden flow of Only the deposition areas
material entraining debris stored in a stream within a debris cone
channel while moving down slope

Slump and creep Slumps – rotational slip of cohesive sediments, Mapped where deciduous
usually triggered by the undercutting of steep vegetation is brighter on
slopes along riverbanks; creeps – slow aerial photos, fresh new
movement induced by saturated ground soil, jackstraw, or pistol

gripped trees

Rockfall or rock Sporadic and shallow detachment of rock Mapped where bright and
topple falling from bedrock cliffs and rock towers highly reflective with

little or no vegetation on
aerial photos; mainly
deposition mapped

greater than 35◦ on landslide initiation, which can be con-
sidered as the internal friction angle of cohesionless sand
(Fig. 4c).

The source area of debris avalanches is only about 17 %
of the mapped debris avalanche area and 10 % of the whole5

landslide inventory, which predominantly maps transport and
depositional areas. A small debris avalanche source area in
steep terrain can lead to large landslide impacts in lower ele-
vations, as the eroded material travels downhill and deposits
in gentler gradients (Fig. 1). Thus, the runout zones of de-10

bris avalanches and other mapped landslide types cover more
area at gentler slopes typical of lower elevations. This pro-
cess is captured in Fig. 4a and b where the FR analyses ex-
hibit higher landslide hazards at gentler slopes (< 30◦), more
likely associated with transport and depositional processes15

as well as the failure of side slopes along glacially incised
U-shaped valleys undercut by fluvial activity. Others have
reported the clustering of landslide impacts in lower eleva-
tions within valleys where hillslopes are steep enough to fail
(Megahan et al., 1978; Kelsey, 1988; Densmore et al., 1997;20

Chalkias et al., 2014).
In the study area, local slopes generally increase on aver-

age with elevation, particularly above 1400 m (Strauch et al.,
2018). The control of steeper slopes on debris avalanche ini-
tiation is supported by the results for elevation, where source25

areas are associated with mid-to-high elevation (1400 to
1800 m) and entire debris avalanches and all landslides types,
including deposition zones, have growing frequency in lower
elevations (< 1200 m) with the highest frequency falling in
elevations< 400 m (Fig. 4a and b). A further increase in30

slopes typically leads to bedrock exposure and barren lands
with thin soil (Strauch et al., 2018; Gabet, 2003). In addi-
tion to steepening slopes, the observed higher frequency of
debris avalanche source areas in the mid-to-high elevation
range corroborates recent findings of an ecosystem transition 35

control on landslide initiation (Strauch et al., 2018). With the
cooling of air temperatures beyond forest ecosystem thresh-
olds, the transition of forest vegetation (predominant alpine
conifers) to mixed shrub and herbaceous vegetation types
with lower root cohesion leads to higher landslide frequency 40

at debris avalanche source areas (Fig. 4c). The slope and ele-
vation results, however, are likely influenced by the mapping
approach, which was biased in mapping landslide activity on
the lower portions of hillslopes that were typically more ac-
cessible, and continuous creep and rapid slides in subalpine 45

and alpine areas were infrequently mapped.
Developed areas that include impervious surfaces, con-

structed materials, and lawns have the highest land cover as-
sociation with all mapped landslide areas, as well as with
debris avalanches, yet they have no association with debris 50

avalanche source areas, which are typically higher on moun-
tains and rarely developed. Although dirt roads have been
found to disrupt drainage and increase erosion (Croke and
Hairsine, 2006; Montgomery, 1994; Swanson and Dyrness,
1975), the lack of association with landslide initiation sug- 55

gests that these areas may be positioned on the landscape in
areas likely to be impacted by landslide runout or deposi-
tion. In general, forest and barren land cover show the least
landslide activity compared to other land cover (Fig. 4). The
forest association likely indicates the positive contribution of 60
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Table 3. Classification from the Washington Department of Natural Resources of surface geology from generally weaker (1) to stronger (6)
material along with aerial percentages within NOCA in parentheses.

Class WADNR lithology Class WADNR lithology

Unconsolidated sediments (12 %) Sedimentary rock (2 %)

1

Alluvial fan deposits

4

Sedimentary deposits or rocks, undivided
Alluvium Continental sedimentary deposits or rocks
Alluvium, older (e.g., alluvial fans and talus) Marine metasedimentary rocks
Alpine glacial drift, Fraser age Marine sedimentary rocks

Alpine glacial till, Fraser age Hard metamorphic (41 %)

Glacial outwash, alpine, Fraser age

5

Banded gneiss
Continental glacial drift, Fraser age Mixed metamorphic and igneous rocks
Mass wasting deposits Orthogneiss
Mass wasting deposits, mostly landslides Paragneiss

Mass wasting deposits, not landslides Intrusive igneous (21 %)

Peat deposits

6

Acidic (felsic) intrusive rock
Talus deposits Basic (mafic) intrusive rocks

Ultramafic (0.02 %) Diorite

2 Ultrabasic (ultramafic) rocks (serpentine) Gabbro

Weak metamorphic foliated (14 %) Granite

3

Heterogeneous metamorphic rocks Granodiorite
Heterogeneous metamorphic rocks, chert bearing Intermediate intrusive rocks
Marble Intrusive breccia
Metasedimentary and metavolcanic rocks Quartz diorite
Metasedimentary rocks Quartz monzonite
Metasedimentary rocks, cherty Tonalite

Metavolcanic rocks Volcanic/extrusive igneous (2 %)

Amphibolite

7

Tuffs and tuff breccias
Phyllite, low grade Dacite flows
Schist, low grade Rhyolite flows

– Water and ice (7 %) Volcanic breccia

root cohesion to hillslope stability, whereas the barren land
cover type results may indicate the effect of mapping com-
pleteness or hillslope processes. The results of the barren ar-
eas appear counter to the findings of the physically based
landslide model applied at the same location, which found a5

high probability of landslide initiation in barren areas often
below retreating glaciers (Strauch et al., 2018). Barren ar-
eas include bedrock, glacial debris, and other accumulations
of earthen material with vegetation generally accounting for
less than 15 % of total cover; thus, there may be a variety of10

stability conditions within this single-cover class.
The sources of debris avalanches are linked to eastern

and southeastern aspects (Fig. 4c); 20 % and 15 % of source
cells by area occur on these aspects, respectively. Except
for western aspects that show the weakest association debris15

avalanches, other aspects show landsliding frequency close
to the average frequency in the whole study domain. Vegeta-

tion type and cover that relate to root strength and moisture
regime can be related to aspect. Eastern and southern expo-
sures have lower forest cover fractions compared to other as- 20

pects at mid-to-lower elevations (< 1400 m), and forests are
largely replaced by barren lands and shrub and herbaceous
vegetation as elevation increases (Fig. 5). Most source ar-
eas of debris avalanches and debris avalanches as a whole
are associated with shrub and herbaceous vegetation types 25

(Fig. 4b and c). Other aspects, especially west-facing slopes,
have a higher fraction of forest cover (Fig. 5), likely linked to
a longer growing season (Evans and Fonda, 1990). A lower
landslide frequency in western aspects can be a result of
higher root cohesion of forest vegetation compared to shrubs 30

and herbs. Additionally, perhaps west-facing aspects experi-
ence more arid moisture regimes or bedrock bedding, joint-
ing, or fracturing conducive to stability compared to other
exposures (Carson and Kirby, 1972; Fischer et al., 2006).
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10 R. Strauch et al.: A new approach to mapping landslide hazards

Figure 4. FR values for different bins of seven site attributes (SA) separated by red lines, based on (a) all landslide types mapped within the
NOCA study domain, (b) debris avalanche landslide types only, and (c) source areas of debris avalanches represented by the highest 20 %
of the mapped debris avalanche. The vertical blue line refers to the FR value of 1.0, denoting when no association is found with mapped
landslides. FR values below this line are attributes less likely associated with landslides, and FR values above this line indicate a greater
association with landslides.

When all landslides are considered, northern slopes exhibit
a growing landslide association, while landslide frequency
declines in southeastern slopes compared to the other land-
slide datasets (Fig. 4a and b). North-facing slopes have been
documented to retain more soil moisture than south-facing5

aspects in northern latitudes (Geroy et al., 2011), which can
be broadly responsible for more initiation, transport, and de-
position impacts of all mass wasting types. Hillslope asym-
metry (i.e., steeper slopes depending on aspect) was not
found during the inspection of the average slope on the four10

primary aspects. North–south asymmetry has been found to
demonstrate a reversal based on elevation and a 49◦ latitude,
which corresponds to the northern edge of NOCA (Poulos et
al., 2012). In general, the relatively similar aspect associa-
tions for different landslide observation datasets likely indi-15

cates the connection of source areas to the downstream pro-
cesses of transport and deposition (Fig. 1).

Comparisons among all landslides, whole debris
avalanches, and debris avalanche source areas clearly
show that unconsolidated sediments, largely derived from20

transport and depositional processes, have a stronger as-
sociation with landslides than other lithologies followed
by sedimentary rock (Fig. 4). This strong association is
expected given the inclusion of mass wasting landforms
in the classification of unconsolidated sediment. The high 25

ultramafic-rock association when considering all landslide
types is driven by a single topple/fall occurring in this scarce
lithology (< 0.02 % of NOCA). The widespread observation
of debris avalanche source areas in all rock types may
point to the role of steep slopes regardless of lithology. 30

For debris avalanche processes, sedimentary rock is more
associated with transport and depositional areas than source
areas. Areas without landslide activity were associated with
weak metamorphic foliated and intrusive igneous lithology
(Fig. 4a). 35

The association of landslides on concave/converging vs.
convex/diverging topography is relatively consistent among
the datasets and generally consistent with the literature due
to enhanced wetness where vegetative support may be weak
in deeper soils (see Hales et al., 2009; Fig. 4). A high-wetness 40
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Figure 5. Vegetation cover fraction in NOCA on each aspect, taken as the fraction of vegetation type within each 200 m elevation band.
Aspects categorized here as (a) north (0 to 45◦ and 315 to 360◦), (b) east (45 to 135◦), (c) south (135 to 225◦), and (d) west (225 to 315◦)
cover 23 %, 23 %, 26 %, and 28 % of NOCA, respectively. Yellow highlighted area represents the strongest elevation association for debris
avalanche source areas.

index is associated with landslides for all landslide types as
well as entire debris avalanches (Fig. 4a and b). This result
is intuitive as this index is an indicator of increased soil satu-
ration and surface runoff. In contrast, source areas were cor-
related with a low-wetness index (Fig. 4c). This counterin-5

tuitive finding, however, aligns with previously discussed re-
sults that source areas are associated with the loss of root
strength, steep slopes, and higher elevations, resulting in rel-
atively small specific catchment areas. By definition, a wet-
ness index is negatively correlated with the slope and pos-10

itively correlated with the specific contributing area. Thus,
source areas will have a low-wetness index when they are
from steep slopes with small contributing areas (i.e., located
higher up on hillslopes).

3.2 Susceptibility index15

A susceptibility index is calculated for each grid cell within
the study area domain by Eq. (3). Cumulative distributions
for SI, plotted as a fraction of area of the study domain as
well as only in the areas where landslide impact was mapped,
show higher SI values for a given fraction of the respective20

domains where a given SI is exceeded (Fig. 6a, d, and g).
Additional support beyond the graphics that these distribu-
tions are not equal is provided by the Kolmogorov–Smirnov
test, which rejects the null hypothesis of equal distributions at
α < 0.01. The cumulative distributions show that the SI cal-25

culated from the FR method can differentiate mapped land-
slide locations from non-landslides with a larger SI. The re-
sulting spatial distribution of the SI is right skewed as shown
in the relative frequencies of SI for all three landslide datasets

(Fig. 6b, e, and h). The right skew indicates that there is 30

a small population of grid cells with a high SI compared
to the majority of grid cells in the study domain. This oc-
curs when there are FR subcategories frequently associated
with landslides coinciding at the same location. Histograms
show a greater relative frequency of landslide grid cells with 35

high SI values than the entire domain (Fig. 6b, e, and h). For
source areas, SI bins for the histograms were larger (e.g., 0.5
vs. 0.25) due to the small number of source area cells com-
pared to the two other datasets.

The probabilities of a landslide impact, P (LSr |SIr ), cal- 40

culated from Eq. (4) are shown in the third column of Fig. 6
(Fig. 6c, f, and i). In calculating this probability in the high-
est SI bins (e.g., SI≥ 8), landslide sample sizes of about 500
or fewer were aggregated into the previous bin. In all three
cases, P (LSr |SIr ) increases with SI, supporting the statistical 45

power of this empirical approach. The SI-to-P (LSr |SIr ) rela-
tion is explained by a linear function when debris avalanche
data are used (Fig. 6f). The other two cases, with all landslide
data and debris avalanche source areas, are better represented
by polynomial fits (Fig. 6c and i). The range of probabili- 50

ties grows with the sample size of the landslide dataset used,
leading to maximum probabilities of 0.2, 0.16, and 0.017 for
all landslides, debris avalanches, and debris avalanche source
areas, respectively. These functions were used to develop
continuous empirical probability maps based on SI values 55

assigned to each grid cell of the study domain, limited to the
maximum empirical probability of each landslide type.
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12 R. Strauch et al.: A new approach to mapping landslide hazards

Figure 6. Cumulative distributions (a, d, g) and relative frequency plots (b, e, h) of the susceptibility index (SI) for all grid cells included in
the analysis and the grid cells contained within mapped landslides. The probability of a landslide impact, P (LSr |SIr ), calculated from the
ratio of the number of landslide cells to the number of all cells with SI bins with fitted curves (c, f, i). Rows represent analysis domains: all
landslide types (a–c); debris avalanches (d–f); and debris avalanche source areas (g–i).

3.3 Landslide hazard maps

The probability of landslide impacts estimated from SI,
P (LSr |SIr ), declines as the amount of observational in-
formation decreases from all landslides (Fig. 7a), to de-
bris avalanches (Fig. 7b), and debris avalanche source ar-5

eas (Fig. 7c). This pattern reflects the smaller area of ob-
served landslide data used in each case compared to the
study domain. Additionally, the probability of any landslide
activity would be expected to be higher than the probabil-
ity of initiating a debris avalanche alone. When considering10

all landslides, the highest probabilities are located near the
base of valley walls and in topographic depressions or hol-
lows (Fig. 7a). The hazard map developed from the empiri-
cal model using only debris avalanches (Fig. 7b) also shows
higher probabilities in the valley bottoms, but these probabil-15

ities are lower than the map of all landslides at higher eleva-
tions in alpine areas, where the footprint of debris avalanches
is smaller compared to the deposition area, reducing the
overall probabilities in the FR approach. Spatial patterns of
landslide probabilities obtained from the source areas of de-20

bris avalanches (Fig. 7c) depart from the other two empiri-
cal models with the highest probabilities in middle and up-
per portions of valley walls, similar to the process model
(Fig. 8b). Thus, the empirically based modeling using only

source areas appears to capture some of the physical pro- 25

cesses initiating debris avalanches. Closeup areas mapped for
each mapping case more clearly illustrate the landslide haz-
ard in relation to topographic position.

We developed a map of annual probability of shallow land-
slide initiation by combining the empirical SI-based proba- 30

bility (Fig. 7c) and the physically based annual probability
of landslide initiation from Strauch et al. (2018), P (FSc ≤
1), using the methodology developed in this paper (Eqs. 8
and 9). The weight term, P (FSc ≤ 1), and the P (LS) are
shown in Fig. 8. Close ups of three locations are shown below 35

the full NOCA maps.
Approximately 30 % of the analyzed cells had

weights> 1. Weights are greater in high elevations and
steep slopes, commensurate with debris avalanche source
areas. Overall 88 % of the NOCA area has an annual 40

landsliding probability of less than 0.1 in the P (FSc ≤ 1)
and P (LS) map. The P (LS) map (Fig. 8c and f) shows an
enhanced landslide probability in areas already modeled
as high probability for landslide impacts based on the
physically based shallow landslide model (Fig. 8b and e). 45

An anomaly map created by subtracting P (LS) from
P (FSc ≤ 1) provides an easier display of the effect of the
empirical adjustment. In the anomaly map, much of the
original P (FSc ≤ 1) is adjusted by less than ±0.1 (Fig. 9).
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Figure 7. Maps of the probability of a landslide impact derived from an empirical model based on (a) all landslide types, (b) debris
avalanches, and (c) source areas of debris avalanches overlain on a hillshade raster. Black boxes indicate closeup areas shown below with
overlain landslide types and 100 m contours. Gray areas excluded from the analysis show river valleys and glaciated crests. CE3

An east-facing aspect, concave curvature, and elevations in
the ∼ 1000 to 1600 m range show an increase in probability
of > 0.1 (Fig. 9). Increasing probabilities on east-facing
slopes compared to other aspects align with the FR findings
(Fig. 4).5

Other cells declined in probability, particularly on gentler
slopes, north-to-west-facing aspects, and at low (< 1000 m)
and high (> 1600 m) elevations (Fig. 9). Areas with reduced
probability high on the mountain, above the elevation limit
of vegetation (∼ 2200 m, Fig. 5), and just below actively re-10

ceding glaciers or permanent snowfields likely represent lim-
ited soil development and active surface erosion where slopes
are steep (Roering et al., 2003) (Fig. 9). Within the elevation
range of the park, debris avalanche initiation is not frequently
observed at the highest elevations where soil is thin or the15

landscape is covered seasonally by snow and ice.
To investigate the spatial distribution of P (FSc ≤ 1)

(Strauch et al., 2018) and empirically adjusted model proba-
bilities, P (LS), we plot the cumulative distributions of prob-
abilities (Fig. 10a). In roughly 15 % of the NOCA domain,20

P (LS) gives a landslide probability lower than P (FSc ≤ 1),
indicated by the upward shift in the cumulative distribu-

tion (blue line) (Fig. 10a). The modeled landscapes have
P (Failure)≥ 0.9 or a recurrence interval of ≤ 1.1 year of
∼ 6 % and ∼ 3 % for the P (FSc ≤ 1) and P (LS) models, 25

respectively (Fig. 10a). These cells represent highly unsta-
ble slopes, and the empirical adjustment reduced this area
by half from the physically based model. An uncondition-
ally unstable landslide, P (Failure)= 1 (Pack et al., 1998
TS8 ; Montgomery, 2001), corresponds to 0% and 2 % of the 30

P (FSc ≤ 1) and P (LS) models, respectively. Uncondition-
ally stable slopes, P (Failure)= 0, correspond to 49 % of the
study domain for both the P (FSc ≤ 1) and P (LS) models
(not visible in Fig. 10a). The distributions generally show
a high portion (∼ 87 % to 88 %) of the modeled landscapes 35

have P (Failure)≤ 0.1 or a return period of ≥ 10 years. Only
between 7 % and 9 % of the landscape has a wide range of
potential failure (0.1≤P (Failure)≤ 0.9) as indicated by the
shaded-blue area (Fig. 10a), where empirical evidence en-
hanced the local landscape susceptibility to the initiation of 40

shallow landslides.
We anticipated that the additional consideration of the em-

pirical model represented by the weighting term improves the
performance of the purely physically based model. Thus, to
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14 R. Strauch et al.: A new approach to mapping landslide hazards

Figure 8. Maps of (a) a weight term derived from joint empirical and physically based modeled probabilities, (b) P (FSc ≤ 1) from Strauch
et al. (2018), and (c) P (LS) created from multiplying (a) and (b) at each grid cell for the North Cascades National Park Complex (NOCA).
Blue boxes indicate three closeup locations shown below in (d–f). Black lines show mapped debris flow boundaries. Gray areas are excluded
from the analysis, and contours are at 100 m.

assess the potential performance of the models, we statisti-
cally evaluated the models using curves of the receiver oper-
ating characteristics (ROCs) (Fawcett, 2006). This approach
examines cells within mapped landslides and cells outside
landslides for a study area and compares this to randomly dis-5

tributed landslides over the same landscape. Confusion ma-
trices are generated from observed and modeled landslides

based on varying the probability of a landslide threshold used
to generate curves of the ROCs (Mancini et al., 2010; El-
Ramly et al., 2002; Anagnostopoulos et al., 2015) (Fig. 10b). 10

A better-performing model curves towards the upper-left cor-
ner, and a curve along the 1 : 1 line represents a trivial model
that randomly assigns landslide and non-landslide cells. The
area under the curve (AUC) statistic provides a numerical in-

Nat. Hazards Earth Syst. Sci., 19, 1–19, 2019 www.nat-hazards-earth-syst-sci.net/19/1/2019/



R. Strauch et al.: A new approach to mapping landslide hazards 15

Figure 9. Anomaly maps displaying the difference between P (LS) and P (FSc ≤ 1), where blues represent> 0.1 reduction in probability and
reds represent > 0.1 increase in probability due to the empirical adjustment. Maps of (a) the entire North Cascades National Park Complex,
(b) a closeup location indicated by the cyan box in (a) overlain on a hillshade raster, and (c) an aerial image of the same location as (b).
Aerial image is from World Imagery, Esri Inc. (Images were created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the
intellectual property of Esri and are used herein under license. © Esri. All rights reserved. For more information about Esri® software, please
visit https://www.esri.com/en-us/home, TS7 ). Gray areas are excluded from the analysis, and contours are at 100 m.

Figure 10. (a) Cumulative distribution of the probability of failure for the P (FSc ≤ 1) (black) and P (LS) (blue) using only the debris
avalanche source areas. (b) ROC curves for the same two datasets. The blue shaded area on (a) represents the fraction of the landscape with
0.1≤ P (Failure)≤ 0.9. Black diagonal dashed line on a 1 : 1 line in (b) represents the case of a trivial or random classification model. AUC
values are 0.58 for the modeled probability and 0.60 for the integrated probability.

www.nat-hazards-earth-syst-sci.net/19/1/2019/ Nat. Hazards Earth Syst. Sci., 19, 1–19, 2019
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dicator of model performance representing the probability of
correctly assigning two randomly selected cells to landslide
and non-landslide datasets (Hanley and McNeil, 1982).

Both the physically based model, P (FSc ≤ 1), and the
P (LS) perform better than a trivial model by plotting the5

curve of the ROC above the 1 : 1 line (Fig. 10b). The AUC
statistic was 0.58 and 0.60 for P (FSc ≤ 1) and P (LS), re-
spectively. The ROCs and AUC indicate an improvement in
the fraction of observed landslides captured by P (LS) over
P (FSc ≤ 1). The AUC for P (LS) indicates that there is a10

60 % chance that the proposed empirical adjustment to the
physically based model would classify a landslide initiation
cell and a non-landslide cell correctly from two randomly
sampled grid cells. The ROC analysis found that the opti-
mal probability threshold for maximizing the observed land-15

slides captured and minimizing false alarms was a probabil-
ity threshold of 0.0006 (i.e., apex of the blue curve); thresh-
olds less than this increased the false alarms, and thresholds
greater than this reduced the accuracy of capturing observed
landslides (Fig. 10b). The additional information from em-20

pirical modeling modestly improved the physically based
model and indicates empirical evidence on landslides can
capture mechanisms lacking in the infinite-slope stability
model. These include the clustering of debris avalanches due
to variability in the bedrock geology (e.g., hydrothermal al-25

teration, steeply dipping bedding planes, and glacial over-
steepening). Additional validation approaches, such as sep-
arating landslide data into training and testing datasets, may
yield additional findings that are deferred to future studies.

4 Conclusions30

Empirically based probability hazard maps were developed
from a statistically based susceptibility index, which inte-
grated the influence of site attributes on observed landslides
based on a frequency ratio approach. The resulting suscep-
tibility depends on the observations of the landslides con-35

sidered: all types of landslides, debris avalanches only, or
source areas of debris avalanches. Thus, the objectives of a
hazard identification study dictate the necessary inventory of
landslide features. The empirically based probability model
based on source areas was used to adjust a previously devel-40

oped physically based probabilistic model through a calcu-
lated weighting term developed from a joint spatial proba-
bility. The frequency analysis, hazard map development, and
integrated-probability model identified several key findings
when applied to a national park.45

– The frequency analysis shows a clear and growing con-
trol of local slopes greater than 35◦ on landslide initi-
ation, while higher landslide hazards at gentler slopes
(< 30◦) reflect transport and depositional processes.

– The debris avalanche source areas are associated with50

mid-to-high elevation (1400 to 1800 m), while all land-

slide types and whole debris avalanches have a growing
impact in lower elevations (< 1200 m) with the highest
impact falling in elevations< 400 m.

– The slope is a key attribute for the initiation of land- 55

slides, while lithology is mainly tied to transport and
depositional processes.

– The transition from subalpine to alpine herbaceous veg-
etation with lower root cohesion correlates with a higher
frequency of debris avalanche initiation. 60

– The east and west aspects are positive and negative
landslide-influencing factors, respectively, likely due to
differences in the moisture regime and forest cover and
associated root cohesion.

– The empirical statistical modeling used to adjust a phys- 65

ically based model of landslide initiation improved the
predictability of observed landslides by accounting for
additional factors that influence the landscape’s suscep-
tibility to failure not represented in the physically based
model. 70

– Empirical adjustments generally lowered the probabil-
ity of failure of the physically based model, especially
for 0.1≤ P (failure)≤ 0.9 that covered between 7 % to
9 % of the study area.

As the occurrence of landslide runout is conditioned on the 75

failure of source areas, future studies could combine the
probabilistic initiation methodology we propose in this pa-
per with a landslide runout model to improve the prediction
of hazards from entire landslides. The applicability of our ap-
proach to characterize shallow landslide hazards is limited by 80

the quality of the site-specific data on soils and vegetation,
the extent of hydrologic modeling, as well as the accuracy
and completeness of the landslide inventory. Accurate data
for environmental variables such as the geology, soils, and
vegetation would be as important as comprehensive landslide 85

data, as the empirical approach relates landslide hazards to
the environmental variables. Although the approach is appli-
cable elsewhere, our results from the empirical analyses are
specific to the region in which they were developed and may
differ in another location with a different geology and land- 90

slide inventories. Additionally, the probabilities are likely to
change as local conditions change from disturbances such as
fires or as the climate continues to change. Advancements in
surface terrain delineation and in distributed hydrologic mod-
eling specifically contribute to the broad applicability of this 95

approach. We provide multiple landslide hazard maps for the
national park that land managers can use for planning and
decision-making, as well as educating the public about haz-
ards from landslides so they can minimize risks from these
geohazards.CE4 100

Data availability. . TS9
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