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Abstract

We developed a new approach for mapping landslide hazard by combining probabilities of
landslide impact derived from a data-driven statistical approach and precess-baseda physically-
based model of shallow landsliding. Our statistical approach integrates the influence of seven site
attributes on observed landslides using a frequency ratio method. Influential attributes and
resulting susceptibility maps depend on the observations of landslides considered: all types of
landslides, debris avalanches only, or source areas of debris avalanches. These observational
datasets reflect the eapture-detection of different landslide processes or components, which relate
to different landslide-inducing factors. For each landslide dataset, a Stability Index (SI) is
calculated as a multiplicative result of the frequency ratios for all attributes and is mapped across
our study domain in the North Cascades National Park Complex, Washington, U.S.A. A
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continuous function is developed to relate local SI values to landslide probability based on a ratio

of landshde and non- landshde gnd cells Slopes grcater than 35° arc more frequently associated

: ation—The emp1r1cal model
probability derlved from the debris avalanche source area dataset is combined probabilistically
with a previously developed precessed-basedphysically-based probabilistic model. A two-
dimensional binning method employs empirical and physically-based probabilities as indices and
calculates a joint probability of landsliding at the intersections of probability bins. A ratio of the
joint probability and the physically-based model bin probability is used as a weight to adjust the

original physically-based probability at each grid cell given empirical evidence. to-preduce
an'The resulting integrated probability of landslide initiation hazard ferinitiatien-that-includes
mechanisms not captured by the infinite slope stability model alone. Improvements in
distinguishing potent1ally unstable areas W1th the moposed 1nteglated model are stat1st1cally
quantified. We apply 0 3 Mashing
USAste-provide multlple landshde hazard maps that land managers can use for plann1ng and
decision making, as well as for educating the public about hazards from landslides in this remote
high-relief terrain.

1 Introduction

Most mountain ranges are susceptible to landsliding due to their steep geomorphology, loose soil
development, geology, and high precipitation (e.g., Coe, 2016). Landslides disrupt aquatic
habitats (May et al., 2009; Pollock, 1998), damage infrastructure such as roads, utilities, and
dams (Ghirotti, 2012; Baum et al., 2008), and harm people (Wartman et al., 2016; Taylor and
Brabb, 1986). Landslide hazards are expected to increase globally with growing extremes in the
climate (Coe, 2016; Haeberli et al., 2016; Crozier 2010).

Maps of landslide hazards, quantified as a probability of landslide initiation or impact, can be
obtained using empirical methods that statistically relate the location of existing landslides to
other environmental variables and process-basedphysically-based models based on geotechnical
slope stability equations driven by hydro-climatic inputs (Bordoni et al., 2015; Mancini et al.,
2010; Sidle and Ochiai 2006; El-Ramly, et al., 2002). While detailed quantitative and categorical
climatic, geologic, ecologic, and pedologic information can be used in statistical models,
proecess-basedphysically-based models are limited to geotechnical stability analysis driven by
soil pore-water pressure, and often neglect geological factors such as bedrock, faulting, and
complexities of microclimatic conditions. To date, data-driven empirical research on landslide
hazard mapping (Corominas et al., 2012; Lee 2007; Chung and Fabbri 2002) has been typically
conducted independently from hydroclimate-driven modeling of landslides that largely focus on
hydrologic controls on landsliding (Wooten et al., 2016; Cevasco et al., 2014). There is need for
unifying these two lines of research to provide regional scale landslide prediction for resource
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management and hazard mitigation strategies. In this paper we develop a statistical approach to
combine probability of landslide initiation obtained from an observation-based statistical
mapping method and a precess-basedphysically-based model. The proposed approach is
illustrated in the North Cascades region of the state of Washington, USA.

Data-driven statistical landslide susceptibility approaches assess the inherent or quasi-static
stability of hillslopes derived from statistical associations (e.g., correlations) between site
attributes (e.g., soil, geology, topography) and an inventory of past landslides that includes
landslide type and locations (e.g., Dai and Lee, 2002; Gupta and Joshi, 1990; Pachauri and Pant,
1992; Kirschbaum et al., 2012). These models focus on prevailing conditions that predispose
hillslopes to failure (Hungr et al., 2014), typically providing general indices of relative landslide
susceptibility or spatial probabilities applicable to the study location and cannot represent causal
factors or triggering conditions that change in time (van Westen et al., 2006; Sidle and Ochiai,
2006). Outcome of such analyses depend on the completeness of observations, hindering the use
of such techniques over large areas where complete inventories are typically lacking. Since
empirical models are based on observation of past landslides, the preconditioning relationships
are assumed to prevail into the future until an updated study is completed (Lepore et al., 2012).

Precessed-basedPhysically-based models require considerable data on the spatial-temporal
characteristics of the landscape and triggering hydro-meteorologic events. These models are also
usually restricted to a specific type of landslide and can be limited in representing local geologic,
soil, and hydrologic conditions that may be difficult to observe and map in the field and
parameterize in model theory. Data-driven statistical methods could be used to condition
proeess-basedphysically-based model results to incorporate the influence of environmental and
geologic factors that are not represented in process theory. Linking these empirically-based and
proeess-basedphysically-based models may improve the spatial-temporal patterns of landslide
hazard at medium to large scales where landslide inventories exist to provide support tools for
authorities addressing risk management- Additional descriptions of the advantages and
disadvantages of data-driven and physically-based models and landslide hazards assessments can
be found in reviews by Ercanoglu and Sonmez (2019), Reichenback, et al. (2018), Hungr (2018),
and Aleotti and Chowdhury (1999).

This paper describes research designed to address the following questions: 1) How can we
quantify relative contributions of local topography, geology, and ecology on landslide frequency
and derive spatial probabilities of landsliding using a statistical model? 2) How would
probabilities of landslide initiation derived from empirical observations compare with those
derived from a precess-basedphysically-based model? 3) How can we combine empirical and
proecess-basedphysically-based models for landslide susceptibility to improve the prediction of
landslide hazards?

The empirical approach for landslide susceptibility we used is based on a modification of the
Frequency Ratio (FR) statistical concept which has been found to perform as well as more
rigorous statistical approaches such as logistic regression (Hong et al., 2017; Wu et al., 2017;
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Bellugi et al., 2015; Lepore et al., 2012; Kirschbaum et al., 2012; Lee and Pradhan, 2007; Lee et
al., 2007). As for the mechanistic model, we used the results of Strauch et al. (2018), who
developed a Monte Carlo solution of the infinite slope stability equation coupled to a steady-state
topographic flow routing approach to map annual probability of shallow landsliding. The
uncertainty of soil depth in Strauch et al. (2018) was constrained by a soil development model,
and subsurface flow recharge was obtained from a regional macro-scale hydrologic model that
produced historical hydrologic simulations (Hamlet et al., 2013).

Building on the advantages from the empirical and process models, we combined the two models
to develop a map of landslide hazard. The integrated map can be developed to identify landslide
hazards that may originate from either-the initiation of landslides and used to inform models of
or-the-transport and deposition (i.e., runout) of the landslide material (Fig. 1). The focus of the
study was to determine if an empirical-based model of landslide hazard could be used to improve
an existing physically-based model for shallow landslide probability. The organization of this
paper is as follows. Our methodology is discussed in Sect. 2, including the empirical method,
model application, data compilation, and model integration approach. Sect.ion 3 details our
results of the empirical application and integrated hazard model as well as various hazard maps
developed. We end with some overall concluding thoughts in Sect. 4.
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Figure 1. Primary landslide features of the Goodell Creek landslide (Oct. 2003) showing source,
transport, and deposition areas illustrated over aerial image from Google Earth-takenJuly20+6. Base of
landslide is about 1 km across. Location in North Cascades National Park Complex about 4 km north of
Newhalem, Washington. Source: Google Earth, 48°41°55.72” N 121°17°01.31” W, imagery data June 23
2006 viewed towards southwest. 42/30/2640-
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2 Methodology

2.1 Frequency Ratio

We characterized the susceptibility of hillslopes to landslides using an empirically-based
Frequency Ratio, FR, approach (Lee et al., 2007; Kirschbaum et al., 2012). We used the term
landslides broadly, covering all types of mapped landslides in our landslide inventory, with their
source, transport and depositional zones (Fig. 1). The FR approach relates the density ratio of
historical landslides within selected surface attributes, SAs. We considered seven SAs in our
analysis: slope, elevation, aspect, curvature, land use-land cover (landcover), lithology, and
topographic wetness index.

Slope, curvature, and lithology directly affect the forces and geotechnical properties in surface
sediments. Land cover provides a surrogate for root cohesion and topographic wetness index has
been used as a surrogate for soil pore water pressure (Borga et al., 2002). Elevation can
represent the effects of climate, weathering, vegetation, ground motion, and glacial processes, if
any, as well as coincide with variability in slope, soil depth, and land use (Sidle and Ochiai,
2006). Aspect provides an indication of solar insolation, vegetation type and cover density, snow
and ice loading, and soil moisture levels via evapotranspiration (Beaty, 1956; Gokceoglu et al.,
2005).

Each SA is indexed by attribute type, m (e.g. m=slope, lithology, vegetation), and its subcategory
is indexed by n. Subcategories of each SA can be a categorical variable such as type of lithology,
soil and vegetation, or a quantitative variable defined with certain ranges such as slope and
aspect over the study domain, SD. For a given SA, identified by m, and its subcategory, n,
FRimn/SAmn is calculated (Eq. 1) as the ratio of observed landslide area, LA, in each SA m and
subcategory n (LAsam,n) with respect to the area of the SAmn (Asamn) to the regional landslide
density, P, (Eq. 2) (Miller and Burnett, 2007):

LAsam n/Asammn
P,

FRm,n|SAm,n = (1)

LAgsp

)

where P, =
SD

The term in the numerator of Eq. (1) gives an empirical probability of landsliding impact within
SAmn. Po can also be referred to as a regional background probability, such that in absence of
any other information, Po represents the probability of landsliding at any point in the domain.
The interpretation of FR is as follows (Lepore et al., 2012):
e FR < 1: indicates proportionally less landslide area with subcategory n of SA m, SAmnx;
hence, smaller odds of a landslide than in the entire SD.
e FR = 1: means there is the same proportion of landslide area with SAmx as in the SD thus,
the odds of a landslide are the same for the SAmn subcategory as the SD.
e FR > I: reveals a higher percentage of landslide area with SAmn, than in the entire SD,
so there is a propensity for failures to occur with this SA.

FR in Eq. (1) is developed for a population of spatially distributed locations that has the same
attribute of a given SAmna. A given point on the landscape would have as many FR values as the
number of SAs used. To develop an index that will incorporate all the FR values for a given
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point on the landscape we used an empirical susceptibility index, SI, defined at the grid cell
scale, Sl, as the product of the FR values for all SAs of that grid cell and their associated
subcategory,

Sl = HmFRm,nISAm,n- (3)

A multiplicative FR is used because in certain subcategories, there may be no landslide
observations (e.g., low slope angle), and in such cases the hillslope would be stable regardless of
other soil and vegetation properties. Sl. is a measure that relates local static (or slowly changing)
site characteristics to relative frequency of landslides. Since Slc is a data-driven index,
probability of landsliding would increase as SI grows.

In order to develop a continuous relationship between SIc and probability of landslide at a grid
cell, P(LS¢|SI¢), we binned the population of Sl¢ values across the landscape into SI; bins, where r
is the number of SI bins. We then estimated the probability of landsliding for an SI bin, SI,
P(LS;|SI,), as the ratio of number of grid cells with landslides in each SI bin, N(LS),, to the total
number of grid cells within each SI bin, N, (Eq. 4).

N(LS),

P(LS;|SI) = =

4

To calculate spatially continuous empirical probability of landsliding at each grid cell of a DEM,
P(LS(|SI), we fit empirical functions that relate P(LSSI;) to SI;. These functions are then used
for mapping empirical probability of landsliding at the cell scale, P(LS|SI), based on its
empirically-derived Slc value in Eq. (3).

We included all SAs to develop empirical models relating SI to landslide probability, similar to
Kirschbaum et al. (2012) and Lepore et al. (2012). We repeated the analysis described above
three times: first, considering all landslide types and including their source, transport, and
depositional zones, as is commonly done in multi-factor analyses (Sidle and Ochiai, 2006;
Ayalew et al., 2004; Carrara et al., 1995); second, focusing on debris avalanches, with all three
of their zones (Fig. 1); and third, considering only the source (initiation) areas of debris
avalanches. These source areas were; identified as the upper 20% of by elevation within mapped
debris avalanche polygons., which appeared to align with inspections of aerial imagery of a
selected debris avalanches. This tiered approach can be used to quantify the relative
contributions of different landslide features to overall landslide hazard in a region as well as
inform the variability in hazard identification given a landslide dataset.

2.2 Model Integration

Here we develop a method to combine the empirical probability for landslide initiation based on
SI, P(LS¢|SI), with the probability of landslide initiation based on a previously developed
physically-based model using Landlab (Strauch et al., 2018; Hobley et al., 2017). The physically-
based model employs Monte Carlo solution of the infinite slope stability model that evaluates
localized (model grid cell) factor of safety (FS), and calculates the annual probability of failure at
a cell, P(FSc<1)_as the number of Monte Carlo iterations where probability of failure < 1 eut
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ofdivided by the total number of iterations. =4 - s et g
2047 Precipitation is considered in the phy%lcally ba@ed model thlouqh its use as input to a
macro-scale hydrology model, such as the Variable Infiltration Capacity model (Liang et al.
1994), which produces a spatially distributed recharge field used to represent-steady-statedrive
the steady-state subsurface flow in—the—stability—model in the component. Other hydro-
geophysical stochastic inputs into the stability model are selected from distributions while slope
and specific contributing area are deterministic variables.

In combining probabilities, we focus on the landslide initiation areas, as the proecess-
basedphysically-based model we used would only be applicable for landslide initiation.
Empirical P(LS¢|SI) and modeled P(FS.<I) probabilities of landslide impact at each cell defined
across the landscape are treated as indices representing the likelihood of landslides. The method
we proposed for an integrated probability uses the cell count of observed landslide initiation
points within bins of the empirical, P(LS¢SIc)p, and modeled probability, P(FS.<l), of
landsliding.

If we treat the empirical probability as an index, the probability of landslide initiation within a
bin j of empirically-derived probability of landslide initiation, E/=P(LS¢|SIc)v is calculated as:

N(LS) j

P(LS|Ej) = (%)
where, N(LS); is the number grid cells with observed landslides and N;j is the number of grid
cells both in bin j of E;:

Similarly, the probability of landslide initiation within a bin i of precessed-basedphysically-
based modeled probability of landslide initiation, Mi=P(FSc<1), is calculated as:

(6)

P(LS|M;) = =2k

l
where, N(LS); is the number of grid cells with observed landslides and N; is the number of grid
cells both in bin 1 of M;. If the observed landslide data is representative of the actual landslide
frequency over the duration when the probability of landsliding is modeled, an ideal model that
correctly represents all environmental variables associated with landslide initiation would give
P(LS|M;) = M;. Assuming unbiased landslide mapping in the field, a greater difference
between these two relative frequency probabilities would suggest a weaker model representation
of the process, especially when the process-basedphysically-based model is run to represent
landslide risk for a given climatology.

Modeled probabilities may be improved when information contained in empirical probabilities is
introduced. The probability of landslide initiation in areas shared by any two select bins (e.g., co-
bins) of empirically-derived, E;, and precess-basedphysically-based modeled, M;, probabilities is
calculated as the joint probability:

P(LS|E; 0 M) = “&2ui %

Nji
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where N(LS);; is the number grid cells with observed landslides and Nj; is the number of grid
cells in the joint bin j of empirical probability and bin i of modeled probability data. An
illustration of this estimation is given in Figure 2. The conceptual example shows how relatively
low landslide probability predictions by a process model in the M;=0-0.2 bin range can be
modified due to differences in the empirical preconditioning of the landscape (e.g., rock type) to
landslides represented in E;. The intersection of M;=0-0.2 with E;=0.2-0.3 yields a higher
empirical probability of landsliding. Influence of vegetation change and extreme weather events
(e.g. Eco-hydrometeorologic controls) that were not part of the initial empirical data set used for
estimating E; bins can be captured by the precess-basedphysically-based model. In this case the
model predicts a high probability M;j=0.8-1, while E; remained in the low probability range in
Ei=0.0-0.1. The intersection of M; and E; land surface characterization captures the landscape
where landslides were observed.

P(LS|E; M)

Figure 2. Illustration of the proposed landslide probability conditioned on estimated spatially distributed
SI-based empirical and modeled probabilities as binned indices, E; and M;, that form a joint space.
P(LS|E]- N Ml-) is defined as the ratio of the number of landsliding cells to the number of cells that jointly
fall into given E; and M; bins.

We propose that the ratio of P(LSlEj N Mi) and P(LS|M;) can be used as a correction to
P(FS. < 1) . As model predictions improve, this ratio should get closer to 1, especially when the
model is used to map landslide probability for a given climatology in a region. When the
proeess-basedphysically-based model is run for studying a specific rainfall event, this ratio
quantifies the relative roles of other factors could play on landslide initiation. Thus, we propose

9
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that the probability of landsliding at each grid cell, ¢, given the corresponding M; and E; bins that
a cell belongs to can be estimated as:

P(LS|EjﬂMi)

P(LS)c,ji = P(FS; < 1) X P(LS|M;)

(8)
If we let w represent the bin-based ratio on the right-hand side of Eq. (8) as a weighting factor
based on observations of landslides, then we can simplify notation to:

P(LS) ;i = P(FS; < 1) X w (9)

This gives the probability of landslide initiation, represented as an adjusted modeled probability
of landslide initiation at a grid cell given empirical observations correlated with site
characteristics. In the reminder of the paper we use P(FS, < 1) to refer to process-
basedphysically-based shallow landslide probability from Strauch et al.(2018) and P(LS) to refer
to the adjusted model probability using the proposed empirical-adjustment methodology.

A hypothetical example shown in Table 1 demonstrates calculating the relative frequencies, the
resulting calculated weight, and adjusted P(LS) (Eq. 9). The calculation of relative frequency is
based on binning modeled and empirical probabilities, counting landslide and non-landslide cells
within each bin, and calculating a weighting term, ®, which is then used to adjust the original
modeled probability given empirical evidence. Weights can be greater than 1 and the final
probability will be increased when weight > 1 and decreased when weight < 1. Final adjusted
probabilities are limited to unity in the integrated model. For example, a weight = 2 and modeled
probability = 0.2 would result in a doubling of the final probability = 0.4 given empirical
information.

Table 1. Hypothetical example of calculating relative frequencies, weight, and P(LS) during
model integration

E; bins Observed Landslides / Total Cell Count (relative frequency) Total
206/ 5/ 3/ 5/ 2/ 221/
0.2-0.3 870 24 14 14 10 932
0.1-0.2 11107/ 309/ 193/ 137/ 96/ 11842/
T 87104 2001 1220 856 657 91838
0-01 48513/ 1757/ 1157/ 793/ 742/ 52962/
) 1848950 51679 33084 24928 21410 1980051
Total 59826/ 2071/ 1353/ 935/ 840/ 65025/
1936924 53704 34318 25798 22077 2072821
Mi; bins 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5

An example calculation of P(LS) using the above data — a cell having a modeled
probability, P(FS. < 1) = 0.12 and an empirical probability, P(LS¢|SIc) = 0.08, then:

P(LS|E;) = 52962/1980051 = 0.027 (Eq.5)
P(LS|M;) = 2071/53704 = 0.039 (Eq. 6)
P(LS|E; N M;) = 1757/51679 = 0.034 (Eq.7)
w = 0.034/0.039 = 0.87

P(LS).;, = 0.12x0.87 = 0.105 (Eq.9)

10
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2.3 Model application

2.3.1 Study Area

Our study area is within the geographical limits of North Cascades National Park Complex
(NOCA) managed by the U.S. National Park Service (Fig. 3). NOCA has experienced damaging
and disruptive landslides that have impacted infrastructure and disrupted public use of the park.
NOCA is approximately 2,757 km?, with 93% wilderness (e.g., no motorized or mechanized
devices) (DOI-NPS, 2012), which is ideal for studying landslides primarily triggered by natural
causes. The north-south oriented Cascade Mountains has an elevation range of 100 to 2,800 m at
the study site, with jagged bedrock peaks, and over 300 alpine glaciers. The landscape has been
shaped by Ice Age continental and alpine glaciers, and mass wasting, fluvial and tectonic uplift
processes that continue today (LaHusen et al., 2016; Mustoe and Leopold, 2014; Collins and
Montgomery, 2001; Riedel et al., 2007; Pelto and Riedel, 2001). The bedrock geology in the
park is dominated by gneiss and granite, with lower grade metamorphic rocks schist and phyllite
on the western edge of the park, and Mesozoic sedimentary rocks on the eastern flank (Tabor and
Haugerud, 1999). Placement of granite at depth along faults led to hydrothermal alteration of
some overlying rocks, and the clustering of large landslides. Soils in the park are generally
coarse-grained and relatively young due to active slope processes, but soil age, thickness and
distribution are highly variable. Soils formed in glacial deposits from the last glaciation are also
widespread, and many soils are classified based on the amount of volcanic ash they contain.

Orographic uplift of Pacific Ocean air masses generates a spatial precipitation gradient with an
average of 4,575 mm of precipitation falling annually on the highest elevations west of the crest,
while lowlands east of the crest receive a mean annual precipitation of 708 mm (Mustoe and
Leopold, 2014; Roe, 2005). Air temperatures vary highly depending on season and elevation
with the warmest month typically August and the coldest month is January; corresponding
average daily temperatures of about 25° C and 4°C, respectively, for these months in Newhalem,
Washington.

11
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D Slump/Creep (67;0.3 km?)

Figure 3. Four landslide types mapped within North Cascades National Park Complex (NOCA) in
Washington, U.S.A. The number and their total area of each type is given in parentheses. Insert provides
example of mapping over aerial image from Google Earth, 48°27°20.21” N 120°44°47.09” W, imagery data
&27/August, 27, 2006.

Vegetation in NOCA is dominated by forest, particularly coniferous tree species, up to about
2,000 m (Strauch et al., 2018; Agee and Kertis, 1987). A patchwork of shrubs, herbaceous
vegetation, and barren land is found above this elevation common in alpine environments and in
the paths of frequent snow avalanches. Above 2,400 m is mostly bare rock, snow and ice. The
underlying geology is composed of a primarily old Mesozoic crystalline and metamorphic rock
originating far to the south (Haugerud and Tabor, 2009).

Landslide (LS) inventory data are the most requisite information needed for an empirical
statistical analysis (Lepore et al., 2012). Landslides were mapped in the 2,768 km” park as
discreet landforms during a comprehensive park-wide landslide inventory (Fig. 3; Riedel and
Probala, 2005). Landslides were identified using eelor- stereo-pair +998&-air photos taken since
1960s at 1:24.000 and 1:12,000 scale, 7.5 minute topographic maps, bedrock geology maps, and
field investigations (e.g., Riedel et al., 2012). The minimum mapping unit was approximately
1,000 m? except for some smaller slump units. Landslide linework was transferred to a digital
format, peer reviewed, and polygons edited into final form in geographical information system
(GIS) software using National Agriculture Imagery Program (NAIP) imagery and a 10-m DEM
12
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and, in some cases, LIDAR. Where arcas were mapped by traditional methods, and Lidar later
became available, the original approach captured most (~75%) of the landslides. Dense
vegetation cover and a lack of access limited identification of some existing landslides. Larger,
more recent debris avalanches that left large deposits on the valley floor were more easily
recognized and mapped. Ancient landslides that occurred before the last glacial period 16,000
years ago were generally not mapped because their deposits were buried or reworked by
subsequent continental glaciation.

The landform mapping study identified six different types of mass wasting (Table 2): rock
fall/topple, debris avalanche, debris torrent, slump/creep, sackung, and snow avalanche-impacted
landforms (SAILSs) (Riedel et al., 2012). The single sackung mapped in NOCA represents a
gravitational spreading or slope deformation, sometimes found near ridge tops. All landslide
types were included in the analysis except for the rare sackung and SAILs, which are created by
snow avalanche impacting unconsolidated sediments rather than slope instability. The idea is to
capture more spatial variability and geologic controls on observed landslides by using all the data
we obtained for available from the inventory for the four common landslide types. There are
1,618 landslides mapped in NOCA: falls/topples (68%), debris avalanches (17%), debris torrents
(10%), slumps/creeps (4%), and one sackung (<1%) (Fig. 3; sackung not shown).

Table 2. Landslides mapped as part of comprehensive landform mapping study used in hazard
analysis (Riedel et al., 2005)

Type of Mass Process Mapping
Wasting
Debris Extremely rapid moving mixture of rock, soil, | Includes headwall scar,
Avalanche and vegetation, generally originates from path, and deposit

glacially-sourced areas, over-steepened valley
walls, and in many cases hydrothermally

altered bedrock
Debris Torrent Channelized rapid and/or sudden flow of Only the deposition areas
material entraining debris stored in stream within a debris cone

channel while moving down slope

Slump and Creep | Slumps - rotational slip of cohesive sediments, | Mapped where deciduous

usually triggered by undercutting of steep vegetation brighter on
slopes along riverbanks. Creeps - slow aerial photos, fresh new
movement induced by saturated ground. soil, jackstraw or pistol
gripped trees.
Rockfall or Rock | Sporadic and shallow detachment of rock Mapped where bright and
Topple falling from bedrock cliffs and rock towers highly reflective with

little or no vegetation on
aerial photos. Mainly
deposition mapped.
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2.3.2 Study domain and Parameters

We constrained our analysis to soil-mantled landscapes by excluding high elevation areas
covered by glaciers, permanent snowfields and exposed bedrock, as well as wetlands and other
water surfaces, based on landform mapping and maps of lithology and landcover. We also
exclude slopes less than 17° because this slope threshold was found to generally separate
colluvial mass wasting and debris transport processes from fluvial processes in this region
(Strauch et al., 2018). The area included in the analysis covers about 79% of NOCA’s land area.

The seven site attributes (SAs) investigated using the Frequency Ratio (FR) approach as they
relate to mapped landslide activity vary across the NOCA study area. Slope, total curvature
(Laplacian of elevation), and aspect attributes were derived using ArcGIS from a 30-m digital
elevation model (DEM) acquired from National Elevation Dataset (NED) (USGS, 2014a). A
resolution of 30-m was chosen for comparability with other studies and landslide size (e.g.,
Strauch et al., 2018; Lepore et al., 2012). Elevation ranges from 107 to 2794 m with 85% of the
park between 500 to 2000 m. Subcategories for elevation were based on 200-m increments with
lumping at the ends (e.g., <400 m and > 2200 m). Slope subcategories were set at 5° increments
with ending subcategories for slopes 17-25°, and >50°. Curvature was divided into three
subcategories: convex/diverging, flat, or concave/converging. Aspect (i.e., facing direction of
slope) was classified into eight compass orientations (i.e., N, NE, E, SE, S, SW, W, NW). The
park’s complex topography results in roughly equal distribution among the cardinal and
intercardinal directions of aspect; however, the southwest quadrant is slightly more common.

The DEM also provides the information needed to derive a distributed wetness index (Beven and
Kirkby, 1979; O’Loughlin, 1986), calculated as the natural log of the ratio of specific catchment
area [L] to sine of local slope. This index has been used for quantifying the contribution of pore-
water pressure to destabilizing forces in landslide modeling (e.g., Borga et al., 2002; Gokceoglu
et al., 2005). Wetness index was divided into 5 subcategories based on 20% quantiles: low, low-
medium, medium, medium-high, and high wetness. Landcover was acquired from the 2014
National Land Cover Data (NLCD), which is based on 2011 Landsat satellite imagery (Jin et al.,
2013; USGS, 2014b). We categorized this into forest, shrubland, herbaceous, water, wetland,
snow/ice, barren, and developed (e.g., roads, campgrounds). Based on this classification, forest,
shrubs, and herbaceous vegetation represent 54%, 15%, and 10% of the park, respectively.
Barren and snow or ice combined cover 17%, typically at the high elevations. Water and
wetlands cover about 2.5%, while developed is less than 0.5%.

Lithology provides a description of rock and deposits that indicates composition, strength, and
age, which can influence the hillslope strength and water redistribution. Washington State
Department of Natural Resources (WADNR) provides lithology in its surface geology maps that
display rocks and deposits as geologic map units (WADNR, 2014). This source of information
was chosen because it is available for all of Washington, facilitating future applications. There
are 48 lithology map unit types within NOCA. These were aggregated into seven subcategories,
based on similarities in origin and generally increasing strength, called: (1) unconsolidated
sediment, (2) ultramafic, (3) weak metamorphic foliated, (4) sedimentary rock, (5) hard
metamorphic, (6) intrusive igneous, and (7) volcanic/extrusive igneous (Table 3). Water and ice
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Class

were not classified. Both landcover and lithology were rasterized to the same DEM grid

resolution using ArcGIS based on the dominant type of attribute in each grid cell. Among the
seven types of lithology, hard metamorphic is most common (41% of NOCA), while ultramafic,
sedimentary rock, and volcanic/extrusive igneous combined make up less than 5%.

Table 3. Classification of Washington Department of Natural Resources surface geology from
generally weaker (1) to stronger (7) material along with aerial percentages within

NOCA in parentheses

WADNR Lithology

Class

WADNR Lithology

Unconsolidated Sediments (12%)

Sedimentary Rock (2%)

alluvial fan deposits

alluvium

sedimentary deposits or rocks, undivided

continental sedimentary deposits or rocks

alluvium, older (e.g., alluvial fans & talus)

alpine glacial drift, Fraser-age

marine metasedimentary rocks

marine sedimentary rocks

alpine glacial till, Fraser-age

Hard Metamorphic (41%)

glacial outwash, alpine, Fraser-age

continental glacial drift, Fraser-age

banded gneiss

mass-wasting deposits

mixed metamorphic and igneous rocks

mass-wasting deposits, mostly landslides

orthogneiss

paragneiss

mass-wasting deposits, not landslides

Intrusive Igneous (21%)

peat deposits

talus deposits

acidic (felsic) intrusive rock

Ultramafic (0.02%)

basic (mafic) intrusive rocks

2 ‘ ultrabasic (ultramafic) rocks (serpentine)

diorite

Weak Metamorphic Foliated (14%)

gabbro

heterogeneous metamorphic rocks

granite

hetero. metamorphic rocks, chert bearing

granodiorite

marble

Intermediate intrusive rocks

metasedimentary and metavolcanic rocks

Intrusive breccia

metasedimentary rocks

quartz diorite

metasedimentary rocks, cherty

quartz monzonite

tonalite

metavolcanic rocks

Volcanic/Extrusive Igneous (2%)

amphibolite

phyllite, low grade

tuffs and tuff breccias

schist, low grade

dacite flows

Water and Ice (7%)

rhyolite flows

volcanic breccia

3 Results and Discussion
3.1 Frequency Ratio Analysis

The results of the FR analyses for each site attribute (SA) are presented in Fig. 4. We discuss the
role of SA starting with debris avalanche source areas as they are hypothesized to represent the
initiation processes of shallow landslides that transform into debris avalanches. The SAs that
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impact shallow landslide initiation could arguably play common controls on the initiation of
other types of slope failures. The frequency analysis shows a clear and growing control of local
slopes greater than 35° on landslide initiation, which can be considered as the internal friction
angle of cohesionless sand (Fig. 4c).
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Figure 4. FR value for different bins of seven Site Attributes (SA) separated by red lines, based on (a) all
landslide types mapped within the NOCA study domain, (b) debris avalanche landslide types only, and
(c) source areas of debris avalanches represented by the highest 20% of the mapped debris avalanche.
The vertical blue line refers to the FR value of 1.0, denoting when no association is found with mapped
landslides. FR values below this line are attributes less likely associated with landslides and FR values
above this line indicate greater association with landslides.

The source area of debris avalanches is only about 17% of the mapped debris avalanche area and
10% of the whole landslide inventory, which predominantly maps transport and depositional
areas. A small debris avalanche source area in steep terrain can lead to large landslide impacts in
lower elevations, as the eroded material travels downhill and deposits in gentler gradients (Fig.
1). Thus, the runout zones of debris avalanches and other mapped landslide types cover more

area at gentler slopes typical of lower elevations. This process is captured in Fig. 4a and 4b
where the FR analyses exhibit higher landslide hazard at gentler slopes (<30°), more likely
associated with transport and depositional processes as well as failure of side slopes along

glacially incised U-shaped valleys undercut by fluvial activity. Others have reported clustering of

landslide impacts in lower elevations within valleys where hillslopes are steep enough to fail

(Megahan et al., 1978; Kelsey, 1988; Densmore et al., 1997; Chalkias et al., 2014).
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In the study area, local slopes generally increase on average with elevation, particularly above
1,400 m (Strauch et al., 2018). The control of steeper slopes on debris avalanche initiation is
supported by the results for elevation where source areas are associated with mid to high
elevation (1,400 to 1,800 m) and entire debris avalanches and all landslides types, including
deposition zones, have growing frequency in lower elevations (< 1,200 m) with the highest
frequency falling in elevations <400 m (Fig. 4a, b). Further increase in slopes typically lead to
bedrock exposure and barren lands with thin soil (Strauch et al., 2018; Gabet, 2003). In addition
to steepening slopes, the observed higher frequency of debris avalanche source areas in the mid-
to-high elevation range corroborates recent findings of an ecosystem transition control on
landslide initiation (Strauch et al., 2018). With the cooling of air temperatures beyond forest
ecosystem thresholds, the transition of forest vegetation (predominant alpine conifers) to mixed
shrub and herbaceous vegetation types with lower root cohesion, lead to higher landslide
frequency at debris avalanche source areas (Fig 4c). The slope and elevation results, however,
are likely influenced by the mapping approach, which was biased in mapping landslide activity
on the lower portions of hillslopes that were typically more accessible, and continuous creep and
rapid slides in subalpine and alpine areas were infrequently mapped.

Developed areas that include impervious surfaces, constructed materials, and lawns have the
highest landcover association with all mapped landslide areas, as well as with debris avalanches,
yet no association with debris avalanche source areas, which are typically higher on mountains
and rarely developed. Although dirt roads have been found to disrupt drainage and increase
erosion (Croke and Hairsine, 2006; Montgomery, 1994; Swanson and Dyrness, 1975), the lack of
association with landslide initiation suggest that these areas may be posmoned on the landscape
in areas likely to be 1mpacted by landslide runout or depositionsthes acts-ar

o : ads. In general, forest and barren landcover show the least
landshde act1v1ty compared to other landcover (Fig. 4). The forest association likely indicates the
positive contribution of root cohesion to hillslope stability, whereas the barren landcover type
results may indicate the effect of mapping completeness or hillslope processes. The barren
results appear counter to the findings of the processed-basedphysically-based landslide model
applied at the same location, which found high probability of landslide initiation in barren areas
often below retreating glaciers (Strauch et al., 2018). Barren includes areas of bedrock, glacial
debris, and other accumulations of earthen material with vegetation generally accounting for less
than 15% of total cover; thus, there may be a variety of stability conditions within this single
cover class.

The sources of debris avalanches are linked to eastern and southeastern aspects (Fig. 4c); 20%
and 15% of source cells by area occur on these aspects, respectively. Except for western aspects
that show the weakest association debris avalanches, other aspects show landsliding frequency
close to the average frequency in the whole study domain. Vegetation type and cover that relate
to root strength and moisture regime can be related to aspect. East and south exposures have
lower forest cover fractions compared to other aspects at mid to lower elevations (< 1,400 m),
and forests are largely replaced by barren lands and shrub and herbaceous vegetation as elevation
increases (Fig. 5). Most source areas of debris avalanches and debris avalanches as a whole are
associated with shrub and herbaceous vegetation types (Fig. 4b,c). Other aspects, especially
west-facing slopes have higher fraction of forest cover (Fig. 5), likely linked to a longer growing
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season (Evans and Fonda 1990). Lower landslide frequency in western aspects can be a result of
higher root cohesion of forest vegetation compared to shrub and herbs. Additionally, perhaps
west-facing aspects experience more arid moisture regimes or bedrock bedding, jointing, or
fracturing conducive to stability compared to other exposures (Carson and Kirby, 1972; Fischer
et al., 20006).
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Figure 5. Vegetation cover fraction in NOCA on each aspect, taken as the fraction of vegetation type
within each 200-m elevation band. Aspects categorized here as a) north (0° to 45° and 315° to 360°), b)
east (45° to 135°), ¢) south (135° to 225°), and d) west (225° to 315°), covering 23%, 23%, 26%, and
28% of NOCA, respectively. Yellow highlighted area represents the strongest elevation association for
debris avalanche source areas.

When all landslides are considered, northern slopes exhibit growing landslide association while
landslide frequency declines in southeastern slopes compared to the other landslide datasets (Fig.
4a, b). North-facing slopes have been documented to retain more soil moisture than south-facing
aspects in northern latitudes (Geroy et al., 2011), which can be broadly responsible for more
initiation, transport and deposition impact of all mass wasting types. Hillslope asymmetry (i.e.,
steeper slopes depending on aspect) was not found during inspection of average slope on the four
primary aspects. North-south asymmetry has been found to demonstrate reversal based on
elevation and at 49° latitude, which correspond to the northern edge of NOCA (Poulos et al.,
2012). In general, the relatively similar aspect associations for different landslide observation
datasets likely indicates the connection of source areas to downstream processes of transport and
deposition (Fig. 1).

Comparisons among all landslides, whole debris avalanches, and debris avalanche source areas
clearly show that unconsolidated sediments, largely derived from transport and depositional
processes, have stronger association with landslides than other lithologies followed by
sedimentary rock (Fig. 4). This strong association is expected given the inclusion of mass
wasting landforms in the classification of unconsolidated sediment. The high ultramafic rock
association when considering all landslide types is driven by a single topple/fall occurring in this
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scarce lithology (<0.02% of NOCA). Widespread observation of debris avalanche source areas in
all rock types may point to the role of steep slopes regardless of lithology. For debris avalanche
processes, sedimentary rock is more associated with transport and depositional areas than source
areas. Areas without landslide activity were associated with weak metamorphic foliated and
intrusive igneous lithology (Fig. 4a).

The association of landslides on concave/converging versus convex/diverging topography is
relatively consistent among the datasets and generally consistent with literature due to enhanced
wetness where vegetative support may be weak in deeper soils (see Hales et al., 2009; Fig. 4).
High wetness index is associated with landslides for all landslide types as well as entire debris
avalanches (Fig. 4a,b). This result is intuitive as this index is an indicator of increased soil
saturation and surface runoff. In contrast, source areas were correlated with low wetness index
(Fig. 4c). This counterintuitive finding, however, aligns with previously discussed results that
source areas are associated with loss of root strength, steep slopes and higher elevations,
resulting in relatively small specific catchment areas. By definition, wetness index is negatively
correlated with slope and positively correlated with specific contributing area. Thus, source
areas will have a low wetness index when they are from steep slopes with small contributing
areas (i.e., located higher up on hillslopes).

3.2 Susceptibility Index

A susceptibility index (SI) is calculated for each grid cell within the study area domain by
equation (3). Cumulative distributions for SI, plotted as fraction of area of the study domain as
well as only in the areas where landslide impact was mapped show higher SI values for a given
fraction of the respective domains where a given SI is exceeded (Fig. 6a, d, and g). Additional
support beyond the graphics that these distributions are not equal is provided by the
Kolmogorov-Smirnov test, which rejects the null hypothesis of equal distributions at 0<0.01. The
cumulative distributions show that the SI calculated from FR method can differentiate mapped
landslide locations from non-landslides with a larger SI. The resulting spatial distribution of SI is
right skewed as shown in the relative frequencies of SI for all three landslide datasets (Fig. 6b, e,
and h). The right skew indicates that there is a small population of grid cells with high SI
compared to the majority of grid cells in the study domain. This occurs when there are FR
subcategories frequently associated with landslides coinciding at the same location. Histograms
show a greater relative frequency of landslide grid cells with high SI values than the entire
domain (Fig. 6b, e, and h). For source areas, SI bins for the histograms were larger (e.g., 0.5 vs
0.25) due to the small number of source area cells compared to the two other datasets.
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Figure 6. Cumulative distributions (a, d, and g - column 1) and relative frequency plots (b, e, and h -
column 2) of Susceptibility Index (SI) for all grid cells included in the analysis and the grid cells
contained within mapped landslides. Third column (c, f, and i) is the probability of landslide impact,
P(LS/|SI;), calculated from the ratio of the number of landslide cells to the number of all cells with each
SI bins with fitted curves. Rows represent analysis domains: a, b, and c¢) all landslide types; d, e, and f)
debris avalanches; and g, h, and i) debris avalanche source areas.

The probability of landslide impact, P(LS;|SI;), calculated from Eq. (4) are shown in the third
column of Figure 6 (Fig. 6¢, f, and i). In calculating this probability in the highest SI bins (e.g.,
SI>8), landslide sample sizes of about 500 or fewer were aggregated into the previous bin. In all
three cases, P(LS:/SI;) increases with SI, supporting the statistical power of this empirical
approach. The SI to P(LS;|SI;) relation is explained by a linear function when debris avalanche
data are used (Fig. 6f). The other two cases, all landslide data and debris avalanche source areas,
are better represented by polynomial fits (Fig. 6¢ and 1). The range of probabilities grows with
the sample size of the landslide dataset used, leading to maximum probabilities of 0.2, 0.16, and
0.017 for all landslide, debris avalanches, and debris avalanche source areas, respectively. These
functions were used to develop continuous empirical probability maps based on SI values
assigned to each grid cell of the study domain, -limited to the maximum empirical probability of
each landslide type.

3.3 Landslide Hazard Maps

The probability of landslide impact estimated from SI, P(LSSI;), declines as the amount of
observational information decreases from all landslides (Fig. 7a), to debris avalanches (Fig. 7b),
and debris avalanche source areas (Fig. 7c). This pattern reflects the smaller area of observed
landslide data used in each case compared to the study domain. Additionally, the probability of
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any landslide activity would be expected to be higher than the probability of initiating a debris
avalanche alone. When considering all landslides, the highest probabilities are located near the
base of valley walls and in topographic depressions or hollows (Fig. 7a). The hazard map
developed from the empirical model using only debris avalanches (Fig 7b) also shows higher
probabilities in the valley bottoms, but lower probabilities than the all landslides map at higher
elevations in alpine areas where the footprint of debris avalanches is smaller compared to the
deposition area, reducing the overall probabilities in the FR approach. Spatial patterns of
landslide probabilities obtained from the source areas of debris avalanches (Fig. 7¢) departs from
the other two empirical models with the highest probabilities in middle and upper portions of
valley walls, similar to the process model (Fig. 8b). Thus, the empirically-based modeling using
only source areas appears to capture some of the physical processes initiating debris avalanches.
Closeup areas mapped for each mapping case more clearly illustrate the landslide hazard in
relation to topographic position.

We developed a map of annual probability of shallow landslide initiation by combining the
empirical SI-based probability (Fig 7c) and the process-basedphysically-based annual probability
of landslide initiation from Strauch et al. (2018), P(FS, < 1), using the methodology developed
in this paper (Eq. 8 and 9). The weight term, P(FS. < 1), and the P(LS) are shown in Fig. 8.
Close ups of three locations are shown below the full NOCA maps.

Approximately 30% of the analyzed cells had weights > 1. Weights are greater in high elevations
and steep slopes, commensurate with debris avalanche source areas. Overall 88% of the NOCA
area has less than annual landsliding probability of 0.1 in P(FS, < 1) and P(LS) map. P(LS)
map (Fig. 8c and f) shows enhanced landslide probability in areas already modeled as high
probability of landslide impacts based on the precessed-basedphysically-based shallow landslide
model (Fig. 8b and e). An anomaly map created by subtracting P(LS) from P(FS, < 1) provides
easier display of the effect of the empirical adjustment. In the anomaly map, much of the
original P(FS, < 1) is adjusted by less than £0.1 (Fig. 9). East-facing aspect, concave
curvature, and elevations in the ~1,000 to 1,600 m range show an increase in probability > 0.1
(Fig. 9). Increasing probabilities on east-facing slopes compared to other aspects aligns with the
FR findings (Fig. 4).
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Figure 8. Maps of: a) weight term derived from joint empirical and precessed-basedphysically-based
modeled probabilities, b) P(FS, < 1) from Strauch et al. (2018), and ¢) P(LS) created from multiplying
a) by b) at each grid cell for the North Cascades National Park Complex (NOCA). Blue boxes indicate
three closeup locations shown below in d), €), and f). Black lines show mapped debris flow boundaries.
Gray areas are excluded from analysis and contours are at 100 m.

Other cells declined in probability, particularly on gentler slopes, north to west-facing aspects,
and at low (< 1000 m) and high (>1,600 m) elevations (Fig. 9). Areas with reduced probability
high on the mountain, above the elevation limit of vegetation (~2,200 m, Fig. 5) and just below
actively receding glaciers or permanent snowfields, likely represent limited soil development and
active surface erosion where slopes are steep (Roering et al., 2003) (Fig. 9). Within the elevation
range of the park, debris avalanche initiation is not frequently observed at the highest elevations
where soil is thin or the landscape is covered seasonally by snow and ice.
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Figure 9. Anomaly maps displaying the difference between P(LS) and P(F Se < 1 where blues
represent > 0.1 reduction in probability and reds represent > 0.1 increase in probability due to the
empirical adjustment. Maps of: a) the entire North Cascades National Park Complex, b) closeup location
indicated by bhe-cyan box in a) overlain on hillshade raster, and c) aerial image of the same location as
b). Aerial image is from World Imagery, Esri Inc. (images created using ArcGIS® software by Esri.
ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright
Esri©. All rights reserved. For more information about Esri® software, please visit www.esri.com). Gray
areas are excluded from analysis and contours are at 100 m.

To investigate the spatial distribution of P(FS, < 1) (Strauch et al., 2018) and empirically-
adjusted model probabilities, P(LS), we plot the cumulative distributions of probabilities (Fig.
10a). In appreximatelyroughly 125% of the NOCA domain, P(LS) gives lower landslide
probability than P(F Se < 1) 1nd1cated by the upward sh1ft in the curnulatwe d1str1but10n (blue
hne) (Fig. 10a) his suggest d - : - - ad-1a :

weighting fa W <
l—.@.—The modeled landscapes have P(Failure) > 0.9, or recurrence interval < 1.1 year, in ~6% and
~3% for P(FS. < 1) and P(LS) models, respectively (Fig. 10a). These cells represent highly
unstable slopes and the empirical adjustment -reduced this area by half from the processed-
basedphysically-based model. Unconditionally unstable landslide, P(Failure)=1 (Pack et al.,
1998 Montgomery., 2001, corresponds to 0% and 2% of P(FS, < 1) and P(LS) models,
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respectively. Unconditionally stable slopes, P(Failure)=0, corresponds to 49% of the study
domain for both P(FS,. < 1)and P(LS) models (not visible in Fig. 10a). The distributions
generally show a high portion (~87 to 88%) of the modeled landscapes has relatively-low

P(Fallme) <0.1, meb&b%/—ef—faﬁb&%ﬁ%A—l—)m a return penod 0f> 10 years. Thus;-the

Hﬂ%@ﬂd&k@ﬂ&%&t&bl%&ﬂd—bﬁ%ﬂdﬁk@ﬂ&k&&s%&b{%eﬂdﬁ}eﬂs—only between 7% and 9% of the
landscape has a bread-wide range of potential failure (0.1 <= P(Failure) <0.9) as indicated by the

shaded blue (Fig. 10a), where empirical evidence enhanced the local landscape susceptibility to
initiation of shallow landslides.
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Figure 10. a) Cumulative distribution of the probability of failure for the P(FS, < 1) [black] and P(LS)
[blue] using only debris avalanche source areas, b) ROC curves for the same two datasets. The blue
shaded area on a) represents the fraction of the landscape with 0.1 == P(Failure) < 0.9. Black

diagonal dashed line on a 1 : 1 line in b) represents the case of a trivial or random classification model.
AUC values are 0.58 for the modeled probability and 0.60 for the integrated probability.

We anticipated that the additional consideration of the empirical model represented by the
weighting term improves the performance of the purely precessed-basedphysically-based model.
Thus, to assess the potential performance of the models, we statistically evaluated the models
using the receiver operating characteristics (ROC) curves (Fawcett, 2006). This approach
examines cells within mapped landslides and cells outside landslides for a study area and
compares this to randomly distributed landslides over the same landscape. Confusion matrices
are generated from observed and modeled landslides based on varying the probability of a
landslide threshold used to generate ROC curves (Mancini, et al., 2010; El-Ramly et al., 2002;
Anagnostopoulos et al., 2015) (Fig. 10b). A better-performing model curves towards the upper
left corner, and a curve along the 1:1 line represents a trivial model that randomly assigns
landslide and non-landslide cells. The area under the curve (AUC) statistic provides a numerical
indicator of model performance representing the probability of correctly assigning two randomly
selected cells to landslide and non-landslide datasets (Hanley and McNeil, 1982).

Both the precessed-basedphysically-based model, P(FS, < 1), and the P(LS) perform better
than a trivial model by plotting the ROC curve above the 1:1 line (Fig. 10b). The AUC statistic
was 0.58 and 0.60 for P(FS,. < 1) and P(LS), respectively. The ROC and AUC indicate an
improvement in the fraction of observed landslides captured by P(LS) over P(FS, < 1). The
AUC for P(LS) indicates that there is a 60% chance that the proposed empirical adjustment to the
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proeess-basedphysically-based model would classify a landslide initiation cell and a non-
landslide cell correctly from two randomly sampled grid cells. The ROC analysis found that the
optimum probability threshold for maximizing the observed landslides captured and minimizing
false alarms was a probability threshold of 0.0006 (i.e., apex of the blue curve); thresholds less
than this increased the false alarms and thresholds greater than this reduced the accuracy of
capturing observed landslides (Fig. 10b). The additional information from empirical modeling
modestly improved the processed-basedphysically-based model and indicates empirical evidence
on landslides can capture mechanisms lacking in the infinite slope stability model. These include
clustering of debris avalanches due to variability in the bedrock geology (e.g. hydrothermal
alteration, steeply dipping bedding planes, and glacial oversteepening). Additional validation
approaches, such as separating landslide data into training and testing datasets, may yield
additional findings that are deferred to future studies.

4 Conclusions

Empirically-based probability hazard maps were developed from a statistically-based
susceptibility index, which integrated the influence of site attributes on observed landslides
based on a frequency ratio approach. Resulting susceptibility depends on the observations of
landslides considered: all types of landslides, debris avalanches only, or source areas of debris
avalanches. Thus, the objectives of a hazard identification study dictate the necessary inventory
of landslide features. The empirically-based probability model based on source areas was used to
adjust a previously developed processed-basedphysically-based probabilistic model through a
calculated weighting term developed from a joint spatial probability. The frequency analysis,
hazard map development, and integrated probability model identified several key findings when
applied to a national park:

e Frequency analysis shows a clear and growing control of local slopes greater than 35° on
landslide initiation, while higher landslide hazard at gentler slopes (<30°) reflects
transport and depositional processes.

e Debris avalanche source areas are associated with mid to high elevation (1,400 to 1,800
m), while all landslides types and whole debris avalanches have growing impact in lower
elevations (< 1,200 m) with the highest impact falling in elevations <400 m.

e Slope is a key attribute for the initiation of landslides, while lithology is mainly tied to
transport and depositional processes.

e The transition from subalpine to alpine herbaceous vegetation with lower root cohesion
correlates with higher frequency of debris avalanche initiation.

e East (west) aspect is a positive (negative) landslide-influencing factor, likely due to
differences in moisture regime, and forest cover and associated root cohesion.

e Empirical statistical modeling used to adjust a precess-basedphysically-based model of
landslide initiation improved predictability of observed landslides by accounting for
additional factors that influence the landscape susceptibility to failure not represented in
the physically-based model.

e Empirical adjustments generally lowered the probability of failure of the precess-
basedphysically-based model, especially for 0.1 =< P(failure) < 0.9 that covered between

7 to 9% of the study areapark.
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As the occurrence of landslide runout is conditioned on the failure of source areas, future studies
could combine the probabilistic initiation methodology we propose in this paper with a landslide
runout model to improve prediction of hazards from entire landslides. The applicability of our
approach to characterize shallow landslides hazard is limited by the quality of the site-specific
data on soils and vegetation, extent of hydrologic modeling, as well as the accuracy and
completeness of the landslide inventory. Accurate data for environmental variables such as
geology. soils, and vegetation would be as important as comprehensive landslide data as the
empirical approach relates landslide hazard to the environmental variables. Although the
approach is applicable elsewhere, our results from the empirical analyses are specific to the
region in which they were developed and may differ in another location with different geology
and landslide inventories. Additionally, the probabilities are likely to change as local conditions
change from disturbance such as fire or as climate continues to change. Advancements in surface
terrain delineation and in distributed hydrologic modeling specifically contribute to the broad
applicability of this approach. We provide multiple landslide hazard maps for the national park
that land managers can use for planning and decision making, as well as educating the public
about hazards from landslides so they can minimize risks from these geohazards.
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Referee #1 comment response by authors

No. Comment Response

1 | Why an independent training and We did not perform a formal “validation” study.
testing dataset was not used for this Instead, the improvements gained by the
approach. This is typical practice and | proposed methods in predicting landslide

it would be more robust if there was | probability was obtained by a comparative ROC
a separate validation dataset. analysis. The focus of the study was to
determine if an empirical-based model of
landslide hazard could be used to improve an
existing physically-based model for shallow
landslide probability. A major reason for not
separating the data to training and validation was
that the performance of the statistical model
improves with the size of the observational data
used to train the model. The idea is to capture
more spatial variability and geologic controls on
observed landslides by using all the data we
obtained for this region. Validation using ROC
rather than training and testing datasets was used
to assess this as has been used in similar studies
(e.g., Kirschbaum et. al 2012). Future research
could carry out validation approaches such as
the training and testing approach suggested by
the referee. This will be made more clear in the
manuscript and suggested for future studies.
Added sentence to last paragraphs of
Introduction (pg. 4) and Results (pg. 29).

2 | Provide a brief discussion on the The empirical data on landslides was obtained
accuracy and comprehensiveness of | from a series of reports published by the
landslide inventories with respect to | National Park Service (Riedel and Probala,
representative landslides over this 2005). This comprehensive inventory across the
region 684,000 acre national park was conducted at
1:24,000 scale and based on 10 m DEMs, a
series of large scale stereo air photographs taken
since the 1960s, field verification, and from
Lidar in a few basins. Where areas were
mapped by traditional methods, and Lidar later
became available, the original approach captured
most (~75%) of the landslides. Dense vegetation
cover and a lack of access also limited
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identification of some existing landslides.
Larger, more recent debris avalanches that left
large deposits on the valley floor were more
easily recognized and mapped. Presence of
observable landslide features were part of the
mapping criteria, rather than mapping
topographic imprint of landslides (e.g., Strauch
et al., 2018). Ancient landslides that occurred
before the last glacial period 16,000 years ago
were generally not mapped because their
deposits were buried or reworked by subsequent
continental glaciation. This text will be
incorporated into the revised paper. See
additional text above Table 2 on pg. 13.

Discuss relevance of the
methodologies for other regions.

See response to comment #5.

From the maps in 8e and f it is clear
that accurately characterizing the
entire landslide using the current
methodologies is challenging. Can
the authors comment a bit more on
how this may be improved with
differentiating source area from
possibly considering a runout model
to develop probabilistic estimates of
runout?

Maps in 8e and 8f show the probability of
initiation of slope failures, only applicable for
slopes steeper than half of the internal friction
angle of soils, which is the failure criterion for
saturated soils. These maps reflect probability
of landslide initiation, which was the focus of
the integrated model as described in Section 2.2.
The model test using the ROC analysis in Fig.
10 is also conducted only for source areas.
Thus, the current integrated methodology is not
developed for characterizing the probability of
an entire landslide. As the occurrence of runout
1s conditioned on the failure of source areas,
these two models can be developed separately
and linked for applications. Differentiating the
source area from the transport and deposition
portions of landslides, in an inventory could
improve the characterization of site features and
conditions conducive to failure initiation,
transport and deposition. In our paper, only
source areas are identified by the integrated
model; transport and depositional zones are not
addressed as the physical model doesn’t apply.
We agree with the reviewer that developing a
probabilistic runout component would improve
the prediction of hazards from the entire
landslide disturbances. There could be several
different ways of developing a runout model.
We could map runout zones of landslides from
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our inventory and train a rule-based runout
model, or develop a purely statistical model
based on the occurrence of runout in relation to
geologic and topographic attributes. If well-
developed and tested, combining a runout model
with the initiation methodology we proposed in
this paper should improve prediction of hazards
from entire landslides.

Additional text will be included in the
manuscript to suggest these model
advancements. See additional text in last
paragraph of Conclusions (pg. 30).

It would be helpful to have a bit more
discussion on the applicability of
these methods to other regions,
including the size of the region over
which this methodology could be
applied and other considerations.

The applicability of this approach to characterize
shallow landslides hazard is limited by the
quality of the site-specific data on soils and
vegetation, extent of hydrologic modeling, as
well as the comprehensiveness of the landslide
inventory. Accurate data for environmental
variables such as rock, soils, and vegetation
would be as important as comprehensive
landslide data as our method relates landslide
risk to the environmental variables. The spatial
scale of data is another issue we have not studied
yet with this method. Larger data sets would
profoundly improve predictions, however they
could also increase uncertainty of predictions.
We argue that this method should be used along
with other mapping methods and its
performance should be compared against other
methods using ROC analysis or other tests. It
could potentially be applied over large areas,
even continental scales, if these data are
available, complete, and validated. The design
of the methodology described and demonstrated
in this paper allows broad application and is not
limited to use at the specific location within
Washington, U.S.A. Advancements in surface
terrain delineation and in distributed hydrologic
modeling specifically contribute to the broad
applicability of this approach. We will add
additional text to capture these applications. See
additional text in last paragraph of Conclusions

(pg. 30).

Specific comments on manuscript

Suggested edits and clarifications called out
within the draft manuscript are helpful for
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improving the writing and clarity of the findings.
For example, additional explanation on the
association with developed landscape is
provided in Section 3.1 (pg. 17) as well as
additional thoughts on the importance of
mapping accuracy in Conclusions (pg. 30).
Suggested figure improvements were also
appreciated and are updated in the final
manuscript.

Referee #2
No. Comment Response
1 | The term “process-based method” Agreed, changes made throughout paper.

should be changed in the more
correct “physically-based model” to
define deterministic methods of
assessment of slope stability. This
correction has to be inserted
throughout all the paper.

2 | Several examples of both data-driven | We provided literature review in a separate data-
techniques and physically-based driven and physically-based model review
models, and related references, could | paragraphs in the Introduction of the paper. If
be add in the Introduction section. the referee knows of relevant papers to cite in

our paper that we missed and shares them with
us, we would consider including them in the
Introduction of our paper and discuss their key
aspects.

3 | I disagree with the choice of the As the referee notes, considering the entire

Authors of considering the entire
landslides bodies, both triggering and
accumulation zones, as predictor
variable of the data-driven method.
Landslides runout and accumulation
zone are related to other predisposing
factors than the ones influencing the
the landslides triggering. Instead, I
know that the approach of using the
entire landslide body in a data-driven
approach is very common in the
literature. Thus, I suggest to add the
reasons why the Authors have chosen
this approach and to discuss about

mapped landslide is a common approach in data-
driven hazard identification. We too agree with
the limitation of this approach. Thus, we
developed two other methods that used landslide
source areas and a single landslide type to study
how the first could improve a physically-based
model and to allow comparisons with these
previous studies. Often, only the entire
landslide or portions of the landslide are mapped
as part of an inventory, and many inventories
lack information on types of landslides. Thus,
we wanted to explore and demonstrate the
differences in the site characteristics associated
with these various types of datasets. This type of
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the potential limits of this choice.

analysis can provide insights into the value of
more specific inventories, depending on the
goals of the hazard identification study. Some
studies are content with identifying landslide
prone areas regardless of the type of landslide or
landslide feature. However, our analysis
demonstrates the variability in results,
depending on the landslide dataset used, given
the same site attributes. The limitations with
these datasets and resulting hazard maps, relate
to the objectives of the study and intended use.
For example, using all landslide types may
highlight general areas where landslide activity
is possible, but it does a poor job at identifying
where landslide may initiate. More explanation
of these important choices and limitations will
be added to the Methodology (pg. 7) and
Conclusion (pg. 30) in the manuscript.

It is necessary to describe the main
features and the main outputs of the
Landlab model considered for the
implementation of the physically-
based approach. In particular, how
the rainfall features are inserted and
considered by this model?

In this paper we directly use predicted landslide
probability from a physically-based shallow
landslide model reported in Strauch et al. (2018).
The landslide model developed in Landlab has
been detailed extensively in Strauch et al.
(2018). However, we agree that additional detail
on the main features and outputs could be added
to the text in Sect. 2.2 Model Integration (pg. 7-
8). Precipitation is considered in the landslide
model through its use as input to a macro-scale
hydrology model, Variable Infiltration Capacity
model. This model produces a spatially
distributed recharge field which is used to form
subsurface flow in Landlab (see pg. 8). A
probability distribution of recharge is used to
determine soil relative wetness within Monte
Carlo simulations of factor-of-safety.

A more detailed description of the
bedrock geological features and on
the main properties of the soil type
are required in the presentation of the
study area.

The bedrock geology in North Cascades
National Park is dominated by gneiss and
granite, with lower grade metamorphic rocks
schist and phyllite on the western edge of the
park, and Mesozoic sedimentary rocks on the
eastern flank (Tabor and Haugerud, 1999).
Placement of granite at depth along faults led to
hydrothermal alteration of some overlying rocks,
and the clustering of large landslides.

Soils in the park are generally coarse-grained
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and relatively young due to active slope
processes, but soil age, thickness and
distribution are highly variable. Soils formed in
glacial deposits from the last ice age are also
widespread, and many soils are classified based
on the amount of volcanic ash they contain. This
detail will be added to the study area description
onpg. 11.

Considering in the same inventory
rockfalls/topple and debris
flows/avalanches is not really correct.
These phenomena are characterized
by different kinematic behaviors their
predisposing factors can be different.
Even if the combined probability
model between data-driven and
physically-based approaches have
been obtained only taking into
account for the source areas of debris
flows/avalanches, I advise to add an
explanation of why you consider
different typologies of landslides in
the same inventory of your study
area.

Please see response to comment #3.

For a further validation of the data-
driven model, it could be useful
calculating a statistical index such as
the Area Under ROC Curve or the
values of False Positives/True
Positives. This would strengthen the
reliability of the proposed model.

We included the physically-based model and the
integrated model in Fig. 10b. Our intent with
the ROC curves was to seeing if the empirical
information could improve the physically-based
model results by providing some unknown
information missing from the infinite slope
model. An ROC curve from the data-driven
model would show a well performing model by
definition because it is derived from the
observations used to develop the susceptibility
index or probability and the AUC for the
empirical models alone would support the model
performance.

It could be useful presenting also the
results of the application of the
physically-based probabilistic model
implemented in the study area and its
validation.

This information is provided in an earlier study
by Strauch et al. (2018) and is not repeated here
for the sake of brevity.

Why did the Authors choose those
ranges of probability to consider a
slope as relatively stable (< 0.1) or

The terms relative stable and highly unstable
were terms chosen by the authors to identify
where the cumulative distribution curve
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highly unstable (> 0.9). Several
Authors identified other ranges for
the classification of the probability
distribution. Please, discuss about
this aspect.

generally shifts direction. In between these
probabilities, a small portion of the landscape is
modeled to have a wide range of failure
potential. We removed the labels from the
figures and instead, added the corresponding
return periods of 10 years and 1.1 years to
provide a sense of the hazard distribution,
similar to the plotting used in Strauch et al.
(2018). Additionally, we modified the text to
further clarify interpretation of the figure on pg
26 and 29.

10

It is necessary adding a section where
the Authors will discuss about the
main advantages and the limitations
of their proposed approach, in
particular compared with the typical
methodologies used for the
assessment of landslides
susceptibility or hazard.

Many articles have described the advantages and
disadvantages to data-driven and physically-
based models (e.g., Ercanoglu and Sonmez,
2019; Reichenback, et al., 2018; Hungr, 2018;
Aleotti and Chowdhury, 1999). Our approach
attempts to benefit from the strengths of both
traditional modeling methods. While empirical
models validate well with given mapped
landslides, they lack a mechanistic explanation
for the susceptibility level. Parsimonious
physical models predict failure based on forces
within the soil, but they may miss properties
demonstrated by failure or lack of failure on the
landscape. Our approach is limited to areas
where landslides have been mapped. Additional
text and references will be added to explain the
main advantages and limitations of our
integrated approach (see pgs. 3 and 30).
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