
Point-by-Point response to the reviews 

Response to Review 1 

 

We thank the Reviewer for her detailed review of our work. We take note of your suggestions to 

grammatically improve the body text. However, in your specific notes there are some questions 

and comments that demand a direct response:  

 
Page 3, line 29: which information about landslides location did you collect? Did you 

digitalize the entire perimeter? Or location refers to the four GPS points? You can explain 

this better. 

We used the four GPS points collected on the field as reference to draw landslide polygons 

using QGIS software and Google Earth satellite imagery.  

To clarify this point, we modified the text as follows: 

“We collected information about the location of each observed landslide, four GPS points 

(crown, toe, and two flanks), photographs, surrounding area features and information about the 

landslide type, according to the Varnes, (1996) classification. Each documented landslide was 

drawn and digitized using its four GPS waypoints recorded and photographs as a reference. 

QGIS and Google Earth satellite imagery were used for the purpose.”  

 

Page 3, line 5: why did you consider only shallow landslides? 

We considered that different typologies of slope instabilities are triggered by different 

mechanisms, which means that the predisposing factors and the way they affect to the 

occurrence of a given type of landslide can be different. Before the field campaign, we reviewed 

bibliographical sources, finding that within our study area 753 landslides were inventoried in 

different studies (INGEMISA, 1995; Gipuzkoako Foru Aldundia, 2013; IDE de Euskadi, 2014).  

Among all of them, 75% were considered as shallow slide type of movement, 10% were rock 

falls or rock mass deposits and 3% were flows or complex movements, adding to the 12% of the 

subset that was labelled as landslide scarp but without specifying the type of landslide. Although 

those bibliographical sources were not considered appropriate for our study – because they 

were heterogeneous in type and quality – they showed the most frequent type of landslide, so 

we focused our research on shallow landslides.  

We included the information in the text as follows (section 3.1, page 4):  

“During several field trips, 793 individual landslides were collected, and 746 of them were 

classified as shallow movements.  Our observations together with the revised bibliographical 

sources (INGEMISA, 1995; Gipuzkoako Foru Aldundia, 2013; IDE de Euskadi, 2014) confirm 

that shallow slides are the most frequent type of landslide in the study area. Consequently, in 

order to consider only landslides triggered by the same mechanisms, only shallow movements 

were used as landslide presence when defining the dependent variable in the susceptibility 

assessment.” 

Gipuzkoako Foru Aldundia (2013). Evaluación y gestión integada de riesgos geotécnicos en la 

red de carreteras de la Diputación Foral de Gipuzkoa. Technical report, Mugikortasun eta 

Bide Azpiegituren saila, Unpublished report. 



IDE de Euskadi (2014). Infraestructura de datos espaciales de euskadi. 

INGEMISA (1995). Inventario y Análisis de las Áreas sometidas a Riesgo de Inestabilidades del 

Terreno de la C.A.P.V. Technical report, Eusko Jaurlaritza. 

Page 6, line 6: here it’s not important that LR is implemented in LAND-SE software. 

Moreover, you already mentioned that you used this software to perform the analysis. 

What is important is that you applied the multivariate LR. Is it the most used statistical 

method for susceptibility in general or for landslide susceptibility? Please, specify. 

It is actually relevant to mention that we used LR as implemented in the LAND-SE software, 

since the latter is actually a comprehensive package for data preparation, model training and 

validation, and visualization of the results. Concerning LR, what the review paper discuss is only 

its application to landslide susceptibility studies. In the text, we modified “susceptibility” to 

“landslide susceptibility”, to avoid ambiguity. 

Page 8, line 9: Why only three random set? What is the implication of using three or 

more? 

The test the Reviewer refers to was carried out just to confirm that the random selection of 

the landslide inventory would not affect the model results in a relevant way. Indeed, before 

starting with the main analysis, three preliminary LR runs were performed only changing the 

training and validation data sets. In all the cases the model classification performances were 

very similar. So, in order to choose only one data set for further comparative analysis, we 

decided to select the one with the best classification result, although we believe that 

conclusions would not be affected if any other data set would have been used.  

We included the information in the text as follows (section 4.3, page 8): 

“This exercise allowed us to confirm that the random selection of the landslide inventory 

would not affect the model results in a relevant way, because in all the cases the model 

classification performances were very similar.” 

Page 8, line 21: Are you sure you mean >0.15% of unstable pixels? 

The total inventoried landslides actually covered 0.15% of the surface of the whole study 

area. Nevertheless, the presence of one single landslide pixel within a slope unit was not 

considered enough to label this SU as unstable. Therefore, instead of arbitrarily defining a given 

threshold value in order to consider a SU as unstable, we decided to use the overall landslide 

density in the WA.   

We included the information in the text as follows (section 4.3, page 9): 

“The presence of one single landslide pixel within a slope unit was not considered enough to 

label this SU as unstable. Therefore, instead of arbitrarily defining a given threshold value in 

order to consider a SU as unstable, we decided to use the overall landslide density in the WA. 

For this reason, we considered as unstable those SUs containing equal or more 0.15 % of 

unstable pixels, and stable otherwise.” 

 

 

 



Page 8, line 25: do you mean that from your computation it results 304 unstable SUs? If 

so, please specify. 

Yes, in 304 cases the SU contained 0.15% or more unstable pixels.  

Page 9, line 32 and Page 10 line 4: why 152 validation SU? They are not 76? 

As it was explained in section 4.3 (Page 8, lines 25-30), 76 SU labelled as unstable were 

used for validation. Then, the validation sample was obtained by selecting the same number of 

SU labelled as stable. Thus, the validation sample contained 152 SU (76 unstable + 76 stable). 

We included the information in the text as follows (section 4.3, page 9): 

“In 304 cases the SU contained 0.15% or more unstable pixels, so we selected at random 

228 of them (75%) for training, and the remaining 76 (25%) were used for validation. Like in grid 

cell approaches, we created two different training samples where unstable SUs were exactly the 

same, and only the stable SUs were different in each case. The first training sample includes 

228 stable SUs selected at random along the WA. The second training sample includes an 

equal number of stable SUs units selected at random among those that at least partially overlap 

the ESA.”  

“Additionally, 76 SUs labelled as unstable were used for validation. Then, the validation 

sample was completed by adding a random selection of the same number of SUs labelled as 

stable and which at least partially overlap the ESA. Thus, the validation sample contained 152 

SUs (76 unstable + 76 stable).” 



Response to Review 2 

 

We appreciate the Reviewer’s comments about our research and we are pleased to see that 

our Manuscript was carefully reviewed. In the following we discuss the Reviewer’s comments, 

including the suggestions on the bibliography and about adding new figures and tables. As a 

general remark, we would like to stress two points: (i) most of the references suggested by the 

Reviewer were known to us, and they were not explicitly included in the bibliography just 

because they appear in the revision papers cited, which represent a useful tool from this point of 

view; (ii) we believe that some comments contain misunderstandings about the very definition 

and meaning of the proposed idea of effective surveyed area (ESA), and occasionally they 

demand deeper explanations from our side. Thus, we will provide detailed answers to the 

Reviewer’s comments below, and amend the Manuscript where needed.  

Answers to comments 

It is not clear the utility of using the r.survey code to define the ESA, instead of using a 

simple portable GPS to record the surveyed area. 

A portable GPS device cannot be used to delineate areas, but only tracks or waypoints. During 

our data collection field campaigns we used GPS to record the route we followed. The point, 

here, is that even if one visits a given basin searching for landslide evidence, it is hardly 

possible to ensure that every single site of this basin was actually observed. This is due to the 

fact that some places can be not visible from the route followed during survey, typically existing 

roads. Thus, touring a basin does not ensure that the whole area was actually surveyed. This is 

the simple idea behind the ESA. The r.survey module is a tool that delineates the theoretically 

visible area from the points of view recorded during the field campaign by the GPS tracks. And, 

most importantly, the ESA, as delineated by r.survey, is an objective and reproducible portion of 

the study area directly observed by the geomorphologists, thus allowing to avoid arbitrary 

assumptions about which sites were actually surveyed and which ones were not.     

Why do you used different stability thresholds for WA and ESA? How you defined the 

threshold values? You cannot compare these maps if you used different criteria to 

perform the analyses. 

We did not use different stability thresholds. We carried out a few of the comparative analyses 

with a different stability threshold as an additional test, but we always performed pairwise 

comparisons between susceptibility maps obtained with the same threshold value.  

The rationale behind testing two different thresholds is the following. The total inventoried 

landslides covered 0.15% of the surface of the whole study area (WA). Nevertheless, the 

presence of one single landslide pixel within a slope unit was not considered enough to label 

this SU as unstable. Therefore, instead of arbitrarily defining a given threshold value in order to 

consider a SU as unstable, we decided to use the overall landslide density in the WA for all the 

maps based on SUs, in order to consistently compare maps obtained training the susceptibility 

model within the WA and within the ESA. Additionally, as an additional control test, we prepared 

two additional susceptibility maps using as a threshold the landslide density within the ESA 

(0.33%). We observed that, even if the absolute value of the evaluation indexes (e.g., the 

AUCROC) slightly decrease with respect to the maps obtained using the threshold estimated in 

the WA (0.15%), the conclusions one can draw from the results of the two approaches are 

indistinguishable.  

  



One of the main outcomes is that the use of slope units increases the quality of the 

results, but the performance differences between the different approaches are very low; I 

believe that such small difference do not justify the whole work. 

In our opinion, pixel-based models and SU-based models are not simply comparable using 

absolute values of their validation performances, since they involve two different concepts of 

terrain subdivisions, with different meaning and application purposes.  

The actual main question answered by our work is about the effect of training a statistical 

susceptibility model either in the portion of territory which was explicitly surveyed during a field 

campaign, the ESA, or in the extended area encompassing the ESA, the WA. As statistical 

methods are widely applied both using grid pixels and slope units, we addressed our question in 

both cases, since investigating only one of the two cases would not answer the question in the 

remaining one. Based on the results we obtained, we stated that pixel-based models (WA-PM 

an ESA-PM) showed more differences than SU-based models (WA-SUM and ESA-SUM). Our 

work is justified by the fact that we answered the question about relevance of the ESA, never 

addressed before in the literature, and not that one should use slope units instead of pixels as 

mapping units. 

The small difference exhibited by the WA-SUM and ESA-SUM maps suggests that the use of 

SU as terrain partition mitigates the uncertainties introduced if the WA is used to calibrate the 

model. From this point of view, and from this point of view only, we conclude that SUs are best 

suited as a terrain partition approach. Of course the use of SUs has several additional 

advantages, but these are beyond the aim of the present work.   

If a costs/benefits analysis would be performed, it could result that the WA-PM approach 

would be the best one. 

To our knowledge, no similar analysis exists in the literature concerning landslide susceptibility 

studies. As a matter of fact, the very definition of costs and benefits associated with preparing 

landslide susceptibility maps is no easy task. Do we talk about the time spent on a single map, 

or we include the time during which a researcher builds his expertise, through his particular 

learning curve? Do we account for numerical models running time, and do we distinguish which 

software was adopted for the study? Do we talk about the economic cost of the equipment, and 

do we include the salary of the researchers? Do we distinguish between students and senior 

researchers? Not to talk about quantifying the benefits, that range from selfishly disseminating 

one’s own scientific production, to actually providing the scientific community with useful tools, 

and even to save lives, since we are dealing with hazardous and potentially life-threatening 

natural hazards. In our opinion, one should stick to the fact that scientific advance is a step-wise 

process, and every single bit is helpful in producing a more effective and reliable research 

methodology that, hopefully, can be adopted by practitioners and decision-makers for natural 

hazard mitigation.  

Concerning the specific object of our investigation, the difference in training a statistical model 

within the ESA or within the WA amounts to collect a few hundred GPS points during the field 

campaign, which represent a negligible time with respect to the time necessary to conduct the 

whole field survey, and run the r.survey software for a few seconds to obtain the ESA. Training 

the statistical model within the ESA does not produce overhead with respect to doing that within 

the WA. In conclusion, there only are advantages in using the ESA, since the “costs” are 

negligible. 

Moreover, working with field based landslide data, the use of the WA as a calibration area is 

conceptually incorrect, because there may be places in which the presence or absence of 

landslides must simply be inferred, with no actual evidence. By means of the ESA, we propose 



an alternative to revise this conceptual model, and our results suggest that this new approach 

produce performance advantages in validation.  

 

Answers to comments in the supplementary material 

Page 1, line 22: “Please consider also some other works, as: Ermini et al. 2009 

(10.1016/j.geomorph.2004.09.025), Catani et al. 2013 (10.5194/nhess-13-2815-2013), Yalcin 

2008 (10.1016/j.catena.2007.01.003), etc” 

In page 1, line 22 we cited a review paper co-authored by one of us, in which “an extensive 

database of 565 peer-review articles from 1983 to 2016” was compiled. The large number of 

papers contained in the database is proof that the topic is widely discussed in the literature, and 

we believe that citing the review paper is the best thing to do, since citing a few papers about 

landslide susceptibility zonation would be a misrepresentation of the literature. Nevertheless, 

among the papers suggested by the Reviewer, we acknowledge that Ermini et al. 2009 

(10.1016/j.geomorph.2004.09.025) is general enough to be included in the manuscript, also in 

consideration of its large citation records. 

Page 2 line 12: “Please considere also some other works, as Ardizzone et al. 

2012,(DOI:10.1080/17445647.2012.694271), Rosi et al. 2018 (doi: 0.1007/s10346-017-0861-

4), etc.” 

As in the previous case, we believe that the references proposed by the Reviewer are not 

suitable in this specific part of the Manuscript, since they deal with two specific study areas and 

were aimed at producing specific landslide inventories, instead of investigating specific 

methodologies. Nevertheless, since the Reviewer points out that the list of references is not 

exhaustive of the literature, and consistently with what we stated in the previous comment, we 

prefer citing review papers in this specific point, namely: 

Guzzetti et al., (2012) – already listed in the bibliography 

Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri 

L, Lu P. 2017. Spaceborne, UAV and ground-based remote sensing techniques for landslide 

mapping, monitoring and early warning. Geoenviron Disasters. 4(1):9. 

https://doi.org/10.1186/s40677-017-0073-1 

And methodological papers, namely: 

Fiorucci F, Cardinali M, Carlà R, Rossi M, Mondini A, Santurri L, Ardizzone F, Guzzetti F. 2011. 

Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and 

satellite images. Geomorphology. 129(1–2):59–70. 

https://doi.org/10.1016/j.geomorph.2011.01.013 

Fiorucci et al., (2018) – already listed in the biblography 

F Catani, P Farina, S Moretti, G Nico, T Strozzi. On the application of SAR interferometry to 

geomorphological studies: estimation of landform attributes and mass movements. 

Geomorphology 66 (1-4), 119-131. https://doi.org/10.1016/j.geomorph.2004.08.012 

 

 



Page 2, line 22: “Please consider also other papers. eg. Ba et al. 2018 (10.1007/s12145-
018-0335-9), Zezere et al, 2017 (10.1016/j.scitotenv.2017.02.188)” 
 
We have added the references to the bibliography. 
 
Page 3, line 1: “It looks useless, since the surveyed area should be already know, once 
the survey is accomplished.” 
 
This comment is somehow difficult to understand, since it refers to the (simple) code developed 

in this work to define the ESA, which is the central part of the Manuscript. We believe we have 

addressed this point at length before, in this response to the Reviewer, and demonstrated the 

usefulness of both the software, to delineate the ESA, and the effectiveness of the ESA, in 

calibrating statistical susceptibility models. 

Page 3, line 1: “This paragraph contains too many acronyms, it is hard to read. Please 

rephrase.” 

We modified “instead of the WA, enhances” to “instead of the WA (the whole study area, 

encompassing the ESA), enhances” and removed LR, writing explicitly “logistic regression”, so 

that the WA is explained right away and at least one acronym is removed. 

Page 3, line 23: “this is a generic sentence and the paper is about a case of study (central 
Italy). This citation is wrong and has to be changed. More relevant paper can be found in 
literature. Rainfall is the primary triggering factor of shallow landslides, not of rock fall, 
DSGSD, etc. “ 
 
The citation is not wrong, since the whole cited paper deals with the effects of rainfall, and their 
projected changes, on landslide hazard for (rainfall-induced) shallow landslides. It is correct the 
cited study is about a case study in Central Italy, but it still is to the best of our knowledge the 
widest application of physically based slope stability models, in terms of study area extent. We 
also added one reference to a global analysis, Petley et al., (2005). Moreover, the Referee is 
more than right that rainfall is not the primary triggering factor for other types of landslides, such 
as rock falls, so we have modified “the primary triggering factor of landslides” to “the primary 
triggering factor of shallow landslides” 
 
DN Petley, SA Dunning, NJ Rosser, O Hungr - Landslide risk management. The analysis of 

global landslide risk through the creation of a database of worldwide landslide fatalities 
Balkema, Amsterdam, 2005. 

 
Page 4, line 20: “the list of variable should be provided before this sentence.” 
 
We have added the list of variables, in the revised version of the Manuscript. 
 
Page 5, line 4: “These result have to be proved in some way. I suggest that you add some 
graphs and table to support these results.” 
 
We agree with the Reviewer that the description of the software and its usage should have been 
done in more detail. We added the following description and data in the Manuscript: 
 
“In a 10 km

2
 subset of the study area, we tested the software output using: i) maximum distance 

between sampled points of 50, 100, 200 and 500 m; ii) the original DEM at 5 m resolution and 
resampled versions of the DEM at 20, 50 and 100 m resolution; and maximum visible distance 
of 500 m (the later was dictated by the largest distance between the digitized field path and the 
farthest landslide pixel in the study area). Results of the test are summarized in Table 1.  
 
 
 
 
 



Name Resolution Dmax 
Percentage of 
landslides within (%) 

Survey_5 5 50 35 

Survey_6 20 50 70 

Survey_7 50 50 95 

Survey_8 100 50 100 

Survey_9 5 100 30 

Survey_10 20 100 60 

Survey_11 50 100 95 

Survey_12 100 100 100 

Survey_13 5 200 30 

Survey_14 20 200 55 

Survey_15 50 200 85 

Survey_16 100 200 100 

Survey_17 5 500 0 

Survey_18 20 500 35 

Survey_19 50 500 60 

Survey_20 100 500 95 

 
As target criteria, we considered that the best setting option was the one which allows covering 

the totality of the landslides but using the less possible points (bigger Dmax value) and the lower 

possible resolution in order to optimize the calculation time.  

In the case of the complete study area, the maximum visible distance was set in 1,100 m, in 

view that the largest distance between the digitized field path and the farthest landslide pixel 

was 1,092 m, and according to the results of Table 1, the rest of the settings were fixed: 

maximum sampling distance of 200 m, DEM resolution of 100 m.” 

Moreover, thanks to the revision process, we detected a mistake in the text of the manuscript. In 

page 5, line 5, it was written 100m as maximum sampling distance for the application of the 

r.survey code in the entire study area. The correct setting was of 2,000 meters, instead, as 

explained above. The mistake will be amended in the revised version of the Manuscript.  

 

Page 5, line 10: “Even if the equation is correct, I hardly can believe that a 2.6 sq.km 
landslide can be notice from 1 km distance. Maybe in arid or desertic areas, not in this 
area. Please clarify which is the maximum distance between landslides and ESA 
borders.” 
 
We based our justification in the equation proposed by Rodrigues et al. (2010), that as a 
published scientific article we consider it reliable. Nevertheless, the smallest shallow slide in our 
inventory covers 7.3 m

2
, which is more than the double area of the theoretical minimum area of 

an object to be visible from 1,100 m of distance (always according to Rodrigues et al. 2010). So, 
we considered the maximum visible distance of 1,100 m in r.survey settings was appropriate for 
our purpose.  Moreover, we stated in the Manuscript that the equation serves to “make sense” 
of the orders of magnitude of the involved quantities. Obviously the simple equation represents 
an estimate, and neglects vegetation, geometric effects, and so on. 
 
 
 
 
 
 
 



Page 5, line 16: “I suggest that you remove from the code all the unnecessary comments, 
as unused strings, or comments in italian (if these comments are useful, please translate 
them). 
Data preparation should be better descibed in the readme file (e.g. file format for points 
(shp, dxf, dwg, etc.) and DTM).” 
 
We fully agree on all the suggestions of the Reviewer and provided a clean version of the 
python code, along with a detailed description of its usage in the readme file. We apologize for 
the poor content of these pieces of work. 
 
 
Page 5, line 22: “These results (of SU settings) have to be supported by a more accurate 
description and, again, some graphs, tables, etc.” 
 
 
We do not consider SU delineation as a “result” of the Manuscript, since the algorithm, software 
and optimization method were all described in already published pieces of work. To obtain an 
automatic delineation of the optimal SU partition in the study area, we used the the r.slopeunit 
software of Alvioli et al., (2016). We followed the optimization procedure illustrated at length in 
Alvioli et al., (2016), Schloegel et al., (2018) and Alvioli et al., (2018), so we did not include 
details in this Manuscript. For the sake of completeness, we can show in this Response to 

Reviewers some of the details. 
Optimization of SU involves finding optimal 
values for the most relevant input 
parameters of r.slopeunits, namely 
“circular variance”, c,  and “minimum 
area”, a. The search for optimal 
parameters and as a function of (a, c) is 
shown in the figure on the left.  The figure 
shows an “aspect segmentation” metric 
F(a, c), and the two bullets highlight the 
truly best (a, c) combination (blue) and the 
one selected for this study (green). The 
reason why we did not use the “optimal” 
(a, c) value is that we were working with a  
limited number of inventoried landslides, 

and the large number if (smaller, on average) SU contained in the “optimal” subdivision would 
have led to a critical unbalance between landslides SU and no-landslides SU. So, we selected 
an SU subdivision with analysis smaller number of polygons, labelled “Large SU” in the Figure.  
We do not believe this information actually would add to the content of the paper; we actually 
believe that it would be off-topic and make the Manuscript’s main message difficult to follow. We 
consider SU delineation as a technical step and we would not like to include this discussion in 
the Manuscript. 
 
Page 6, line 7: “If it is the most used, maybe more than 1 work can be cited, you cited 
only 1 review paper.” 
 
We have here the same motivations as in the previous occurrence of this citations: see 
comments above. Moreover, in this particular point, we explicitly quote one of the results of the 
review paper, i.e. that logistic regression is the most used method in the literature, so we are 
confident that this is the correct citation. Moreover, it is not true that it is the only work we cited: 
in fact, one line below, we mentioned that logistic regression “proved to be useful” in several 
studies, among which the three further works we have cited (Nefesliogluet al., 2008; Van Den 
Eeckhaut et al., 2012; Trigila et al., 2015). 
 
Page 6, line 16: “How do you accounted categorical variables in this equation?” 

We addressed this issue in section 3.2 when we state that: “For categorical variables, we 

computed frequency ratio (FR) values for each class, and used them as a relative value for their 

transformation into continuous variables (Lee and Min, 2001; Yilmaz, 2009; Trigila et al., 2015)”. 



So at the end, we accounted for categorical variables in the LR model’s equation in the same 

way as continuous variables.  

 

Page 6, line 23: “Did you perform a Student t-test? Please clarify how the p-value is 

calculated.” 

We apply statistical models contained in the LAND-SE software of Rossi and Reichenbach 

(2016). The software is an R script, and the logistic regression results are obtained using calls 

to glm (generalized linear model) function. The implementation of the glm function in R is such 

that it is possible to investigate the estimated standard error of a t-statistic for the null 

hypothesis of each of the coefficients of the linear model. The p-value represents the probability 

that the parameter is zero: for p-values much smaller than 0.05 the null hypothesis (vanishing 

coefficient) is rejected, thus the associated variable is significant for the final result. 

Page 7, line 1: ”Please add more references” 

We have the same comment as above. Moreover, the mentioned metrics are very well-known in 

the community and need not be supported by additional references, in our opinion. 

Page 7, line 15: “Why did you use 2 sigma, instead of 1? Please clarify” 

We used 2σ following Guzzetti et al., (2006). The test represents an estimate of the variations 

obtained when input data is changed at random among many different, equally possible, data 

sets. Accounting for a 2 σ  variation in a Gaussian model means accounting for 95% of the area 

under the probability density function. In this case, it represents the unit of variations in each 

pixel, or for each slope unit, which makes rather arbitrary the choice of 2 σ, σ  or anything in the 

same order of magnitude. 

Page 8, line 9: Why use three random sets of training/validation partition?  

The test the Reviewer refers to was carried out just to confirm that the random selection of the 

landslide inventory would not affect the model results in a relevant way. Indeed, before 

performing the main analysis, three preliminary LR runs were performed only changing the 

training and validation data sets. In all the cases the model classification performances were 

very similar. So, in order to choose only one data set for further comparative analysis, we 

decided to select the one with the best classification result, although the preliminary test shows 

that conclusions would not be affected if any other data set would have been used. 

Page 8, line 21: 0.15%? Are you sure? This value is very, very low. Please clarify how you 
defined this value. 
 
See the second paragraph in Answer to comments section. 
 

Page 8, line 25: Stable and unstable SUs have the same numbers (228 Unstable and 228 

stable SUs for training, 76 for validation). Please check these values. 

The choice of an equal number of stable and unstable SUs was done on purpose, and it is the 

standard procedure required by the LAND-SE software for landslide susceptibility assessment. 

The logistic regression model requires a balanced dataset, in which the number of stable and 

unstable cases are similar (Costanzo et al., 2014). There are other studies, like Felicísimo et al., 

(2013), that already tested the influence of introducing a larger number of negative data (no-

landslide locations). They concluded that this strategy decreases the performance of the 

models, which is intuitively understandable. For this reason, in order to complete the training 



and validation samples, the same amount of SU defined as stable (and randomly selected) was 

added to each subset. So the training sample contained 456 SUs (228 unstable + 228 stable); 

and validation sample was composed by 152 SUs (76 unstable + 76 stable). We adopted the 

same procedure for the pixel based susceptibility maps. We have added the following reference 

to the bibliography: 

Felicísimo, Á. M., Cuartero, A., Remondo, J., & Quirós, E. (2013). Mapping landslide 

susceptibility with logistic regression, multiple adaptive regression splines, classification and 

regression trees, and maximum entropy methods: a comparative study. Landslides, 10(2), 

175-189. 

 
Page 8, line 32: I believe you should use only those units that are totally within the ESA, 
you do not know what is going on outside the ESA. 
 
We already considered this issue, because we agree that this way would be conceptually more 
consistent. However, there are some crucial aspects that have to be taken into account on this 
respect: 
  

 The ESA is an automatic approximation of the real surveyed area that is likely to be 
contained in the actual ESA. Thus the fact that a given portion of a SU stay outside the 
ESA does not necessarily mean that it was not observed.  

 Excluding all the SU that strictly were not within the ESA rejected most of the SUs in the 
training sample, because that prescription would include the SUs exceeding the ESA by 
a little portion. The opposite situation in which most of the SUs fall outside the ESA in 
our case occurred fewer times than the other way around.  

 In those SUs where landslides were actually observed, they should be automatically 
considered for the model even if a portion stay outside the ESA, because the presence 
of instabilities was already confirmed, so the presence or not of instabilities in such 
theoretically not observed space would change nothing.  

 
Thus, for these reasons, we concluded that the approximations of either excluding or not those 
SUs that falls partially within the ESA would produce an effect smaller than the difference 
between the results obtained by training the statistical model within the ESA or within the WA. 
 
We tried to explain this idea in page 8, lines 33 - 35 when we state that “if a portion of an SU 
falls within the ESA, that implies that at least one part of the SU was observed. Therefore, using 
this approach, we can remove at least those SUs that were not surveyed at all”.  

 
Page 9, line 8: From table 1, it results that you did not use topographic parameters 

(slope, curvature, etc.) in WA-PM. For ESA-PM the only used continuous parameter is 

senoidal slope. Is it correct? How can you explain it? I suggest to perform some 

comparisons with susceptibility maps obtained with different sets of variable (all 

variables, same set of WA map, etc.) to verify if you selected the best set. 

In table 1 we showed with an asterisk the final explanatory variables introduced in WA-PM, and 

two of these are the Surface Area Ratio and the Topographic Wetness Index, which are both 

topographic and continuous variables. In ESA-PM, the only continuous variable selected as final 

predictor was the Senoidal Slope. Results of the correlation tests were not included in the 

manuscript, but they indicated that Slope, Senoidal Slope and SAR are highly correlated 

between each other, so according to the procedure explained in section 3.2, only the one with 

the lowest p-value was selected as final predictor. Following the same rationale, TWI was 

rejected in ESA-PM because of its high p-value.  

We applied this simplified and statistically oriented work-flow in order to objectively define the 

final set of predictors to be introduced in each pixel-based model. We maintain that our final aim 

is to show the effectiveness of training a statistical model within the ESA as compared to 



training within the WA, and not to obtain the “perfect” input data set or the “best” susceptibility 

map, as we stated in the Conclusions. We argue that the comparison is meaningful as long as it 

is performed between maps obtained consistently with the same input data sets and conditions, 

pairwise. As a matter of fact, the number of ways the two susceptibility maps in a pairwise 

comparison can be prepared is virtually infinite. Nevertheless, as we mentioned in the Abstract 

and in the Conclusions, we strongly believe that our results apply to any similar map pairs 

obtained with meaningful input data sets and statistical methods, as long as the significance of 

the statistical analysis is ascertained. 

Page 9, line 22: This is not an objective approach. I suggest to perform some 

comparisons with susceptibility maps obtained with different sets of variable (all 

variables, same set of WA map, etc.) to verify if you selected the best set. 

Se the next answer below.  

Page 9, line 29: If Senoidal slope is derivative of slope, why do you not use slope in WA 

analysis? It should have the same significance. 

According to the observations carried out by Santacana et al. (2003) and Amorim (2012), there 

are some types of landslides, like shallow slides, typically occurring in medium slope areas, 

decreasing their presence from 45º of slope on. Such a behaviour can be explained with the 

lack of surface formations in very steep areas, since rocks outcrop in such areas. Thus, 

depending on the type of landslides considered to the susceptibility analysis, the relation 

between them and the slope may not be completely linear and positive, because in some cases, 

from 45º of slope, the more is the slope the less is the probability of finding landslides. 

Considering that our landslide inventory is about shallow slides, we decided to consider the 

senoidal transformation of the slope as possible explanatory variable for landslide susceptibility 

modelling, according to Santacana et al. (2003).  

Following the objective procedure to select explanatory variables explained in section 3.2, in 

ESA-PM senoidal slope was selected over slope because its p-value vas lower. In WA-PM 

instead, SAR was selected as most suitable explanatory variable over slope and senoidal slope 

for the same reason.  

In the particular case of the SU-based models, explanatory variables are organized in a different 

way due to the irregular size of the terrain units. We used the mean and the standard deviation 

of the morphometric variables within each SU as explanatory variables, and the percentage of 

the area covered by each class of the categorical layers. This made impractical the application 

of the same variables selection approach, and we acknowledge that a specific variable selection 

approach for SU models would require further investigations. Nevertheless, in order to ensure 

the use of significant and non-redundant variables we decided to select at least those variables 

that were always selected in the pixel-based models. Then we added Slope as a morphometric 

variable because we considered it more suitable to describe the average morphology within a 

SU than the Senoidal slope or the SAR. 

 Santacana, N.; De Paz, A.; Baeza, C.; Corominas, J. y Marturià, J. (2003) A GIS-based 

multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de 

Lillet area (Eastern Pyrenees, Spain). Natural Hazards 30(3):281–295. 

 
 
 
 
 



Page 11, line 19: You should clarify how you defined the susceptibility classes reported 
in fig. 5. 
 
This explanation actually is in page 20, lines 20-23. “The probability of landslide occurrence 

resulting from each model estimate (trained either within the ESA or within the WA) and for 

each considered mapping unit (either grid cells or slope units), can be reclassified in five 

landslide susceptibility classes which were labelled as Very low (for susceptibility values in the 

range 0-0.2), Low (0.2 0.45), Medium (0.45-0.55), High (0.55-0.8) and Very high (0.8-1)”. 

  
Page 11, line 31: How can you state that the landslide inventory you used in not 

complete? How is it possible? This point is crucial, please clarify 

We state in page 12 line 24 that the moderate prediction capacity of the resulting susceptibility 

maps could be, among other reasons due to “the lack of more complete landslide inventory”, 

but it doesn’t mean that our landslide inventory was considered incomplete. Even though we 

acknowledge that more landslides than those included in our inventory probably exist, we 

maintain that the data collected by direct field observation offers very reliable information, and 

considering that the landslides size distribution is in agreement with what is expected from a 

complete inventory (Figs. 2b and c; see Malamud et al. (2004)). We believe that our landslide 

inventory is complete for the purpose of this research that, we stress, is about  showing the 

effectiveness of training a statistical model within the ESA as compared to training within the 

WA, and is not about obtaining the “perfect” input data set or the “best” susceptibility map. We 

added the following text and references the revised Manuscript: 

Completeness refers to the proportion of landslides shown in the inventory compared to the real 

(and most of the times unknown) number of landslides in the study area (Guzzetti et al. 2012; 

Malamud et al., 2004).  

BD Malamud, DL Turcotte, F Guzzetti, P Reichenbach (2004). Landslide inventories and their 

statistical properties. Earth Surface Processes and Landforms 29 (6), 687-711 

https://doi.org/10.1002/esp.1064 

 
Page 12, line 8: This is not trure: in fig.4,  3 out of 4 parameters of WA-SUM are better 
than those of ESA-SUM. 
-Does training ares correspond to ESA? If they are different you should provide a map of 
the training area. 
 
We rephrased this paragraph as follows:  
 
“A straightforward comparative analysis using standard prediction performance metrics revealed 
that the ESA-based approach is better than the WA-based, at least in grid-cell mapping units 
based approaches, for what concerned the training area (i.e. within the ESA or WA). Introducing 
different mapping units in the comparison, we further found that using slope units slightly 
reduces the gap between results obtained training a statistical model within the ESA versus 
WA. Thus, the capacity of the slope unit mapping subdivision to mitigate this error was 
demonstrated, as suitable alternative to the conventional pixel-based approaches.” 

 



Response to the Editor 

We agree with the Editor about the importance of the threshold limit to consider a SU as 

unstable, which in our work was defined in 0.15%, the landslide areal density in the whole study 

area.  However, we believe that what the Editor suggested about shifting from constant to 

spatially variable threshold could result in important and, most importantly, poorly known  biases 

in the results.  The use of the average density as a threshold is justified by the fact that 

measuring landslide presence relative to the average provides an implicit relation between the 

behaviour each mapping unit and the remaining of the study area. Using a variable threshold 

would mimic a normalization for landslide presence in the different regions of the study area, 

while the final objective is precisely the detection of spatial differences about the landslide 

presence or absence. Additionally, considering that the presented research shows a pairwise 

comparative study where the effect of other variables is investigated (mainly the effect of using 

the ESA instead of the WA for training the models), we maintain that a constant threshold limit 

should be the most appropriate approach. 

The other main point of the Editor’s comment was the selection of that particular 

threshold value, which we partially answered above. As we stated in the paper, “instead of 

arbitrarily defining a given threshold value in order to consider an SU as unstable, we decided to 

use the overall landslide density”. The number of SUs containing at least one landslide pixel is 

497. The distribution of the landslide density area among all of them can be shown in the 

following graph. In order to confirm that the definition of the threshold does not affect the 

conclusions of the paper, we performed additional calculations considering the Percentile 05, 

Percentile 50 and Percentile 90 of the landslide density distribution as presence/absence 

threshold, in addition to the already cited test in the paper about the average landslide density 

within the ESA, i.e. 0.33%. The resulting values for the area under the ROC curve between ESA 

and WA maps for these tests are summarized in the table below.  
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 P05 (0.013%) WAdensity(0.15%) P50(0.265%) ESAdensity(0.33%) P90(4.496%) 

ESA-SUM 0.659 0.71 0.679 0.619 0.556 

WA-SUM 0.657 0.69 0.672 0.586 0.692 

Percentage of 

unstable SUs 
96.4% 61.2% 50.1% 46.5% 10.06% 

 

The results in the Table suggest that for all the cases, except in P90, the model test show 

better performance for ESA-SUM than for WA-SUM, which is in concordance with the main 

conclusions of the paper. The case of P90 demonstrates the importance of having an adequate 

amount of data for training and validating a statistically driven model. Because of the high 

threshold defined in P90, the model was trained with only 74 SUs and validated with 26 SUs, 

which gives to the result a very poor reliability. On the other hand, the smaller the threshold, the 

higher is the probability of considering as landslide SU some with really scarce landslide 

presence, which causing an overestimations of the actual landslide presence in the study area, 

and that’s why the overall AUC values decrease.  

In summary, it is true that the definition of the threshold plays a key role in the model 

performance, but our test shows that our conclusion about the advantage of training the 

statistical model within the ESA always hold, as long as the mapping units in the training sample 

are well balanced between stable/unstable. This is intuitively correct, since the statistical model 

needs enough information about both landslide presence and absence and their relation with 

the predictors, in order to formulate s correct classification. In addition, a threshold of 0.15% is 

considered appropriate because it is an objective value obtained from the average landslide 

density in the study area, while it maintains a balance between an appropriate number of cases 

(456 for training and 152 for validation) without compromising the introduction of false positive 

SU classification with a too low threshold.  

 

 To clarify this point, we modified the text as follows (we would not like to add new 

figures or tables): 

6 Discussion 

(…) 

Moreover, since the threshold value for distinguishing stable and unstable SUs could 

affect the LR model performances, we performed a sensitivity test evaluating the LR models, for 

both the WA and ESA, using different presence/absence thresholds.  We carried out 

calculations using as a threshold the 5th percentile (P5, threshold 0.013%), the 50th percentile 

(P50, threshold 0.265%) and the 90th percentile (P90, threshold 4.5%) of areal landslide 

distribution, along with the average landslide density calculated within the ESA, i.e. 0.33%. We 

observed that for all the cases, except in P90, the model tests showed better performance for 

ESA-SUM than for WA-SUM, which is proof that the conclusions obtained following any 

approach were indistinguishable. We note that because of the high threshold defined in P90, the 

model was trained with a very small sample of unstable SUs, which gives to the result a very 

poor reliability On the other hand, for in the P5 case, the unbalance does not take place, since 

each SU where at least one landslide pixel exists belongs to the unstable class, resulting in 

minimum yet relevant number of unstable SUs. Therefore, we maintain that results of the test 

confirm that SUs mitigate the relevance of the calibration area (ESA versus WA) when building 

an SU-based susceptibility model with a field-based landslide inventory, independently of the 

landslide presence threshold value. However, we acknowledge that the search of an optimal 



threshold value that ensures a balanced sample is a relevant point, though it is beyond the 

scope of this work. 



List of all relevant changes made in the manuscript 

 

 Some relevant references were added.  

 Figure 1. was modified.   

 More detailed explanation about the definition of the Effective Surveyed Area and the 

setting options used in this research were included. Results of exploratory tests for 

different setting options in a smaller portion of the study area were added to the 

manuscript.  

 A clearer explanation about the data selection for landslides susceptibility was included.  

 A more in depth discussion about the relevance of the threshold limit defined to classify 

SUs as unstable was added.   
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Abstract. Geomorphological field mapping is a conventional method to prepare landslide inventories. The approach is typically

hampered by the accessibility and visibility, during field campaigns for landslide mapping, of the different portions of the

study area. Statistical significance of landslide susceptibility maps can be significantly reduced if the classification algorithm

is trained in unsurveyed regions of the study area, for which landslide absence is typically assumed, while ignorance about

landslide presence should actually be acknowledged. We compare different landslide susceptibility zonations obtained by5

training the classification model either in the entire study area or in the only portion of the area that was actually surveyed,

which we name effective surveyed area. The latter was delineated by an automatic procedure specifically devised for the

purpose, which uses information gathered during surveys, along with landslide locations. The method was tested in Gipuzkoa

Province (Basque Country), North of the Iberian Peninsula, where digital thematic maps were available and a landslide survey

was performed. We prepared the landslide susceptibility maps and the associated uncertainty within a logistic regression model,10

using both slope units and regular grid cells as reference mapping unit. Results indicate that the use of effective surveyed area

for landslide susceptibility zonation is a valid approach to minimize the limitations stemming from unsurveyed regions at

landslide mapping time. Use of slope units as mapping units, instead of grid cells, mitigates the uncertainties introduced

by training the automatic classifier within the entire study area. Our method pertains to data preparation and, as such, the

relevance of our conclusions is not limited to the logistic regression but are valid for virtually all the existing multivariate15

landslide susceptibility models.

1 Introduction

Landslide susceptibility is defined as the likelihood of a landslide occurring in an area on the basis of the local terrain and envi-

ronmental conditions (Brabb, 1984; Guzzetti et al., 2005). Landslide Susceptibility Zonation (LSZ) is important for landslide

mitigation plans, since it supplies planners and decision makers with essential information (Van Den Eeckhaut et al., 2012). A20

large number of LSZ studies based on statistical methodologies (Reichenbach et al., 2018) and comparative studies (Cascini,

2008; Das et al., 2010; Schicker, 2010; Amorim, 2012; Blais-Stevens et al., 2012; Trigila et al., 2015; Wang et al., 2015) were

published in the last decades. Many statistical methods, aimed at estimating the propensity of a territory to experience slope
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failures, rely on landslide inventory maps and spatial thematic layers as predisposing factors (Ermini et al., 2005; Van Den

Eeckhaut et al., 2006; Camilo et al., 2017).

In statistical landslide susceptibility models, as the logistic regression (LR) model adopted in this work, the preparation of

the training data set is a fundamental and critical step. Commonly, this requires the selection of a sample of stable (without

landslides) and unstable (with landslides) mapping units. While assuring the presence of a landslide is straightforward, and5

it can be supported by the geomorphological signatures on the slope or by direct observation of the events, the selection of

landslide-free areas is more critical. Assuming as landslide-free the locations of a study area where no landslides were reported

in a field survey is correct only in the unlikely circumstance that the landslide inventory has been prepared surveying every

single site of the study area, and following homogeneous criteria. In other words, any landslide-free location in an inventory

map should have been explicitly checked to be free from landslides.10

Nowadays, there are methods based on the visual interpretation of aerial photographs or digital processing of remotely

acquired optical and radar imagery (Catani et al., 2005; Herrera et al., 2009; Fiorucci et al., 2011; Casagli et al., 2017; Mondini,

2017; Fiorucci et al., 2018; Alvioli et al., 2018b), that allow to prepare historical and event landslide inventories. However,

the adoption of such methods can be hampered by the lack of imagery or image interpretation /classification expertise, low

performance of automatic classification, and other factors. Alternatively, bibliographic sources like newspapers and news feeds,15

administrative reports or scientific literature can be used to obtain landslide information. Nevertheless, the downside of these

type of data is that they hardly are as accurate as required by LSZ studies. As a consequence, sometimes the best option to

obtain a reliable landslide inventory is a straightforward geomorphological field mapping. A detailed discussion about the

characteristics, advantages and limitations of different approaches for landslide mapping can be found in Guzzetti et al. (2012);

Santangelo et al. (2015); Fiorucci et al. (2018).20

An operational disadvantage of field-based landslide mapping is the difficulty in surveying the whole area where the LSZ

must be carried out since some places can be inaccessible or not visible from the accessible places. Difficulties in surveying

the landscape affect the completeness and the spatial representativeness of the landslide inventory and, as a result, inclusion of

non-visible areas within a landslide inventory introduces a bias since presence or absence of landslides cannot be ascertained

in such portions of landscape. This uncertainty has hardly been considered in existing studies that use field-based landslide25

inventories (Yesilnacar and Topal, 2005; Murillo-García et al., 2015; Wang et al., 2017).

On the other hand, selection of an appropriate terrain subdivision is also a critical phase step in LSZ analysis. The land

surface can be divided in portions following geomorphologic features using terrain units, topographic units, geo-hydrological

units or slope units, but also considering thematic layers resulting in unique condition units or administrative units, as well as

regular grid cells partitions (Van Den Eeckhaut et al., 2006; Reichenbach et al., 2018). Selection of different mapping units can30

result in considerable differences in the susceptibility assessment (Carrara et al., 2008). In this work, we considered grid cells

and slope units (Carrara et al., 1991, 1995; Guzzetti et al., 2006; Alvioli et al., 2016; Zêzere et al., 2017; Rosi et al., 2018; Ba

et al., 2018), and investigated the effect of the different ways of training LSZ models within both types of mapping units.

We propose an automatic and reproducible procedure to delineate the actual area which was explicitly surveyed in preparing

a landslide inventory by geomorphological field mapping, i.e. the effective surveyed area (ESA), and to use such relevant35
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information in statistical analyses. The procedure allows to carry out the calibration of the a statistical model within the ESA

and then to apply the resulting susceptibility model to the whole area (WA) under investigation. Moreover, we implemented

an automatic approach for the delineation of the ESA in a newly developed software GRASS GIS module named r.survey.py

(see section 3.3). The software is able to delineate the ESA selecting the visible area from a given set of points of view in an

objective and reproducible way. delineates the theoretical visible areas from the points of view recorded during a field campaign5

by the GPS tracks. Most importantly, the ESA delineated by r.survey.py is an objective and reproducible portion of the study

area directly observed by the geomorphologists, thus allowing to avoid arbitrary assumptions about which sites were actually

surveyed and which ones were not.

This work aims at demonstrating that the calibration of a landslide susceptibility model within the ESA, instead of the WA

(the whole study area, encompassing the ESA), enhances the performance of model itself. In a test study area, we calibrated10

the multivariate logistic regression model for landslide susceptibility, implemented in the LAND-SE module of Rossi and

Reichenbach, 2016 in four different ways, combining two different calibration areas (ESA and WA) with two different mapping

unit types: (i) a regular grid cell partition with a ground resolution of 5 m x 5 m and (ii) an slope unit (SU) partition (consisting

in irregular terrain subdivisions bounded by drainage and divided lines)obtained using the GRASS GIS module r.slopeunits

developed by Alvioli et al, 2016 (see section 3.4).15

The paper is organized as follows. Section 2 provides an overview of the study area. Section 3 shows the details about the

data acquisition; in particular, the r.survey is described in 3.3 and SU delineation in 3.4. Section 4 contains a general description

about the multivariate method applied to model the landslide susceptibility and the approach followed for to validate it model

results, as well as a detailed description about the set-up of the different model assessments. Results are described in Section

5, and are further discussed in Section 6. Eventually, our conclusions are drawn in Section 7.20

2 Study Area

The Gipuzkoa Province was selected as test study area. It is located in the north of the Iberian Peninsula along the western end

of the Pyrenees, and covers an area of 1980 km2, with altitude ranging from the sea level to 1528 m a.s.l. Six watersheds of

different size drain the study area and reach the Cantabrian Sea (Fig. 1a). The Province is characterized by a steep morphology

with 55% of its surface having a slope larger than 15◦.25

The investigated area is lithologically heterogeneous (Fig. 1b), with materials ranging from Paleozoic rocks to Quaternary

deposits (EVE, 2010), and it corresponds to a hilly and mountainous Atlantic landscape (Mücher et al., 2010). The average

annual precipitation is 1,597 mm (González-Hidalgo et al., 2011) with two maximum periods: 34% in November-January and

10% in April. Even though rainfall is the primary triggering factor of shallow landslides (Petley et al., 2005; Alvioli et al.,

2018a), anthropogenic slope modifications such as slope clearings and forest extraction activities also strongly affect landslide30

occurrence (Corominas et al., 2017) in the area.
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3 Data preparation

3.1 Landslide inventory

We prepared a landslide inventory by a direct geomorphological field survey, during the period from June to August, of 2016.

We collected information about the location of each observed landslide, four GPS points (crown, toe, and two flanks), pho-

tographs, features of the surrounding area features and information about the landslide type, according to the Cruden and5

Varnes (1960) classification. Each documented landslide was drawn and digitized using its four GPS waypoints recorded and

photographs as a reference. The QGIS software and Google Earth satellite imagery were used for the purpose. Moreover, and

most importantly for the aim of this work to define the ESA, we digitized the route followed during the field survey. This

information will be later was then elaborated for the definition of the ESA, using a GRASS GIS module developed for the

purpose and included in this work as supplementary material.10

Each documented landslide was drawn and digitized using a combination of the QGIS module and Google Earth satellite

imagery. As a result of several field trips, 793 individual landslides were collected; 746 of them were classified as shallow

movements (Fig. 2a). Our observations together with the existing literature (INGEMISA, 1995; Gipuzkoako Foru Aldundia,

2013; IDE de Euskadi, 2014) confirmed that shallow slides are the most frequent type of landslide in the study area. Conse-

quently, in order to consider only landslides triggered by the same mechanisms, only shallow movements The latter were used15

to determine landslide presence when defining the dependent variable in the susceptibility assessment. Figures 2b and 2c show

the distribution of landslide sizes, highlighting that a difference of five orders of magnitude exists between the smallest and the

largest inventoried shallow slide.

3.2 Explanatory Variables

The selection of the appropriate explanatory variables to build a landslide susceptibility model is an important step (Ayalew20

and Yamagishi, 2005; Schlögel et al., 2018), and no universal criteria nor guidelines exist for the purpose.

We obtained relevant environmental digital layers from the Spatial Data Service of the Basque Country1, and created 13

maps describing the different explanatory variables (see Table 2). To produce derived morphometric continuous variables,

such as Slope, Sinusoidal slope, Surface area ratio (SAR), Terrain wetness index (TWI), Curvature, Plan curvature and Profile

curvature, we used a DEM raster layer with 5 m x 5 m spatial resolution. Sinusoidal slope is a derived morphometric variable25

proposed by Santacana Quintas (2001) and Amorim (2012) to emphasize the fact that shallow slides typically occur in medium

slope areas, while they seldom occur on slopes steeper 45◦. For categorical variables, such as Lithology, Permeability, Regolith

thickness, Land Use, Vegetation and Aspect, we computed frequency ratio (FR) values for each class, and used them as a

relative value for their transformation into continuous variables (Lee and Min, 2001; Yilmaz, 2009; Trigila et al., 2015). We

acknowledge that the FR values can vary depending on the portion of the territory considered as the total area (ESA or WA).30

1http://www.geo.euskadi.eus
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In order to perform a direct comparison, we decided to maintain the same FR values (calculated considering the WA) in all

regular grid cell-based susceptibility analysis.

In this work, we first adopted grid cells as mapping units, and we applied a simplified and statistically oriented work-flow that

ensured that only significant variables were taken into account as well as the non-redundancy of the contributed information by

each covariate (Ayalew and Yamagishi, 2005). To do so, the whole set of 13 variables were considered within the LR analysis,5

and correlation coefficients were computed. We considered as collinear two variables when their correlation coefficient is

greater than 0.5 with a significance level of 0.01. In such a case, as an objective criterion for variable selection, the variable

with highest p-value between the two (see section 4.1), was not taken into consideration in the final run of the susceptibility

LR model. Additionally, variables with p-value higher than the threshold of 0.05 were rejected.

Then, considering the variables actually used for the application of the statistical models with grid cells, we have further10

restricted the set of variables to be used with slope units (see section 5.2).

3.3 Definition of the effective surveyed area

In this work we suggest the concept of ESA, and training of statistical models therein, as an approach to be used to train a land-

slide susceptibility model avoiding assumptions about the presence or absence of landslides in areas not explicitly observed.

We defined delineated the ESA by means of the newly developed GRASS GIS python module r.survey.py (see supplementary15

material). The module makes use of the map of Input data to define the visible area (i.e. ESA in our case) are: i) a sample of

points to be considered as points of view; ii) a DEM of the area; iii) the maximum visible distance. the routes followed by

the geomorphologists during field surveys and few additional inputs; ii) the maximum distance between points sampled from

the path; iii) a DEM of the area; iv) the maximum visible distance. The sample of points of view, in our case, was defined

re-sampling a given number of points along the recorded path during the field campaigns. This number of points depends on20

the maximum distance set between them, and together with the DEM resolution selected the results can be directly affected. In

a 10 km2 subset of the study area, we tested the software output using: i) GPS points recorded along the path followed during

th field campaign ; i i) maximum distance between sampled points of 50, 100, 200 and 500 m; iii) the original DEM at 5 m

resolution and resampled versions of the DEM at 20, 50 and 100 m resolution; iviii) maximum visible distance of 500 m (the

later was dictated by the largest distance between the digitized field path and the farthest landslide pixel in the subset of the25

study area). Results of the test are summarized in Table 1 .

We considered that the best setting option was the one which allows covering the totality of the landslides using the smallest

number of points (bigger larger Dmax value) and the lower DEM resolution in order to optimize the calculation time. In our

case, considering the whole study area, the maximum visible distance was set to 1,100 m, in view that the largest distance

between the digitized field path and the farthest landslide pixel was 1,092 m. Then, and according to the results of Table 1,30

we set the maximum sampling distance to 200 m and adopted a DEM resolution of 100 m. In a 10 km2 subset of the study

area, we have tested the module output using: i) maximum distance between sampled points of 50, 100, 200 and 500 m; ii)

maximum visible distance of 500 and 1100 m (the later was dictated by the largest distance between the digitized field path

and the farthest landslide pixel in the study area, 1092 m); ii) the original DEM at 5 m resolution and resampled versions of
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the DEM at 20, 50 and 100 m resolution. From the experiment, we concluded that the best settings in terms of accuracy and

processing time were: maximum sampling distance of 100 m, maximum visible distance of 1100 m, DEM resolution of 100

m. We used these values for the analysis of the entire study area to define the overall ESA.

We can make sense of the numerical values of the parameters used in the r.survey.py software module considering that the

minimum size A of an object visible from a distance ∆ is given by Rodrigues et al. (2010) and Minelli et al. (2014):5

A =
25∆2

c
, (1)

where c is a steradiant to square minutes conversion factor, c ' 1.18·107. Using ∆ = 1,100 m in Eq. (1), we get A = 2.6 m2,

meaning that the smallest landslide in our inventory, with size 7.3 m2, would actually be identifiable from at least one point

along the route, if the landslide sits within the ESA. The resulting ESA covers 44.24% of the entire study area and it is shown

in Fig. 2a.10

3.4 Slope units delineation

For SU delineation we have adopted the r.slopeunits software described in Alvioli et al. (2016). The software is a GRASS

GIS module, as the r.survey.py code presented in this work, and it was designed for the automatic and adaptive delineation

of SUs, given a DEM and a set of user-defined input parameters. The code can be used to produce several SU partitions,

using different combinations of the input parameters, which can thus be tuned according to user-defined criteria. We partially15

followed Alvioli et al. (2016), in that we selected the best SU partition maximizingconsidering the quality of terrain aspect

segmentation. In addition, we have performed preliminary tests using the LR susceptibility model, showing that the use of

very small SUs provides unrealistic results, which can be understood considering the limited variability of variables within

such small SU polygons. We concluded that, in the case of the Gipuzkoa Province the most suitable SU partition for landslide

susceptibility zonation should be obtained with the following r.slopeunits input parameters: flow accumulation area threshold20

t = 1 km2; minimum SU planimetric area a = 0.15 km2; minimum circular variance of terrain aspect within each SU c = 0.2;

reduction factor r = 5; threshold value for the cleaning procedure cleansize = 0.025 km2. As a result, we obtained a set of SUs

which range in size from 0.026 km2 to 3.6 km2 with average 0.28 km2. A discussion of SU delineation and optimization of

input parameters can be found in Alvioli et al. (2016) and Schlögel et al. (2018), and it is out of the scope of this work.

4 Modelling framework25

We prepared fFour landslide susceptibility maps (LS maps), were prepared by means of a statistical approach multivariate

LR model. All the maps were obtained using LR and their cClassification performances were measured by means of a set

of validation tests explained in the following sections. We prepared the first two maps using 5 m x 5 m regular grid cells as

mapping units. The two maps differ because in one case the LR model was calibrated within the ESA WA, and within the

WA ESA (described in Section 3.3) in the other case. The third and fourth LS maps, instead, were prepared with different30

mapping units, namely with SUs (described in Section 3.4) instead of grid cells, where calibration data were also changed
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considering data within WA in one case and within ESA in the other. We end up with four maps, which we name as follows:

WA-PM (whole area, pixel map), ESA-PM (effective surveyed area, pixel map), WA-SUM (whole area, slope units map) and

ESA-SUM (effective surveyed area, slope units map).

4.1 Logistic regression

We used logistic regression (Hosmer Jr et al., 2013), one of the multivariate statistical approaches available in the LAND-5

SE software (Rossi and Reichenbach, 2016), to build the landslide susceptibility model in the test study area. The method

is the most used in the scientific literature (Reichenbach et al., 2018) and proved to be useful and reliable in several studies

(Nefeslioglu et al., 2008; Van Den Eeckhaut et al., 2012; Trigila et al., 2015). The LR model works with either continuous or

categorical independent variables, or a combination of the two types, regardless whether they present a normal distribution are

normally distributed or not (Costanzo et al., 2014).10

The underlying mathematical relationship between the dependent dichotomous variable (presence/absence of a landslide in

the mapping unit; Y in the following) and the n independent variables (e.g., slope, lithology, etc.; X1, ..., Xn), within th eLR

model, reads as follows:

Y = β0 + β1X1 + ... + βnXn , (2)

where β0 is the intercept of the model and β1, ...,βn the linear regression estimate coefficients. The independent (explanatory)15

variables, X1, ..., Xn, included in our case both continuous and categorical layers (the latter were previously transformed into

continuous variables, as described in section 3.2); see Table 2 for a the full list of variables used in this work. Calibrating an

LR model amounts to selecting numerical values for the {βi}i=n
i=1 coefficients in Eq. (2) that maximize the agreement between

model output, i.e. landslide probability:

P =
1

1 + e−Y
, (3)20

and empirical landslide data, in a training area. The same values of the coefficients can then be used to validate the model

prediction skills in a different area, where landslide conditions are unknown to the model but the same explanatory variables

layers exist.

In addition to the β coefficients, the LR method also offers a significance p-value for each explanatory variable. The im-

plementation of the glm function of the R programming language library2, used in the LAND-SE software, is such that it is25

possible to investigate the estimated standard error of a t-statistic for the null hypothesis of each of the coefficients of the linear

model. The p-value represents the probability for the parameter to be zero: for p-values smaller than 0.05 the null hypothe-

sis (vanishing coefficient) is rejected, thus the associated variable is significant for the final result. A p-value higher than 0.05

indicate a weak relation between explanatory variables and the dependent variable. In such a case the variable is not statistically

significant and it can be removed from the analysis. Conversely, in statistical terms, those predictors with p-value under the30

2https://www.r-project.org
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threshold value of 0.05 are all equally significant. So, the p-value can be considered as an objective indicator for the selection

of the most relevant variables to be used in the statistical model (Schlögel et al., 2018).

4.2 Evaluation of model performance

The performance of statistical susceptibility models, i.e. of multivariate binary classifiers, can be evaluated comparing its

their predictions with the landslide data used in the model calibration/training step phase, (i.e. model fitting performance), or5

with independent landslide data (i.e. model prediction performance). The definition of training and validation input samples is

crucial to detect how well each model fits input data, but also how good is the model at predicting new data.

The statistical metrics commonly used in the literature (Corominas and Mavrouli, 2011; Van Den Eeckhaut et al., 2006; Lom-

bardo et al., 2015; Reichenbach et al., 2018) for that purpose are (i) confusion matrices (contingency tables) and their graphical

representation (four-fold or contingency plots), (ii) Receiver Operating Characteristic (ROC) curves and their associated Area10

Under Curve (AUC) value, (iii) classification error plots and (iv) Cohen’s kappa index.

Four-fold (or contingency) plots are visual representations of the confusion matrices reporting the percentages of the true

positives (TP ), true negatives (TN ), false positives (FP ) and false negatives (FN ). ROC curves are more complex represen-

tation of the classification performance based on different probabilistic threshold values. The area under the ROC curve (AUC)

is an indicator of the model performance in predicting landslide susceptibility. AUC values vary between 0 and 1, with higher15

values indicating better prediction skills (Fawcett, 2006).

To estimate the uncertainty associated with the landslide susceptibility value assigned to each mapping unit, it is possible

to run multiple instances of the LR model varying, randomly, the input data. In each run, the input is prepared sampling the

original training data set with a bootstrap technique, consisting in a random sampling with replacement (Efron, 1992; Davison

and Hinkley, 1997) (Rossi et al., 2010; Rossi and Reichenbach, 2016). Classification error plots summarize the distribution20

of multiple results and show the mean probability estimate of landslide spatial occurrence for each mapping unit (x-axis),

ranked from low (left) to high (right) values, related to the variation of the model estimate (y-axis), measured by 2 standard

deviations (2σ) of the probability estimates obtained by the different model runs (Guzzetti et al., 2006). The parabolic model

fitting equation resulting from the point cloud (i.e. using a non-linear least square method), describes analytically the overall

model prediction performance variability. Cohen’s kappa index (k) is an additional measure of the reliability of a classification25

model (Cohen, 1960; Rossi et al., 2010), whose higher values also indicate a more accurate prediction skill.

In this study the probability of landslide occurrence resulting from each model estimate (trained either within the ESA or

within the WA) and for each considered mapping unit (either grid cells or slope units), can be was reclassified in five landslide

susceptibility classes which were labelled as Very low (for susceptibility values in the range 0-0.2), Low (0.2-0.45), Medium

(0.45-0.55), High (0.55-0.8) and Very high (0.8-1).30

In this work Moreover, in order to spatially identify the pairwise matching degree between different model estimates, we

additionally adopted a simplified classification of the landslide susceptibility. Each mapping unit was reclassified as stable or

unstable considering a threshold value of 0.5. The different maps, all prepared with the same mapping unit partition, were
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overlapped. Then, the mismatch degree between grid cell and SU susceptibility maps was quantified in terms of number of

mismatched mapping units and overall mismatched area.

4.3 Data selection for landslide susceptibility

The DEM available for the study area consists of 7.91·107 cells with 5 m resolution. For landslide susceptibility assessment,

both using pixels grid cells (i.e. pixels) and SUs, we prepared raster layers corresponding to each available explanatory variable,5

aligned to the DEM grid cells.

We devised a rigorous sampling procedure to minimize possible statistical biases during training/validation partition. The

procedure is slightly different for the pixel grid cell and SU mapping units cases.

In the first case, a grid cell was considered unstable if it is located within any landslide area polygon, and stable if it is

outside the landslide boundaries. In the second case, an SU was considered unstable depending on the percentage of landslide10

area present within it. In any case, the 75% of the unstable mapping units together with a similar amount of stable mapping

units were used to train the LR model, and the remaining 25%, also together with a similar amount of stable mapping units,

for validation. The choice of an equal number of stable and unstable mapping units was done on purpose, and it is the stan-

dard procedure required by the LAND-SE software for landslide susceptibility assessment, because the LR model requires a

balanced data set, in which the number of stable and unstable cases are similar (Felicísimo et al., 2013; Costanzo et al., 2014).15

For regular grid cell-based models, we selected at random 558 landslides (75%) for model training, and converted them into

raster layers (84,623 unstable pixels). The remaining 188 landslides (25%), used for validation, were also rasterized (29,247

unstable pixels). This is at variance with the usual random selection of unstable pixels, in which a given percentage of grid

cells are sampled within landslide. Here we select whole landslides, and consider all the pixels encompassed by the landslide

bodies as training/validation samples. We ran the experiment with three different training/validation random sets, containing20

the above percentages, and selected the one with the best classification results. This exercise allowed us to confirm that the

random selection of the landslide inventory does not affect the model results in a relevant way, because in all the cases the

model classification performances were very similar. In order to choose one single data set for further comparative analyses,

the data set with the best classification result was selected. Then, training sets were selected as follow: 84,623 unstable pixels

and an equal number of stable pixels were selected as training set. Two different sets were selected at random first within WA25

and then within ESA. We made sure that unstable pixels were exactly the same in the two cases, because we wanted the only

difference to be that the stable pixels were sampled within the WA, in the first case, and within the ESA, in the second case.

Finally, in order to guarantee the comparability of the prediction performances, one unique validation sample was created as

follow: the remaining 29,247 unstable pixels together with an equal number of stable pixels selected at random within the

remaining stable pixels within the ESA.30

Then, two different training samples were created. The entire training pixel sample includes 84,623 stable pixels (selected

at random within the WA) and an equal number of unstable pixels. The effective training pixel sample includes again 84,623

stable pixels (selected at random within the ESA) together with the same unstable pixels as in the other case. Additionally,

we selected at random 29,247 grid cells among the remaining stable pixels and an equal number of unstable pixels; we named
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this set as validation pixel sample and we used it to evaluate the model prediction performances. This is to guarantee the

comparability of the prediction performances for both the models trained in WA and in ESA, respectively.

Concerning the SU-based models, we first partitioned the study area in 6,907 SUs with the technique outlined in Section

3.4. SU boundaries do not match those of the dependent or explanatory variables layers, allowing the presence of different

classes, or values, inside each SU. Moreover, the presence of one single landslide pixel within a slope unit was not considered5

enough to label this SU as unstable. Therefore, instead of arbitrarily defining a given threshold value in order to consider an SU

as unstable, we decided to use the overall landslide density in the WA. For this reason, we considered as unstable those SUs

containing 0.15% or more unstable pixels, and stable otherwise. We used as explanatory variables the mean and the standard

deviation of the morphometric variables for each SU and the percentage of the area covered by each class of the categorical

layers. In 304 cases the SU contained 0.15% or more unstable pixels, so we selected at random 228, out of the 304 unstable10

SUs,of them (75%) for training, and the remaining 76 (25%) were used for validation. Like in grid cell approaches, we created

two different training samples where unstable SUs were exactly the same, and only the stable SUs vary in each case. The

first training sample includes 228 stable SUs selected at random along the WA. The second training sample includes an equal

number of stable SUs units selected at random among those that at least partially overlap the ESA. Additionally, 76 SUs

labelled as unstable were selected from the hwole set, for validation. The validation sample was completed by adding a random15

selection of the same number of SUs labelled as stable and which at least partially overlap the ESA. Thus, the validation sample

contained 152 SUs (76 unstable + 76 stable). The entire training SU sample includes 228 stable SUs selected at random along

the entire study area together with the training unstable SUs. On the other hand, effective training SU sample includes 228

stable mapping units selected at random among those SUs that at least partially overlap the ESA together with the training

unstable SUs. In order to complete the validation SU sample, we also selected 76 stable SUs at random among those that20

partially overlap the ESA.

Finally, considering that Eventually, since the ESA is an approximation of the real surveyed area, we stress that we always

selected stable mapping units for validation only if they are fully or partially within the ESA, because no evidence exists that

a mapping unit falling entirely outside the ESA is actually free from landslide. Moreover, if a portion of an SU falls within the

ESA, that implies that at least one part of the SU was observed. Therefore, using this approach, we can remove at least those25

SUs that were not surveyed at all.

5 Results

5.1 Susceptibility maps using grid cells

We ran the LR model using the pixel-based data sets twice: once using the entire training pixel sample and once using the

effective training pixel sample as dependent variables. We defined the obtained results as whole area pixel map (WA-PM) and30

effective surveyed area pixel map (ESA-PM), respectively.

Both in WA-PM and ESA-PM, we first used the same 13 explanatory variables, listed in Table 2, and then we selected for

each model assessment the most relevant explanatory variables considering the collinearity between each pair of variables and
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the significance (p-value) of the regression estimates (see section 3.2). As a result, for each case, only the variables marked

with an asterisk in Table 2 were introduced in the final LR analysis.

Using the validation pixel sample, we evaluated the prediction skills of the pixel susceptibility maps. Inspection of the four

fold, or contingency, plots (Figs. 3a, d) reveals that WA-PM predicted correctly the 63.58% (TP+TN) of the observed unstable

and stable mapping units, whereas ESA-PM was capable to correctly predict a higher amount of mapping units (65.45%). The5

ROC curves (Figs. 3b, e) also indicate better prediction skills in ESA-PM (AUC = 0.7) than in WA-PM (AUC = 0.68) and

the same happens for the Cohen’s Kappa index (Fig. 3; k = 0.309 versus k = 0.272). Moreover, the almost flat classification

error plots in both cases (Figs. 3c, f) show high stability of model results, which confirms the reliability of the validation tests

obtained in WA-PM and ESA-PM. the classification error plots (Figs. 3c, f) provide an estimate of the error associated with

the predicted susceptibility values, which does not exceed 0.1 standard deviations in any case, highlighting the reliability of10

the results. And finally, the mutual mismatch map (Fig. 5e) shows that 14.8% (corresponding to an extension of 293 km2) of

the mapping units flipped their landslide susceptibility class in WA-PM and ESA-PM.

Thus, considering these metrics, we can infer that the pixel susceptibility map which considers only stable mapping units

inside the ESA exhibits the best prediction capacity.

5.2 Susceptibility maps using slope units15

Due to the subdivision of categorical variables in different classes, and to the use of both mean and standard deviation of

morphometric variables, the introduction of the original 13 explanatory variables would result in 56 new variables in which

many of them (all those classes belonging to the same categorical variable) would be highly correlated. For this reason, for

model assessment with SUs, the variable selection approach used in the pixel-based case is not viable when working with SUs

and a specific variable selection approach for SU models would require further investigation. Thus, for this work, the most20

appropriate set of explanatory variables, among those considered as the most relevant in pixel-based model assessment, was

selected by expert criteria. Considering such set of variables as a starting point, we selected new sets of explanatory variables

to evaluate landslide susceptibility using SUs, i.e. to calculate the whole area slope unit map (WA-SUM) and the effective area

slope unit map (ESA-SUM). Taking into account that the automatic procedure for the SUs definition already included the flow

accumulation calculation, used for TWI estimation, and the aspect component, we rejected Aspect and TWI to avoid spurious25

correlations. We selected the following set of variables used to produce both pixel-based maps such as Lithology, Permeability,

Regolith thickness and Vegetation, and we added Slope. The reason for choosing Slope over Sinusoidal slope or SAR is due to

the fact that these two are derivative variables of the former. Moreover, we consider Slope more suitable feature to describe the

average morphology within SU than Sinusoidal slope or SAR, so we decided to select it in order to simplify interpretation of

the results.30

Using the validation SU sample, we assessed the prediction skills of the SU maps. For the WA-SUM the 65.13% of the 152

validation mapping units were correctly classified (TP+TN) (Fig. 4a). The ROC curve provides an AUC = value of 0.69, and

the corresponding Cohen’s Kappa is k = 0.302 (Fig. 4b). Concerning the classification error plot (Fig. 4c), it can be observed

that in the SUs with hHigh and lLow landslide susceptibility probability (probability > 0.8 and < 0.2) the 2σ value stays
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below 0.2, but variability in the estimates becomes larger for intermediate susceptibilities. This reveals a considerable variation

in the stable/unstable classification of the territory, which implies a low reliability, at least for the intermediate probabilities

(Guzzetti et al., 2006). For the ESA-SUM, the 63.82% of the 152 validation mapping units were correctly classified (TP+TN)

(Fig. 4d) with AUC = 0.71, slightly larger with respect to the other SU model assessment, whereas, the Cohen’s Kappa index

performed slightly worse, being k = 0.276 (Fig. 4). The classification error plot shows a considerable variation in intermediate5

probabilities (Fig. 4f) while the uncertainty is lower for hHigh and Llow probabilities. Nevertheless, the quadratic fit curves

indicate a lower overall variability for ESA-SUM than for WA-SUM.

Visual inspection of the SU susceptibility maps (Figs. 5b, d) shows similarities between WA-SUM and ESA-SUM. The

difference is graphically presented through the mismatch map (Fig. 5f), where 12.6% of the mapping units (corresponding to

an extension of 247 km2) change their landslide susceptibility class, from between WA-SUM to and ESA-SUM.10

Taking into account the AUC and the variability of the model results, ESA-SUM could be singled out as the best method,

but if only the Four fold plot and the Cohen’s kappa are not used as validation metrics.

6 Discussion

The number of scientific publications focusing on landslide susceptibility zonation has notably increased during the last decades

(Gutiérrez et al., 2010; Rossi and Reichenbach, 2016; Liberatoscioli et al., 2017; Valagussa et al., 2017; Zhou et al., 2018;15

Reichenbach et al., 2018) and, nowadays, there is a huge variety of applications and comparisons which provides an enormous

range of approaches to prepare a landslide susceptibility map. Differences between these approaches can be summarized in

(i) the type of landslide inventory, (ii) the environmental variables used, (iii) the mapping unit partition, (iv) the method used

to prepare susceptibility maps and (v) the scale of application. The existence of such a big production of papers investigating

these aspects is proof that no fully consolidated standard exists for all the steps involved in landslide susceptibility analysis.20

In this work, we showed that the information contained in a field-based landslide inventory for landslide susceptibility

analysis should be critically examined, also in combination with the mapping unit of choice.

A field work-based landslide inventory is by definition a source of uncertainty in statistical analysis, owing to various reasons,

including mapping errors, accuracy, subjectivity, and others. The focus of this work is the analysis of an additional uncertainty

due to use of field mapping, namely the fact that it is impossible to ensure that the study area was surveyed in a homogeneous25

way. An objective delimitation of the surveyed area by means of the ESA, proposed in this paper along with a module to

objectively delineate the ESA (see supplementary material), is one way to reduce this uncertainty.

The hypothesis tested in this work is that any statistical landslide susceptibility model trained inside the ESA is by definition

more correct than considering the entire study area for training the model. The statement was borne out by the results of

multivariate LR model calculations. We acknowledge that the ESA is only an approximation of the real surveyed area, though30

a much more realistic one than using the whole study area. Our definition of the ESA depends on the maximum distance

between points along the field, trips paths and the selected resolution of the DEM. Preliminary tests in a reduced portion of the

12



territory provided the most suitable settings for a satisfactory definition of the ESA in the particular case of Gipuzkoa Province

(section 3.3).

In the case of the pixel-based susceptibility maps, the metrics of model prediction performances are in agreement with our

main statement about the relevance of ESA. As a matter of fact, all the validation performance tests (confusion matrix metrics,

the area under the ROC curve and Cohen’s Kappa index) present an improvement if the stable pixels used for training the LR5

model are selected within the ESA (like in ESA-PM, Fig. 3a) than if they are taken from the WA (like in WA-PM, Fig. 3b). In

addition, the classification error plots provide an estimate of the error associated with the predicted susceptibility values, which

does not exceed 0.1 standard deviations in any case, highlighting the reliability of the results the almost flat classification error

plots in both cases (Figs. 3c, f) show high stability of model results. The spatial distribution of the susceptibility classes are

different as well between ESA-PM and WA-PM (see Figs. 5a, c), and such differences are highlighted in the mutual mismatch10

map (Fig. 5e). Moreover, the mutual mismatch map (Fig. 5e) shows that 14.8% (corresponding to an extension of 293 km2)

of the mapping units flipped their landslide susceptibility class in WA-PM and ESA-PM. Another difference between the two

pixel maps is the set of explanatory variables selected as predictors. The variable selection approach presented in this paper,

and previously adopted in a similar way in Schlögel et al. (2018), demonstrated to be effective and capable to detect presence

of redundant information, as well as offering an objective way to choose between collinear explanatory variables.15

In the case of SU-based susceptibility maps, validation metrics do not present us with clear-cut results as in the pixel-based

maps. As a matter of facts, AUC performs better in ESA-SUM while Confusion Matrix and Cohen’s Kappa index present

higher prediction performance in WA-SUM (Fig. 4). The classification error plots show considerable variations in intermediate

susceptibility probability values, but the quadratic fit curves suggest a slightly lower variability in ESA-SUM (Figs. 4c, f). We

interpret these results as an indication of a smaller effect that proper usage of the ESA can have in SU-based susceptibility20

maps, with respect to pixel-based maps. Visual inspection of the SU susceptibility maps (Figs. 5b, d) also shows similarities

between WA-SUM and ESA-SUM. The difference is graphically presented through the mismatch map (Fig. 5f), where 12.6%

of the mapping units (corresponding to an extension of 247 km2) change their landslide susceptibility class, from WA-SUM to

ESA-SUM. Despite the small difference in model prediction performance between WA-SUM and ESA-SUM, the reduction of

the mismatch degree (Fig. 5f) suggests that the usage of the ESA is equally recommendable for SU susceptibility maps carried25

out by field work landslide inventories.

The pixel- and SU-based maps obtained within the method presented in this work are inherently different from a concep-

tual point of view. We maintain that an SU-based map probably represents a better option, for SUs bear a clear relation with

topography, they reduce mapping errors and are more useful for practical (planning) purposes. Nevertheless, for the sake of

completeness and to show differences between the two approaches, we discussed pixel-based and SU-based maps indepen-30

dently. The uncertainty introduced by a field work-based landslide inventory can be mitigated by using SUs, resulting in more

similar susceptibility maps and validation performances in WA-SUM and ESA-SUM than in pixel models.

Moreover, knowing that the threshold value for the distinction of stable and unstable SU could affect the LR model

performances, we decided to build the SU based maps using a threshold value equal to 0.33% (i.e., the landslide ratio in

ESA) and compare the results with the ones obtained with 0.15% (i.e., the landslide ratio in the WA). We observed that,35
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even if the absolute value of the evaluation indexes (e.g., the ROC area) slightly decrease with respect to the maps obtained

using the threshold estimated in the WA (0.15%), the performance of the two approaches is indistinguishable. Therefore, we

maintain that results confirm that SU mitigate the relevance of the calibration area (ESA versus WA) when building a SU based

susceptibility model with a field-based landslide inventory, independent of the landslide presence threshold value.

Moreover, since the threshold value for distinguishing stable and unstable SUs could affect the LR model performances, we5

performed a sensitivity test evaluating the LR models, for both the WA and ESA, using different presence/absence thresholds.

We carried out calculations using as a threshold the 5th percentile (P5, threshold 0.013%), the 50th percentile (P50, threshold

0.265%) and the 90th percentile (P90, threshold 4.5%) of areal landslide distribution, along with the average landslide den-

sity calculated within the ESA, i.e. 0.33%. We observed that for all the cases, except in P90, the model tests showed better

performance for ESA-SUM than for WA-SUM, which is proof that the conclusions obtained following any approach were10

indistinguishable. We note that because of the high threshold defined in P90, the model was trained with a very small sample

of unstable SUs, which gives to the result a very poor reliability. On the other hand, for in the P5 case, the unbalance does

not take place, since each SU where at least one landslide pixel exists belongs to the unstable class, resulting in minimum yet

relevant number of unstable SUs. Therefore, we maintain that results of the test confirm that SUs mitigate the relevance of

the calibration area (ESA versus WA) when building an SU-based susceptibility model with a field-based landslide inventory,15

independently of the landslide presence threshold value. However, we acknowledge that the search of an optimal threshold

value that ensures a balanced sample is a relevant point, though it is beyond the scope of this work.

7 Conclusions

We explored the effects of training an LR classifier (Rossi and Reichenbach, 2016) for landslide susceptibility zonation within

the area that was actually surveyed at landslide mapping time, the ESA, and the extended study area, WA, encompassing the20

ESA. We prepared four susceptibility maps combining variables (cf. Eq. (2) and Table 2) sampled strictly within the ESA

or from the WA with two different mapping unit partitions, i.e., 5 m x 5 m grid cells and slope units (Alvioli et al., 2016),

delineated for the purpose.

A straightforward comparative analysis using standard prediction performance metrics revealed that the ESA-based approach

is better than the WA-based, at least in grid-cell mapping units based approaches, for what concerned the training area (i.e.25

within the ESA or WA). Introducing different mapping units in the comparison, we further found that using slope units slightly

reduces the gap between results obtained training a statistical model within the ESA versus WA. Thus, the capacity of the

slope unit mapping subdivision to mitigate this error was demonstrated, as powerful suitable alternative to the conventional

pixel-based approaches.

The results illustrated above support the following statements:30

(i) when working with pixel mapping units, training the LS model a statistical classifier for LSZ within the ESA is the

correct approach to reduce the uncertainty inherent to the landslide inventory;
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(ii) when working with slope unit terrain partition this uncertainty can be mitigated, even though it is still advantageous to

train the LS model within the ESA;

(iii) use of ESA should be considered, if sufficient information is available, in preparing landslide susceptibility maps with

any multivariate statistical model;

(iv) collecting information about the path followed during field campaigns for landslide mapping is a meaningful procedure5

for estimating the ESA, at model assessment time, using the GRASS GIS module r.survey.py presented in this work.

We acknowledge that the overall performances of the landslide susceptibility maps presented in this paper are of moderate

to low prediction capacity, with AUC values ranging between 0.68 to 0.71 and an overall accuracy which hardly overcomes

the 65% in the best case (Figs. 3 and 4). This could be due to (i) the lack of a more complete landslide inventory (Guzzetti

et al., 2012; Malamud et al., 2004) or (ii) the use of not up-to-date thematic layers. Nevertheless, the preparation of a definitive10

landslide susceptibility map for the study area was out of the scope of our investigation. Instead, we performed pairwise

comparative analyses in which we only changed, across the compared model assessments, the region of logistic regression

training.

Code availability.

– The software developed in this work to delineate the effective surveyed area, r.survey.py, is contained in the supplementary material15

– The software developed in Alvioli et al. (2016) to parametrically delineate slope units, r.slopeunits, is available at:

http://geomorphology.irpi.cnr.it/tools/slope-units

– The software developed in Rossi and Reichenbach (2016) for the statistical assessment of landslide susceptibility zonation, LAND-SE,

is available at: https://github.com/maurorossi/LAND-SE
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Figure 1. Location of the Gipuzkoa Province study area and simplified lithological map developed according to the original map of the

Spatial Data Service of the Basque Country. Coordinates in degrees, Universal Transversal Mercator (UTM) Zone 30N, European Datum

ETRS 1989.
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Figure 2. (a) Distribution of the shallow slides inventory along the study area and extension of the effective surveyed area (ESA). (b)

Probability density plot of the shallow landslide size (Area in m2) distribution. (c) Box plot of the same distribution.
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Figure 3. Pixel-based LR models prediction performance results: summary tables of the Cohen’s kappa index, area under the ROC curve

(AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate ((FP+FN)/(TP+TN+FP+FN)); (a,d) four fold or contingency

plots; (b,e) ROC curves; (c,f) classification error plots and the quadratic regression fit curves (red line).
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Figure 4. SU-based LR models prediction performance results: summary tables of the Cohen’s kappa index, area under the ROC curve

(AUC), overall accuracy ((TP+TN)/(TP+TN+FP+FN)) and overall error rate ((FP+FN)/(TP+TN+FP+FN)); (a,d) four fold or contingency

plots; (b,e) ROC curves; (c,f) classification error plots and the quadratic regression fit curves (red line).
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Figure 5. (a-d) Landslide susceptibility maps represented in five classes for WA-PM, WA-SUM, ESA-PM and ESA-SUM. (e,f) Mismatch

maps representing the spatial distribution of the mapping units differently classified using ESA between pixel models and slope unit models.
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Table 1. Results of the setting test of r.surbey in a 10 km2 subset of the study area.

Name Resolution (m) Dmax Percentage of landslides within (%)

Survey 5 5 50 35

Survey 6 20 50 70

Survey 7 50 50 95

Survey 8 100 50 100

Survey 9 5 100 30

Survey 10 20 100 60

Survey 11 50 100 95

Survey 12 100 100 100

Survey 13 5 200 30

Survey 14 20 200 55

Survey 15 50 200 85

Survey 16 100 200 100

Survey 17 5 500 0

Survey 18 20 500 35

Survey 19 50 500 60

Survey 20 100 500 95
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Table 2. Set of environmental variables introduced for the whole area pixel-based (WA-PM) and effective surveyed area pixel-based (ESA-

PM) models calculation, together with the significance p-value estimate corresponding to each explanatory variable (cf. Section 4.1). The

best predictors were labelled with an asterisk.

Name Description Significance p-value

Continuous WA-PM ESA-PM

Slope The slope gradient in degrees. 1.17·10−189 1.06·10−111

Sinusoidal Slope The sinusoidal mathematical transformation applied to the slope

variable (Amorim, 2012)

1.00·10−155 7.57·10−134 *

Surface area ratio The relation between the theoretical volume and the surface of

each pixel.

3.743·10−203 * 1.89·10−99

Terrain wetness index The spatial distribution of soil moisture or saturation (Yilmaz,

2009)

9.864·10−10 * 0.126807342

Curvature The spatial variation of the slope gradient. 0.909592654 0.525989188

Plan curvature The curvature of the surface perpendicular to the direction of

the maximum slope.

0.9094261 0.525836679

Profile curvature The curvature of the surface in the direction of the maximum

slope.

0.909605174 0.526032985

Categorical

Litology The original categories have been reclassified by expert criteria

(Geoeuskadi).

0 * 0 *

Permeability The original categories have been reclassified by expert criteria

(Geoeuskadi).

1.496·10−33 * 7.632·10−72 *

Regolith thickness The layer for the study area has been obtained from the Litho-

logical Map (Geoeuskadi).

0 * 0 *

Land Use The original categories have been reclassified by expert criteria

(Geoeuskadi).

5.14·10−291 1.42·10−87

Vegetation The original categories have been reclassified by expert criteria

(Geoeuskadi).

0 * 1.596·10−173 *

Aspect It represents the downslope direction measured in degrees clas-

sified in 9 classes.

0 * 0 *
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