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Abstract 24 
 25 
We developed a new approach for mapping landslide hazard by combining probabilities of 26 
landslide impact derived from a data-driven statistical approach and process-baseda physically-27 
based model of shallow landsliding. Our statistical approach integrates the influence of seven site 28 
attributes on observed landslides using a frequency ratio method.  Influential attributes and 29 
resulting susceptibility maps depend on the observations of landslides considered: all types of 30 
landslides, debris avalanches only, or source areas of debris avalanches.  These observational 31 
datasets reflect the capture detection of different landslide processes or components, which relate 32 
to different landslide-inducing factors.  For each landslide dataset, a Stability Index (SI) is 33 
calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across 34 
our study domain in the North Cascades National Park Complex, Washington, U.S.A. A 35 
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continuous function is developed to relate local SI values to landslide probability based on a ratio 1 
of landslide and non-landslide grid cells.  Slopes greater than 35° are more frequently associated 2 
with landslide initiation, while higher landslide hazards at gentler slopes (<30°) reflect 3 
depositional processes from observations of all landslide types or debris avalanches. Source 4 
areas are associated with mid to high elevations (1,400 to 1,800 m), where they are linked to 5 
ecosystem transition (e.g., forest to barren), while all landslides types and debris avalanches 6 
show increasing frequency in lower elevations (< 1,200 m). Slope is a key attribute in the 7 
initiation of landslides, while lithology is mainly linked to transport and depositional processes.  8 
East (west) aspect is a positive (negative) landslide-influencing factor, likely due to differences 9 
in forest cover and associated root cohesion, and evapotranspiration. The empirical model 10 
probability derived from the debris avalanche source area dataset is combined probabilistically 11 
with a previously developed processed-basedphysically-based probabilistic model.  A two-12 
dimensional binning method employs empirical and physically-based probabilities as indices and 13 
calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the 14 
joint probability and the physically-based model bin probability is used as a weight to adjust the 15 
original physically-based probability at each grid cell given empirical evidence. to produce 16 
anThe resulting integrated probability of landslide initiation hazard for initiation that includes 17 
mechanisms not captured by the infinite slope stability model alone. Improvements in 18 
distinguishing potentially unstable areas with the proposed integrated model are statistically 19 
quantified. We apply our approach in North Cascades National Park Complex in Washington, 20 
USA, to provide multiple landslide hazard maps that land managers can use for planning and 21 
decision making, as well as for educating the public about hazards from landslides in this remote 22 
high-relief terrain.  23 

1 Introduction 24 
Most mountain ranges are susceptible to landsliding due to their steep geomorphology, loose soil 25 
development, geology, and high precipitation (e.g., Coe, 2016). Landslides disrupt aquatic 26 
habitats (May et al., 2009; Pollock, 1998), damage infrastructure such as roads, utilities, and 27 
dams (Ghirotti, 2012; Baum et al., 2008), and harm people (Wartman et al., 2016; Taylor and 28 
Brabb, 1986). Landslide hazards are expected to increase globally with growing extremes in the 29 
climate (Coe, 2016; Haeberli et al., 2016; Crozier 2010).  30 
 31 
Maps of landslide hazards, quantified as a probability of landslide initiation or impact, can be 32 
obtained using empirical methods that statistically relate the location of existing landslides to 33 
other environmental variables and process-basedphysically-based models based on geotechnical 34 
slope stability equations driven by hydro-climatic inputs (Bordoni et al., 2015; Mancini et al., 35 
2010; Sidle and Ochiai 2006; El-Ramly, et al., 2002). While detailed quantitative and categorical 36 
climatic, geologic, ecologic, and pedologic information can be used in statistical models, 37 
process-basedphysically-based models are limited to geotechnical stability analysis driven by 38 
soil pore-water pressure, and often neglect geological factors such as bedrock, faulting, and 39 
complexities of microclimatic conditions. To date, data-driven empirical research on landslide 40 
hazard mapping (Corominas et al., 2012; Lee 2007; Chung and Fabbri 2002) has been typically 41 
conducted independently from hydroclimate-driven modeling of landslides that largely focus on 42 
hydrologic controls on landsliding (Wooten et al., 2016; Cevasco et al., 2014). There is need for 43 
unifying these two lines of research to provide regional scale landslide prediction for resource 44 
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management and hazard mitigation strategies. In this paper we develop a statistical approach to 1 
combine probability of landslide initiation obtained from an observation-based statistical 2 
mapping method and a process-basedphysically-based model.  The proposed approach is 3 
illustrated in the North Cascades region of the state of Washington, USA. 4 
 5 
Data-driven statistical landslide susceptibility approaches assess the inherent or quasi-static 6 
stability of hillslopes derived from statistical associations (e.g., correlations) between site 7 
attributes (e.g., soil, geology, topography) and an inventory of past landslides that includes 8 
landslide type and locations (e.g., Dai and Lee, 2002; Gupta and Joshi, 1990; Pachauri and Pant, 9 
1992; Kirschbaum et al., 2012). These models focus on prevailing conditions that predispose 10 
hillslopes to failure (Hungr et al., 2014), typically providing general indices of relative landslide 11 
susceptibility or spatial probabilities applicable to the study location and cannot represent causal 12 
factors or triggering conditions that change in time (van Westen et al., 2006; Sidle and Ochiai, 13 
2006).  Outcome of such analyses depend on the completeness of observations, hindering the use 14 
of such techniques over large areas where complete inventories are typically lacking. Since 15 
empirical models are based on observation of past landslides, the preconditioning relationships 16 
are assumed to prevail into the future until an updated study is completed (Lepore et al., 2012).   17 
 18 
Processed-basedPhysically-based models require considerable data on the spatial-temporal 19 
characteristics of the landscape and triggering hydro-meteorologic events.  These models are also 20 
usually restricted to a specific type of landslide and can be limited in representing local geologic, 21 
soil, and hydrologic conditions that may be difficult to observe and map in the field and 22 
parameterize in model theory.  Data-driven statistical methods could be used to condition 23 
process-basedphysically-based model results to incorporate the influence of environmental and 24 
geologic factors that are not represented in process theory. Linking these empirically-based and 25 
process-basedphysically-based models may improve the spatial-temporal patterns of landslide 26 
hazard at medium to large scales where landslide inventories exist to provide support tools for 27 
authorities addressing risk management.  Additional descriptions of the advantages and 28 
disadvantages of data-driven and physically-based models and landslide hazards assessments can 29 
be found in reviews by Ercanoglu and Sonmez (2019), Reichenback, et al. (2018), Hungr (2018), 30 
and Aleotti and Chowdhury (1999).                                       31 
 32 

 34 
This paper describes research designed to address the following questions: 1) How can we 35 
quantify relative contributions of local topography, geology, and ecology on landslide frequency 36 
and derive spatial probabilities of landsliding using a statistical model? 2) How would 37 
probabilities of landslide initiation derived from empirical observations compare with those 38 
derived from a process-basedphysically-based model? 3) How can we combine empirical and 39 
process-basedphysically-based models for landslide susceptibility to improve the prediction of 40 
landslide hazards?  41 
 42 
The empirical approach for landslide susceptibility we used is based on a modification of the 43 
Frequency Ratio (FR) statistical concept which has been found to perform as well as more 44 
rigorous statistical approaches such as logistic regression (Hong et al., 2017; Wu et al., 2017; 45 
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Bellugi et al., 2015; Lepore et al., 2012; Kirschbaum et al., 2012; Lee and Pradhan, 2007; Lee et 1 
al., 2007).  As for the mechanistic model, we used the results of Strauch et al. (2018), who 2 
developed a Monte Carlo solution of the infinite slope stability equation coupled to a steady-state 3 
topographic flow routing approach to map annual probability of shallow landsliding. The 4 
uncertainty of soil depth in Strauch et al. (2018) was constrained by a soil development model, 5 
and subsurface flow recharge was obtained from a regional macro-scale hydrologic model that 6 
produced historical hydrologic simulations (Hamlet et al., 2013). 7 
 8 
Building on the advantages from the empirical and process models, we combined the two models 9 
to develop a map of landslide hazard.  The integrated map can be developed to identify landslide 10 
hazards that may originate from either the initiation of landslides and used to inform models of 11 
or the transport and deposition (i.e., runout) of the landslide material (Fig. 1).  The focus of the 12 
study was to determine if an empirical-based model of landslide hazard could be used to improve 13 
an existing physically-based model for shallow landslide probability. The organization of this 14 
paper is as follows. Our methodology is discussed in Sect. 2, including the empirical method, 15 
model application, data compilation, and model integration approach.  Sect.ion 3 details our 16 
results of the empirical application and integrated hazard model as well as various hazard maps 17 
developed. We end with some overall concluding thoughts in Sect. 4. 18 
 19 
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1 

 2 
Figure 1. Primary landslide features of the Goodell Creek landslide (Oct. 2003) showing source, 3 
transport, and deposition areas illustrated over aerial image from Google Earth taken July 2016.  Base of 4 
landslide is about 1 km across. Location in North Cascades National Park Complex about 4 km north of 5 
Newhalem, Washington. Source: Google Earth, 48°41’55.72” N 121°17’01.31” W, imagery data June 23, 6 
2006 viewed towards southwest. 12/30/2010. 7 
 8 
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2 Methodology 1 
2.1 Frequency Ratio 2 
We characterized the susceptibility of hillslopes to landslides using an empirically-based 3 
Frequency Ratio, FR, approach (Lee et al., 2007; Kirschbaum et al., 2012). We used the term 4 
landslides broadly, covering all types of mapped landslides in our landslide inventory, with their 5 
source, transport and depositional zones (Fig. 1).  The FR approach relates the density ratio of 6 
historical landslides within selected surface attributes, SAs. We considered seven SAs in our 7 
analysis: slope, elevation, aspect, curvature, land use-land cover (landcover), lithology, and 8 
topographic wetness index.  9 

Slope, curvature, and lithology directly affect the forces and geotechnical properties in surface 10 
sediments.  Land cover provides a surrogate for root cohesion and topographic wetness index has 11 
been used as a surrogate for soil pore water pressure (Borga et al., 2002).  Elevation can 12 
represent the effects of climate, weathering, vegetation, ground motion, and glacial processes, if 13 
any, as well as coincide with variability in slope, soil depth, and land use (Sidle and Ochiai, 14 
2006). Aspect provides an indication of solar insolation, vegetation type and cover density, snow 15 
and ice loading, and soil moisture levels via evapotranspiration (Beaty, 1956; Gokceoglu et al., 16 
2005).  17 

Each SA is indexed by attribute type, m (e.g. m=slope, lithology, vegetation), and its subcategory 18 
is indexed by n. Subcategories of each SA can be a categorical variable such as type of lithology, 19 
soil and vegetation, or a quantitative variable defined with certain ranges such as slope and 20 
aspect over the study domain, SD. For a given SA, identified by m, and its subcategory, n, 21 
FRm,n|SAm,n is calculated (Eq. 1) as the ratio of observed landslide area, LA, in each SA m and 22 
subcategory n (LASAm,n) with respect to the area of the SAm,n (ASAm,n) to the regional landslide 23 
density, Po (Eq. 2) (Miller and Burnett, 2007): 24 

𝐹𝑅#,%|𝑆𝐴#,% =
*+,-.,//+,-.,/

12
	  (1) 25 

where 𝑃5 	=
*+,6
+,6

 (2) 26 

The term in the numerator of Eq. (1) gives an empirical probability of landsliding impact within 27 
SAm,n.  Po can also be referred to as a regional background probability, such that in absence of 28 
any other information, Po represents the probability of landsliding at any point in the domain. 29 
The interpretation of FR is as follows (Lepore et al., 2012): 30 
● FR < 1: indicates proportionally less landslide area with subcategory n of SA m, SAm,n; 31 

hence, smaller odds of a landslide than in the entire SD. 32 
● FR = 1: means there is the same proportion of landslide area with SAm,n as in the SD thus, 33 

the odds of a landslide are the same for the SAm,n subcategory as the SD. 34 
● FR > 1:  reveals a higher percentage of landslide area with SAm,n, than in the entire SD, 35 

so there is a propensity for failures to occur with this SA. 36 
 37 
FR in Eq. (1) is developed for a population of spatially distributed locations that has the same 38 
attribute of a given SAm,n. A given point on the landscape would have as many FR values as the 39 
number of SAs used. To develop an index that will incorporate all the FR values for a given 40 
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point on the landscape we used an empirical susceptibility index, SI, defined at the grid cell 1 
scale, SIc, as the product of the FR values for all SAs of that grid cell and their associated 2 
subcategory,  3 
 4 
𝑆𝐼8 = ∏ 𝐹𝑅#,%|𝑆𝐴#,%.#  (3) 5 
 6 
A multiplicative FR is used because in certain subcategories, there may be no landslide 7 
observations (e.g., low slope angle), and in such cases the hillslope would be stable regardless of 8 
other soil and vegetation properties.  SIc is a measure that relates local static (or slowly changing) 9 
site characteristics to relative frequency of landslides.  Since SIc  is a data-driven index, 10 
probability of landsliding would increase as SI grows. 11 
 12 
In order to develop a continuous relationship between SIc and probability of landslide at a grid 13 
cell, P(LSc|SIc), we binned the population of SIc values across the landscape into SIr bins, where r 14 
is the number of SI bins. We then estimated the probability of landsliding for an SI bin, SIr, 15 
P(LSr|SIr), as the ratio of number of grid cells with landslides in each SI bin, N(LS)r, to the total 16 
number of grid cells within each SI bin, Nr (Eq. 4).   17 
 18 

𝑃(𝐿𝑆=|𝑆𝐼=) =
?(*@)A
?A

 (4) 19 

 20 
To calculate spatially continuous empirical probability of landsliding at each grid cell of a DEM, 21 
P(LSc|SIc), we fit empirical functions that relate P(LSr|SIr) to SIr. These functions are then used 22 
for mapping empirical probability of landsliding at the cell scale, P(LSc|SIc), based on its 23 
empirically-derived SIc value in Eq. (3).    24 
 25 
We included all SAs to develop empirical models relating SI to landslide probability, similar to 26 
Kirschbaum et al. (2012) and Lepore et al. (2012). We repeated the analysis described above 27 
three times: first, considering all landslide types and including their source, transport, and 28 
depositional zones, as is commonly done in multi-factor analyses (Sidle and Ochiai, 2006; 29 
Ayalew et al., 2004; Carrara et al., 1995); second, focusing on debris avalanches, with all three 30 
of their zones (Fig. 1); and third, considering only the source (initiation) areas of debris 31 
avalanches. These source areas were, identified as the upper 20% of by elevation within mapped 32 
debris avalanche polygons, which appeared to align with inspections of aerial imagery of a 33 
selected debris avalanches. This tiered approach can be used to quantify the relative 34 
contributions of different landslide features to overall landslide hazard in a region as well as 35 
inform the variability in hazard identification given a landslide dataset.  36 
 37 
2.2 Model Integration 38 
Here we develop a method to combine the empirical probability for landslide initiation based on 39 
SI, P(LSc|SIc), with the probability of landslide initiation based on a previously developed 40 
physically-based model using Landlab (Strauch et al., 2018; Hobley et al., 2017). The physically-41 
based model employs Monte Carlo solution of the infinite slope stability model that evaluates 42 
localized (model grid cell) factor of safety (FS), and calculates the annual probability of failure at 43 
a cell, P(FSc≤1) as the number of Monte Carlo iterations where probability of failure £ 1 out 44 
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ofdivided by the total number of iterations.  using Landlab (Strauch et al., 2018; Hobley et al., 1 
2017). Precipitation is considered in the physically-based model through its use as input to a 2 
macro-scale hydrology model, such as the Variable Infiltration Capacity model (Liang et al. 3 
1994), which produces a spatially distributed recharge field used to represent steady-statedrive 4 
the steady-state subsurface flow in the stability model in the component. Other hydro-5 
geophysical stochastic inputs into the stability model are selected from distributions while slope 6 
and specific contributing area are deterministic variables. 7 
 8 
In combining probabilities, we focus on the landslide initiation areas, as the process-9 
basedphysically-based model we used would only be applicable for landslide initiation. 10 
Empirical P(LSc|SIc) and modeled P(FSc≤1) probabilities of landslide impact at each cell defined 11 
across the landscape are treated as indices representing the likelihood of landslides. The method 12 
we proposed for an integrated probability uses the cell count of observed landslide initiation 13 
points within bins of the empirical, P(LSc|SIc)b, and modeled probability, P(FSc≤1)b of 14 
landsliding.   15 
  16 
If we treat the empirical probability as an index, the probability of landslide initiation within a 17 
bin j of empirically-derived probability of landslide initiation, Ej=P(LSc|SIc)b,j is calculated as: 18 

𝑃(𝐿𝑆|𝐸C) =
?(*@)D
?D

 (5) 19 

where, N(LS)j is the number grid cells with observed landslides and Nj is the number of grid 20 
cells both in bin j of Ej: 21 
 22 
Similarly, the probability of landslide initiation within a bin i of processed-basedphysically-23 
based modeled probability of landslide initiation, Mi=P(FSc≤1)b,i is calculated as: 24 

𝑃(𝐿𝑆|𝑀F) =
?(*@)G
?G

 (6) 25 

where, N(LS)i is the number of grid cells with observed landslides and Ni is the number of grid 26 
cells both in bin i of Mi. If the observed landslide data is representative of the actual landslide 27 
frequency over the duration when the probability of landsliding is modeled, an ideal model that 28 
correctly represents all environmental variables associated with landslide initiation would give 29 
𝑃(𝐿𝑆|𝑀F) = 𝑀F	. Assuming unbiased landslide mapping in the field, a greater difference 30 
between these two relative frequency probabilities would suggest a weaker model representation 31 
of the process, especially when the process-basedphysically-based model is run to represent 32 
landslide risk for a given climatology.  33 
 34 
Modeled probabilities may be improved when information contained in empirical probabilities is 35 
introduced. The probability of landslide initiation in areas shared by any two select bins (e.g., co-36 
bins) of empirically-derived, Ej, and process-basedphysically-based modeled, Mj, probabilities is 37 
calculated as the joint probability:  38 

𝑃(𝐿𝑆|𝐸C ∩ 𝑀F) =
?(*@)D,G
?D,G

 (7) 39 
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where N(LS)j,i is the number grid cells with observed landslides and Nj,i is the number of grid 1 
cells in the joint bin j of empirical probability and bin i of modeled probability data. An 2 
illustration of this estimation is given in Figure 2. The conceptual example shows how relatively 3 
low landslide probability predictions by a process model in the Mi=0-0.2 bin range can be 4 
modified due to differences in the empirical preconditioning of the landscape (e.g., rock type) to 5 
landslides represented in Ej. The intersection of Mi=0-0.2 with Ej=0.2-0.3 yields a higher 6 
empirical probability of landsliding. Influence of vegetation change and extreme weather events 7 
(e.g. Eco-hydrometeorologic controls) that were not part of the initial empirical data set used for 8 
estimating Ej bins can be captured by the process-basedphysically-based model. In this case the 9 
model predicts a high probability Mj=0.8-1, while Ei remained in the low probability range in 10 
Ei=0.0-0.1. The intersection of Mj and Ei land surface characterization captures the landscape 11 
where landslides were observed.  12 
 13 
 14 
 15 

 16 
 17 
Figure 2. Illustration of the proposed landslide probability conditioned on estimated spatially distributed 18 
SI-based empirical and modeled probabilities as binned indices, EJ and Mi, that form a joint space. 19 
P(LSL𝐸C ∩𝑀FM is defined as the ratio of the number of landsliding cells to the number of cells that jointly 20 
fall into given EJ and Mi bins. 21 
 22 
We propose that the ratio of P(LSL𝐸C ∩ 𝑀FM and 𝑃(𝐿𝑆|𝑀F) can be used as a correction to 23 
𝑃(𝐹𝑆8 ≤ 1) . As model predictions improve, this ratio should get closer to 1, especially when the 24 
model is used to map landslide probability for a given climatology in a region. When the 25 
process-basedphysically-based model is run for studying a specific rainfall event, this ratio 26 
quantifies the relative roles of other factors could play on landslide initiation. Thus, we propose 27 
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that the probability of landsliding at each grid cell, c, given the corresponding Mj and Ei bins that 1 
a cell belongs to can be estimated as: 2 

𝑃(𝐿𝑆)8,C,F = 𝑃(𝐹𝑆8 ≤ 1) ×
1(*@|QD	∩	RG)
1(*@|RG)

 (8) 3 

If we let 𝜔 represent the bin-based ratio on the right-hand side of Eq. (8) as a weighting factor 4 
based on observations of landslides, then we can simplify notation to: 5 

𝑃(𝐿𝑆)8,C,F = 𝑃(𝐹𝑆8 ≤ 1) × 𝜔 (9) 6 

 7 
This gives the probability of landslide initiation, represented as an adjusted modeled probability 8 
of landslide initiation at a grid cell given empirical observations correlated with site 9 
characteristics. In the reminder of the paper we use 𝑃(𝐹𝑆8 ≤ 1) to refer to process-10 
basedphysically-based shallow landslide probability from Strauch et al.(2018) and P(LS) to refer 11 
to the adjusted model probability using the proposed empirical-adjustment methodology. 12 

A hypothetical example shown in Table 1 demonstrates calculating the relative frequencies, the 13 
resulting calculated weight, and adjusted P(LS) (Eq. 9). The calculation of relative frequency is 14 
based on binning modeled and empirical probabilities, counting landslide and non-landslide cells 15 
within each bin, and calculating a weighting term, ω, which is then used to adjust the original 16 
modeled probability given empirical evidence.  Weights can be greater than 1 and the final 17 
probability will be increased when weight ≥ 1 and decreased when weight < 1. Final adjusted 18 
probabilities are limited to unity in the integrated model. For example, a weight = 2 and modeled 19 
probability = 0.2 would result in a doubling of the final probability = 0.4 given empirical 20 
information. 21 

Table	1.		Hypothetical example of calculating relative frequencies, weight, and P(LS) during 22 
model integration 23 

Ej	bins Observed	Landslides	/	Total	Cell	Count	(relative	frequency) Total 

0.2-0.3 206/ 
870 

5/ 
24 

3/ 
14 

5/ 
14 

2/ 
10 

221/ 
932 

0.1-0.2 11107/ 
87104 

309/ 
2001 

193/ 
1220 

137/ 
856 

96/ 
657 

11842/ 
91838 

0	–	0.1 48513/ 
1848950 

1757/ 
51679 

1157/ 
33084 

793/ 
24928 

742/ 
21410 

52962/ 
1980051 

Total 59826/ 
1936924 

2071/ 
53704 

1353/ 
34318 

935/ 
25798 

840/ 
22077 

65025/ 
2072821 

Mi	bins 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 
 

An	example	calculation	of	P(LS)	using	the	above	data	– a	cell	having	a	modeled	
probability,	P(FSc	≤	1)	=	0.12	and	an	empirical	probability,	P(LSc|SIc)	=	0.08,	then:		
P(LS|Ej	)	=	52962/1980051	=	0.027				(Eq.	5)	
P(LS|Mi	)	=	2071/53704	=	0.039											(Eq.	6)	
P(LS|Ej	∩	Mi	)	=	1757/51679	=	0.034		(Eq.	7)	
ω	=	0.034/0.039	=	0.87		
P(LS)c,i,j	=	0.12x0.87	=	0.105																			(Eq.	9) 
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 1 
2.3 Model application 2 
2.3.1 Study Area 3 
Our study area is within the geographical limits of North Cascades National Park Complex 4 
(NOCA) managed by the U.S. National Park Service (Fig. 3). NOCA has experienced damaging 5 
and disruptive landslides that have impacted infrastructure and disrupted public use of the park.  6 
NOCA is approximately 2,757 km2, with 93% wilderness (e.g., no motorized or mechanized 7 
devices) (DOI-NPS, 2012), which is ideal for studying landslides primarily triggered by natural 8 
causes.  The north-south oriented Cascade Mountains has an elevation range of 100 to 2,800 m at 9 
the study site, with jagged bedrock peaks, and over 300 alpine glaciers. The landscape has been 10 
shaped by Ice Age continental and alpine glaciers, and mass wasting, fluvial and tectonic uplift 11 
processes that continue today (LaHusen et al., 2016; Mustoe and Leopold, 2014; Collins and 12 
Montgomery, 2001; Riedel et al., 2007; Pelto and Riedel, 2001). The bedrock geology in the 13 
park is dominated by gneiss and granite, with lower grade metamorphic rocks schist and phyllite 14 
on the western edge of the park, and Mesozoic sedimentary rocks on the eastern flank (Tabor and 15 
Haugerud, 1999).  Placement of granite at depth along faults led to hydrothermal alteration of 16 
some overlying rocks, and the clustering of large landslides. Soils in the park are generally 17 
coarse-grained and relatively young due to active slope processes, but soil age, thickness and 18 
distribution are highly variable. Soils formed in glacial deposits from the last glaciation are also 19 
widespread, and many soils are classified based on the amount of volcanic ash they contain. 20 
 21 
Orographic uplift of Pacific Ocean air masses generates a spatial precipitation gradient with an 22 
average of 4,575 mm of precipitation falling annually on the highest elevations west of the crest, 23 
while lowlands east of the crest receive a mean annual precipitation of 708 mm (Mustoe and 24 
Leopold, 2014; Roe, 2005). Air temperatures vary highly depending on season and elevation 25 
with the warmest month typically August and the coldest month is January; corresponding 26 
average daily temperatures of about 25° C and 4°C, respectively, for these months in Newhalem, 27 
Washington.  28 



 

12 

 1 
 2 
Figure 3. Four landslide types mapped within North Cascades National Park Complex (NOCA) in 3 
Washington, U.S.A. The number and their total area of each type is given in parentheses.  Insert provides 4 
example of mapping over aerial image from Google Earth, 48°27’20.21” N 120°44’47.09” W, imagery data 5 
8/27/August, 27, 2006. 6 
 7 
Vegetation in NOCA is dominated by forest, particularly coniferous tree species, up to about 8 
2,000 m (Strauch et al., 2018; Agee and Kertis, 1987).  A patchwork of shrubs, herbaceous 9 
vegetation, and barren land is found above this elevation common in alpine environments and in 10 
the paths of frequent snow avalanches.  Above 2,400 m is mostly bare rock, snow and ice. The 11 
underlying geology is composed of a primarily old Mesozoic crystalline and metamorphic rock 12 
originating far to the south (Haugerud and Tabor, 2009).   13 
 14 
Landslide (LS) inventory data are the most requisite information needed for an empirical 15 
statistical analysis (Lepore et al., 2012).  Landslides were mapped in the 2,768 km2 park as 16 
discreet landforms during a comprehensive park-wide landslide inventory (Fig. 3; Riedel and 17 
Probala, 2005).  Landslides were identified using color  stereo-pair 1998 air photos taken since 18 
1960s at 1:24,000 and 1:12,000 scale, 7.5 minute topographic maps, bedrock geology maps, and 19 
field investigations (e.g., Riedel et al., 2012).  The minimum mapping unit was approximately 20 
1,000 m2 except for some smaller slump units. Landslide linework was transferred to a digital 21 
format, peer reviewed, and polygons edited into final form in geographical information system 22 
(GIS) software using National Agriculture Imagery Program (NAIP) imagery and a 10-m DEM 23 
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and, in some cases, LiDAR.  Where areas were mapped by traditional methods, and Lidar later 1 
became available, the original approach captured most (~75%) of the landslides. Dense 2 
vegetation cover and a lack of access limited identification of some existing landslides. Larger, 3 
more recent debris avalanches that left large deposits on the valley floor were more easily 4 
recognized and mapped. Ancient landslides that occurred before the last glacial period 16,000 5 
years ago were generally not mapped because their deposits were buried or reworked by 6 
subsequent continental glaciation.   7 
 8 
The landform mapping study identified six different types of mass wasting (Table 2): rock 9 
fall/topple, debris avalanche, debris torrent, slump/creep, sackung, and snow avalanche-impacted 10 
landforms (SAILs) (Riedel et al., 2012). The single sackung mapped in NOCA represents a 11 
gravitational spreading or slope deformation, sometimes found near ridge tops.  All landslide 12 
types were included in the analysis except for the rare sackung and SAILs, which are created by 13 
snow avalanche impacting unconsolidated sediments rather than slope instability. The idea is to 14 
capture more spatial variability and geologic controls on observed landslides by using all the data 15 
we obtained for available from the inventory for the four common landslide types. There are 16 
1,618 landslides mapped in NOCA: falls/topples (68%), debris avalanches (17%), debris torrents 17 
(10%), slumps/creeps (4%), and one sackung (<1%) (Fig. 3; sackung not shown).    18 
 19 
   Table 2.  Landslides mapped as part of comprehensive landform mapping study used in hazard 20 

analysis (Riedel et al., 2005) 21 
Type of Mass 

Wasting 
Process Mapping  

Debris 
Avalanche 

Extremely rapid moving mixture of rock, soil, 
and vegetation, generally originates from 
glacially-sourced areas, over-steepened valley 
walls, and in many cases hydrothermally 
altered bedrock 

Includes headwall scar, 
path, and deposit 

Debris Torrent Channelized rapid and/or sudden flow of 
material entraining debris stored in stream 
channel while moving down slope 

Only the deposition areas 
within a debris cone 

Slump and Creep Slumps - rotational slip of cohesive sediments, 
usually triggered by undercutting of steep 
slopes along riverbanks. Creeps - slow 
movement induced by saturated ground.  

Mapped where deciduous 
vegetation brighter on 
aerial photos, fresh new 
soil, jackstraw or pistol 
gripped trees. 

Rockfall or Rock 
Topple 

Sporadic and shallow detachment of rock 
falling from bedrock cliffs and rock towers 

Mapped where bright and 
highly reflective with 
little or no vegetation on 
aerial photos. Mainly 
deposition mapped. 
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 1 
2.3.2 Study domain and Parameters 2 
We constrained our analysis to soil-mantled landscapes by excluding high elevation areas 3 
covered by glaciers, permanent snowfields and exposed bedrock, as well as wetlands and other 4 
water surfaces, based on landform mapping and maps of lithology and landcover.  We also 5 
exclude slopes less than 17° because this slope threshold was found to generally separate 6 
colluvial mass wasting and debris transport processes from fluvial processes in this region 7 
(Strauch et al., 2018). The area included in the analysis covers about 79% of NOCA’s land area. 8 
 9 
The seven site attributes (SAs) investigated using the Frequency Ratio (FR) approach as they 10 
relate to mapped landslide activity vary across the NOCA study area.  Slope, total curvature 11 
(Laplacian of elevation), and aspect attributes were derived using ArcGIS from a 30-m digital 12 
elevation model (DEM) acquired from National Elevation Dataset (NED) (USGS, 2014a).  A 13 
resolution of 30-m was chosen for comparability with other studies and landslide size (e.g., 14 
Strauch et al., 2018; Lepore et al., 2012). Elevation ranges from 107 to 2794 m with 85% of the 15 
park between 500 to 2000 m. Subcategories for elevation were based on 200-m increments with 16 
lumping at the ends (e.g., < 400 m and > 2200 m). Slope subcategories were set at 5° increments 17 
with ending subcategories for slopes 17-25°, and >50°. Curvature was divided into three 18 
subcategories: convex/diverging, flat, or concave/converging. Aspect (i.e., facing direction of 19 
slope) was classified into eight compass orientations (i.e., N, NE, E, SE, S, SW, W, NW).  The 20 
park’s complex topography results in roughly equal distribution among the cardinal and 21 
intercardinal directions of aspect; however, the southwest quadrant is slightly more common.  22 
 23 
The DEM also provides the information needed to derive a distributed wetness index (Beven and 24 
Kirkby, 1979; O’Loughlin, 1986), calculated as the natural log of the ratio of specific catchment 25 
area [L] to sine of local slope.  This index has been used for quantifying the contribution of pore-26 
water pressure to destabilizing forces in landslide modeling (e.g., Borga et al., 2002; Gokceoglu 27 
et al., 2005).  Wetness index was divided into 5 subcategories based on 20% quantiles: low, low-28 
medium, medium, medium-high, and high wetness.  Landcover was acquired from the 2014 29 
National Land Cover Data (NLCD), which is based on 2011 Landsat satellite imagery (Jin et al., 30 
2013; USGS, 2014b). We categorized this into forest, shrubland, herbaceous, water, wetland, 31 
snow/ice, barren, and developed (e.g., roads, campgrounds). Based on this classification, forest, 32 
shrubs, and herbaceous vegetation represent 54%, 15%, and 10% of the park, respectively. 33 
Barren and snow or ice combined cover 17%, typically at the high elevations.  Water and 34 
wetlands cover about 2.5%, while developed is less than 0.5%. 35 
 36 
Lithology provides a description of rock and deposits that indicates composition, strength, and 37 
age, which can influence the hillslope strength and water redistribution.  Washington State 38 
Department of Natural Resources (WADNR) provides lithology in its surface geology maps that 39 
display rocks and deposits as geologic map units (WADNR, 2014).  This source of information 40 
was chosen because it is available for all of Washington, facilitating future applications.  There 41 
are 48 lithology map unit types within NOCA. These were aggregated into seven subcategories, 42 
based on similarities in origin and generally increasing strength, called: (1) unconsolidated 43 
sediment, (2) ultramafic, (3) weak metamorphic foliated, (4) sedimentary rock, (5) hard 44 
metamorphic, (6) intrusive igneous, and (7) volcanic/extrusive igneous (Table 3).   Water and ice 45 



 

15 

were not classified. Both landcover and lithology were rasterized to the same DEM grid 1 
resolution using ArcGIS based on the dominant type of attribute in each grid cell.  Among the 2 
seven types of lithology, hard metamorphic is most common (41% of NOCA), while ultramafic, 3 
sedimentary rock, and volcanic/extrusive igneous combined make up less than 5%.   4 
 5 
Table 3.  Classification of Washington Department of Natural Resources surface geology from 6 

generally weaker (1) to stronger (7) material along with aerial percentages within 7 
NOCA in parentheses 8 

 9 
Class               WADNR Lithology                             Class                   WADNR Lithology 
Unconsolidated Sediments (12%) Sedimentary Rock (2%) 

1 

alluvial fan deposits 

4 

sedimentary deposits or rocks, undivided 
alluvium continental sedimentary deposits or rocks 
alluvium, older (e.g., alluvial fans & talus) marine metasedimentary rocks 
alpine glacial drift, Fraser-age marine sedimentary rocks 
alpine glacial till, Fraser-age Hard Metamorphic (41%) 
glacial outwash, alpine, Fraser-age 

5 

banded gneiss 
continental glacial drift, Fraser-age mixed metamorphic and igneous rocks 
mass-wasting deposits orthogneiss 
mass-wasting deposits, mostly landslides paragneiss 
mass-wasting deposits, not landslides Intrusive Igneous (21%) 
peat deposits 

6 

acidic (felsic) intrusive rock 
talus deposits basic (mafic) intrusive rocks 

Ultramafic (0.02%) diorite 
2 ultrabasic (ultramafic) rocks (serpentine) gabbro 

Weak Metamorphic Foliated (14%) granite 

3 

heterogeneous metamorphic rocks granodiorite 
hetero. metamorphic rocks, chert bearing Intermediate intrusive rocks 
marble Intrusive breccia 
metasedimentary and metavolcanic rocks quartz diorite 
metasedimentary rocks quartz monzonite 
metasedimentary rocks, cherty tonalite 
metavolcanic rocks Volcanic/Extrusive Igneous (2%) 
amphibolite 

7 

tuffs and tuff breccias 
phyllite, low grade dacite flows 
schist, low grade rhyolite flows 

-- Water and Ice (7%) volcanic breccia 

3 Results and Discussion 10 
3.1 Frequency Ratio Analysis 11 
The results of the FR analyses for each site attribute (SA) are presented in Fig. 4.  We discuss the 12 
role of SA starting with debris avalanche source areas as they are hypothesized to represent the 13 
initiation processes of shallow landslides that transform into debris avalanches. The SAs that 14 
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impact shallow landslide initiation could arguably play common controls on the initiation of 1 
other types of slope failures.  The frequency analysis shows a clear and growing control of local 2 
slopes greater than 35o on landslide initiation, which can be considered as the internal friction 3 
angle of cohesionless sand (Fig. 4c).   4 
 5 

 6 
Figure 4. FR value for different bins of seven Site Attributes (SA) separated by red lines, based on (a) all 7 
landslide types mapped within the NOCA study domain, (b) debris avalanche landslide types only, and 8 
(c) source areas of debris avalanches represented by the highest 20% of the mapped debris avalanche.  9 
The vertical blue line refers to the FR value of 1.0, denoting when no association is found with mapped 10 
landslides. FR values below this line are attributes less likely associated with landslides and FR values 11 
above this line indicate greater association with landslides. 12 
 13 
The source area of debris avalanches is only about 17% of the mapped debris avalanche area and 14 
10% of the whole landslide inventory, which predominantly maps transport and depositional 15 
areas. A small debris avalanche source area in steep terrain can lead to large landslide impacts in 16 
lower elevations, as the eroded material travels downhill and deposits in gentler gradients (Fig. 17 
1). Thus, the runout zones of debris avalanches and other mapped landslide types cover more 18 
area at gentler slopes typical of lower elevations. This process is captured in Fig. 4a and 4b 19 
where the FR analyses exhibit higher landslide hazard at gentler slopes (<30o), more likely 20 
associated with transport and depositional processes as well as failure of side slopes along 21 
glacially incised U-shaped valleys undercut by fluvial activity. Others have reported clustering of 22 
landslide impacts in lower elevations within valleys where hillslopes are steep enough to fail 23 
(Megahan et al., 1978; Kelsey, 1988; Densmore et al., 1997; Chalkias et al., 2014). 24 
 25 
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In the study area, local slopes generally increase on average with elevation, particularly above 1 
1,400 m (Strauch et al., 2018). The control of steeper slopes on debris avalanche initiation is 2 
supported by the results for elevation where source areas are associated with mid to high 3 
elevation (1,400 to 1,800 m) and entire debris avalanches and all landslides types, including 4 
deposition zones, have growing frequency in lower elevations (< 1,200 m) with the highest 5 
frequency falling in elevations <400 m (Fig. 4a, b).  Further increase in slopes typically lead to 6 
bedrock exposure and barren lands with thin soil (Strauch et al., 2018; Gabet, 2003).  In addition 7 
to steepening slopes, the observed higher frequency of debris avalanche source areas in the mid-8 
to-high elevation range corroborates recent findings of an ecosystem transition control on 9 
landslide initiation (Strauch et al., 2018).  With the cooling of air temperatures beyond forest 10 
ecosystem thresholds, the transition of forest vegetation (predominant alpine conifers) to mixed 11 
shrub and herbaceous vegetation types with lower root cohesion, lead to higher landslide 12 
frequency at debris avalanche source areas (Fig 4c). The slope and elevation results, however, 13 
are likely influenced by the mapping approach, which was biased in mapping landslide activity 14 
on the lower portions of hillslopes that were typically more accessible, and continuous creep and 15 
rapid slides in subalpine and alpine areas were infrequently mapped. 16 
 17 
Developed areas that include impervious surfaces, constructed materials, and lawns have the 18 
highest landcover association with all mapped landslide areas, as well as with debris avalanches, 19 
yet no association with debris avalanche source areas, which are typically higher on mountains 20 
and rarely developed. Although dirt roads have been found to disrupt drainage and increase 21 
erosion (Croke and Hairsine, 2006; Montgomery, 1994; Swanson and Dyrness, 1975), the lack of 22 
association with landslide initiation suggest that these areas may be positioned on the landscape 23 
in areas likely to be impacted by landslide runout or depositionsthese impacts are not evident in 24 
NOCA based on the scarcity of roads.  In general, forest and barren landcover show the least 25 
landslide activity compared to other landcover (Fig. 4). The forest association likely indicates the 26 
positive contribution of root cohesion to hillslope stability, whereas the barren landcover type 27 
results may indicate the effect of mapping completeness or hillslope processes. The barren 28 
results appear counter to the findings of the processed-basedphysically-based landslide model 29 
applied at the same location, which found high probability of landslide initiation in barren areas 30 
often below retreating glaciers (Strauch et al., 2018). Barren includes areas of bedrock, glacial 31 
debris, and other accumulations of earthen material with vegetation generally accounting for less 32 
than 15% of total cover; thus, there may be a variety of stability conditions within this single 33 
cover class. 34 
 35 
The sources of debris avalanches are linked to eastern and southeastern aspects (Fig. 4c); 20% 36 
and 15% of source cells by area occur on these aspects, respectively. Except for western aspects 37 
that show the weakest association debris avalanches, other aspects show landsliding frequency 38 
close to the average frequency in the whole study domain.  Vegetation type and cover that relate 39 
to root strength and moisture regime can be related to aspect. East and south exposures have 40 
lower forest cover fractions compared to other aspects at mid to lower elevations (< 1,400 m), 41 
and forests are largely replaced by barren lands and shrub and herbaceous vegetation as elevation 42 
increases (Fig. 5). Most source areas of debris avalanches and debris avalanches as a whole are 43 
associated with shrub and herbaceous vegetation types (Fig. 4b,c).  Other aspects, especially 44 
west-facing slopes have higher fraction of forest cover (Fig. 5), likely linked to a longer growing 45 
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season (Evans and Fonda 1990). Lower landslide frequency in western aspects can be a result of 1 
higher root cohesion of forest vegetation compared to shrub and herbs. Additionally, perhaps 2 
west-facing aspects experience more arid moisture regimes or bedrock bedding, jointing, or 3 
fracturing conducive to stability compared to other exposures (Carson and Kirby, 1972; Fischer 4 
et al., 2006).   5 

 6 
Figure 5. Vegetation cover fraction in NOCA on each aspect, taken as the fraction of vegetation type 7 
within each 200-m elevation band. Aspects categorized here as a) north (0° to 45° and 315° to 360°), b) 8 
east (45° to 135°), c) south (135° to 225°), and d) west (225° to 315°), covering 23%, 23%, 26%, and 9 
28% of NOCA, respectively. Yellow highlighted area represents the strongest elevation association for 10 
debris avalanche source areas. 11 

When all landslides are considered, northern slopes exhibit growing landslide association while 12 
landslide frequency declines in southeastern slopes compared to the other landslide datasets (Fig. 13 
4a, b). North-facing slopes have been documented to retain more soil moisture than south-facing 14 
aspects in northern latitudes (Geroy et al., 2011), which can be broadly responsible for more 15 
initiation, transport and deposition impact of all mass wasting types.  Hillslope asymmetry (i.e., 16 
steeper slopes depending on aspect) was not found during inspection of average slope on the four 17 
primary aspects. North-south asymmetry has been found to demonstrate reversal based on 18 
elevation and at 49° latitude, which correspond to the northern edge of NOCA (Poulos et al., 19 
2012).  In general, the relatively similar aspect associations for different landslide observation 20 
datasets likely indicates the connection of source areas to downstream processes of transport and 21 
deposition (Fig. 1). 22 
 23 
Comparisons among all landslides, whole debris avalanches, and debris avalanche source areas 24 
clearly show that unconsolidated sediments, largely derived from transport and depositional 25 
processes, have stronger association with landslides than other lithologies followed by 26 
sedimentary rock (Fig. 4). This strong association is expected given the inclusion of mass 27 
wasting landforms in the classification of unconsolidated sediment. The high ultramafic rock 28 
association when considering all landslide types is driven by a single topple/fall occurring in this 29 
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scarce lithology (<0.02% of NOCA). Widespread observation of debris avalanche source areas in 1 
all rock types may point to the role of steep slopes regardless of lithology. For debris avalanche 2 
processes, sedimentary rock is more associated with transport and depositional areas than source 3 
areas. Areas without landslide activity were associated with weak metamorphic foliated and 4 
intrusive igneous lithology (Fig. 4a).   5 
 6 
The association of landslides on concave/converging versus convex/diverging topography is 7 
relatively consistent among the datasets and generally consistent with literature due to enhanced 8 
wetness where vegetative support may be weak in deeper soils (see Hales et al., 2009; Fig. 4).  9 
High wetness index is associated with landslides for all landslide types as well as entire debris 10 
avalanches (Fig. 4a,b).  This result is intuitive as this index is an indicator of increased soil 11 
saturation and surface runoff.  In contrast, source areas were correlated with low wetness index 12 
(Fig. 4c). This counterintuitive finding, however, aligns with previously discussed results that 13 
source areas are associated with loss of root strength, steep slopes and higher elevations, 14 
resulting in relatively small specific catchment areas. By definition, wetness index is negatively 15 
correlated with slope and positively correlated with specific contributing area.  Thus, source 16 
areas will have a low wetness index when they are from steep slopes with small contributing 17 
areas (i.e., located higher up on hillslopes).   18 
   19 
3.2 Susceptibility Index 20 
A susceptibility index (SI) is calculated for each grid cell within the study area domain by 21 
equation (3). Cumulative distributions for SI, plotted as fraction of area of the study domain as 22 
well as only in the areas where landslide impact was mapped show higher SI values for a given 23 
fraction of the respective domains where a given SI is exceeded (Fig. 6a, d, and g).  Additional 24 
support beyond the graphics that these distributions are not equal is provided by the 25 
Kolmogorov-Smirnov test, which rejects the null hypothesis of equal distributions at α<0.01. The 26 
cumulative distributions show that the SI calculated from FR method can differentiate mapped 27 
landslide locations from non-landslides with a larger SI. The resulting spatial distribution of SI is 28 
right skewed as shown in the relative frequencies of SI for all three landslide datasets (Fig. 6b, e, 29 
and h).  The right skew indicates that there is a small population of grid cells with high SI 30 
compared to the majority of grid cells in the study domain.  This occurs when there are FR 31 
subcategories frequently associated with landslides coinciding at the same location.  Histograms 32 
show a greater relative frequency of landslide grid cells with high SI values than the entire 33 
domain (Fig. 6b, e, and h). For source areas, SI bins for the histograms were larger (e.g., 0.5 vs 34 
0.25) due to the small number of source area cells compared to the two other datasets.  35 
  36 
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1 
Figure 6. Cumulative distributions (a, d, and g - column 1) and relative frequency plots (b, e, and h - 2 
column 2) of Susceptibility Index (SI) for all grid cells included in the analysis and the grid cells 3 
contained within mapped landslides. Third column (c, f, and i) is the probability of landslide impact, 4 
P(LSr|SIr), calculated from the ratio of the number of landslide cells to the number of all cells with each 5 
SI bins with fitted curves.  Rows represent analysis domains: a, b, and c) all landslide types; d, e, and f) 6 
debris avalanches; and g, h, and i) debris avalanche source areas. 7 

The probability of landslide impact, P(LSr|SIr), calculated from Eq. (4) are shown in the third 8 
column of Figure 6 (Fig. 6c, f, and i).  In calculating this probability in the highest SI bins (e.g., 9 
SI≥8), landslide sample sizes of about 500 or fewer were aggregated into the previous bin. In all 10 
three cases, P(LSr|SIr) increases with SI, supporting the statistical power of this empirical 11 
approach. The SI to P(LSr|SIr) relation is explained by a linear function when debris avalanche 12 
data are used (Fig. 6f). The other two cases, all landslide data and debris avalanche source areas, 13 
are better represented by polynomial fits (Fig. 6c and i). The range of probabilities grows with 14 
the sample size of the landslide dataset used, leading to maximum probabilities of 0.2, 0.16, and 15 
0.017 for all landslide, debris avalanches, and debris avalanche source areas, respectively.  These 16 
functions were used to develop continuous empirical probability maps based on SI values 17 
assigned to each grid cell of the study domain,  limited to the maximum empirical probability of 18 
each landslide type.   19 
 20 
3.3 Landslide Hazard Maps 21 
The probability of landslide impact estimated from SI, P(LSr|SIr),  declines as the amount of 22 
observational information decreases from all landslides (Fig. 7a), to debris avalanches (Fig. 7b), 23 
and debris avalanche source areas (Fig. 7c). This pattern reflects the smaller area of observed 24 
landslide data used in each case compared to the study domain.  Additionally, the probability of 25 
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any landslide activity would be expected to be higher than the probability of initiating a debris 1 
avalanche alone. When considering all landslides, the highest probabilities are located near the 2 
base of valley walls and in topographic depressions or hollows (Fig. 7a). The hazard map 3 
developed from the empirical model using only debris avalanches (Fig 7b) also shows higher 4 
probabilities in the valley bottoms, but lower probabilities than the all landslides map at higher 5 
elevations in alpine areas where the footprint of debris avalanches is smaller compared to the 6 
deposition area, reducing the overall probabilities in the FR approach. Spatial patterns of 7 
landslide probabilities obtained from the source areas of debris avalanches (Fig. 7c) departs from 8 
the other two empirical models with the highest probabilities in middle and upper portions of 9 
valley walls, similar to the process model (Fig. 8b). Thus, the empirically-based modeling using 10 
only source areas appears to capture some of the physical processes initiating debris avalanches. 11 
Closeup areas mapped for each mapping case more clearly illustrate the landslide hazard in 12 
relation to topographic position.  13 
 14 
We developed a map of annual probability of shallow landslide initiation by combining the 15 
empirical SI-based probability (Fig 7c) and the process-basedphysically-based annual probability 16 
of landslide initiation from Strauch et al. (2018), 𝑃(𝐹𝑆8 ≤ 1), using the methodology developed 17 
in this paper  (Eq. 8 and 9). The weight term,  𝑃(𝐹𝑆8 ≤ 1), and the P(LS) are shown in Fig. 8.  18 
Close ups of three locations are shown below the full NOCA maps.   19 
 20 
Approximately 30% of the analyzed cells had weights > 1. Weights are greater in high elevations 21 
and steep slopes, commensurate with debris avalanche source areas. Overall 88% of the NOCA 22 
area has less than annual landsliding probability of 0.1 in 𝑃(𝐹𝑆8 ≤ 1)  and P(LS) map. P(LS) 23 
map (Fig. 8c and f) shows enhanced landslide probability in areas already modeled as high 24 
probability of landslide impacts based on the processed-basedphysically-based shallow landslide 25 
model (Fig. 8b and e). An anomaly map created by subtracting P(LS) from 𝑃(𝐹𝑆8 ≤ 1) provides 26 
easier display of the effect of the empirical adjustment.  In the anomaly map, much of the 27 
original 𝑃(𝐹𝑆8 ≤ 1) is adjusted by less than ±0.1 (Fig. 9).  East-facing aspect, concave 28 
curvature, and elevations in the ~1,000 to 1,600 m range show an increase in probability > 0.1 29 
(Fig. 9). Increasing probabilities on east-facing slopes compared to other aspects aligns with the 30 
FR findings (Fig. 4). 31 
 32 
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Figure 7. Maps of probability of landslide impact derived from empirical model based on: a) all landslide 
types, b) debris avalanches, and c) and source areas of debris avalanches overlain on hillshade raster. 
Black boxes indicate closeup areas shown below with overlain landslide types and 100 m contours.  Gray 
areas excluded from analysis show river valleys and glaciated crests. 
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Figure 8. Maps of: a) weight term derived from joint empirical and processed-basedphysically-based 
modeled probabilities, b) 𝑃(𝐹𝑆8 ≤ 1) from Strauch et al. (2018), and c) P(LS) created from multiplying 
a) by b) at each grid cell for the North Cascades National Park Complex (NOCA). Blue boxes indicate 
three closeup locations shown below in d), e), and f).  Black lines show mapped debris flow boundaries. 
Gray areas are excluded from analysis and contours are at 100 m. 
 
Other cells declined in probability, particularly on gentler slopes, north to west-facing aspects, 
and at low (< 1000 m) and high (>1,600 m) elevations (Fig. 9). Areas with reduced probability 
high on the mountain, above the elevation limit of vegetation (~2,200 m, Fig. 5) and just below 
actively receding glaciers or permanent snowfields, likely represent limited soil development and 
active surface erosion where slopes are steep (Roering et al., 2003) (Fig. 9).  Within the elevation 
range of the park, debris avalanche initiation is not frequently observed at the highest elevations 
where soil is thin or the landscape is covered seasonally by snow and ice.  
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Figure 9. Anomaly maps displaying the difference between P(LS) and 𝑃(𝐹𝑆8 ≤ 1)  where blues 
represent > 0.1 reduction in probability and reds represent > 0.1 increase in probability due to the 
empirical adjustment.  Maps of: a) the entire North Cascades National Park Complex, b) closeup location 
indicated by blue cyan box in a) overlain on hillshade raster, and c) aerial image of the same location as 
b). Aerial image is from World Imagery, Esri Inc. (images created using ArcGIS® software by Esri. 
ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright 
Esri©. All rights reserved. For more information about Esri® software, please visit www.esri.com).  Gray 
areas are excluded from analysis and contours are at 100 m.  
 
To investigate the spatial distribution of 𝑃(𝐹𝑆8 ≤ 1) (Strauch et al., 2018) and empirically-
adjusted model probabilities, P(LS), we plot the cumulative distributions of probabilities (Fig. 
10a). In approximatelyroughly 125% of the NOCA domain, P(LS) gives lower landslide 
probability than 𝑃(𝐹𝑆8 ≤ 1), indicated by the upward shift in the cumulative distribution (blue 
line) (Fig. 10a). This suggest an overall reduction in landslide probability at the broad landscape 
scale when empirical data is used in weighting factors, except where 𝑃(𝐹𝑆8 ≤ 1) is already near 
1.0. The modeled landscapes have P(Failure) ≥ 0.9, or recurrence interval ≤ 1.1 year, in ~6% and 
~3% for 𝑃(𝐹𝑆8 ≤ 1) and P(LS) models, respectively (Fig. 10a). These cells represent highly 
unstable slopes and the empirical adjustment  reduced this area by half from the processed-
basedphysically-based model. Unconditionally unstable landslide, P(Failure)=1 (Pack et al., 
1998; Montgomery, 2001, corresponds to 0% and 2% of 𝑃(𝐹𝑆8 ≤ 1) and P(LS) models, 
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respectively. Unconditionally stable slopes, P(Failure)=0, corresponds to 49% of the study 
domain for both 𝑃(𝐹𝑆8 ≤ 1)and P(LS) models (not visible in Fig. 10a). The distributions 
generally show a high portion (~87 to 88%) of the modeled landscapes has relatively low 
P(Failure) ≤ 0.1, probability of failure, 𝑃(𝐹𝑆8 ≤ 1)or a return period of ≥ 10 years. Thus, the 
empirical information provides most of the hazard adjustments to the areas in between 
unconditionally stable and unconditional unstable conditions. Only between 7% and 9% of the 
landscape has a broad wide range of potential failure (0.1 ≤≥ P(Failure) ≤ 0.9) as indicated by the 
shaded blue (Fig. 10a), where empirical evidence enhanced the local landscape susceptibility to 
initiation of shallow landslides.  
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Figure 10. a) Cumulative distribution of the probability of failure for the 𝑃(𝐹𝑆8 ≤ 1) [black] and P(LS) 
[blue] using only debris avalanche source areas, b) ROC curves for the same two datasets. The blue 
shaded area on a) represents the fraction of the landscape with 0.1 ≤≥ P(Failure) ≤ 0.9. Black 
diagonal dashed line on a 1 : 1 line in b) represents the case of a trivial or random classification model. 
AUC values are 0.58 for the modeled probability and 0.60 for the integrated probability.  
 
We anticipated that the additional consideration of the empirical model represented by the 
weighting term improves the performance of the purely processed-basedphysically-based model.  
Thus, to assess the potential performance of the models, we statistically evaluated the models 
using the receiver operating characteristics (ROC) curves (Fawcett, 2006).  This approach 
examines cells within mapped landslides and cells outside landslides for a study area and 
compares this to randomly distributed landslides over the same landscape.  Confusion matrices 
are generated from observed and modeled landslides based on varying the probability of a 
landslide threshold used to generate ROC curves (Mancini, et al., 2010; El-Ramly et al., 2002; 
Anagnostopoulos et al., 2015) (Fig. 10b). A better-performing model curves towards the upper 
left corner, and a curve along the 1:1 line represents a trivial model that randomly assigns 
landslide and non-landslide cells.  The area under the curve (AUC) statistic provides a numerical 
indicator of model performance representing the probability of correctly assigning two randomly 
selected cells to landslide and non-landslide datasets (Hanley and McNeil, 1982).   
 
Both the processed-basedphysically-based model, 𝑃(𝐹𝑆8 ≤ 1),  and the P(LS) perform better 
than a trivial model by plotting the ROC curve above the 1:1 line (Fig. 10b).  The AUC statistic 
was 0.58 and 0.60 for 𝑃(𝐹𝑆8 ≤ 1) and P(LS), respectively.  The ROC and AUC indicate an 
improvement in the fraction of observed landslides captured by P(LS) over 𝑃(𝐹𝑆8 ≤ 1). The 
AUC for P(LS) indicates that there is a 60% chance that the proposed empirical adjustment to the 



 

29 

process-basedphysically-based model would classify a landslide initiation cell and a non-
landslide cell correctly from two randomly sampled grid cells. The ROC analysis found that the 
optimum probability threshold for maximizing the observed landslides captured and minimizing 
false alarms was a probability threshold of 0.0006 (i.e., apex of the blue curve); thresholds less 
than this increased the false alarms and thresholds greater than this reduced the accuracy of 
capturing observed landslides (Fig. 10b).  The additional information from empirical modeling 
modestly improved the processed-basedphysically-based model and indicates empirical evidence 
on landslides can capture mechanisms lacking in the infinite slope stability model. These include 
clustering of debris avalanches due to variability in the bedrock geology (e.g. hydrothermal 
alteration, steeply dipping bedding planes, and glacial oversteepening). Additional validation 
approaches, such as separating landslide data into training and testing datasets, may yield 
additional findings that are deferred to future studies.  

4 Conclusions 
Empirically-based probability hazard maps were developed from a statistically-based 
susceptibility index, which integrated the influence of site attributes on observed landslides 
based on a frequency ratio approach. Resulting susceptibility depends on the observations of 
landslides considered: all types of landslides, debris avalanches only, or source areas of debris 
avalanches.  Thus, the objectives of a hazard identification study dictate the necessary inventory 
of landslide features. The empirically-based probability model based on source areas was used to 
adjust a previously developed processed-basedphysically-based probabilistic model through a 
calculated weighting term developed from a joint spatial probability.  The frequency analysis, 
hazard map development, and integrated probability model identified several key findings when 
applied to a national park: 

● Frequency analysis shows a clear and growing control of local slopes greater than 35° on 
landslide initiation, while higher landslide hazard at gentler slopes (<30°) reflects 
transport and depositional processes. 

● Debris avalanche source areas are associated with mid to high elevation (1,400 to 1,800 
m), while all landslides types and whole debris avalanches have growing impact in lower 
elevations (< 1,200 m) with the highest impact falling in elevations <400 m. 

● Slope is a key attribute for the initiation of landslides, while lithology is mainly tied to 
transport and depositional processes. 

● The transition from subalpine to alpine herbaceous vegetation with lower root cohesion 
correlates with higher frequency of debris avalanche initiation.  

● East (west) aspect is a positive (negative) landslide-influencing factor, likely due to 
differences in moisture regime, and forest cover and associated root cohesion. 

● Empirical statistical modeling used to adjust a process-basedphysically-based model of 
landslide initiation improved predictability of observed landslides by accounting for 
additional factors that influence the landscape susceptibility to failure not represented in 
the physically-based model. 

● Empirical adjustments generally lowered the probability of failure of the process-
basedphysically-based model, especially for 0.1 ³ £ P(failure) £ 0.9 that covered between 
7 to 9% of the study areapark. 
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As the occurrence of landslide runout is conditioned on the failure of source areas, future studies 
could combine the probabilistic initiation methodology we propose in this paper with a landslide 
runout model to improve prediction of hazards from entire landslides. The applicability of our 
approach to characterize shallow landslides hazard is limited by the quality of the site-specific 
data on soils and vegetation, extent of hydrologic modeling, as well as the accuracy and 
completeness of the landslide inventory. Accurate data for environmental variables such as 
geology, soils, and vegetation would be as important as comprehensive landslide data as the 
empirical approach relates landslide hazard to the environmental variables. Although the 
approach is applicable elsewhere, our results from the empirical analyses are specific to the 
region in which they were developed and may differ in another location with different geology 
and landslide inventories.  Additionally, the probabilities are likely to change as local conditions 
change from disturbance such as fire or as climate continues to change. Advancements in surface 
terrain delineation and in distributed hydrologic modeling specifically contribute to the broad 
applicability of this approach.  We provide multiple landslide hazard maps for the national park 
that land managers can use for planning and decision making, as well as educating the public 
about hazards from landslides so they can minimize risks from these geohazards. 
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Referee #1 comment response by authors 
 
No. Comment Response 
1 Why an independent training and 

testing dataset was not used for this 
approach. This is typical practice and 
it would be more robust if there was 
a separate validation dataset.  

We did not perform a formal “validation” study. 
Instead, the improvements gained by the 
proposed methods in predicting landslide 
probability was obtained by a comparative ROC 
analysis. The focus of the study was to 
determine if an empirical-based model of 
landslide hazard could be used to improve an 
existing physically-based model for shallow 
landslide probability. A major reason for not 
separating the data to training and validation was 
that the performance of the statistical model 
improves with the size of the observational data 
used to train the model. The idea is to capture 
more spatial variability and geologic controls on 
observed landslides by using all the data we 
obtained for this region. Validation using ROC 
rather than training and testing datasets was used 
to assess this as has been used in similar studies 
(e.g., Kirschbaum et. al 2012).  Future research 
could carry out validation approaches such as 
the training and testing approach suggested by 
the referee. This will be made more clear in the 
manuscript and suggested for future studies. 
Added sentence to last paragraphs of 
Introduction (pg. 4) and Results (pg. 29). 

2 Provide a brief discussion on the 
accuracy and comprehensiveness of 
landslide inventories with respect to 
representative landslides over this 
region 

The empirical data on landslides was obtained 
from a series of reports published by the 
National Park Service (Riedel and Probala, 
2005).  This comprehensive inventory across the 
684,000 acre national park was conducted at 
1:24,000 scale and based on 10 m DEMs, a 
series of large scale stereo air photographs taken 
since the 1960s, field verification, and from 
Lidar in a few basins.  Where areas were 
mapped by traditional methods, and Lidar later 
became available, the original approach captured 
most (~75%) of the landslides. Dense vegetation 
cover and a lack of access also limited 
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identification of some existing landslides. 
Larger, more recent debris avalanches that left 
large deposits on the valley floor were more 
easily recognized and mapped. Presence of 
observable landslide features were part of the 
mapping criteria, rather than mapping 
topographic imprint of landslides (e.g., Strauch 
et al., 2018). Ancient landslides that occurred 
before the last glacial period 16,000 years ago 
were generally not mapped because their 
deposits were buried or reworked by subsequent 
continental glaciation.  This text will be 
incorporated into the revised paper. See 
additional text above Table 2 on pg. 13. 

3 Discuss relevance of the 
methodologies for other regions. 

See response to comment #5. 

4 From the maps in 8e and f it is clear 
that accurately characterizing the 
entire landslide using the current 
methodologies is challenging. Can 
the authors comment a bit more on 
how this may be improved with 
differentiating source area from 
possibly considering a runout model 
to develop probabilistic estimates of 
runout? 

Maps in 8e and 8f show the probability of 
initiation of slope failures, only applicable for 
slopes steeper than half of the internal friction 
angle of soils, which is the failure criterion for 
saturated soils.  These maps reflect probability 
of landslide initiation, which was the focus of 
the integrated model as described in Section 2.2.  
The model test using the ROC analysis in Fig. 
10 is also conducted only for source areas.  
Thus, the current integrated methodology is not 
developed for characterizing the probability of 
an entire landslide.  As the occurrence of runout 
is conditioned on the failure of source areas, 
these two models can be developed separately 
and linked for applications.  Differentiating the 
source area from the transport and deposition 
portions of landslides, in an inventory could 
improve the characterization of site features and 
conditions conducive to failure initiation, 
transport and deposition. In our paper, only 
source areas are identified by the integrated 
model; transport and depositional zones are not 
addressed as the physical model doesn’t apply. 
We agree with the reviewer that developing a 
probabilistic runout component would improve 
the prediction of hazards from the entire 
landslide disturbances.  There could be several 
different ways of developing a runout model.  
We could map runout zones of landslides from 
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our  inventory and train a rule-based runout 
model, or develop a purely statistical model 
based on the occurrence of runout in relation to 
geologic and topographic attributes.  If well-
developed and tested, combining a runout model 
with the initiation methodology we proposed in 
this paper should improve prediction of hazards 
from entire landslides. 
Additional text will be included in the 
manuscript to suggest these model 
advancements. See additional text in last 
paragraph of Conclusions (pg. 30). 

5 It would be helpful to have a bit more 
discussion on the applicability of 
these methods to other regions, 
including the size of the region over 
which this methodology could be 
applied and other considerations. 

The applicability of this approach to characterize 
shallow landslides hazard is limited by the 
quality of the site-specific data on soils and 
vegetation, extent of hydrologic modeling, as 
well as the comprehensiveness of the landslide 
inventory. Accurate data for environmental 
variables such as rock, soils, and vegetation 
would be as important as comprehensive 
landslide data as our method relates landslide 
risk to the environmental variables. The spatial 
scale of data is another issue we have not studied 
yet with this method. Larger data sets would 
profoundly improve predictions, however they 
could also increase uncertainty of predictions. 
We argue that this method should be used along 
with other mapping methods and its 
performance should be compared against other 
methods using ROC analysis or other tests.  It 
could potentially be applied over large areas, 
even continental scales, if these data are 
available, complete, and validated.  The design 
of the methodology described and demonstrated 
in this paper allows broad application and is not 
limited to use at the specific location within 
Washington, U.S.A.  Advancements in surface 
terrain delineation and in distributed hydrologic 
modeling specifically contribute to the broad 
applicability of this approach.  We will add 
additional text to capture these applications. See 
additional text in last paragraph of Conclusions 
(pg. 30). 

6  Specific comments on manuscript Suggested edits and clarifications called out 
within the draft manuscript are helpful for 
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improving the writing and clarity of the findings.  
For example, additional explanation on the 
association with developed landscape is 
provided in Section 3.1 (pg. 17) as well as 
additional thoughts on the importance of 
mapping accuracy in Conclusions (pg. 30). 
Suggested figure improvements were also 
appreciated and are updated in the final 
manuscript. 

 
 
Referee #2 
 
No. Comment Response 
1 The term “process-based method” 

should be changed in the more 
correct “physically-based model” to 
define deterministic methods of 
assessment of slope stability. This 
correction has to be inserted 
throughout all the paper. 

Agreed, changes made throughout paper. 

2 Several examples of both data-driven 
techniques and physically-based 
models, and related references, could 
be add in the Introduction section. 

We provided literature review in a separate data-
driven and physically-based model review 
paragraphs in the Introduction of the paper.  If 
the referee knows of relevant papers to cite in 
our paper that we missed and shares them with 
us, we would consider including them in the 
Introduction of our paper and discuss their key 
aspects. 
 

3 I disagree with the choice of the 
Authors of considering the entire 
landslides bodies, both triggering and 
accumulation zones, as predictor 
variable of the data-driven method. 
Landslides runout and accumulation 
zone are related to other predisposing 
factors than the ones influencing the 
the landslides triggering. Instead, I 
know that the approach of using the 
entire landslide body in a data-driven 
approach is very common in the 
literature. Thus, I suggest to add the 
reasons why the Authors have chosen 
this approach and to discuss about 

As the referee notes, considering the entire 
mapped landslide is a common approach in data-
driven hazard identification. We too agree with 
the limitation of this approach. Thus, we 
developed two other methods that used landslide 
source areas and a single landslide type to study 
how the first could improve a physically-based 
model and to allow comparisons with these 
previous studies.  Often, only the entire 
landslide or portions of the landslide are mapped 
as part of an inventory, and many inventories 
lack information on types of landslides.  Thus, 
we wanted to explore and demonstrate the 
differences in the site characteristics associated 
with these various types of datasets. This type of 
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the potential limits of this choice. analysis can provide insights into the value of 
more specific inventories, depending on the 
goals of the hazard identification study. Some 
studies are content with identifying landslide 
prone areas regardless of the type of landslide or 
landslide feature.  However, our analysis 
demonstrates the variability in results, 
depending on the landslide dataset used, given 
the same site attributes.  The limitations with 
these datasets and resulting hazard maps, relate 
to the objectives of the study and intended use.  
For example, using all landslide types may 
highlight general areas where landslide activity 
is possible, but it does a poor job at identifying 
where landslide may initiate.  More explanation 
of these important choices and limitations will 
be added to the Methodology (pg. 7) and 
Conclusion (pg. 30) in the manuscript. 

4 It is necessary to describe the main 
features and the main outputs of the 
Landlab model considered for the 
implementation of the physically-
based approach. In particular, how 
the rainfall features are inserted and 
considered by this model? 

In this paper we directly use predicted landslide 
probability from a physically-based shallow 
landslide model reported in Strauch et al. (2018). 
The landslide model developed in Landlab has 
been detailed extensively in Strauch et al. 
(2018).  However, we agree that additional detail 
on the main features and outputs could be added 
to the text in Sect. 2.2 Model Integration (pg. 7-
8). Precipitation is considered in the landslide 
model through its use as input to a macro-scale 
hydrology model, Variable Infiltration Capacity 
model. This model produces a spatially 
distributed recharge field which is used to form 
subsurface flow in Landlab (see pg. 8). A 
probability distribution of recharge is used to 
determine soil relative wetness within Monte 
Carlo simulations of factor-of-safety.   

5 A more detailed description of the 
bedrock geological features and on 
the main properties of the soil type 
are required in the presentation of the 
study area. 

The bedrock geology in North Cascades 
National Park is dominated by gneiss and 
granite, with lower grade metamorphic rocks 
schist and phyllite on the western edge of the 
park, and Mesozoic sedimentary rocks on the 
eastern flank (Tabor and Haugerud, 1999).  
Placement of granite at depth along faults led to 
hydrothermal alteration of some overlying rocks, 
and the clustering of large landslides.   
Soils in the park are generally coarse-grained 
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and relatively young due to active slope 
processes, but soil age, thickness and 
distribution are highly variable. Soils formed in 
glacial deposits from the last ice age are also 
widespread, and many soils are classified based 
on the amount of volcanic ash they contain. This 
detail will be added to the study area description 
on pg. 11. 

6 Considering in the same inventory 
rockfalls/topple and debris 
flows/avalanches is not really correct. 
These phenomena are characterized 
by different kinematic behaviors their 
predisposing factors can be different. 
Even if the combined probability 
model between data-driven and 
physically-based approaches have 
been obtained only taking into 
account for the source areas of debris 
flows/avalanches, I advise to add an 
explanation of why you consider 
different typologies of landslides in 
the same inventory of your study 
area. 

Please see response to comment #3. 

7 For a further validation of the data-
driven model, it could be useful 
calculating a statistical index such as 
the Area Under ROC Curve or the 
values of False Positives/True 
Positives. This would strengthen the 
reliability of the proposed model. 

We included the physically-based model and the 
integrated model in Fig. 10b.  Our intent with 
the ROC curves was to seeing if the empirical 
information could improve the physically-based 
model results by providing some unknown 
information missing from the infinite slope 
model. An ROC curve from the data-driven 
model would show a well performing model by 
definition because it is derived from the 
observations used to develop the susceptibility 
index or probability and the AUC for the 
empirical models alone would support the model 
performance. 

8 It could be useful presenting also the 
results of the application of the 
physically-based probabilistic model 
implemented in the study area and its 
validation. 

This information is provided in an earlier study 
by Strauch et al. (2018) and is not repeated here 
for the sake of brevity.  

9 Why did the Authors choose those 
ranges of probability to consider a 
slope as relatively stable (< 0.1) or 

The terms relative stable and highly unstable 
were terms chosen by the authors to identify 
where the cumulative distribution curve 
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highly unstable (> 0.9). Several 
Authors identified other ranges for 
the classification of the probability 
distribution. Please, discuss about 
this aspect.  

generally shifts direction.  In between these 
probabilities, a small portion of the landscape is 
modeled to have a wide range of failure 
potential.  We removed the labels from the 
figures and instead, added the corresponding 
return periods of 10 years and 1.1 years to 
provide a sense of the hazard distribution, 
similar to the plotting used in Strauch et al. 
(2018).  Additionally, we modified the text to 
further clarify interpretation of the figure on pg 
26 and 29. 

10 It is necessary adding a section where 
the Authors will discuss about the 
main advantages and the limitations 
of their proposed approach, in 
particular compared with the typical 
methodologies used for the 
assessment of landslides 
susceptibility or hazard. 

Many articles have described the advantages and 
disadvantages to data-driven and physically-
based models (e.g., Ercanoglu and Sonmez, 
2019; Reichenback, et al., 2018; Hungr, 2018; 
Aleotti and Chowdhury, 1999). Our approach 
attempts to benefit from the strengths of both 
traditional modeling methods. While empirical 
models validate well with given mapped 
landslides, they lack a mechanistic explanation 
for the susceptibility level.  Parsimonious 
physical models predict failure based on forces 
within the soil, but they may miss properties 
demonstrated by failure or lack of failure on the 
landscape.  Our approach is limited to areas 
where landslides have been mapped.  Additional 
text and references will be added to explain the 
main advantages and limitations of our 
integrated approach (see pgs. 3 and 30).     

 
 


