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The effort to map indoor radon at the European level started in 2006, following a workshop in which a 

number of participants agreed to send the JRC a set of statistics estimated from the indoor radon data that 

they already had collected. For the European map, it was just not possible to impose a common statistical 

design a priori, so it necessarily became a data-driven approach a posteriori. The only requirement was 15 

that “statistics should be calculated using annual averaged measurements made on ground floor of 

residential houses” (Tollefsen et al., 2014). This is of course a source of uncertainty in our analysis, as 

pointed out by Dubois et al. (2010). We have included a reference to the latter paper, where readers can 

analyse the challenges of mapping indoor radon at the European scale.    
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Abstract. A hypothetical AllPan-European Indoor Radon Map has been developed using summary statistics estimated from 

1.2 million indoor radon samples. In this study we have used the arithmetic mean (AM) over grid cells of 10 km x 10 km to 

predict a mean indoor radon concentration at ground- floor level of buildings in the grid cells where no or few data (N < 30) 15 

are available (N < 30). Four interpolation techniques have been tested:  inverse distance weighted (IDW); ordinary kriging 

(OK); collocated cokriging with uranium concentration as secondary variable (CoCK); and regression kriging with topsoil 

geochemistry and bedrock geology as secondary variables (RK). Cross-validation exercises have been carried out to assess the 

uncertainties associated with each method. Of the four methods tested, RK has proved to be the best one for predicting mean 

indoor radon concentrations;, and by combining the RK predictions with the AM of the grids with 30 or more measurements, 20 

an AllPan-European Indoor Radon Map has been produced. This map represents the a first step towards a European radon 

exposure, and, further on, a radon dose map. 

1 Introduction 

Radon (Rn) is the major contributor to the ionizing radiation dose received by the general population, being the second cause 

of lung cancer death after smoking (WHO, 2009). Worldwide radon exposure is linked to an estimated 222,000 out of the 1.8 25 

million annual lung- cancer cases reported per year (Gaskin et al., 2018), and in Europe alone it has been estimated that 18,000 

lung- cancer cases per year are induced by radon (Gray et al., 2009). Since lung- cancer survival rates after five years are low, 

less than as low as below 20% after five years (Cheng et al., 2016), a reduction in radon exposure will have therefore a 

significant positive impact in on the health of the general population. In this context, the EU developed recently revised and 

consolidated the Basic Safety Standards Directive (Council Directive 2013/59/EURATOM),  with the aim of reducing which 30 

aims to reduce the number of radon-induced lung cancer cases. 

The main sources of radon indoors are the surrounding subsoils on which buildings are located, the groundwater 

ground water used in the building, and the building materials (Cothern and Smith, 1987). Consequently, radon is presented 
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everywhere. The likelihood of having high indoor radon concentration may, however, be higher in some areas than others. 

Radon maps are therefore an essential tool at large scale and give very good indications of the problem, helping policymakers 

policy-makers to design a cost-effective radon action plans (Gray et al., 2009). Importantly, because of high local variability, 

large scalelarge-scale Rn maps do not inform about Rn concentration in a particular building. Instead, this requires measuring 

in that building. 5 

In 2006, theThe EU’s Joint Research Centre (JRC) started launched in 2006 a long-term project to map radon at the 

European level (Tollefsen et al., 2014). For more than ten years now, the JRC has been developing the a European Atlas of 

Natural Radiation (Cinelli et al., 2019). It includes maps of the natural radioactive levels of: i) annual cosmic-ray dose; ii) 

indoor radon concentration; iii) uranium, thorium and potassium concentration in soil and in bedrock; iv) terrestrial gamma 

dose rate; and v) soil permeability. Digital versions of these maps are available on from the a JRC website 10 

(https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation), and updated at irregular intervals when new data become 

available. The objectives of the this Atlas isare: (1) to increase public knowledge of natural ionizing radiation; (2) to analyse 

the level of natural radioactivity caused by different sources; (3) to produce a better estimate of the annual dose to which the 

general population is exposed; and (4) to compare natural and artificial sources (Cinelli et al., 2019). 

The European Indoor Radon Map (EIRM) displays the annual average indoor radon concentration (Rn; 222Rn) 15 

measured on ground floor of residential dwellingsbuildings over 10 km x 10 km grid cells (Dubois et al., 2010) (Rn; 222Rn). 

Based on input-data specifications stipulated by the JRC, European countries provide summary statistics estimated over 10 km 

x 10 km grid cells without communicating the original data, to thus guaranteeing data privacy confidentiality for the individual 

house owners. As a result, Tthe European indoor radon dataset contains the following parameters: the arithmetic mean and 

standard deviation of the indoor radon measurements (AM_z, and SD_z) and the log-transformed data (AM_lnz, and SD_lnz); 20 

the median (Med), the minimum (Min), and the maximum (Max) values; and as well as the total number (N) of dwellings 

sampled in each grid cell (Tollefsen et al., 2014). 

The dataset underlying the EIRM represents a huge amount of work. At the time of writing (end- 2018), 32 countries 

(EU and non-EU Member States alike) have contributed data, and information from almost 1.2 million dwellings has been 

aggregated into 28,468 grid cells. Since some grid cells overlap between countries, 28,203 of these grid cells were filled by 1 25 

country, while 262 and 3 grids were filled by two and three countries, respectively (i.e. border areas which share the same 

grid) (version: 29-09-2018). However, there are still a large number of grid cells over European land territory with no data, 

and the number of measurements per grid cell varies widely, from thosemany  with only 1 measurement up to a single one 

with 23,993 dwellings sampled (Table 1). The evaluation ofEvaluating the radon exposure to European citizens would 

therefore require another ten years, or more, if it had to be done based on indoor radon measurements over each grid cell.  30 

Interpolation techniques are therefore essential at this stage to predict a mean indoor radon concentration in the grid 

cells for which no or few data are available, and thus develop an AllPan-European Indoor Radon Map. We have tested four 

interpolation techniques: two that use solely indoor radon concentration measurements, viz. inverse distance weighted (IDW) 

and ordinary kriging (OK); and another two which also take into account geological information, viz. collocated cokriging 
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with uranium concentration in topsoil as secondary variable (CoCK) and regression kriging with topsoil geochemistry and 

bedrock geology as secondary variables (RK). Cross-validation exercises were carried out to assess the uncertainties associated 

with each method. The map generated here is a hypothetical indoor Rn map in the sense that it estimates the mean per 10 km 

× 10 km grid cell under the assumption that there are dwellings in the grid cell. In some remote areas (mountains, extreme 

Northern Europe), however, this may not be the case in reality. The final map represents the a first step towards a European 5 

radon exposure, and, further on, a Rradon dDose mMap. Furthermore, it may assist European countries in developing their 

respective National Indoor Radon Maps. 

2 Methods 

2.1 Indoor radon data  

The primary dataset used to predict the mean per grid cell with no or few data is the one of arithmetic means (AM_z). The AM 10 

was assigned to the centre of the each grid cell, and predictions were carried out only in grid cells where U, Th, and K2O 

concentrations also were available (46,000 grid cells; version 28-05-2018, Pantelić et al., 2018). Data from grid cells filled by 

more than one country (i.e. points with the same coordinates) were merged, and the summary statistics recalculated according 

to Eq. 1-10:  

AM =  
S

N
             (1) 15 

SD = √SQ− 
s2

N

N−1
             (2) 

 Med =  √∏ Medi
n
i=1   (Approximation)         (3) 

Min =  Min[Mini]            (4) 

Max =  Max[Maxi]            (5) 

N =  ∑ Ni
n
i=1              (6) 20 

S =  ∑ Si
n
i=1              (7) 

 Si =  AMi ∙ Ni             (8) 

SQ =  ∑ SQi
n
i=1               (9) 

 SQi =  SDi ∙ (Ni − 1) +  
Si

Ni
           (10) 

where “i” is the number of countries that filled the grid. The values for the log-transformed data (AM_lnz and the SD_lnz) 25 

were estimated with the same equations as used for the AM and the SD, but with the ln values provided by each country (i.e. 

AM_lnz, and SD_lnz).  

In the study area (i.e. area with topsoil geochemistry data) there are 25,367 grid cells with indoor radon measurements 

(Figure 1). The distribution of the AM is approximately lognormal (Figure 2), with values ranging from 1 to 10,116 Bq m-3. 
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The summary statistics are shown in Table 2. Nominal concentrations below 10 Bq m-3Bq/m³ are unrealistic from the points 

of view of true occurrence and measurement possibility, but this could not be verified in this context. The impact of such errors 

to on the result is probably negligible. 

2.2 Interpolation techniques 

A mean (over a 10 km × 10 km grid cell) radon concentration at ground- floor level was estimated at 1 m off the grid centroid, 5 

to which the AMs in the input database are referenced. Predictions were therefore carried out at locations slightly different 

from the ones of the data. The reason is that we wanted to avoid exact interpolations. To some extent, indoor radon variations 

at small scale can be taken into account this way.    

2.2.1 Inverse Distance Weighted (IDW) Interpolation (IDW) 

The Inverse Distance Weighted (IDW) Interpolation technique estimates a weighted average at an unsampled point 10 

(Ẑo) according to its distance (di) to the sampled points (𝑍i):  

�̂�𝟎 =  
∑

𝟏

𝐝𝐢
𝐩

𝐧
𝐢=𝟏 𝐙𝐢

∑
𝟏

𝐝𝐢
𝐩

𝐧
𝐢=𝟏

 if di > 0;  otherwise (di=0): �̂�𝟎 = 𝐙𝐢         (11) 

where “p” is the inverse distance weighting power (idp) which represent “the degree to which the nearer points are preferred 

over more distant points” (Bivand et al., 2008). IDW assumes that, on average, nearby points are more similar to each other 

than more distant points which are further separated (Li and Heap, 2008), and therefore the weights for the closer ones are 15 

higher than the weights for distant points. 

The result is highly influenced by the inverse distance weighting power chosen. An optimal value of p which 

minimizes a loss function L, popt = argmin L(data, target locations; p), can be found for example  by k-fold cross validation. 

The loss function has to be defined by the user, and a common choice is the Root-Mean-Square Error (RSME) (Janik et al., 

2018). In our case the optimal idp was found to be 1.5 (Figure 3), and interpolations of the AM were carried out using the 20 

observations within a distance of 1,000 km, and a minimum and maximum number of nearest observations was set to 5 and 

75. respectively. 

2.2.2. Ordinary Kriging (OK) 

Trans-Gaussian kriging using Box-Cox transforms (function krigeTg in R software, package “gstat” and “MASS”; Gräler et 

al., 2016; Kendall et al., 2016; Pebesma, 2004; R Core Team, 2018; Venables and Ripley, 2002) was performed with the 25 

arithmetic mean. The normal transformation of data (X) with the transformation parameters lambda (λ) follow Eq. 12 (Box 

and Cox, 1964):  

𝛟𝛌
−𝟏 =  {

𝐗𝛌−𝟏

𝛌
    𝛌 ≠ 𝟎

𝐥𝐨𝐠(𝐗)     𝛌 = 𝟎
            (12) 
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Predictions are carried out over the transformed data, and then unbiased back-transformed to the original scale using the 

Lagrange multiplier (Eq. 13-15; Cressie, 1993; Varouchakis et al., 2012):  

Ẑ(So) =  ϕ (ŶOK(S0)) + ϕ′′(μ̂)(
σOK

2 (S0)

2
− m)         (13) 

ϕ(x) =  {(x ∙  λ)
1
λ    λ ≠ 0

ex              λ = 0
               (14) 

ϕ′′(x) =  {(1 − λ)(x ∙ λ + 1)
1

λ
 − 2    λ ≠ 0

  ex                                       λ = 0
          (15) 5 

where Ẑ(So) is the ordinary kriging predictor on the original scale, ŶOK(S0) is the ordinary kriging predictor on the transformed 

scale data, σOK
2 (S0) the ordinary kriging variance, μ̂ the mean estimate at each location, and m the Lagrange multiplier of the 

OK system for each location (Kozintsev et al., 1999). 

The variogram was modelled with two components: a Matérn model (Minasny and McBratney, 2005; Pardo-

Iguzquiza and Chica-Olmo, 2008) up to a distance of 50 km; and an exponential model up to 1,500 km (Figure 4). The very 10 

low kappa (0.15) points to high “roughness” of the field. Predictions were then carried out with observations within a distance 

of 1,000 km, and using a minimum and a maximum number of nearest observation of 5 and 75, respectively. 

2.2.3 Collocated CoKriging (CoCK) with uranium as secondary variable  

Collocated Cokriging (CoCK) is a special case of cokriging where only the direct correlation between the primary (e.g. AM_z) 

and the secondary variables (e.g. U) is used, ignoring the direct variogram of the secondary variable and the cross variograms. 15 

It simplified the cokriging equations although the secondary variable must be sampled at all prediction points (Bivand et al., 

2008). The method is a simplification of the physical reality, because the dependence structure between covariates is more 

complex, as they result from different physical processes. 

We performed the CoCK with uranium concentration in topsoil as secondary variable since radon is generated in the 

uranium decay series (Cothern and Smith, 1987), and a positive correlation between uranium and indoor radon is therefore 20 

expected. The analysis was carried out with the data log-transformed and then back-transformed to original scale (AM_z) with 

the Eq.  16-17 (where μ is the kriging prediction, and σ the kriging variance):  

E[X] = e(μ+ 
σ2

2
)
             (16) 

var[X] = e(2μ+ σ2) ∙  (eσ2
− 1)           (17) 

The uranium map (Figure 5a; Tollefsen et al., 2016), part of the European Atlas of Natural Radiation, has been created using 25 

approximately 5,000 topsoil data from GEMAS and FOREGS datasets (i.e. GEMAS:  Geochemical Mapping of Agricultural 

and Grazing Land soil in Europe, GEMAS 2008; and FOREGS: Geochemical Atlas of Europe developed by the Forum of 

European Geological Surveys, FOREGSFORGES 2005). Uranium explains about 7.75% of the total indoor radon variability 

(correlation coefficient = 0.2783; Figure 5b). As in the previous cases, a maximum distance of 1,000 km, and a minimum and 

maximum number of nearest observation of to 5 and 75, respectively, were used in the predictions. 30 
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2.2.4 Regression Kriging (RK) 

Regression Kriging (RK) is a two-step interpolation technique: first, a regression estimation of the dependent variable (e.g. 

AM_z) is performed against secondary variables (e.g. geogenic factors); and, second, an analysis of the spatial distribution of 

the residual is carried out using geostatistical methods (i.e. OK; Pásztor et al., 2016). The final estimates are  the sums of the 

regression estimates and the ordinary kriging estimates of the residuals (Di Piazza et al., 2015). The analysis was also carried 5 

out with the log-transformed data, and directly back-transformed with the same equation as in CoCK. 

The technique applied in the regression step can vary (Li and Heap, 2008); here, and we have performed a linear 

regression using topsoil geochemistry (i.e. U and K2O) and geology (i.e. 1:5 Million International Geological Map of Europe 

– IGME 5000; Asch, 2003) as secondary variables. The IGME 5000 has beenis developed by the German Federal Institute for 

Geosciences and Natural Resources; this European GIS project involved more than 40 European and adjacent countries, 10 

covering an area from the Caspian Sea in the east, to the Mid-Ocean Ridge in the west, and from Svalbard Islands in the north 

to the southern shore of the Mediterranean Sea. The aim of the project wasis to develop a GIS underpinned by a geological 

database. The original IGME map presents 178 lithostratigraphic units that were reduced to 28 lithological units (Figure 6). 

Based on ANOVA tests ran on an extensive Italian geological database, Nogarotto et al. (2018) demonstrated that lithology 

alone has a large effect on geochemical variations of key elements (U, Th, K2O), regardless of the tectono-stratigraphic position 15 

of a given unit. It is therefore assigned the prevalence unit to each grid of 10 km x 10 km (Figure 6). 

The procedure is therefore: i) to fit a linear model to the data (Figure 7a and Table 3), the total indoor radon variance 

explained by U, K2O, and simplified geology is 20.24 % (7.75%, 7.88%, and 4.61% respectively); ii) to analyse the spatial 

distribution of residuals, Ordinary Kriging (Figure 7b); iii) to predict a radon value (i.e. log(AM_z)) in each grid using the 

linear model, and add the residual predictions; and iv) to back-transform to the original scale with the equations described in 20 

the previous section (Eq. 16-17; where μ is the linear model prediction plus the ordinary kriging prediction of the residuals, 

and σ is the kriging variance). 

2.2.5 Cross-validation 

The performances of the different methods were assessed by 5x10-Fold Cross-Validation, and by Moving Windows Cross-

Validation (Kasemsumran et al., 2006). For the 5x10-fold cross-validation method, data were randomly split into 10 subgroups 25 

and predictions were carried out 10 times, each time one group is used for validation and 9 for modelling the variable of interest 

(i.e. AM_z) at the validation locations. This process is then repeated 5 times, obtaining a total of 50 realizations. The Moving 

Windows Cross-Validation (MWCV) was carried out with cell sizes of 200 km x 200 km (total number of windows = 197). 

Grid cells within a window are removed, and an AM is predicted with the rest, then errors are calculated and the process is 

repeated with another window until all windows are covered. Some restrictions to the validation set were used to avoid errors 30 

during kriging methods (i.e. number of grids in the validation set higher than one; var(log[U]) > 0; and geological units of the 

validation set must also be in the model set). 
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The accuracy of the different methods was assessed using six indicators: the mean absolute error (MAE), the root-

mean-square error (RMSE), the root-mean-squared log error (RMSLE), the index of agreement (IA), the percentage bias (PB), 

and the coefficient of determination (R2) (Eq. 18-23). 

𝑀𝐴𝐸 =
1

n
∑ |Zi −  Xi|

n
i= 1             (18) 

RMSE = √
1

n
∑ (Zi − Xi)

2n
i= 1            (19) 5 

𝑅𝑀𝑆𝐿𝐸 =
1

n
 ∑ (log(Zi + 1) − log(Xi + 1))2n

i=1          (20) 

IA = 1 −  
∑ (Zi− Xi)2n

i=1

∑ (|Xi−X̅| −|Zi−X̅| )2n
i=1

           (21) 

 PB = 100 
∑ (Zi− Xi)n

i=1

∑ Xi
n
i=1

            (22) 

𝑅2 = 1 − 
∑ (Zi− Xi)2n

i=1

∑ (Xi−X̅)2n
i=1

            (23) 

where Zi and Xi are the predicted and measured values in the validation location (Si), “n” the number of points in the validation 10 

group, and X̅ the mean of Xi. MAE and RMSE are commonly used for assessing model performance; however, they may be 

influenced by outliers (Chen et al., 2017). RMSLE, on the contrary, is less sensitive to outliers and preferable when there is a 

large range in the values (Janik et al., 2018). These parameters are positive values, and the closer they are to 0, the better is the 

model fit. IA is a standardized measure of the degree of model prediction error; it varies from 0 (no agreement at all) to 1 

(perfect match). PB (%) measures the average tendency of having larger/smaller predicted values than the observed ones. The 15 

optimal value is 0, and positive/negative values indicate over/under-estimation bias (Janik et al., 2018). Finally, R2 is a measure 

of how well the model fits a data set; a perfect model has R2 = 1 (Alexander et al., 2015).  

3 Results and discussion 

3.1 Cross-validation 

The 5 x 10-Fold Cross-Validation (Figure 8 and Table 4) shows that geostatistical techniques (i.e. OK, CoCK, RK), which 20 

take into account the spatial autocorrelation of the data, generally perform generally better (i.e. lower MAE, RMLSE; and 

higher R2) than IDW. However, they have a tendency to overestimate bias (PB > 0). Then, geostatistical results are slightly 

improved when geological information is added. The model which has the highest R2 is RK (median = 0.2462), followed by 

CoCK (0.2460), OK (0.2377). RK also is the geostatistical technique with higher IA (0.6014) and lower PB (2.513), and it has 

similar MAE and RMSLE as OK and CoCK (around 47 and 0.36, respectively).   25 

Similar results are obtained in the MWCV exercise (Table 5). Geostatistical techniques (i.e. OK, CoCK, RK) also 

have the highest R2 and the lowest MAE and RMLSE. However, in these cases the RK bias is close to 0 (PB = -0.98), while 

OK and CoCK overestimate the values. MWCV also suggests that results are slightly improved when geogenic factors are 

taken into account: e.g. R2 increases from 0.3457 (OK), to 0.3512 (CoCK), and then to 0.3687 (RK); and the highest IA is 
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obtained with RK (0.4531). However, similar MA, RMSE, and RMSLE also were found (around 54, 136, and 0.48, 

respectively) which indicates the difficulty of predicting an average indoor radon concentration even when secondary variables 

are added. 

3.2 Indoor radon predictions 

Radon predictions with the different methods range from minimum values of 1 - 4 Bq m-3 to up to 10,116 Bq m-3, while the 5 

mean values are in the order of 95 – 105 Bq m-3 (Table 6). The very high value of an AM (i.e. 10,116 Bq m-3) seems improbable, 

although the grid is in a region with uranium deposits and former uranium mines (border region between Spain and Portugal). 

This cell has only two measurements (i.e. 9,726 and 10,507 Bq m-3), so that the level of reliability of this extremely high AM 

is therefore low and it would probably decrease if the number of data were increased. In this sense, IDW interpolation, which 

gives an exact interpolation when the distance between the predicted and measured points is zero, estimates a value that is the 10 

arithmetic mean (i.e. 10,116 Bq m-3). Nevertheless, when the spatial autocorrelation between cells is considered (i.e. OK, 

CoCK-k, and RK), the predicted values, although also high, are reduced to 2,500 - 2,800 Bq m-3. These last latter values may 

be more realistic; and are similar to average values found in some villages of the region (i.e. 1,851 Bq m-3 in Villar de la Yegua, 

Spain; Sainz et al. 2010). However, this effect shows the difficulties with predicting an AM when the number of measurements 

in a grid cell is low. Geostatistical techniques may help to overcome some of these limitations, although the reliability of data 15 

because of different numbers of measurements (e.g. grids with only 1 or 2, and other with more than 20-30 measurements) is 

still a problem. It is also notNor is it clear whether in an “anomalous area” such as the one cited above one, where the geological 

conditions are particular, the covariance function (or the variogram) which has been estimated from all data, still applies. One 

can assume that in such a region second-order stationarity is violated. But the accuracy of local prediction depends very much 

on the local covariance model. 20 

Small differences may be appreciated in the predictions of the different interpolation techniques (Figure 9). IDW and 

OK are methods that rely on the Rn data only, while CoCK and RK use additional predictors (i.e. geology, U and K2O 

concentration in the ground) as secondary variables. The first type is weak in areas with no conditioning data as it simply 

interpolates between existing ones, ignoring physical reality in these areas (e.g. South of Italy, North-East of Germany). 

Including it is the rationale of the second type; practically, missing conditioning data of the primary variable (Rn) are 25 

substituted by functions of the secondary variables. Although physically certainly more reasonable in the physical sense, this 

type is analytically more complicated. 

The influence of geogenic factors on indoor radon is well known, and normally used for radon mapping (e.g. Casey 

et al., 2015; Elío et al., 2017; Pásztor et al., 2016; Scheib et al., 2013; Tondeur et al., 2014). In our cases, an ANOVA analysis 

(Table 3) shows that the total indoor radon variance explained by U, K2O, and geology is about 20% (7.75%, 7.88%, and 30 

4.61%, respectively). Uranium is a source of radon in soil, and thus a positive association with indoor radon is expected (e.g. 

Appleton et al., 2008; Ferreira et al., 2018). However, the Pearson’s correlation coefficient between indoor radon and uranium 

concentration in topsoil is relatively low (r = 0.2783), which implies that CoCK estimations with U as secondary variable are 
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still mainly based on the primary variable (i.e. AM;  Rocha et al., 2012). Therefore, although CoCK performs slightly better 

that than OK, spatial predictions are similar (Figure 9). 

Geology is associated with both uranium/radon source, and with physical properties which permit the release of radon 

from the soil matrix and its transport in the environment (e.g. mineralogy, porosity, permeability, etc.). The total indoor radon 

variance explained by geology is normally in the order of 5% - 25% (Appleton and Miles, 2010; Borgoni et al., 2014; Miles 5 

and Appleton, 2005; Tondeur et al., 2014; Watson et al., 2017), although it depends on the geological scale map (i.e. increase 

with the scale; Appleton and Miles, 2010). A 4.64% of indoor radon variation explanation is therefore reasonable, taking into 

account that we used a simplified 1:5 million geological map, and that data are averaged over grids of 10 km x 10 km. 

The positive correlation between indoor radon and potassium is, however, not evident. K2O may be related with clay 

content in soils (e.g. Barré et al., 2008; Milošević et al., 2017; Tarvainen et al., 2005), and although the permeability of wet 10 

clays is low, it may increase when soils are dried (Petersell et al., 2005) as a consequence of building a house (Barnet et al., 

2008). This hypothesis should be tested, since clay soils are normally considered as low risk although its radium concentration 

may be high (Maestre and Iribarren, 2018). We have decided, however, to include this parameter into the model since previous 

studies have shown a positive association between indoor radon and K2O/clay (Forkapic et al., 2017). 

Back-transform predictions to the original scale is a critical point of lognormal and trans-Gaussian kriging. OK as 15 

given in this study solves this problem by using the Lagrange multiplier in the back-transformation. However, the E[X] and 

Var[X] for CoCK and RK are biased, unless the true mean is known (although for RK it should be zero by definition). These 

equations should also use the Lagrange multiplier which appears in the kriging system (Chilès and Delfiner, 1999; Matheron, 

1974); but unfortunately in common geostatistical packages this parameter is not accessible, and it is not easy to estimate it. 

Another problem with lognormal kriging is that ill-assessment of the kriging SD leads to large errors in E[X] and Var[X] due 20 

to exponentiation, so that variogram parameters must be estimated very carefully (Armstrong and Boufassa, 1988). Deviations 

from stationarity and uni- as well as multivariate lognormality are also critical (Cressie, 1993; Roth, 1998). On the other hand, 

in highly skewed quantities (as is typical for Rn and in fact for many positive- definite environmental quantities such as 

concentrations) there seems to be little choice but to working with transformed (e.g. log, Box-Cox, Nscore) variables. 

Finally, a theoretical problem, if using kriging-type interpolators, may be the fact that input data are actually cell or 25 

grid means (blocks in geostatistical language), treated as point samples. The change of support problem, which is particularly 

unpleasant in lognormal kriging, may be alleviated since the target supports are also the same. We regard input data as point 

data at the cell centre, and estimate points at other locations that again represent again cells of the same size. However, the 

theoretical aspect remains to be clarified in more depth. Taking into account all of these limitations and weaknesses, the 

solution demonstrated here however represents however an acceptable compromise between mathematical exactness, 30 

numerical tractability, and complexity of the physical realm.  
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4 An allPan-European indoor radon map  

We would like to produce an AllPan-European Indoor Radon Map by minimising data processing, and therefore we prefer to 

estimate the radon average directly by indoor radon measurements carried out at each grid (i.e. AM_z). However, if the number 

of measurements were low, the uncertainty of this value could be high. In this sense, if dwellings were randomly selected and 

therefore representative, which is the condition for unbiased estimates of the mean and other statistics, and the sample size 5 

large, the mean value and the confidence interval would be (Eq. 24):  

�̅� =  
𝟏

𝐧
∑ 𝐱𝐢

𝐧
𝐢 ±  𝐭(𝟏−

𝛂

𝟐
,𝐧−𝟏)  

𝐬

√𝐧
           (24) 

An additional condition for the validity of the confidence interval is statistical independence of the data. For large n, due to the 

Central Limit Theorem, t1-/2;n-1 can be approximated by the normal score x1-/2. 

The confidence interval decreases when the sample size increases. In our cases (Figure 10), the relative (to the mean) 10 

CI95% (α = 0.05) for sample size of about 30-40 data is around ±5%, and generally lower than 15 - 30%. Therefore, although 

the assumption of data independence is not valid (i.e. there is spatial correlation between indoor radon measurements which 

can be modelled by the variogram), 30 measurements seems reasonable for obtaining a good estimation of the radon exposure 

in a specific grid (Figure 11). However, if sampled dwellings were highly clustered, the AM could be not representative of the 

radon exposure in a grid even with high numbers of indoor radon measurements. 15 

For the final AllPan-European Indoor Radon Map (Table 7 and Figure 12), we use therefore the AM of the grids cells 

with 30 or more measurements (Figure 11), and the value predicted by RK (Figure 9) in the grids cells with less than 30 

measurements. Indoor radon concentration ranges from 3 to 2,662 Bq m-3, with a mean value of 98 Bq m-3. The standard 

deviation may be calculated with the SD of the measurements carried out in the grids with 30 or more data, and with the kriging 

standard deviation of the RK (i.e. grids with less than 30 measurements). It ranges from 1 to 3,233 Bq m-3, with RSD from 3% 20 

to up to 1,101%. The map appears differently “noisy” to varying degrees betweenin different regions. The reason is that in 

regions with more conditioning, Rn data, local variability of the estimate is higher than in regions with sparse or without data, 

where the estimate is based essentially on geology and geochemistry. These covariates are much smoother on the scale 

available to us than Rn data, where available. Would we dispose of denser geochemical data and higher resolution geological 

maps, also these regions would appear noisier. 25 

5 Conclusions 

After more than 10 years of Rn data collectingon and processing Rn data, with the support of 32 European countries, we could 

cover approximately 50% of the continent with 10 km × 10 km grids containing the mean indoor radon concentration in ground 

floors of dwellings. However, the finalization ofcompleting the European Indoor Radon Map still requires a significant effort 

by the participating countries, since a robust estimation of the radon exposure in a grid of 10 km x 10 km involves at least 30 30 

indoor radon measurements and, at the time of writing this article, most of the grids cells sampled (78%) have less than 20 
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dwellings tested. Interpolation techniques which take advantage of the contiguity of Rn seen as spatial random field, may help 

to overcome some of the present limitations, and would permit to estimatinge the radon exposure at European scale until the 

coverage of all Europe with indoor radon measurements has strongly improved. 

Of the four methods tested in this study, Regression Kriging (RK), using a simplified geological map and the topsoil 

concentration of U and K2O, has proven to be the best one for predicting mean indoor radon concentrations over grids of 10 5 

km x 10 km (i.e. arithmetic mean, ground floor). By combining RK predictions with empirical average values (AM) in grids 

with 30 or more measurements, a n AllPan-Europe Indoor Radon Map has been created. The map represents the average value 

of indoor radon concentration in on ground floor, and thus it is not representative of the radon exposure to European citizens 

since most people do not leave live on ground floor (Cinelli et al., 2019). However, it is the first step towards a Rradon 

exposure, and, further on, a dose map. Based on demographic and sociological databases, we plan to develop models which 10 

allow correcting from ground- floor dwellings to the real situation, accounting for the building stock (Bossew et al., 2018). 

The AllPan-European Indoor Radon Map is not a finished map, and it will be upgraded when as new data are become 

available. In future versions a larger scale of the geological map (e.g. scale 1:1 million), as well as other geogenic factors 

which may influence in the indoor radon concentration (e.g. soil units, aquifer types) would be included in the model. 

Furthermore, the influence of anthropogenic factors and factors those which may affect building characteristics and living 15 

styiles (e.g. average temperatures, annual precipitation, altitude, etc.) will be analysed. Finally, Machine Learningmachine-

learning techniques are viewed as promising methods for modelling the AM since kriging-type predictions come to an end if 

many (among theminter- correlated) predictors are involved. 
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Table 1: Number of dwelling sampled by grid cells of 10x10 km in the study area 

Dwellings Number of grids 

 N = 1 6,643 

1 < N ≤ 5 9,064 

5 < N ≤ 10 3,306 

10 < N ≤ 20 3,161 

20 < N ≤ 30 1,896 

30 < N ≤ 23,993 4,398 

TOTAL 28,468 

 

Table 2: Summary statistics of indoor radon data (AM_z) after merged border grids (N = 25,367).   

 Min. Q1 Median Mean Q3 Max 

AM [Bq m-3] 1 40 71 103 123 10,116 

SD [Bq m-3] 0 20 47 89 100 6,873 

RSD [%] 0 45 67 72 92 370 

 

Table 3: ANOVA table for indoor radon concentration 5 

 Dfdf Sum Sq. Mean Sq. F Value Pr(>F)  

Log(U) 1 1457.8 1457.77 2461.303 <2.2e-16 *** 

Log(K2O) 1 1483.6 1483.58 2504.891 <2.2e-16 *** 

Sim. Geology 27 868.1 32.15 54.228 <2.2e-16 *** 

Residuals 25337 15006.5 0.59    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 4: 5 x 10-Fold Cross-validation results 

Method MAE RMSE RMSLE IA PB R2 

IDW 50.07 113.44 0.4189 0.5755 -0.346 0.2352 

OK 46.98 112.10 0.3728 0.5680 4.785 0.2377 

CoCK 46.62 111.64 0.3711 0.5741 5.326 0.2460 

RK 47.41 111.73 0.3744 0.6014 2.513 0.2462 
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Table 5: Moving windows cross-validation results 

Method MAE RMSE RMSLE IA PB R2 

IDW 57.756 138.33 0.5457 0.4116 -1.899 0.1001 

OK 53.926 136.60 0.4765 0.4142 3.758 0.3457 

CoCK 53.990 136.28 0.4870 0.4033 2.851 0.3512 

RK 55.573 136.41 0.4863 0.4531 -0.980 0.3687 

 

Table 6: Summary indoor radon predictions (AM, ground floor) 

Method Min Q1 Median Mean Q3 Max SD 

IDW 1 52 84 105 129 10,116 115.14 

OK 4 52 80 95 120 2,546 67.40 

CoCK 3 51 79 95 121 2,768 69.33 

RK 3 51 79 98 123 2,661 73.81 

 

Table 7: Summary indoor radon at European scale 5 

 Min Q1 Median Mean Q3 Max SD 

AM (Bq m-3) 2.8 50.8 78.7 97.1 122.2 2661.4 76.1 

SD (Bq m-3) 1.1 28.0 45.0 61.7 73.4 3232.7 76.7 

RSD (%) 2.9 44.9 60.9 60.3 67.2 1101.0 22.8 

 

 

 

 

 10 
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Figure 1: Arithmetic mean (AM_z) over 10 km x 10 km grid cells (Bq m-3) and Relative Standard Deviation (RSD = 

AM/SD) 

 

Figure 2: Histogram and q-q plot of average indoor radon concentration (AM_z) in ground floor of dwellings 
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Figure 3: Inverse distance weighting power (idp) optimization 

 

Figure 4: Model variogram (blue line; green dots are pairs of points up to a distance of 50km, and red points up to 1500 

km), and 100 variograms from random permutations of the data (grey lines) 
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Figure 5: a) Uranium concentration in topsoil (Max = 9.73 mg km-1; Tollefsen et al., 2016), and b) scatterplot between 

indoor radon and uranium concentration in topsoil 

 

 

Figure 6: Simplified geology map with geological units defined on lithology basis (Nogarotto et al. 2018). The base 5 

geological map is the IGME (Asch 2003) 
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Figure 7: a) Linear model and b) variogram of residuals 

 

 

Figure 8: Boxplot of the 5x10 fold cross-validation results 
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Figure 9: Indoor radon predictions (AM [Bq m-3], ground floor) 
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Figure 10: Variation of the 95% confidence interval of the arithmetic mean according to the sample size (N) 

 

 

Figure 11: Grids with 30, or more, indoor radon measurements (N = 4,173; AM: Arithmetic Mean in Bq m-3, RSD: 

Relative Standard Deviation in %) 5 
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Figure 12: Final Pan-European iIndoor rRadon mMap 
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