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Abstract. Geomorphological field mapping is a conventional method to prepare landslide inventories. The approach is typically

hampered by the accessibility and visibility, during field campaigns for landslide mapping, of the different portions of the

study area. Statistical significance of landslide susceptibility maps can be significantly reduced if the classification algorithm

is trained in unsurveyed regions of the study area, for which landslide absence is typically assumed, while ignorance about

landslide presence should actually be acknowledged. We compare different landslide susceptibility zonations obtained by5

training the classification model either in the entire study area or in the only portion of the area that was actually surveyed,

which we name effective surveyed area. The latter was delineated by an automatic procedure specifically devised for the

purpose, which uses information gathered during surveys, along with landslide locations. The method was tested in Gipuzkoa

Province (Basque Country), North of the Iberian Peninsula, where digital thematic maps were available and a landslide survey

was performed. We prepared the landslide susceptibility maps and the associated uncertainty within a logistic regression model,10

using both slope units and regular grid cells as reference mapping unit. Results indicate that the use of effective surveyed area

for landslide susceptibility zonation is a valid approach to minimize the limitations stemming from unsurveyed regions at

landslide mapping time. Use of slope units as mapping units, instead of grid cells, mitigates the uncertainties introduced

by training the automatic classifier within the entire study area. Our method pertains to data preparation and, as such, the

relevance of our conclusions is not limited to the logistic regression but are valid for virtually all the existing multivariate15

landslide susceptibility models.

1 Introduction

Landslide Susceptibility Zonation (LSZ) is important for landslide mitigation plans, since it supplies planners and decision

makers with essential information (Van Den Eeckhaut et al., 2012). Landslide susceptibility is defined as the likelihood of

a landslide occurring in an area on the basis of the local terrain and environmental conditions (Brabb, 1984; Guzzetti et al.,20

2005).

A large number of LSZ studies based on statistical methodologies (Reichenbach et al., 2018) and comparative studies

(Cascini, 2008; Das et al., 2010; Schicker, 2010; Amorim, 2012; Blais-Stevens et al., 2012; Trigila et al., 2015; Wang et al.,
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2015) were published in the last decades. Many statistical methods, aimed at estimating the propensity of a territory to experi-

ence slope failures, rely on landslide inventory maps and spatial thematic layers (Van Den Eeckhaut et al., 2006).

In statistical landslide susceptibility models, as the logistic regression (LR) model adopted in this work, the preparation of

the training dataset is a fundamental and critical step. Commonly, this requires the selection of a sample of stable (without

landslides) and unstable (with landslides) mapping units. While assuring the presence of a landslide is straightforward, and5

it can be supported by the geomorphological signatures on the slope or by direct observation of the events, the selection of

landslide-free areas is more critical. Assuming as landslide-free the locations of a study area where no landslides were reported

in a field survey is correct only in the unlikely circumstance that the landslide inventory has been prepared surveying every

single site of the study area, and following homogeneous criteria. In other words, any landslide-free location in an inventory

map should have been explicitly checked to be free from landslides.10

Nowadays, there are methods based on the visual interpretation of aerial photographs or digital processing of remotely ac-

quired optical and radar imagery (Herrera et al., 2009; Mondini, 2017; Alvioli et al., 2018b), that allow to prepare historical

and event landslide inventories. However, the adoption of such methods can be hampered by the lack of imagery or of image

interpretation/classification expertise. Alternatively, bibliographic sources like newspapers and news feeds, administrative re-

ports or scientific literature can be used to obtain landslide information. Nevertheless, the downside of these type of data is15

that they hardly are as accurate as required by LSZ studies. As a consequence, sometimes the best option to obtain a reliable

landslide inventory is a straightforward geomorphological field mapping. A detailed discussion about the characteristics, ad-

vantages and limitations of different approaches for landslide mapping can be found in Guzzetti et al. (2012); Santangelo et al.

(2015); Fiorucci et al. (2018).

An operational disadvantage of field-based landslide mapping is the difficulty in surveying the whole area where the LSZ20

must be carried out since some places can be inaccessible or not visible from the accessible places. Difficulties in surveying

the landscape affect the completeness and the spatial representativeness of the landslide inventory and, as a result, inclusion of

non-visible areas within a landslide inventory introduces a bias since presence or absence of landslides cannot be ascertained

in such portions of landscape. This uncertainty has hardly been considered in existing studies that use field-based landslide

inventories.25

On the other hand, selection of an appropriate terrain subdivision is also a critical phase in LSZ analysis. The land surface

can be divided in portions following geomorphologic features using terrain units, topographic units, geo-hydrological units or

slope units, but also considering thematic layers resulting in unique condition units or administrative units, as well as regular

grid cells partitions (Reichenbach et al., 2018; Van Den Eeckhaut et al., 2006). Selection of different mapping units can result

in considerable differences in the susceptibility assessment (Carrara et al., 2008). In this work, we considered grid cells and30

slope units (Carrara et al., 1991, 1995; Alvioli et al., 2016; Guzzetti et al., 2006), and investigated the effect of the different

ways of training LSZ models within both types of mapping units.

We propose a procedure to delineate the effective surveyed area (ESA), the actual area which was explicitly surveyed,

in preparing a landslide inventory by geomorphological field mapping, and to use such relevant information in the statistical

analysis. The procedure allows to carry out the calibration of the statistical model within the ESA and then to apply the resulting35
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susceptibility model to the whole area (WA) under investigation. Moreover, we implemented an automatic approach for the

delineation of the ESA in a newly developed software named r.survey.py (see section 3.3). The software is able to delineate the

ESA selecting the visible area from a given set of points of view in an objective and reproducible way.

This work aims at demonstrating that the calibration of a landslide susceptibility model within the ESA (i.e., the visible

portion of the territory during the survey), instead of the WA, enhances the performance of model itself. In a test study area,5

we calibrated the LR model for landslide susceptibility, implemented in the LAND-SE software of Rossi and Reichenbach

(2016), in four different ways, combining two different calibration areas (ESA and WA) and two different mapping unit types:

(i) a regular grid cell partition with a ground resolution of 5 m x 5 m and (ii) an SU partition (consisting in irregular terrain

subdivisions bounded by drainage and divided lines) obtained using the GRASS GIS module r.slopeunits developed by Alvioli

et al. (2016) (see section 3.4).10

The paper is organized as follows. Section 2 provides an overview of the study area. Section 3 shows the details about the data

acquisition. Section 4 contains a general description about the multivariate method applied to model the landslide susceptibility

and the approach followed for validate it, as well as a detailed description about the set-up of the different models. Results are

described in Section 5, and are further discussed in Section 6. Eventually, our conclusions are drawn in Section 7.

2 Study Area15

The Gipuzkoa Province was selected as test study area. It is located in the north of the Iberian Peninsula along the western end

of the Pyrenees, and covers an area of 1980 km2, with altitude ranging from the sea level to 1528 m a.s.l. Six watersheds of

different size drain the study area and reach the Cantabrian Sea (Fig. 1a). The province is characterized by a steep morphology

with 55% of its surface having a slope higher than 15◦.

The investigated area is lithologically heterogeneous (Fig. 1b), with materials ranging from Paleozoic rocks to Quaternary20

deposits (EVE, 2010), and it corresponds to a hilly and mountainous Atlantic landscape (Mücher et al., 2010). It presents an av-

erage annual precipitation of 1597 mm (González-Hidalgo et al., 2011) with two maximum periods: 34% in November-January

and 10% in April. Even though rainfall is the primary triggering factor of landslides (Alvioli et al., 2018a), anthropogenic slope

modifications such as slope clearings and forest extraction activities also strongly affect landslide occurrence (Corominas et al.,

2017) in the area.25

3 Data preparation

3.1 Landslide inventory

We prepared a landslide inventory by a direct geomorphological field survey, during the period from June to August of 2016.

We collected information about the location of each observed landslide, four GPS points (crown, toe, and two flanks), pho-

tographs, surrounding area features and information about the landslide type, according to the Cruden and Varnes (1960)30

classification. Moreover, and most importantly for the aim of this work, we digitized the route followed during the field survey.
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The information will be later elaborated for the definition of the ESA, using a software developed for the purpose and included

in this work as supplementary material.

Each documented landslide was drawn and digitized using a combination of the QGIS software and Google Earth satellite

imagery. As a result of several field trips, 793 individual landslides were collected; 746 of them were classified as shallow

movements (Fig. 2a). The latter were used as landslide presence when defining the dependent variable in the susceptibility5

assessment. Figures 2b and 2c show the distribution of landslide sizes, highlighting that a difference of five orders of magnitude

exists between the smallest and the largest inventoried shallow landslide.

3.2 Explanatory Variables

The selection of the appropriate explanatory variables to build a landslide susceptibility model is an important step (Ayalew

and Yamagishi, 2005; Schlögel et al., 2018), and no universal criteria nor guidelines exist for the purpose.10

We obtained relevant environmental digital layers from the Spatial Data Service of the Basque Country1, and created 13

maps describing the different explanatory variables (see Table 1). For categorical variables, we computed frequency ratio (FR)

values for each class, and used them as a relative value for their transformation into continuous variables (Lee and Min, 2001;

Yilmaz, 2009; Trigila et al., 2015). We acknowledge that the FR values can vary depending on the portion of the territory

considered as the total area (ESA or WA). In order to perform a direct comparison, we decided to maintain the same FR15

values (calculated considering the WA) in all regular grid cell-based susceptibility analysis. Eventually, to produce derived

morphometric continuous variables, we used a DEM raster layer with 5 m x 5 m spatial resolution.

In this work, we first adopted grid cells as mapping units, and we applied a simplified and statistically oriented work-flow that

ensured that only significant variables were taken into account as well as the non-redundancy of the contributed information by

each covariate (Ayalew and Yamagishi, 2005). To do so, the whole set of 13 variables were considered within the LR analysis,20

and correlation coefficients were computed. We considered as collinear two variables when their correlation coefficient is

greater than 0.5 with a significance level of 0.01. In such a case, as an objective criterion for variable selection, the variable

with highest p-value between the two (see section 4.1), was not taken into consideration in the final run of the susceptibility

LR model. Additionally, variables with p-value higher than the threshold of 0.05 were rejected.

Then, considering the variables actually used for the application of the statistical models with grid cells, we have further25

restricted the set of variables to be used with slope units (see section 5.2).

3.3 Definition of the effective surveyed area

In this work we suggest the concept of ESA, and training of statistical models therein, as an approach to be used to train a land-

slide susceptibility model avoiding assumptions about the presence or absence of landslides in areas not explicitly observed.

We defined the ESA by means of the newly developed GRASS GIS python module r.survey.py (see supplementary material).30

The software makes use of the map of the routes followed by the geomorphologists during field surveys and of a few additional

inputs, namely: i) the maximum distance between points sampled from the path; ii) the maximum visible distance; iii) a DEM
1http://www.geo.euskadi.eus
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of the area. In a 10 km2 subset of the study area, we have tested the software output using: i) maximum distance between

sampled points of 50, 100, 200 and 500 m; ii) maximum visible distance of 500 and 1100 m (the later was dictated by the

largest distance between the digitized field path and the farthest landslide pixel in the study area, 1092 m); ii) the original DEM

at 5 m resolution and resampled versions of the DEM at 20, 50 and 100 m resolution. From the experiment, we concluded

that the best settings in terms of accuracy and processing time were: maximum sampling distance of 100 m, maximum visible5

distance of 1100 m, DEM resolution of 100 m. We used these values for the analysis of the entire study area to define the

overall ESA. We can make sense of the numerical values of the parameter used in the r.survey.py software considering that the

minimum size A of an object visible from a distance ∆ is given by Rodrigues et al. (2010) and Minelli et al. (2014):

A =
25∆2

c
, (1)

where c is a steradiant to square minutes conversion factor, c ' 1.18·107. Using ∆ = 1,100 m in Eq. (1), we get A = 2.6 m2,10

meaning that the smallest landslide in our inventory, with size 7.3 m2, would actually be identifiable from at least one point

along the route, if the landslide sits within the ESA. The resulting ESA covers 44.24% of the entire study area and it is shown

in Fig. 2a.

3.4 Slope units delineation

For SU delineation we have adopted the r.slopeunit software described in Alvioli et al. (2016). The software is a GRASS GIS15

module, as the r.survey.py code presented in this work, and it was designed for the automatic and adaptive delineation of SUs,

given a DEM and a set of user-defined input parameters. The code can be used to produce several SU partitions, using different

combinations of the input parameters, which can thus be tuned according to user-defined criteria. We partially followed Alvioli

et al. (2016), in that we selected the best SU partition maximizing the quality of terrain aspect segmentation. In addition, we

have performed preliminary tests using the LR susceptibility model, showing that the use of very small SUs provides unrealistic20

results, which can be understood considering the limited variability of variables within such small SU polygons. We concluded

that, in the case of the Gipuzkoa Province the most suitable SU partition for landslide susceptibility zonation should be obtained

with the following r.slopeunits input parameters: flow accumulation area threshold t = 1,000,000 m2; minimum SU planimetric

area a = 0.15 km2; minimum circular variance of terrain aspect within each SU c = 0.2; reduction factor r = 5; threshold value

for the cleaning procedure cleansize = 25,000 m2. As a result, we obtained a set of SUs which range in size from 0.026 km2 to25

3.6 km2 with average 0.28 km2. A discussion of SU delineation and optimization of input parameters can be found in Alvioli

et al. (2016) and Schlögel et al. (2018), and it is out of the scope of this work.

4 Modelling framework

Four landslide susceptibility maps (LS maps) were prepared by means of a statistical approach. All the maps were obtained

using LR and their classification performances were measured by means of a set of validation tests explained in the following30

sections. We prepared the first two maps using 5 m x 5 m regular grid cells as mapping units. The two maps differ because in
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one case the LR model was calibrated within the ESA, and within the WA in the other case. The third and fourth LS maps,

instead, were prepared with different mapping units, namely with SUs instead of grid cells. We end up with four maps, which

we name as follows: WA-PM (whole area, pixel map), ESA-PM (effective surveyed area, pixel map), WA-SUM (whole area,

slope unit map) and ESA-SUM (effective surveyed area, slope unit map).

4.1 Logistic regression5

We used logistic regression (Hosmer Jr et al., 2013), one of the multivariate statistical approaches available in the LAND-

SE software (Rossi and Reichenbach, 2016), to build the susceptibility model in the test study area. The method is the most

used in the scientific literature (Reichenbach et al., 2018) and proved to be useful and reliable in several studies (Nefeslioglu

et al., 2008; Van Den Eeckhaut et al., 2012; Trigila et al., 2015). The LR model works with either continuous or categorical

independent variables, or a combination of the two types, regardless whether they present a normal distribution or not (Costanzo10

et al., 2014).

The underlying mathematical relationship between the dependent dichotomous variable (presence/absence of a landslide in

the mapping unit; Y in the following) and the n independent variables (e.g., slope, lithology, etc.;X1, ...,Xn), reads as follows:

Y = β0 + β1X1 + ... + βnXn , (2)

where β0 is the intercept of the model and β1, ...,βn the linear regression estimate coefficients. The independent (explanatory)15

variables,X1, ...,Xn, included in our case both continuous and categorical layers; see Table 1 for a list of variables used in this

work. Calibrating an LR model amounts to selecting numerical values for the {βi}i=n
i=1 coefficients in Eq. (2) that maximize the

agreement between model output, i.e. landslide probability:

P =
1

1 + e−Y
, (3)

and empirical landslide data, in a training area. The same values of the coefficients can then be used to validate the model20

prediction skills in a different area, where landslide conditions are unknown to the model but the same explanatory variables

layers exist.

In addition to the β coefficients, the LR method also offers a significance p-value for each explanatory variable. A p-value

higher than 0.05 indicate a weak relation between explanatory variables and the dependent variable (SPSS, 2011). In such a

case the variable is not statistically significant and it can be removed from the analysis. Conversely, in statistical terms, those25

predictors with p-value under the threshold value of 0.05 are all equally significant. Thus, p-value can be considered as an

objective indicator for the selection of the most relevant variables to be used in the statistical model (Schlögel et al., 2018).

4.2 Evaluation of model performance

The performance of susceptibility models, i.e. of multivariate binary classifiers, can be evaluated comparing its predictions with

the landslide data used in the model calibration/training phase (i.e. model fitting performance) or with independent landslide30

6
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data (i.e. model prediction performance). The statistical metrics commonly used in the literature (Reichenbach et al., 2018) for

that purpose are (i) confusion matrices (contingency tables) and their graphical representation (four-fold or contingency plots),

(ii) Receiver Operating Characteristic (ROC) curves and their associated Area Under Curve (AUC) value, (iii) classification

error plots and (iv) Cohen’s kappa index.

Four-fold (or contingency) plots are visual representations of the confusion matrices reporting the percentages of the true5

positives (TP ), true negatives (TN ), false positives (FP ) and false negatives (FN ). ROC curves are more complex represen-

tation of the classification performance based on different probabilistic threshold values. The area under the ROC curve (AUC)

is an indicator of the model performance in predicting landslide susceptibility. AUC values vary between 0 and 1, with higher

values indicating better prediction skills (Fawcett, 2006).

To estimate the uncertainty associated with the landslide susceptibility value assigned to each mapping unit, it is possible10

to run multiple instances of the LR model varying, randomly, the input data. In each run, the input is prepared sampling the

original training dataset with a bootstrap technique (Rossi et al., 2010; Rossi and Reichenbach, 2016). Classification error

plots summarize the distribution of multiple results and show the mean probability estimate of landslide spatial occurrence

for each mapping unit (x-axis), ranked from low (left) to high (right) values, related to the variation of the model estimate

(y-axis), measured by 2 standard deviations (2σ) of the probability estimates obtained by the different model runs (Guzzetti15

et al., 2006). The parabolic model fitting equation resulting from the point cloud (i.e. using a non-linear least square method),

describes analytically the overall model prediction performance variability. Cohen’s kappa index (k) is an additional measure

of the reliability of a classification model (Cohen, 1960; Rossi et al., 2010), whose higher values also indicate a more accurate

prediction skill.

The probability of landslide occurrence resulting from each model estimate (trained either within the ESA or within the20

WA) and for each considered mapping unit (either grid cells or slope units), can be reclassified in five landslide susceptibility

classes which were labelled as Very low (for susceptibility values in the range 0-0.2), Low (0.2-0.45), Medium (0.45-0.55),

High (0.55-0.8) and Very high (0.8-1).

In this work, in order to spatially identify the pairwise matching degree between different model estimates, we additionally

adopted a simplified classification of the landslide susceptibility. Each mapping unit was reclassified as stable or unstable25

considering a threshold value of 0.5. The different maps, all prepared with the same mapping unit partition, were overlapped.

Then, the mismatch degree between grid cell and SU susceptibility maps was quantified in terms of number of mismatched

mapping units and overall mismatched area.

4.3 Data selection for landslide susceptibility

The DEM available for the study area consists of 7.91·107 cells with 5 m resolution. For landslide susceptibility assessment,30

both using pixels and SUs, we prepared raster layers corresponding to each available explanatory variable, aligned to the DEM

grid cells.

We devised a rigorous sampling procedure to minimize possible statistical biases during training/validation partition. The

procedure is slightly different for the pixel and SU mapping units cases.

7
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In the first case, a grid cell was considered unstable if it is located within any landslide area, and stable if it is outside the

landslide boundaries. In the second case, an SU was considered unstable depending on the percentage of landslide area present

within it. In any case, the 75% of the unstable mapping units together with a similar amount of stable mapping units were used

to train the LR model, and the remaining 25%, also together with a similar amount of stable mapping units, for validation.

For regular grid cell-based models, we selected at random 558 landslides (75%) for model training, and converted them into5

raster layers (84,623 unstable pixels). The remaining 188 landslides (25%), used for validation, were also rasterized (29,247

unstable pixels). This is at variance with the usual random selection of unstable pixels, in which a given percentage of grid

cells are sampled within landslide. Here we select whole landslides, and consider all the pixels encompassed by the landslide

bodies as training/validation samples. We ran the experiment with three different training/validation random sets, containing

the above percentages, and selected the one with the best classification results. This exercise allowed us to avoid unbalanced10

partition of outliers which could lead to biased conclusions. Then, two different training samples were created. The entire

training pixel sample includes 84,623 stable pixels (selected at random within the WA) and an equal number of unstable pixels.

The effective training pixel sample includes again 84,623 stable pixels (selected at random within the ESA) together with the

same unstable pixels as in the other case. The unstable pixels are exactly the same in the two cases, because we wanted the

only difference to be that the stable pixels are sampled within the WA, in the first case, and within the ESA, in the second15

case. Additionally, we selected at random 29,247 grid cells among the remaining stable pixels and an equal number of unstable

pixels; we named this set as validation pixel sample and we used it to evaluate the model prediction performances. This is to

guarantee the comparability of the prediction performances for both the models trained in WA and in ESA, respectively.

Concerning the SU-based models, we first partitioned the study area in 6,907 SUs with the technique outlined in Section 3.4.

SU boundaries do not match those of the dependent or explanatory variables layers, allowing the presence of different classes,20

or values, inside each SU. For this reason, we considered as unstable those SUs containing equal or more 0.15% of unstable

pixels, (i.e., the landslide density in the WA), and stable otherwise. We used as explanatory variables the mean and the standard

deviation of the morphometric variables for each SU and the percentage of the area covered by each class of the categorical

layers.

We selected at random 228, out of the 304 unstable SUs, (75%) for training, and the remaining 76 (25%) were used for25

validation. Like in grid cell approaches, we selected two different training samples. The entire training SU sample includes 228

stable SUs selected at random along the entire study area together with the training unstable SUs. On the other hand, effective

training SU sample includes 228 stable mapping units selected at random among those SUs that at least partially overlap the

ESA together with the training unstable SUs. In order to complete the validation SU sample, we also selected 76 stable SUs at

random among those that partially overlap the ESA.30

Finally, considering that the ESA is an approximation of the real surveyed area, we stress that we always selected stable

mapping units for validation only if they are fully or partially within the ESA, because no evidence exists that a mapping unit

falling entirely outside the ESA is actually free from landslide. Moreover, if a portion of an SU falls within the ESA, that

implies that at least one part of the SU was observed. Therefore, using this approach, we can remove at least those SUs that

were not surveyed at all.35
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5 Results

5.1 Susceptibility maps using grid cells

We ran the LR model using the pixel-based datasets twice: once using the entire training pixel sample and once using the

effective training pixel sample as dependent variables. We defined the obtained results as whole area pixel map (WA-PM) and

effective surveyed area pixel map (ESA-PM), respectively.5

Both in WA-PM and ESA-PM, we first used the same 13 explanatory variables, listed in Table 1, and then we selected for

each model assessment, the most relevant explanatory variables considering the collinearity between each pair of variables and

the significance (p-value) of the regression estimates (see section 3.2). As a result, for each case, only the variables marked

with an asterisk in Table 1 were introduced in the final LR analysis.

Using the validation pixel sample, we evaluated the prediction skills of the pixel susceptibility maps. Inspection of the four10

fold, or contingency, plots (Figs. 3a, d) reveals that WA-PM predicted correctly the 63.58% (TP+TN) of the observed unstable

and stable mapping units, whereas ESA-PM was capable to correctly predict a higher amount of mapping units (65.45%). The

ROC curves (Figs. 3b, e) also indicate better prediction skills in ESA-PM (AUC = 0.7) than in WA-PM (AUC = 0.68) and

the same happens for the Cohen’s Kappa index (Fig. 3) (k = 0.309 versus k = 0.272). Moreover, the almost flat classification

error plots in both cases (Figs. 3c, f) show high stability of model results, which confirms the reliability of the validation tests15

obtained in WA-PM and ESA-PM.

Thus, considering these metrics, we can infer that the pixel susceptibility map which considers only stable mapping units

inside the ESA exhibits the best prediction capacity.

5.2 Susceptibility maps using slope units

Due to the subdivision of categorical variables in different classes for model assessment with SUs, the variable selection20

approach used in the pixel-based case is not viable when working with SUs and a specific variable selection approach for

SU models would require further investigation. Thus, for this work, the most appropriate set of explanatory variables, among

those considered as the most relevant in pixel-based model assessment, was selected by expert criteria. Considering such set

of variables as a starting point, we selected new sets of explanatory variables to evaluate landslide susceptibility using SUs,

i.e. to calculate the whole area slope unit map (WA-SUM) and the effective area slope unit map (ESA-SUM). Taking into25

account that the automatic procedure for the SUs definition already included the flow accumulation calculation, used for TWI

estimation, and the aspect component, we rejected Aspect and TWI to avoid spurious correlations. We selected the following

set of variables used to produce both pixel-based maps such as Lithology, Permeability, Regolith thickness and Vegetation, and

we added Slope. The reason for choosing Slope over Senoidal slope or SAR is due to the fact that these two are derivative

variables of the former, so we decided to select the original layer to simplify interpretation of the results.30

Using the validation SU sample, we assessed the prediction skills of the SU maps. For the WA-SUM the 65.13% of the

152 validation mapping units were correctly classified (TP+TN) (Fig. 4a). The ROC curve provides an AUC value of 0.69,

and the corresponding Cohen’s Kappa is 0.302 (Fig. 4b). Concerning the classification error plot (Fig. 4c), it can be observed
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that in the SUs with high and low landslide susceptibility probability (probability > 0.8 and < 0.2) the 2σ value stays below

0.2, but variability in the estimates becomes larger for intermediate susceptibilities. This reveals a considerable variation in the

stable/unstable classification of the territory, which implies a low reliability, at least for the intermediate probabilities (Guzzetti

et al., 2006). For the ESA-SUM, the 63.82% of the 152 validation mapping units were correctly classified (TP+TN) (Fig. 4d)

withAUC = 0.71, slightly larger with respect to the other SU model assessment, whereas, the Cohen’s Kappa index performed5

slightly worse, being k = 0.276 (Fig. 4). The classification error plot shows a considerable variation in intermediate probabilities

(Fig. 4f) while the uncertainty is lower for high and low probabilities. Nevertheless, the quadratic fit curves indicate a lower

overall variability for ESA-SUM than for WA-SUM. Taking into account the AUC and the variability of the model results,

ESA-SUM could be singled out as the best method, but if only the Four fold plot and the Cohen’s kappa are not used as

validation metrics.10

6 Discussion

The number of scientific publications focusing on landslide susceptibility zonation has notably increased during the last decades

(Gutiérrez et al., 2010; Rossi and Reichenbach, 2016; Reichenbach et al., 2018) and, nowadays, there is a huge variety of

applications and comparisons which provides an enormous range of approaches to prepare a landslide susceptibility map.

Differences between these approaches can be summarized in (i) the type of landslide inventory, (ii) the environmental variables15

used, (iii) the mapping unit partition, (iv) the method used to prepare susceptibility maps and (v) the scale of application. The

existence of such a big production of papers investigating these aspects is proof that no fully consolidated standard exists for

all the steps involved in landslide susceptibility analysis.

In this work, we showed that the information contained in a field-based landslide inventory for landslide susceptibility

analysis should be critically examined, also in combination with the mapping unit of choice.20

A field work-based landslide inventory is by definition a source of uncertainty in statistical analysis, owing to various reasons,

including mapping errors, accuracy, subjectivity, and others. The focus of this work is the analysis of an additional uncertainty

due to use of field mapping, namely the fact that it is impossible to ensure that the study area was surveyed in a homogeneous

way. An objective delimitation of the surveyed area by means of the ESA, proposed in this paper along with a software to

objectively delineate the ESA (see supplementary material), is one way to reduce this uncertainty.25

The hypothesis tested in this work is that any statistical landslide susceptibility model trained inside the ESA is by definition

more correct than considering the entire study area for training the model. The statement was borne out by the results of LR

model calculations. We acknowledge that the ESA is only an approximation of the real surveyed area, though a much more

realistic one than using the whole study area. Our definition of the ESA depends on the maximum distance between points

along the field, trips paths and the selected resolution of the DEM. Preliminary tests in a reduced portion of the territory30

provided the most suitable settings for a satisfactory definition of the ESA in the particular case of Gipuzkoa Province (section

3.3).
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In the case of the pixel-based susceptibility maps, the metrics of model prediction performances are in agreement with our

main statement about the relevance of ESA. As a matter of fact, all the validation performance tests (confusion matrix metrics,

the area under the ROC curve and Cohen’s Kappa index) present an improvement if the stable pixels used for training the LR

model are selected within the ESA (like in ESA-PM, Fig. 3a) than if they are taken from the WA (like in WA-PM, Fig. 3b).

In addition, the classification error plots provide an estimate of the error associated with the predicted susceptibility values,5

which does not exceed 0.1 standard deviations in any case, highlighting the reliability of the results. The spatial distribution of

the susceptibility classes are different as well between ESA-PM and WA-PM (see Figs. 5a, c). Moreover, the mutual mismatch

map (Fig. 5e) shows that 14.8% (corresponding to an extension of 293 km2) of the mapping units flipped their landslide

susceptibility class in WA-PM and ESA-PM.

Another difference between the two pixel maps is the set of explanatory variables selected as predictors. The variable10

selection approach presented in this paper and previously adopted in a similar way in Schlögel et al. (2018), demonstrated to

be effective and capable to detect presence of redundant information, as well as offering an objective way to choose between

collinear explanatory variables.

In the case of SU-based susceptibility maps, validation metrics do not present us with clear-cut results as in the pixel-based

maps. As a matter of facts, AUC performs better in ESA-SUM while Confusion Matrix and Cohen’s Kappa index present15

higher prediction performance in WA-SUM (Fig. 4). The classification error plots show considerable variations in intermediate

susceptibility probability values, but the quadratic fit curves suggest a slightly lower variability in ESA-SUM (Figs. 4c, f). We

interpret these results as an indication of a smaller effect that proper usage of the ESA can have in SU-based susceptibility

maps, with respect to pixel-based maps. Visual inspection of the SU susceptibility maps (Figs. 5b, d) also shows similarities

between WA-SUM and ESA-SUM. The difference is graphically presented through the mismatch map (Fig. 5f), where 12.6%20

of the mapping units (corresponding to an extension of 247 km2) change their landslide susceptibility class, from WA-SUM

to ESA-SUM. Despite the small difference in model prediction performance between WA-SUM and ESA-SUM, the mismatch

degree suggests that the usage of the ESA is equally recommendable for SU susceptibility maps carried out by field work

landslide inventories.

The pixel- and SU-based maps obtained within the method presented in this work are inherently different from a concep-25

tual point of view. We maintain that a SU-based map probably represents a better option, for SUs bear a clear relation with

topography, they reduce mapping errors and are more useful for practical (planning) purposes. Nevertheless, for the sake of

completeness and to show differences between the two approaches, we discussed pixel-based and SU-based maps indepen-

dently. The uncertainty introduced by a field work-based landslide inventory can be mitigated by using SUs, resulting in more

similar susceptibility maps and validation performances in WA-SUM and ESA-SUM than in pixel models.30

Moreover, knowing that the threshold value for the distinction of stable and unstable SUs could affect the LR model per-

formances, we decided to build the SU-based maps using a threshold value equal to 0.33% (i.e., the landslide ratio in ESA)

and compare the results with the ones obtained with 0.15% (i.e., the landslide ratio in the WA). We observed that, even if

the absolute value of the evaluation indexes (e.g., the ROC area) slightly decrease with respect to the maps obtained using the

threshold estimated in the WA (0.15%), the performances within the two approaches are indistinguishable. Therefore, we main-35
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tain that results confirm that SUs mitigate the relevance of the calibration area (ESA versus WA) when building a SU-based

susceptibility model with a field-based landslide inventory, independently of the landslide presence threshold value.

7 Conclusions

We explored the effects of training an LR classifier for landslide susceptibility zonation within the area that was actually

surveyed at landslide mapping time, the ESA, and the extended study area, WA, encompassing the ESA. We prepared four5

susceptibility maps combining variables (cf. Eq. (2) and Table 1) sampled strictly within the ESA or from the WA with two

different mapping unit partitions, i.e., 5 m x 5 m grid cells and slope units (Alvioli et al., 2016), delineated for the purpose.

A straightforward comparative analysis using standard prediction performance metrics revealed that the ESA-based approach

is better than the WA-based, for what concerned the training area. Introducing different mapping units in the comparison, we

further found that using slope units reduces the gap between results obtained training a statistical model within the ESA versus10

WA. Thus, the capacity of the slope unit mapping subdivision to mitigate this error was demonstrated, as powerful alternative

to the conventional pixel-based approaches.

The results illustrated above support the following statements:

(i) when working with pixel mapping units, training the LS model within the ESA is the correct approach to reduce the

uncertainty inherent to the landslide inventory;15

(ii) when working with slope unit terrain partition this uncertainty can be mitigated, even though it is still advantageous to

train the LS model within the ESA;

(iii) use of ESA should be considered, if sufficient information is available, in preparing landslide susceptibility maps with

any multivariate statistical model;

(iv) collecting information about the path followed during field campaigns for landslide mapping is a meaningful procedure20

for estimating the ESA, at model assessment time, using the software r.survey.py presented in this work.

We acknowledge that the overall performances of the landslide susceptibility maps presented in this paper are of moderate to

low prediction capacity, with AUC values ranging between 0.68 to 0.71 and an overall accuracy which hardly overcomes the

65% in the best case (Figs. 3 and 4). This could be due to (i) the lack of more complete landslide inventory or (ii) the use of

not up-to-date thematic layers. Nevertheless, the preparation of a definitive landslide susceptibility map for the study area was25

out of the scope of our investigation. Instead, we performed pairwise comparative analyses in which we only changed, across

the compared model assessments, the region of logistic regression training.

Code availability.

– The software developed in this work to delineate the effective surveyed area, r.survey.py, is contained in the supplementary material
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– The software developed in Alvioli et al. (2016) to parametrically delineate slope units, r.slopeunits, is available at:

http://geomorphology.irpi.cnr.it/tools/slope-units

– The software developed in Rossi and Reichenbach (2016) for the statistical assessment of landslide susceptibility zonation, LAND-SE,

is available at: https://github.com/maurorossi/LAND-SE
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Figure 1. (a) Location of the Gipuzkoa Province study area. (b) Simplified lithological map developed according to the original map of the

Spatial Data Service of the Basque Country . Coordinates in degrees, Universal Transversal Mercator (UTM) Zone 30N, European Datum

ETRS 1989.
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Figure 2. (a) Distribution of the shallow slides inventory along the study area and extension of the effective surveyed area (ESA). (b)

Probability density plot of the shallow landslide size (Area in m2) distribution. (c) Box plot of the same distribution.
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Figure 3. Pixel-based LR models prediction performance results: summary tables of the Cohen’s kappa index, area under the ROC curve

(AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate ((FP+FN)/(TP+TN+FP+FN)); (a,d) four fold or contingency

plots; (b,e) ROC curves; (c,f) classification error plots and the quadratic regression fit curves (red line).
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Figure 4. SU-based LR models prediction performance results: summary tables of the Cohen’s kappa index, area under the ROC curve

(AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate ((FP+FN)/(TP+TN+FP+FN)); (a,d) four fold or contingency

plots; (b,e) ROC curves; (c,f) classification error plots and the quadratic regression fit curves (red line).
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Figure 5. (a-d) Landslide susceptibility maps represented in five classes for WA-PM, WA-SUM, ESA-PM and ESA-SUM. (e,f) Mismatch

maps representing the spatial distribution of the mapping units differently classified using ESA between pixel models and slope unit models.
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Table 1. Set of environmental variables introduced for the whole area pixel-based (WA-PM) and effective surveyed area pixel-based (ESA-

PM) models calculation, together with the significance p-value estimate corresponding to each explanatory variable (cf. Section 4.1). The

best predictors were labelled with an asterisk.

Name Description Significance p-value

Continuous WA-PM ESA-PM

Slope The slope gradient in degrees. 1.17E-189 1.06E-111

Senoidal Slope The senoidal mathematical transformation applied to the slope

variable (Amorim, 2012)

1.00E-155 7.57E-134 *

Surface area ratio The relation between the theoretical volume and the surface of

each pixel.

3.743E-203 * 1.89E-99

Terrain wetness index The spatial distribution of soil moisture or saturation (Yilmaz,

2009)

9.864E-10 * 0.126807342

Curvature The spatial variation of the slope gradient. 0.909592654 0.525989188

Plan curvature The curvature of the surface perpendicular to the direction of

the maximum slope.

0.9094261 0.525836679

Profile curvature The curvature of the surface in the direction of the maximum

slope.

0.909605174 0.526032985

Categorical

Litology The original categories have been reclassified by expert criteria

(Geoeuskadi).

0 * 0 *

Permeability The original categories have been reclassified by expert criteria

(Geoeuskadi).

1.496E-33 * 7.632E-72 *

Regolith thickness The layer for the study area has been obtained from the Litho-

logical Map (Geoeuskadi).

0 * 0 *

Land Use The original categories have been reclassified by expert criteria

(Geoeuskadi).

5.14E-291 1.42E-87

Vegetation The original categories have been reclassified by expert criteria

(Geoeuskadi).

0 * 1.596E-173 *

Aspect It represents the downslope direction measured in degrees clas-

sified in 9 classes.

0 * 0 *
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