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Abstract 24 
 25 
We developed a new approach for mapping landslide hazard by combining probabilities of 26 
landslide impact derived from a data-driven statistical approach and a physically-based model of 27 
shallow landsliding. Our statistical approach integrates the influence of seven site attributes on 28 
observed landslides using a frequency ratio method.  Influential attributes and resulting 29 
susceptibility maps depend on the observations of landslides considered: all types of landslides, 30 
debris avalanches only, or source areas of debris avalanches.  These observational datasets 31 
reflect the detection of different landslide processes or components, which relate to different 32 
landslide-inducing factors.  For each landslide dataset, a Stability Index (SI) is calculated as a 33 
multiplicative result of the frequency ratios for all attributes and is mapped across our study 34 
domain in the North Cascades National Park Complex, Washington, U.S.A. A continuous 35 
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function is developed to relate local SI values to landslide probability based on a ratio of 1 
landslide and non-landslide grid cells.  The empirical model probability derived from the debris 2 
avalanche source area dataset is combined probabilistically with a previously developed 3 
physically-based probabilistic model.  A two-dimensional binning method employs empirical 4 
and physically-based probabilities as indices and calculates a joint probability of landsliding at 5 
the intersections of probability bins. A ratio of the joint probability and the physically-based 6 
model bin probability is used as a weight to adjust the original physically-based probability at 7 
each grid cell given empirical evidence. The resulting integrated probability of landslide 8 
initiation hazard includes mechanisms not captured by the infinite slope stability model alone. 9 
Improvements in distinguishing potentially unstable areas with the proposed integrated model 10 
are statistically quantified. We provide multiple landslide hazard maps that land managers can 11 
use for planning and decision making, as well as for educating the public about hazards from 12 
landslides in this remote high-relief terrain.  13 

1 Introduction 14 
Most mountain ranges are susceptible to landsliding due to their steep geomorphology, loose soil 15 
development, geology, and high precipitation (e.g., Coe, 2016). Landslides disrupt aquatic 16 
habitats (May et al., 2009; Pollock, 1998), damage infrastructure such as roads, utilities, and 17 
dams (Ghirotti, 2012; Baum et al., 2008), and harm people (Wartman et al., 2016; Taylor and 18 
Brabb, 1986). Landslide hazards are expected to increase globally with growing extremes in the 19 
climate (Coe, 2016; Haeberli et al., 2016; Crozier 2010).  20 
 21 
Maps of landslide hazards, quantified as a probability of landslide initiation or impact, can be 22 
obtained using empirical methods that statistically relate the location of existing landslides to 23 
other environmental variables and physically-based models based on geotechnical slope stability 24 
equations driven by hydro-climatic inputs (Bordoni et al., 2015; Mancini et al., 2010; Sidle and 25 
Ochiai 2006; El-Ramly, et al., 2002). While detailed quantitative and categorical climatic, 26 
geologic, ecologic, and pedologic information can be used in statistical models, physically-based 27 
models are limited to geotechnical stability analysis driven by soil pore-water pressure, and often 28 
neglect geological factors such as bedrock, faulting, and complexities of microclimatic 29 
conditions. To date, data-driven empirical research on landslide hazard mapping (Corominas et 30 
al., 2012; Lee 2007; Chung and Fabbri 2002) has been typically conducted independently from 31 
hydroclimate-driven modeling of landslides that largely focus on hydrologic controls on 32 
landsliding (Wooten et al., 2016; Cevasco et al., 2014). There is need for unifying these two lines 33 
of research to provide regional scale landslide prediction for resource management and hazard 34 
mitigation strategies. In this paper we develop a statistical approach to combine probability of 35 
landslide initiation obtained from an observation-based statistical mapping method and a 36 
physically-based model.  The proposed approach is illustrated in the North Cascades region of 37 
the state of Washington, USA. 38 
 39 
Data-driven statistical landslide susceptibility approaches assess the inherent or quasi-static 40 
stability of hillslopes derived from statistical associations (e.g., correlations) between site 41 
attributes (e.g., soil, geology, topography) and an inventory of past landslides that includes 42 
landslide type and locations (e.g., Dai and Lee, 2002; Gupta and Joshi, 1990; Pachauri and Pant, 43 
1992; Kirschbaum et al., 2012). These models focus on prevailing conditions that predispose 44 
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hillslopes to failure (Hungr et al., 2014), typically providing general indices of relative landslide 1 
susceptibility or spatial probabilities applicable to the study location and cannot represent causal 2 
factors or triggering conditions that change in time (van Westen et al., 2006; Sidle and Ochiai, 3 
2006).  Outcome of such analyses depend on the completeness of observations, hindering the use 4 
of such techniques over large areas where complete inventories are typically lacking. Since 5 
empirical models are based on observation of past landslides, the preconditioning relationships 6 
are assumed to prevail into the future until an updated study is completed (Lepore et al., 2012).   7 
 8 
Physically-based models require considerable data on the spatial-temporal characteristics of the 9 
landscape and triggering hydro-meteorologic events.  These models are also usually restricted to 10 
a specific type of landslide and can be limited in representing local geologic, soil, and hydrologic 11 
conditions that may be difficult to observe and map in the field and parameterize in model 12 
theory.  Data-driven statistical methods could be used to condition physically-based model 13 
results to incorporate the influence of environmental and geologic factors that are not represented 14 
in process theory. Linking these empirically-based and physically-based models may improve 15 
the spatial-temporal patterns of landslide hazard at medium to large scales where landslide 16 
inventories exist to provide support tools for authorities addressing risk management  Additional 17 
descriptions of the advantages and disadvantages of data-driven and physically-based models 18 
and landslide hazards assessments can be found in reviews by Ercanoglu and Sonmez (2019), 19 
Reichenback, et al. (2018), Hungr (2018), and Aleotti and Chowdhury (1999).   20 
 21 
This paper describes research designed to address the following questions: 1) How can we 22 
quantify relative contributions of local topography, geology, and ecology on landslide frequency 23 
and derive spatial probabilities of landsliding using a statistical model? 2) How would 24 
probabilities of landslide initiation derived from empirical observations compare with those 25 
derived from a physically-based model? 3) How can we combine empirical and physically-based 26 
models for landslide susceptibility to improve the prediction of landslide hazards?  27 
 28 
The empirical approach for landslide susceptibility we used is based on a modification of the 29 
Frequency Ratio (FR) statistical concept which has been found to perform as well as more 30 
rigorous statistical approaches such as logistic regression (Hong et al., 2017; Wu et al., 2017; 31 
Bellugi et al., 2015; Lepore et al., 2012; Kirschbaum et al., 2012; Lee and Pradhan, 2007; Lee et 32 
al., 2007).  As for the mechanistic model, we used the results of Strauch et al. (2018), who 33 
developed a Monte Carlo solution of the infinite slope stability equation coupled to a steady-state 34 
topographic flow routing approach to map annual probability of shallow landsliding. The 35 
uncertainty of soil depth in Strauch et al. (2018) was constrained by a soil development model, 36 
and subsurface flow recharge was obtained from a regional macro-scale hydrologic model that 37 
produced historical hydrologic simulations (Hamlet et al., 2013). 38 
 39 
Building on the advantages from the empirical and process models, we combined the two models 40 
to develop a map of landslide hazard.  The integrated map can be developed to identify landslide 41 
hazards that may originate from the initiation of landslides and used to inform models of 42 
transport and deposition (i.e., runout) of landslide material (Fig. 1).  The focus of the study was 43 
to determine if an empirical-based model of landslide hazard could be used to improve an 44 
existing physically-based model for shallow landslide probability. The organization of this paper 45 
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is as follows. Our methodology is discussed in Sect. 2, including the empirical method, model 1 
application, data compilation, and model integration approach.  Sect. 3 details our results of the 2 
empirical application and integrated hazard model as well as various hazard maps developed. We 3 
end with some overall concluding thoughts in Sect. 4. 4 
 5 

 6 
Figure 1. Primary landslide features of the Goodell Creek landslide (Oct. 2003) showing source, 7 
transport, and deposition areas illustrated over aerial image from Google Earth.  Base of landslide is about 8 
1 km across. Location in North Cascades National Park Complex about 4 km north of Newhalem, 9 
Washington. Source: Google Earth, 48°41’55.72” N 121°17’01.31” W, imagery data June 23, 2006 10 
viewed towards southwest.  11 
 12 

2 Methodology 13 
2.1 Frequency Ratio 14 
We characterized the susceptibility of hillslopes to landslides using an empirically-based 15 
Frequency Ratio, FR, approach (Lee et al., 2007; Kirschbaum et al., 2012). We used the term 16 
landslides broadly, covering all types of mapped landslides in our landslide inventory, with their 17 
source, transport and depositional zones (Fig. 1).  The FR approach relates the density ratio of 18 
historical landslides within selected surface attributes, SAs. We considered seven SAs in our 19 
analysis: slope, elevation, aspect, curvature, land use-land cover (landcover), lithology, and 20 
topographic wetness index.  21 

Slope, curvature, and lithology directly affect the forces and geotechnical properties in surface 22 
sediments.  Land cover provides a surrogate for root cohesion and topographic wetness index has 23 
been used as a surrogate for soil pore water pressure (Borga et al., 2002).  Elevation can 24 
represent the effects of climate, weathering, vegetation, ground motion, and glacial processes, if 25 
any, as well as coincide with variability in slope, soil depth, and land use (Sidle and Ochiai, 26 
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2006). Aspect provides an indication of solar insolation, vegetation type and cover density, snow 1 
and ice loading, and soil moisture levels via evapotranspiration (Beaty, 1956; Gokceoglu et al., 2 
2005).  3 

Each SA is indexed by attribute type, m (e.g. m=slope, lithology, vegetation), and its subcategory 4 
is indexed by n. Subcategories of each SA can be a categorical variable such as type of lithology, 5 
soil and vegetation, or a quantitative variable defined with certain ranges such as slope and 6 
aspect over the study domain, SD. For a given SA, identified by m, and its subcategory, n, 7 
FRm,n|SAm,n is calculated (Eq. 1) as the ratio of observed landslide area, LA, in each SA m and 8 
subcategory n (LASAm,n) with respect to the area of the SAm,n (ASAm,n) to the regional landslide 9 
density, Po (Eq. 2) (Miller and Burnett, 2007): 10 

𝐹𝑅#,%|𝑆𝐴#,% =
*+,-.,//+,-.,/

12
	  (1) 11 

where 𝑃5 	=
*+,6
+,6

 (2) 12 

The term in the numerator of Eq. (1) gives an empirical probability of landsliding impact within 13 
SAm,n.  Po can also be referred to as a regional background probability, such that in absence of 14 
any other information, Po represents the probability of landsliding at any point in the domain. 15 
The interpretation of FR is as follows (Lepore et al., 2012): 16 
● FR < 1: indicates proportionally less landslide area with subcategory n of SA m, SAm,n; 17 

hence, smaller odds of a landslide than in the entire SD. 18 
● FR = 1: means there is the same proportion of landslide area with SAm,n as in the SD thus, 19 

the odds of a landslide are the same for the SAm,n subcategory as the SD. 20 
● FR > 1:  reveals a higher percentage of landslide area with SAm,n, than in the entire SD, 21 

so there is a propensity for failures to occur with this SA. 22 
 23 
FR in Eq. (1) is developed for a population of spatially distributed locations that has the same 24 
attribute of a given SAm,n. A given point on the landscape would have as many FR values as the 25 
number of SAs used. To develop an index that will incorporate all the FR values for a given 26 
point on the landscape we used an empirical susceptibility index, SI, defined at the grid cell 27 
scale, SIc, as the product of the FR values for all SAs of that grid cell and their associated 28 
subcategory,  29 
 30 
𝑆𝐼8 = ∏ 𝐹𝑅#,%|𝑆𝐴#,%.#  (3) 31 
 32 
A multiplicative FR is used because in certain subcategories, there may be no landslide 33 
observations (e.g., low slope angle), and in such cases the hillslope would be stable regardless of 34 
other soil and vegetation properties.  SIc is a measure that relates local static (or slowly changing) 35 
site characteristics to relative frequency of landslides.  Since SIc  is a data-driven index, 36 
probability of landsliding would increase as SI grows. 37 
 38 
In order to develop a continuous relationship between SIc and probability of landslide at a grid 39 
cell, P(LSc|SIc), we binned the population of SIc values across the landscape into SIr bins, where r 40 
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is the number of SI bins. We then estimated the probability of landsliding for an SI bin, SIr, 1 
P(LSr|SIr), as the ratio of number of grid cells with landslides in each SI bin, N(LS)r, to the total 2 
number of grid cells within each SI bin, Nr (Eq. 4).   3 
 4 

𝑃(𝐿𝑆=|𝑆𝐼=) =
?(*@)A
?A

 (4) 5 

 6 
To calculate spatially continuous empirical probability of landsliding at each grid cell of a DEM, 7 
P(LSc|SIc), we fit empirical functions that relate P(LSr|SIr) to SIr. These functions are then used 8 
for mapping empirical probability of landsliding at the cell scale, P(LSc|SIc), based on its 9 
empirically-derived SIc value in Eq. (3).    10 
 11 
We included all SAs to develop empirical models relating SI to landslide probability, similar to 12 
Kirschbaum et al. (2012) and Lepore et al. (2012). We repeated the analysis described above 13 
three times: first, considering all landslide types and including their source, transport, and 14 
depositional zones, as is commonly done in multi-factor analyses (Sidle and Ochiai, 2006; 15 
Ayalew et al., 2004; Carrara et al., 1995); second, focusing on debris avalanches, with all three 16 
of their zones (Fig. 1); and third, considering only the source (initiation) areas of debris 17 
avalanches. These source areas were identified as the upper 20% by elevation within mapped 18 
debris avalanche polygons, which appeared to align with inspections of aerial imagery of a 19 
selected debris avalanches. This tiered approach can be used to quantify the relative 20 
contributions of different landslide features to overall landslide hazard in a region as well as 21 
inform the variability in hazard identification given a landslide dataset.  22 
 23 
2.2 Model Integration 24 
Here we develop a method to combine the empirical probability for landslide initiation based on 25 
SI, P(LSc|SIc), with the probability of landslide initiation based on a previously developed 26 
physically-based model using Landlab (Strauch et al., 2018; Hobley et al., 2017). The physically-27 
based model employs Monte Carlo solution of the infinite slope stability model that evaluates 28 
localized (model grid cell) factor of safety (FS), and calculates the annual probability of failure at 29 
a cell, P(FSc≤1) as the number of Monte Carlo iterations where probability of failure £ 1 divided 30 
by the total number of iterations. Precipitation is considered in the physically-based model 31 
through its use as input to a macro-scale hydrology model, such as the Variable Infiltration 32 
Capacity model (Liang et al. 1994), which produces a spatially distributed recharge field used to 33 
drive the steady-state subsurface flow model in the component. Other hydro-geophysical 34 
stochastic inputs into the stability model are selected from distributions while slope and specific 35 
contributing area are deterministic variables. 36 
 37 
In combining probabilities, we focus on the landslide initiation areas, as the physically-based 38 
model we used would only be applicable for landslide initiation. Empirical P(LSc|SIc) and 39 
modeled P(FSc≤1) probabilities of landslide impact at each cell defined across the landscape are 40 
treated as indices representing the likelihood of landslides. The method we proposed for an 41 
integrated probability uses the cell count of observed landslide initiation points within bins of the 42 
empirical, P(LSc|SIc)b, and modeled probability, P(FSc≤1)b of landsliding.   43 
  44 
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If we treat the empirical probability as an index, the probability of landslide initiation within a 1 
bin j of empirically-derived probability of landslide initiation, Ej=P(LSc|SIc)b,j is calculated as: 2 

𝑃(𝐿𝑆|𝐸C) =
?(*@)D
?D

 (5) 3 

where, N(LS)j is the number grid cells with observed landslides and Nj is the number of grid 4 
cells both in bin j of Ej: 5 
 6 
Similarly, the probability of landslide initiation within a bin i of physically-based modeled 7 
probability of landslide initiation, Mi=P(FSc≤1)b,i is calculated as: 8 

𝑃(𝐿𝑆|𝑀F) =
?(*@)G
?G

 (6) 9 

where, N(LS)i is the number of grid cells with observed landslides and Ni is the number of grid 10 
cells both in bin i of Mi. If the observed landslide data is representative of the actual landslide 11 
frequency over the duration when the probability of landsliding is modeled, an ideal model that 12 
correctly represents all environmental variables associated with landslide initiation would give 13 
𝑃(𝐿𝑆|𝑀F) = 𝑀F	. Assuming unbiased landslide mapping in the field, a greater difference 14 
between these two relative frequency probabilities would suggest a weaker model representation 15 
of the process, especially when the physically-based model is run to represent landslide risk for a 16 
given climatology.  17 
 18 
Modeled probabilities may be improved when information contained in empirical probabilities is 19 
introduced. The probability of landslide initiation in areas shared by any two select bins (e.g., co-20 
bins) of empirically-derived, Ej, and physically-based modeled, Mj, probabilities is calculated as 21 
the joint probability:  22 

𝑃(𝐿𝑆|𝐸C ∩ 𝑀F) =
?(*@)D,G
?D,G

 (7) 23 

where N(LS)j,i is the number grid cells with observed landslides and Nj,i is the number of grid 24 
cells in the joint bin j of empirical probability and bin i of modeled probability data. An 25 
illustration of this estimation is given in Figure 2. The conceptual example shows how relatively 26 
low landslide probability predictions by a process model in the Mi=0-0.2 bin range can be 27 
modified due to differences in the empirical preconditioning of the landscape (e.g., rock type) to 28 
landslides represented in Ej. The intersection of Mi=0-0.2 with Ej=0.2-0.3 yields a higher 29 
empirical probability of landsliding. Influence of vegetation change and extreme weather events 30 
(e.g. Eco-hydrometeorologic controls) that were not part of the initial empirical data set used for 31 
estimating Ej bins can be captured by the physically-based model. In this case the model predicts 32 
a high probability Mj=0.8-1, while Ei remained in the low probability range in Ei=0.0-0.1. The 33 
intersection of Mj and Ei land surface characterization captures the landscape where landslides 34 
were observed.  35 
 36 
 37 
 38 
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 1 
 2 
Figure 2. Illustration of the proposed landslide probability conditioned on estimated spatially distributed 3 
SI-based empirical and modeled probabilities as binned indices, EJ and Mi, that form a joint space. 4 
P(LSL𝐸C ∩𝑀FM is defined as the ratio of the number of landsliding cells to the number of cells that jointly 5 
fall into given EJ and Mi bins. 6 
 7 
We propose that the ratio of P(LSL𝐸C ∩ 𝑀FM and 𝑃(𝐿𝑆|𝑀F) can be used as a correction to 8 
𝑃(𝐹𝑆8 ≤ 1) . As model predictions improve, this ratio should get closer to 1, especially when the 9 
model is used to map landslide probability for a given climatology in a region. When the 10 
physically-based model is run for studying a specific rainfall event, this ratio quantifies the 11 
relative roles of other factors could play on landslide initiation. Thus, we propose that the 12 
probability of landsliding at each grid cell, c, given the corresponding Mj and Ei bins that a cell 13 
belongs to can be estimated as: 14 

𝑃(𝐿𝑆)8,C,F = 𝑃(𝐹𝑆8 ≤ 1) ×
1(*@|QD	∩	RG)
1(*@|RG)

 (8) 15 

If we let 𝜔 represent the bin-based ratio on the right-hand side of Eq. (8) as a weighting factor 16 
based on observations of landslides, then we can simplify notation to: 17 

𝑃(𝐿𝑆)8,C,F = 𝑃(𝐹𝑆8 ≤ 1) × 𝜔 (9) 18 

 19 
This gives the probability of landslide initiation, represented as an adjusted modeled probability 20 
of landslide initiation at a grid cell given empirical observations correlated with site 21 
characteristics. In the reminder of the paper we use 𝑃(𝐹𝑆8 ≤ 1) to refer to physically-based 22 
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shallow landslide probability from Strauch et al., (2018) and P(LS) to refer to the adjusted model 1 
probability using the proposed empirical-adjustment methodology. 2 

A hypothetical example shown in Table 1 demonstrates calculating the relative frequencies, the 3 
resulting calculated weight, and adjusted P(LS) (Eq. 9). The calculation of relative frequency is 4 
based on binning modeled and empirical probabilities, counting landslide and non-landslide cells 5 
within each bin, and calculating a weighting term, ω, which is then used to adjust the original 6 
modeled probability given empirical evidence.  Weights can be greater than 1 and the final 7 
probability will be increased when weight ≥ 1 and decreased when weight < 1. Final adjusted 8 
probabilities are limited to unity in the integrated model. For example, a weight = 2 and modeled 9 
probability = 0.2 would result in a doubling of the final probability = 0.4 given empirical 10 
information. 11 

Table	1.		Hypothetical example of calculating relative frequencies, weight, and P(LS) during 12 
model integration 13 

Ej	bins Observed	Landslides	/	Total	Cell	Count	(relative	frequency) Total 

0.2-0.3 206/ 
870 

5/ 
24 

3/ 
14 

5/ 
14 

2/ 
10 

221/ 
932 

0.1-0.2 11107/ 
87104 

309/ 
2001 

193/ 
1220 

137/ 
856 

96/ 
657 

11842/ 
91838 

0	–	0.1 48513/ 
1848950 

1757/ 
51679 

1157/ 
33084 

793/ 
24928 

742/ 
21410 

52962/ 
1980051 

Total 59826/ 
1936924 

2071/ 
53704 

1353/ 
34318 

935/ 
25798 

840/ 
22077 

65025/ 
2072821 

Mi	bins 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 
 

An	example	calculation	of	P(LS)	using	the	above	data	– a	cell	having	a	modeled	
probability,	P(FSc	≤	1)	=	0.12	and	an	empirical	probability,	P(LSc|SIc)	=	0.08,	then:		
P(LS|Ej	)	=	52962/1980051	=	0.027				(Eq.	5)	
P(LS|Mi	)	=	2071/53704	=	0.039											(Eq.	6)	
P(LS|Ej	∩	Mi	)	=	1757/51679	=	0.034		(Eq.	7)	
ω	=	0.034/0.039	=	0.87		
P(LS)c,i,j	=	0.12x0.87	=	0.105																			(Eq.	9) 

 14 
2.3 Model application 15 
2.3.1 Study Area 16 
Our study area is within the geographical limits of North Cascades National Park Complex 17 
(NOCA) managed by the U.S. National Park Service (Fig. 3). NOCA has experienced damaging 18 
and disruptive landslides that have impacted infrastructure and disrupted public use of the park.  19 
NOCA is approximately 2,757 km2, with 93% wilderness (e.g., no motorized or mechanized 20 
devices) (DOI-NPS, 2012), which is ideal for studying landslides primarily triggered by natural 21 
causes.  The north-south oriented Cascade Mountains has an elevation range of 100 to 2,800 m at 22 
the study site, with jagged bedrock peaks, and over 300 alpine glaciers. The landscape has been 23 
shaped by Ice Age continental and alpine glaciers, and mass wasting, fluvial and tectonic uplift 24 
processes that continue today (LaHusen et al., 2016; Mustoe and Leopold, 2014; Collins and 25 
Montgomery, 2001; Riedel et al., 2007; Pelto and Riedel, 2001). The bedrock geology in the 26 
park is dominated by gneiss and granite, with lower grade metamorphic rocks schist and phyllite 27 
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on the western edge of the park, and Mesozoic sedimentary rocks on the eastern flank (Tabor and 1 
Haugerud, 1999).  Placement of granite at depth along faults led to hydrothermal alteration of 2 
some overlying rocks, and the clustering of large landslides. Soils in the park are generally 3 
coarse-grained and relatively young due to active slope processes, but soil age, thickness and 4 
distribution are highly variable. Soils formed in glacial deposits from the last glaciation are also 5 
widespread, and many soils are classified based on the amount of volcanic ash they contain. 6 
 7 
Orographic uplift of Pacific Ocean air masses generates a spatial precipitation gradient with an 8 
average of 4,575 mm of precipitation falling annually on the highest elevations west of the crest, 9 
while lowlands east of the crest receive a mean annual precipitation of 708 mm (Mustoe and 10 
Leopold, 2014; Roe, 2005). Air temperatures vary highly depending on season and elevation 11 
with the warmest month typically August and the coldest month is January; corresponding 12 
average daily temperatures of about 25° C and 4°C, respectively, for these months in Newhalem, 13 
Washington.  14 

 15 
 16 
Figure 3. Four landslide types mapped within North Cascades National Park Complex (NOCA) in 17 
Washington, U.S.A. The number and their total area of each type is given in parentheses.  Insert provides 18 
example of mapping over aerial image from Google Earth, 48°27’20.21” N 120°44’47.09” W, imagery data 19 
August 27, 2006. 20 
 21 
Vegetation in NOCA is dominated by forest, particularly coniferous tree species, up to about 22 
2,000 m (Strauch et al., 2018; Agee and Kertis, 1987).  A patchwork of shrubs, herbaceous 23 
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vegetation, and barren land is found above this elevation common in alpine environments and in 1 
the paths of frequent snow avalanches.  Above 2,400 m is mostly bare rock, snow and ice. The 2 
underlying geology is composed of a primarily old Mesozoic crystalline and metamorphic rock 3 
originating far to the south (Haugerud and Tabor, 2009).   4 
 5 
Landslide (LS) inventory data are the most requisite information needed for an empirical 6 
statistical analysis (Lepore et al., 2012).  Landslides were mapped in the 2,768 km2 park as 7 
discreet landforms during a comprehensive park-wide landslide inventory (Fig. 3; Riedel and 8 
Probala, 2005).  Landslides were identified using stereo-pair air photos taken since the 1960s at 9 
1:24,000 and 1:12,000 scales, 7.5 minute topographic maps, bedrock geology maps, and field 10 
investigations (e.g., Riedel et al., 2012).  The minimum mapping unit was approximately 1,000 11 
m2 except for some smaller slump units. Landslide linework was transferred to a digital format, 12 
peer reviewed, and polygons edited into final form in geographical information system (GIS) 13 
software using National Agriculture Imagery Program (NAIP) imagery and a 10-m DEM and, in 14 
some cases, LiDAR.  Where areas were mapped by traditional methods, and LiDAR later 15 
became available, the original approach captured most (~75%) of the landslides. Dense 16 
vegetation cover and a lack of access limited identification of some existing landslides. Larger, 17 
more recent debris avalanches that left large deposits on the valley floor were more easily 18 
recognized and mapped. Ancient landslides that occurred before the last glacial period 16,000 19 
years ago were generally not mapped because their deposits were buried or reworked by 20 
subsequent continental glaciation.   21 
 22 
The landform mapping study identified six different types of mass wasting: rock fall/topple, 23 
debris avalanche, debris torrent, slump/creep, sackung, and snow avalanche-impacted landforms 24 
(SAILs) of which four are described in Table 2 (Riedel et al., 2012). The single sackung mapped 25 
in NOCA represents a gravitational spreading or slope deformation, sometimes found near ridge 26 
tops.  All landslide types were included in the analysis except for the rare sackung and SAILs, 27 
which are created by snow avalanche impacting unconsolidated sediments rather than slope 28 
instability. The idea is to capture more spatial variability and geologic controls on observed 29 
landslides by using all the data we obtained for available from the inventory for the four common 30 
landslide types. There are 1,618 landslides mapped in NOCA: falls/topples (68%), debris 31 
avalanches (17%), debris torrents (10%), slumps/creeps (4%), and one sackung (<1%) (Fig. 3; 32 
sackung not shown).    33 
 34 
   Table 2.  Landslides mapped as part of comprehensive landform mapping study used in hazard 35 

analysis (Riedel et al., 2005) 36 

Type of Mass 
Wasting 

Process Mapping  

Debris 
Avalanche 

Extremely rapid moving mixture of rock, soil, 
and vegetation, generally originates from 
glacially-sourced areas, over-steepened valley 
walls, and in many cases hydrothermally 
altered bedrock 

Includes headwall scar, 
path, and deposit 
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Debris Torrent Channelized rapid and/or sudden flow of 
material entraining debris stored in stream 
channel while moving down slope 

Only the deposition areas 
within a debris cone 

Slump and Creep Slumps - rotational slip of cohesive sediments, 
usually triggered by undercutting of steep 
slopes along riverbanks. Creeps - slow 
movement induced by saturated ground.  

Mapped where deciduous 
vegetation brighter on 
aerial photos, fresh new 
soil, jackstraw or pistol 
gripped trees. 

Rockfall or Rock 
Topple 

Sporadic and shallow detachment of rock 
falling from bedrock cliffs and rock towers 

Mapped where bright and 
highly reflective with 
little or no vegetation on 
aerial photos. Mainly 
deposition mapped. 

 1 
2.3.2 Study domain and Parameters 2 
We constrained our analysis to soil-mantled landscapes by excluding high elevation areas 3 
covered by glaciers, permanent snowfields and exposed bedrock, as well as wetlands and other 4 
water surfaces, based on landform mapping and maps of lithology and landcover.  We also 5 
exclude slopes less than 17° because this slope threshold was found to generally separate 6 
colluvial mass wasting and debris transport processes from fluvial processes in this region 7 
(Strauch et al., 2018). The area included in the analysis covers about 79% of NOCA’s land area. 8 
 9 
The seven site attributes (SAs) investigated using the Frequency Ratio (FR) approach as they 10 
relate to mapped landslide activity vary across the NOCA study area.  Slope, total curvature 11 
(Laplacian of elevation), and aspect attributes were derived using ArcGIS from a 30-m digital 12 
elevation model (DEM) acquired from National Elevation Dataset (NED) (USGS, 2014a).  A 13 
resolution of 30-m was chosen for comparability with other studies and landslide size (e.g., 14 
Strauch et al., 2018; Lepore et al., 2012). Elevation ranges from 107 to 2794 m with 85% of the 15 
park between 500 to 2000 m. Subcategories for elevation were based on 200-m increments with 16 
lumping at the ends (e.g., < 400 m and > 2200 m). Slope subcategories were set at 5° increments 17 
with ending subcategories for slopes 17-25°, and >50°. Curvature was divided into three 18 
subcategories: convex/diverging, flat, or concave/converging. Aspect (i.e., facing direction of 19 
slope) was classified into eight compass orientations (i.e., N, NE, E, SE, S, SW, W, NW).  The 20 
park’s complex topography results in roughly equal distribution among the cardinal and 21 
intercardinal directions of aspect; however, the southwest quadrant is slightly more common.  22 
 23 
The DEM also provides the information needed to derive a distributed wetness index (Beven and 24 
Kirkby, 1979; O’Loughlin, 1986), calculated as the natural log of the ratio of specific catchment 25 
area [L] to sine of local slope.  This index has been used for quantifying the contribution of pore-26 
water pressure to destabilizing forces in landslide modeling (e.g., Borga et al., 2002; Gokceoglu 27 
et al., 2005).  Wetness index was divided into 5 subcategories based on 20% quantiles: low, low-28 
medium, medium, medium-high, and high wetness.  Landcover was acquired from the 2014 29 
National Land Cover Data (NLCD), which is based on 2011 Landsat satellite imagery (Jin et al., 30 
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2013; USGS, 2014b). We categorized this into forest, shrubland, herbaceous, water, wetland, 1 
snow/ice, barren, and developed (e.g., roads, campgrounds). Based on this classification, forest, 2 
shrubs, and herbaceous vegetation represent 54%, 15%, and 10% of the park, respectively. 3 
Barren and snow or ice combined cover 17%, typically at the high elevations.  Water and 4 
wetlands cover about 2.5%, while developed is less than 0.5%. 5 
 6 
Lithology provides a description of rock and deposits that indicates composition, strength, and 7 
age, which can influence the hillslope strength and water redistribution.  Washington State 8 
Department of Natural Resources (WADNR) provides lithology in its surface geology maps that 9 
display rocks and deposits as geologic map units (WADNR, 2014).  This source of information 10 
was chosen because it is available for all of Washington, facilitating future applications.  There 11 
are 48 lithology map unit types within NOCA. These were aggregated into seven subcategories, 12 
based on similarities in origin and generally increasing strength, called: (1) unconsolidated 13 
sediment, (2) ultramafic, (3) weak metamorphic foliated, (4) sedimentary rock, (5) hard 14 
metamorphic, (6) intrusive igneous, and (7) volcanic/extrusive igneous (Table 3).   Water and ice 15 
were not classified. Both landcover and lithology were rasterized to the same DEM grid 16 
resolution using ArcGIS based on the dominant type of attribute in each grid cell.  Among the 17 
seven types of lithology, hard metamorphic is most common (41% of NOCA), while ultramafic, 18 
sedimentary rock, and volcanic/extrusive igneous combined make up less than 5%.   19 
 20 
Table 3.  Classification of Washington Department of Natural Resources surface geology from 21 

generally weaker (1) to stronger (7) material along with aerial percentages within 22 
NOCA in parentheses 23 

 24 
Class               WADNR Lithology                             Class                   WADNR Lithology 
Unconsolidated Sediments (12%) Sedimentary Rock (2%) 

1 

alluvial fan deposits 

4 

sedimentary deposits or rocks, undivided 
alluvium continental sedimentary deposits or rocks 
alluvium, older (e.g., alluvial fans & talus) marine metasedimentary rocks 
alpine glacial drift, Fraser-age marine sedimentary rocks 
alpine glacial till, Fraser-age Hard Metamorphic (41%) 
glacial outwash, alpine, Fraser-age 

5 

banded gneiss 
continental glacial drift, Fraser-age mixed metamorphic and igneous rocks 
mass-wasting deposits orthogneiss 
mass-wasting deposits, mostly landslides paragneiss 
mass-wasting deposits, not landslides Intrusive Igneous (21%) 
peat deposits 

6 

acidic (felsic) intrusive rock 
talus deposits basic (mafic) intrusive rocks 

Ultramafic (0.02%) diorite 
2 ultrabasic (ultramafic) rocks (serpentine) gabbro 

Weak Metamorphic Foliated (14%) granite 

3 
heterogeneous metamorphic rocks granodiorite 
hetero. metamorphic rocks, chert bearing Intermediate intrusive rocks 
marble Intrusive breccia 
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metasedimentary and metavolcanic rocks quartz diorite 
metasedimentary rocks quartz monzonite 
metasedimentary rocks, cherty tonalite 
metavolcanic rocks Volcanic/Extrusive Igneous (2%) 
amphibolite 

7 

tuffs and tuff breccias 
phyllite, low grade dacite flows 
schist, low grade rhyolite flows 

-- Water and Ice (7%) volcanic breccia 

3 Results and Discussion 1 
3.1 Frequency Ratio Analysis 2 
The results of the FR analyses for each site attribute (SA) are presented in Fig. 4.  We discuss the 3 
role of SA starting with debris avalanche source areas as they are hypothesized to represent the 4 
initiation processes of shallow landslides that transform into debris avalanches. The SAs that 5 
impact shallow landslide initiation could arguably play common controls on the initiation of 6 
other types of slope failures.  The frequency analysis shows a clear and growing control of local 7 
slopes greater than 35o on landslide initiation, which can be considered as the internal friction 8 
angle of cohesionless sand (Fig. 4c).   9 
 10 

 11 
Figure 4. FR value for different bins of seven Site Attributes (SA) separated by red lines, based on (a) all 12 
landslide types mapped within the NOCA study domain, (b) debris avalanche landslide types only, and 13 
(c) source areas of debris avalanches represented by the highest 20% of the mapped debris avalanche.  14 
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The vertical blue line refers to the FR value of 1.0, denoting when no association is found with mapped 1 
landslides. FR values below this line are attributes less likely associated with landslides and FR values 2 
above this line indicate greater association with landslides. 3 
 4 
The source area of debris avalanches is only about 17% of the mapped debris avalanche area and 5 
10% of the whole landslide inventory, which predominantly maps transport and depositional 6 
areas. A small debris avalanche source area in steep terrain can lead to large landslide impacts in 7 
lower elevations, as the eroded material travels downhill and deposits in gentler gradients (Fig. 8 
1). Thus, the runout zones of debris avalanches and other mapped landslide types cover more 9 
area at gentler slopes typical of lower elevations. This process is captured in Fig. 4a and 4b 10 
where the FR analyses exhibit higher landslide hazard at gentler slopes (<30o), more likely 11 
associated with transport and depositional processes as well as failure of side slopes along 12 
glacially incised U-shaped valleys undercut by fluvial activity. Others have reported clustering of 13 
landslide impacts in lower elevations within valleys where hillslopes are steep enough to fail 14 
(Megahan et al., 1978; Kelsey, 1988; Densmore et al., 1997; Chalkias et al., 2014). 15 
 16 
In the study area, local slopes generally increase on average with elevation, particularly above 17 
1,400 m (Strauch et al., 2018). The control of steeper slopes on debris avalanche initiation is 18 
supported by the results for elevation where source areas are associated with mid to high 19 
elevation (1,400 to 1,800 m) and entire debris avalanches and all landslides types, including 20 
deposition zones, have growing frequency in lower elevations (< 1,200 m) with the highest 21 
frequency falling in elevations <400 m (Fig. 4a, b).  Further increase in slopes typically lead to 22 
bedrock exposure and barren lands with thin soil (Strauch et al., 2018; Gabet, 2003).  In addition 23 
to steepening slopes, the observed higher frequency of debris avalanche source areas in the mid-24 
to-high elevation range corroborates recent findings of an ecosystem transition control on 25 
landslide initiation (Strauch et al., 2018).  With the cooling of air temperatures beyond forest 26 
ecosystem thresholds, the transition of forest vegetation (predominant alpine conifers) to mixed 27 
shrub and herbaceous vegetation types with lower root cohesion, lead to higher landslide 28 
frequency at debris avalanche source areas (Fig 4c). The slope and elevation results, however, 29 
are likely influenced by the mapping approach, which was biased in mapping landslide activity 30 
on the lower portions of hillslopes that were typically more accessible, and continuous creep and 31 
rapid slides in subalpine and alpine areas were infrequently mapped. 32 
 33 
Developed areas that include impervious surfaces, constructed materials, and lawns have the 34 
highest landcover association with all mapped landslide areas, as well as with debris avalanches, 35 
yet no association with debris avalanche source areas, which are typically higher on mountains 36 
and rarely developed. Although dirt roads have been found to disrupt drainage and increase 37 
erosion (Croke and Hairsine, 2006; Montgomery, 1994; Swanson and Dyrness, 1975), the lack of 38 
association with landslide initiation suggest that these areas may be positioned on the landscape 39 
in areas likely to be impacted by landslide runout or deposition.  In general, forest and barren 40 
landcover show the least landslide activity compared to other landcover (Fig. 4). The forest 41 
association likely indicates the positive contribution of root cohesion to hillslope stability, 42 
whereas the barren landcover type results may indicate the effect of mapping completeness or 43 
hillslope processes. The barren results appear counter to the findings of the physically-based 44 
landslide model applied at the same location, which found high probability of landslide initiation 45 
in barren areas often below retreating glaciers (Strauch et al., 2018). Barren includes areas of 46 
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bedrock, glacial debris, and other accumulations of earthen material with vegetation generally 1 
accounting for less than 15% of total cover; thus, there may be a variety of stability conditions 2 
within this single cover class. 3 
 4 
The sources of debris avalanches are linked to eastern and southeastern aspects (Fig. 4c); 20% 5 
and 15% of source cells by area occur on these aspects, respectively. Except for western aspects 6 
that show the weakest association debris avalanches, other aspects show landsliding frequency 7 
close to the average frequency in the whole study domain.  Vegetation type and cover that relate 8 
to root strength and moisture regime can be related to aspect. East and south exposures have 9 
lower forest cover fractions compared to other aspects at mid to lower elevations (< 1,400 m), 10 
and forests are largely replaced by barren lands and shrub and herbaceous vegetation as elevation 11 
increases (Fig. 5). Most source areas of debris avalanches and debris avalanches as a whole are 12 
associated with shrub and herbaceous vegetation types (Fig. 4b,c).  Other aspects, especially 13 
west-facing slopes have higher fraction of forest cover (Fig. 5), likely linked to a longer growing 14 
season (Evans and Fonda 1990). Lower landslide frequency in western aspects can be a result of 15 
higher root cohesion of forest vegetation compared to shrub and herbs. Additionally, perhaps 16 
west-facing aspects experience more arid moisture regimes or bedrock bedding, jointing, or 17 
fracturing conducive to stability compared to other exposures (Carson and Kirby, 1972; Fischer 18 
et al., 2006).   19 

 20 
Figure 5. Vegetation cover fraction in NOCA on each aspect, taken as the fraction of vegetation type 21 
within each 200-m elevation band. Aspects categorized here as a) north (0° to 45° and 315° to 360°), b) 22 
east (45° to 135°), c) south (135° to 225°), and d) west (225° to 315°), covering 23%, 23%, 26%, and 23 
28% of NOCA, respectively. Yellow highlighted area represents the strongest elevation association for 24 
debris avalanche source areas. 25 

When all landslides are considered, northern slopes exhibit growing landslide association while 26 
landslide frequency declines in southeastern slopes compared to the other landslide datasets (Fig. 27 
4a, b). North-facing slopes have been documented to retain more soil moisture than south-facing 28 
aspects in northern latitudes (Geroy et al., 2011), which can be broadly responsible for more 29 
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initiation, transport and deposition impact of all mass wasting types.  Hillslope asymmetry (i.e., 1 
steeper slopes depending on aspect) was not found during inspection of average slope on the four 2 
primary aspects. North-south asymmetry has been found to demonstrate reversal based on 3 
elevation and at 49° latitude, which correspond to the northern edge of NOCA (Poulos et al., 4 
2012).  In general, the relatively similar aspect associations for different landslide observation 5 
datasets likely indicates the connection of source areas to downstream processes of transport and 6 
deposition (Fig. 1). 7 
 8 
Comparisons among all landslides, whole debris avalanches, and debris avalanche source areas 9 
clearly show that unconsolidated sediments, largely derived from transport and depositional 10 
processes, have stronger association with landslides than other lithologies followed by 11 
sedimentary rock (Fig. 4). This strong association is expected given the inclusion of mass 12 
wasting landforms in the classification of unconsolidated sediment. The high ultramafic rock 13 
association when considering all landslide types is driven by a single topple/fall occurring in this 14 
scarce lithology (<0.02% of NOCA). Widespread observation of debris avalanche source areas in 15 
all rock types may point to the role of steep slopes regardless of lithology. For debris avalanche 16 
processes, sedimentary rock is more associated with transport and depositional areas than source 17 
areas. Areas without landslide activity were associated with weak metamorphic foliated and 18 
intrusive igneous lithology (Fig. 4a).   19 
 20 
The association of landslides on concave/converging versus convex/diverging topography is 21 
relatively consistent among the datasets and generally consistent with literature due to enhanced 22 
wetness where vegetative support may be weak in deeper soils (see Hales et al., 2009; Fig. 4).  23 
High wetness index is associated with landslides for all landslide types as well as entire debris 24 
avalanches (Fig. 4a,b).  This result is intuitive as this index is an indicator of increased soil 25 
saturation and surface runoff.  In contrast, source areas were correlated with low wetness index 26 
(Fig. 4c). This counterintuitive finding, however, aligns with previously discussed results that 27 
source areas are associated with loss of root strength, steep slopes and higher elevations, 28 
resulting in relatively small specific catchment areas. By definition, wetness index is negatively 29 
correlated with slope and positively correlated with specific contributing area.  Thus, source 30 
areas will have a low wetness index when they are from steep slopes with small contributing 31 
areas (i.e., located higher up on hillslopes).   32 
   33 
3.2 Susceptibility Index 34 
A susceptibility index (SI) is calculated for each grid cell within the study area domain by 35 
equation (3). Cumulative distributions for SI, plotted as fraction of area of the study domain as 36 
well as only in the areas where landslide impact was mapped show higher SI values for a given 37 
fraction of the respective domains where a given SI is exceeded (Fig. 6a, d, and g).  Additional 38 
support beyond the graphics that these distributions are not equal is provided by the 39 
Kolmogorov-Smirnov test, which rejects the null hypothesis of equal distributions at α<0.01. The 40 
cumulative distributions show that the SI calculated from FR method can differentiate mapped 41 
landslide locations from non-landslides with a larger SI. The resulting spatial distribution of SI is 42 
right skewed as shown in the relative frequencies of SI for all three landslide datasets (Fig. 6b, e, 43 
and h).  The right skew indicates that there is a small population of grid cells with high SI 44 
compared to the majority of grid cells in the study domain.  This occurs when there are FR 45 
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subcategories frequently associated with landslides coinciding at the same location.  Histograms 1 
show a greater relative frequency of landslide grid cells with high SI values than the entire 2 
domain (Fig. 6b, e, and h). For source areas, SI bins for the histograms were larger (e.g., 0.5 vs 3 
0.25) due to the small number of source area cells compared to the two other datasets.  4 
  5 

6 
Figure 6. Cumulative distributions (a, d, and g - column 1) and relative frequency plots (b, e, and h - 7 
column 2) of Susceptibility Index (SI) for all grid cells included in the analysis and the grid cells 8 
contained within mapped landslides. Third column (c, f, and i) is the probability of landslide impact, 9 
P(LSr|SIr), calculated from the ratio of the number of landslide cells to the number of all cells with each 10 
SI bins with fitted curves.  Rows represent analysis domains: a, b, and c) all landslide types; d, e, and f) 11 
debris avalanches; and g, h, and i) debris avalanche source areas. 12 

The probability of landslide impact, P(LSr|SIr), calculated from Eq. (4) are shown in the third 13 
column of Figure 6 (Fig. 6c, f, and i).  In calculating this probability in the highest SI bins (e.g., 14 
SI≥8), landslide sample sizes of about 500 or fewer were aggregated into the previous bin. In all 15 
three cases, P(LSr|SIr) increases with SI, supporting the statistical power of this empirical 16 
approach. The SI to P(LSr|SIr) relation is explained by a linear function when debris avalanche 17 
data are used (Fig. 6f). The other two cases, all landslide data and debris avalanche source areas, 18 
are better represented by polynomial fits (Fig. 6c and i). The range of probabilities grows with 19 
the sample size of the landslide dataset used, leading to maximum probabilities of 0.2, 0.16, and 20 
0.017 for all landslide, debris avalanches, and debris avalanche source areas, respectively.  These 21 
functions were used to develop continuous empirical probability maps based on SI values 22 
assigned to each grid cell of the study domain, limited to the maximum empirical probability of 23 
each landslide type.   24 
 25 



 

19 

3.3 Landslide Hazard Maps 1 
The probability of landslide impact estimated from SI, P(LSr|SIr),  declines as the amount of 2 
observational information decreases from all landslides (Fig. 7a), to debris avalanches (Fig. 7b), 3 
and debris avalanche source areas (Fig. 7c). This pattern reflects the smaller area of observed 4 
landslide data used in each case compared to the study domain.  Additionally, the probability of 5 
any landslide activity would be expected to be higher than the probability of initiating a debris 6 
avalanche alone. When considering all landslides, the highest probabilities are located near the 7 
base of valley walls and in topographic depressions or hollows (Fig. 7a). The hazard map 8 
developed from the empirical model using only debris avalanches (Fig 7b) also shows higher 9 
probabilities in the valley bottoms, but lower probabilities than the all landslides map at higher 10 
elevations in alpine areas where the footprint of debris avalanches is smaller compared to the 11 
deposition area, reducing the overall probabilities in the FR approach. Spatial patterns of 12 
landslide probabilities obtained from the source areas of debris avalanches (Fig. 7c) depart from 13 
the other two empirical models with the highest probabilities in middle and upper portions of 14 
valley walls, similar to the process model (Fig. 8b). Thus, the empirically-based modeling using 15 
only source areas appears to capture some of the physical processes initiating debris avalanches. 16 
Closeup areas mapped for each mapping case more clearly illustrate the landslide hazard in 17 
relation to topographic position.  18 
 19 
We developed a map of annual probability of shallow landslide initiation by combining the 20 
empirical SI-based probability (Fig 7c) and the physically-based annual probability of landslide 21 
initiation from Strauch et al. (2018), 𝑃(𝐹𝑆8 ≤ 1), using the methodology developed in this paper  22 
(Eq. 8 and 9). The weight term,  𝑃(𝐹𝑆8 ≤ 1), and the P(LS) are shown in Fig. 8.  Close ups of 23 
three locations are shown below the full NOCA maps.   24 
 25 
Approximately 30% of the analyzed cells had weights > 1. Weights are greater in high elevations 26 
and steep slopes, commensurate with debris avalanche source areas. Overall 88% of the NOCA 27 
area has less than annual landsliding probability of 0.1 in 𝑃(𝐹𝑆8 ≤ 1)  and P(LS) map. P(LS) 28 
map (Fig. 8c and f) shows enhanced landslide probability in areas already modeled as high 29 
probability of landslide impacts based on the physically-based shallow landslide model (Fig. 8b 30 
and e). An anomaly map created by subtracting P(LS) from 𝑃(𝐹𝑆8 ≤ 1) provides easier display 31 
of the effect of the empirical adjustment.  In the anomaly map, much of the original 𝑃(𝐹𝑆8 ≤ 1) 32 
is adjusted by less than ±0.1 (Fig. 9).  East-facing aspect, concave curvature, and elevations in 33 
the ~1,000 to 1,600 m range show an increase in probability > 0.1 (Fig. 9). Increasing 34 
probabilities on east-facing slopes compared to other aspects aligns with the FR findings (Fig. 4). 35 
 36 



 

20 

 
 
 

 

 
Figure 7. Maps of probability of landslide impact derived from empirical model based on: a) all landslide 
types, b) debris avalanches, and c) and source areas of debris avalanches overlain on hillshade raster. 
Black boxes indicate closeup areas shown below with overlain landslide types and 100 m contours.  Gray 
areas excluded from analysis show river valleys and glaciated crests. 
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Figure 8. Maps of: a) weight term derived from joint empirical and physically-based modeled 
probabilities, b) 𝑃(𝐹𝑆8 ≤ 1) from Strauch et al. (2018), and c) P(LS) created from multiplying a) by b) at 
each grid cell for the North Cascades National Park Complex (NOCA). Blue boxes indicate three closeup 
locations shown below in d), e), and f).  Black lines show mapped debris flow boundaries. Gray areas are 
excluded from analysis and contours are at 100 m. 
 
Other cells declined in probability, particularly on gentler slopes, north to west-facing aspects, 
and at low (< 1000 m) and high (>1,600 m) elevations (Fig. 9). Areas with reduced probability 
high on the mountain, above the elevation limit of vegetation (~2,200 m, Fig. 5) and just below 
actively receding glaciers or permanent snowfields, likely represent limited soil development and 
active surface erosion where slopes are steep (Roering et al., 2003) (Fig. 9).  Within the elevation 
range of the park, debris avalanche initiation is not frequently observed at the highest elevations 
where soil is thin or the landscape is covered seasonally by snow and ice.  

 
Figure 9. Anomaly maps displaying the difference between P(LS) and 𝑃(𝐹𝑆8 ≤ 1)  where blues 
represent > 0.1 reduction in probability and reds represent > 0.1 increase in probability due to the 
empirical adjustment.  Maps of: a) the entire North Cascades National Park Complex, b) closeup location 
indicated by cyan box in a) overlain on hillshade raster, and c) aerial image of the same location as b). 
Aerial image is from World Imagery, Esri Inc. (images created using ArcGIS® software by Esri. 
ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright 
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Esri©. All rights reserved. For more information about Esri® software, please visit www.esri.com).  Gray 
areas are excluded from analysis and contours are at 100 m.  
 
To investigate the spatial distribution of 𝑃(𝐹𝑆8 ≤ 1) (Strauch et al., 2018) and empirically-
adjusted model probabilities, P(LS), we plot the cumulative distributions of probabilities (Fig. 
10a). In roughly 15% of the NOCA domain, P(LS) gives lower landslide probability than 
𝑃(𝐹𝑆8 ≤ 1), indicated by the upward shift in the cumulative distribution (blue line) (Fig. 10a). 
The modeled landscapes have P(Failure) ≥ 0.9, or recurrence interval ≤ 1.1 year, in ~6% and 
~3% for 𝑃(𝐹𝑆8 ≤ 1) and P(LS) models, respectively (Fig. 10a). These cells represent highly 
unstable slopes and the empirical adjustment reduced this area by half from the physically-based 
model. Unconditionally unstable landslide, P(Failure)=1 (Pack et al., 1998; Montgomery, 2001, 
corresponds to 0% and 2% of 𝑃(𝐹𝑆8 ≤ 1) and P(LS) models, respectively. Unconditionally 
stable slopes, P(Failure)=0, corresponds to 49% of the study domain for both 𝑃(𝐹𝑆8 ≤ 1)and 
P(LS) models (not visible in Fig. 10a). The distributions generally show a high portion (~87 to 
88%) of the modeled landscapes has P(Failure) ≤ 0.1, or a return period of ≥ 10 years. Only 
between 7% and 9% of the landscape has a wide range of potential failure (0.1 ≤ P(Failure) ≤ 
0.9) as indicated by the shaded blue (Fig. 10a), where empirical evidence enhanced the local 
landscape susceptibility to initiation of shallow landslides.  
 

 
Figure 10. a) Cumulative distribution of the probability of failure for the 𝑃(𝐹𝑆8 ≤ 1) [black] and P(LS) 
[blue] using only debris avalanche source areas, b) ROC curves for the same two datasets. The blue 
shaded area on a) represents the fraction of the landscape with 0.1 ≤ P(Failure) ≤ 0.9. Black 
diagonal dashed line on a 1 : 1 line in b) represents the case of a trivial or random classification model. 
AUC values are 0.58 for the modeled probability and 0.60 for the integrated probability.  
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We anticipated that the additional consideration of the empirical model represented by the 
weighting term improves the performance of the purely physically-based model.  Thus, to assess 
the potential performance of the models, we statistically evaluated the models using the receiver 
operating characteristics (ROC) curves (Fawcett, 2006).  This approach examines cells within 
mapped landslides and cells outside landslides for a study area and compares this to randomly 
distributed landslides over the same landscape.  Confusion matrices are generated from observed 
and modeled landslides based on varying the probability of a landslide threshold used to generate 
ROC curves (Mancini, et al., 2010; El-Ramly et al., 2002; Anagnostopoulos et al., 2015) (Fig. 
10b). A better-performing model curves towards the upper left corner, and a curve along the 1:1 
line represents a trivial model that randomly assigns landslide and non-landslide cells.  The area 
under the curve (AUC) statistic provides a numerical indicator of model performance 
representing the probability of correctly assigning two randomly selected cells to landslide and 
non-landslide datasets (Hanley and McNeil, 1982).   
 
Both the physically-based model, 𝑃(𝐹𝑆8 ≤ 1),  and the P(LS) perform better than a trivial model 
by plotting the ROC curve above the 1:1 line (Fig. 10b).  The AUC statistic was 0.58 and 0.60 
for 𝑃(𝐹𝑆8 ≤ 1) and P(LS), respectively.  The ROC and AUC indicate an improvement in the 
fraction of observed landslides captured by P(LS) over 𝑃(𝐹𝑆8 ≤ 1). The AUC for P(LS) 
indicates that there is a 60% chance that the proposed empirical adjustment to the physically-
based model would classify a landslide initiation cell and a non-landslide cell correctly from two 
randomly sampled grid cells. The ROC analysis found that the optimum probability threshold for 
maximizing the observed landslides captured and minimizing false alarms was a probability 
threshold of 0.0006 (i.e., apex of the blue curve); thresholds less than this increased the false 
alarms and thresholds greater than this reduced the accuracy of capturing observed landslides 
(Fig. 10b).  The additional information from empirical modeling modestly improved the 
physically-based model and indicates empirical evidence on landslides can capture mechanisms 
lacking in the infinite slope stability model. These include clustering of debris avalanches due to 
variability in the bedrock geology (e.g. hydrothermal alteration, steeply dipping bedding planes, 
and glacial oversteepening). Additional validation approaches, such as separating landslide data 
into training and testing datasets, may yield additional findings that are deferred to future studies.  

4 Conclusions 
Empirically-based probability hazard maps were developed from a statistically-based 
susceptibility index, which integrated the influence of site attributes on observed landslides 
based on a frequency ratio approach. Resulting susceptibility depends on the observations of 
landslides considered: all types of landslides, debris avalanches only, or source areas of debris 
avalanches.  Thus, the objectives of a hazard identification study dictate the necessary inventory 
of landslide features. The empirically-based probability model based on source areas was used to 
adjust a previously developed physically-based probabilistic model through a calculated 
weighting term developed from a joint spatial probability.  The frequency analysis, hazard map 
development, and integrated probability model identified several key findings when applied to a 
national park: 
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● Frequency analysis shows a clear and growing control of local slopes greater than 35° on 
landslide initiation, while higher landslide hazard at gentler slopes (<30°) reflects 
transport and depositional processes. 

● Debris avalanche source areas are associated with mid to high elevation (1,400 to 1,800 
m), while all landslides types and whole debris avalanches have growing impact in lower 
elevations (< 1,200 m) with the highest impact falling in elevations <400 m. 

● Slope is a key attribute for the initiation of landslides, while lithology is mainly tied to 
transport and depositional processes. 

● The transition from subalpine to alpine herbaceous vegetation with lower root cohesion 
correlates with higher frequency of debris avalanche initiation.  

● East (west) aspect is a positive (negative) landslide-influencing factor, likely due to 
differences in moisture regime, and forest cover and associated root cohesion. 

● Empirical statistical modeling used to adjust a physically-based model of landslide 
initiation improved predictability of observed landslides by accounting for additional 
factors that influence the landscape susceptibility to failure not represented in the 
physically-based model. 

● Empirical adjustments generally lowered the probability of failure of the physically-based 
model, especially for 0.1 £ P(failure) £ 0.9 that covered between 7 to 9% of the study 
area. 

As the occurrence of landslide runout is conditioned on the failure of source areas, future studies 
could combine the probabilistic initiation methodology we propose in this paper with a landslide 
runout model to improve prediction of hazards from entire landslides. The applicability of our 
approach to characterize shallow landslides hazard is limited by the quality of the site-specific 
data on soils and vegetation, extent of hydrologic modeling, as well as the accuracy and 
completeness of the landslide inventory. Accurate data for environmental variables such as 
geology, soils, and vegetation would be as important as comprehensive landslide data as the 
empirical approach relates landslide hazard to the environmental variables. Although the 
approach is applicable elsewhere, our results from the empirical analyses are specific to the 
region in which they were developed and may differ in another location with different geology 
and landslide inventories.  Additionally, the probabilities are likely to change as local conditions 
change from disturbance such as fire or as climate continues to change. Advancements in surface 
terrain delineation and in distributed hydrologic modeling specifically contribute to the broad 
applicability of this approach.  We provide multiple landslide hazard maps for the national park 
that land managers can use for planning and decision making, as well as educating the public 
about hazards from landslides so they can minimize risks from these geohazards. 
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