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Abstract 12 

Sinkhole collapse is a major hazard causing substantial social and economic losses. However, 13 

the surface deformations and sinkhole evolution are rarely recorded, as these sites are known 14 

mainly after a collapse, making the assessment of sinkholes-related hazard challenging. 15 

Furthermore, more than 40% of the sinkholes of Italy are in seismically hazardous zones; it remains 16 

unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary dataset of 17 

InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake 18 

is a long-lived sinkhole that was formed over a century ago in an active fault zone and grew through 19 

several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, 20 

InSAR shows that continuous aseismic subsidence at rates of up to 7.1 mm yr-1 occurred during 21 

2003-2008, between events of unrest. Earthquakes on the major faults near the sinkhole are not a 22 

trigger to sinkhole activity but small-magnitude earthquakes at 4-12 km depth occurred during 23 

sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep at 24 

depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama 25 

sinkhole. 26 

 27 
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1. Introduction 28 

 Sinkholes are closed depressions with internal drainage typically associated with karst 29 

environments, where the exposed soluble rocks are dissolved by circulating ground water 30 

(dissolution sinkholes) but other types of sinkholes also exist. Subsidence sinkholes, for example, 31 

can form for both internal erosion and dissolution of covered layers leading to downward 32 

gravitational deformations such as collapse, sagging or suffosion (Ford and Williams, 2007; Gutiérrez 33 

et al., 2008). Deep sinkholes have been often observed along seismically active faults indicating a 34 

causal link between sinkhole formation and active tectonics (Faccenna et al., 1993; Harrison et al., 35 

2002; Closson et al., 2005; Florea, 2005; Del Prete et al., 2010; Parise et al., 2010; Wadas et al., 36 

2017).  In some cases, the processes responsible for their formation have been attributed to 37 

fracturing and increased permeability in the fault damage zone promoting fluid circulation and 38 

weathering of soluble rocks at depth. Additionally, when carbonate bedrocks lie below thick non-39 

carbonate formations, stress changes caused by faulting may cause decompression of confined 40 

aquifers favouring upward migration of deep fluids, hence promoting erosion and collapses (e.g. 41 

Harrison et al., 2002; Wadas et al., 2017). Seismically-induced stress changes could also trigger 42 

collapse of unstable cavities as in the case of the two sinkholes that formed near En Gedi (Dead Sea) 43 

following the Mw 5.2 earthquake on the Dead Sea Transform Fault in 2004 (Salamon, 2004). Sinkhole 44 

subsidence and collapses are a major hazard and cause substantial economic and human losses 45 

globally (Frumkin and Raz, 2001; Closson, 2005; Wadas, 2017). 46 

In Italy, a total of 750 sinkholes have been identified and the 40% of them are along active 47 

faults (Caramanna et al., 2008) but this number could be underestimated due to the high frequency 48 

of sinkholes both related to karst and anthropogenic origin (Parise and Vennari, 2013). Seismicity 49 

induced sinkhole deformation have been often observed in Italy (e.g. Santo et al., 2007; Parise et 50 

al., 2010; Kawashima et al., 2010).  51 



3 
 

The sinkhole of Prà di Lama, near the village of Pieve Fosciana (Lucca province, Italy), is a quasi-52 

circular depression filled by a lake. Prà di Lama is located in the seismically active Apennine range 53 

of Northern Tuscany, at the intersection between two active faults (Fig. 1). Hot springs are also 54 

present at Pieve Fosciana suggesting that fluid migration along the faults planes occurs. Sudden 55 

lake-level changes of up to several meters, ground subsidence, surface fracturing and seismicity 56 

have occurred repeatedly since at least 991 A.D. (Nisio, 2008). The most recent deformation events 57 

occurred in March 1996 and between May 2016 and October 2017. However, the processes that 58 

control the growth of the Prà di Lama sinkhole remain unclear. Furthermore, whether seismicity 59 

along the active faults around Prà di Lama may trigger sinkhole subsidence or collapse is debated.  60 

In this paper we combine recent InSAR observations, seismicity, and surface mapping, as well 61 

as historical records of lake-level changes and ground subsidence at the Prà di Lama from 1828 to 62 

understand the mechanisms of sinkhole growth in an active fault system.  63 

2. Geological setting 64 

The area of the Prà di Lama sinkhole is located within the Garfagnana basin (Fig.1), an 65 

extensional graben in the western Northern Apennines, a NW-SE trending fold-and-thrust belt 66 

formed by the stack of different tectonic units caused by the convergence of the Corsica-European 67 

and Adria plates. The current tectonic regime of the Apennines is characterized by shortening in the 68 

eastern sector of the Apennine range and extension in the westernmost side of the range (Elter et 69 

al., 1975; Patacca and Scandone, 1989; Bennett et al., 2012). The contemporaneous eastward 70 

migration of shortening and upper plate extension are believed to be caused by the roll-back 71 

subduction during the counter-clockwise rotation of the Adria plate (Doglioni, 1991; Meletti et al., 72 

2000; Serpelloni et al., 2005; Faccenna et al., 2014; Le Breton et al., 2017). Extension started 4-5 Ma 73 

ago leading to the formation of several NW-SE-oriented grabens, bounded by NE-dipping and SW-74 

dipping normal faults that are dissected by several NE-trending, right-lateral strike-slip faults (Fig. 75 
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1). The inner northern Apennines are a seismically active area, where several earthquakes with MW 76 

> 5 occurred, including the largest instrumentally recorded earthquake, Mw 6.5, in 1920 (Tertulliani 77 

and Maramai, 1998; Rovida et al., 2016; Bonini et al., 2016) and the most recent Mw 5.1 earthquake 78 

in 2013 (Pezzo et al., 2014; Stramondo et al., 2014; Molli et al., 2016). 79 

The uppermost stratigraphy at Prà di Lama consists of 8m-thick layer of alluvial and palustrine 80 

gravels and sandy deposits containing peaty levels, covering an ~85m-thick sandy-to-silty fluvio-81 

lacustrine deposits with low permeability (from Villafranchian to present age) (Chetoni, 1995) (Fig.2a 82 

and b). These deposits cover a ~1000m-thick turbiditic sequence (Macigno Fm). Below it, a sequence 83 

of carbonate rocks pertaining to the Tuscan Nappe Unit is present reaching down to a depth of 84 

~2000 m, where anhydrites (Burano fm.) and calcareous-dolomitic breccias (Calcare Cavernoso Fm.) 85 

overlie the Tuscan Metamorphic Units (Fig. 2c).  86 

The Prà di Lama lake lies at the centre of a depression (Figs. 2 and 5). The low slopes 87 

characterizing the topography of the area results in the absence of active gravitational ground 88 

motions (Fig 2). Furthermore, the Prà di Lama sinkhole is an isolated feature in the region being the 89 

only mapped sinkhole in the entire Garfagnana graben (Caramanna et al., 2008); the closest 90 

sinkhole is in Camaiore (Buchignani et al., 2008) near the Tuscany coast (Fig.1). 91 

The Prà di Lama sinkhole is located at the intersection between two seismically active faults: 92 

the Corfino normal fault (Itacha working group, 2003; Di Naccio et al., 2013; ISIDe working group, 93 

2016) and the right-lateral strike-slip fault M.Perpoli-T.Scoltenna that recently generated the Mw 94 

4.8 earthquake  in January 2013  (Fig.1) (Vannoli, 2013; Pinelli, 2013; Molli et al., 2017). Hot water 95 

springs are also present at Prà di Lama (Bencini et al., 1977; Gherardi and Pierotti, 2018). 96 

Geochemical analyses of the Prà di Lama spring waters by Gherardi and Pierotti (2018), expanding 97 

on previous research (Baldacci et al., 2007), suggest that both shallow and deep aquifers are present 98 

below Prà di Lama (Fig. 2b). Shallow aquifers have low salinity and low temperature while waters 99 
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feeding the thermal springs have high temperature (~57 °C) and high salinity (5.9g/kgw), suggesting 100 

the presence of a deep aquifer at ~2000 m into the anhydrite and the calcareous-dolomitic breccia. 101 

The high salinity of the deep groundwaters is associated with dissolution of the deep evaporitic 102 

formations. Furthermore, un-mixing of deep and shallow waters is interpreted by Gherardi and 103 

Pierotti (2018) as an evidence of their rapid upwelling, likely occurring along the existing faults.  104 

3. Data 105 

Century-scale historical records of sinkhole activity are available at Prà di Lama and allow us 106 

to determine the timescale of sinkhole evolution as well as to characterize the different events of 107 

unrest, in particular the two most recent events in 1996 and 2016. InSAR time-series analysis is also 108 

carried out to measure ground deformations in the Prà di Lama sinkhole in the time period between 109 

events of unrest. Finally, the local catalogue of seismicity (ISIDE catalogue, INGV) is used to inform 110 

us on the timing and types of brittle failures in the area of the sinkhole.  111 

3.1 Historical Record 112 

The first historical record of the Prà di Lama sinkhole dates back to the 991 A.D., when the 113 

area was described as a seasonal shallow pool fed by springs. Since then, the depression grew and 114 

several events of unrest consisting of fracturing and fluctuations of the lake level were reported 115 

(Raffaelli, 1869; De Stefani, 1879, Giovannetti, 1975) (Table 1). In particular, eight events of unrest 116 

were reported, giving an average of 1 event of unrest every 26 years. We conducted direct 117 

observation of surface deformation around the lake for the two most recent events in 1996 and 118 

2016.  119 

In 1996, the lake level experienced a fall of up to 4 m (Fig. 3 and Fig. S1) and at the same time 120 

the springs outside the lake suddenly increased the water outflow. Clay and mud were also ejected 121 

by the springs outside the lake while fractures and slumps occurred within the lake due to the water 122 

drop (Fig. 3 and Fig. S1). The unrest lasted approximately 2 months, from March to April 1996. 123 
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During the final stages, the water level in the lake rose rapidly, recovering its initial level, and 124 

contemporaneously the springs water flow reduced.  125 

In June 2016, an event of unrest consisting of ground subsidence on the western and southern sides 126 

of the Prà di Lama lake started and lasted approximately 9 months, until February 2017. During this 127 

period fractures formed and progressively grew, increasing their throw to up to 70 cm and affecting 128 

a large area on the western side of the lake (Fig. 3 and Fig. S2). Subsidence around the lake resulted 129 

in an increase of the lake surface, in particular on the western side and in the formation of tensile 130 

fractures (Fig. 3 and Fig. S2). Unlike the 1996 events of unrest, no lake level changes or increase of 131 

water flow from the springs around the lake were observed. 132 

3.2 InSAR  133 

InSAR is ideally suited to monitor localized ground deformation such as caused by sinkholes 134 

as it can observe rapidly evolving deformation of the ground at high spatial resolution (Baer et al., 135 

2002; Castañeda et al., 2009; Atzori et al., 2015; Abelson et al., 2017). Furthermore, the availability 136 

of relatively long datasets of SAR images in the Apennine allows us to study the behaviour of the 137 

Prà di Lama sinkhole using multi-temporal techniques. We processed a total of 200 interferograms 138 

using SAR images acquired by the ENVISAT satellite between 2003 to 2010 from two distinct tracks 139 

in Ascending or Descending viewing geometry (tracks 215 and 437). We used the Small BAseline 140 

Subset (SBAS) multi-interferogram method originally developed by Berardino et al. (2002) and 141 

recently implemented for parallel computing processing (P-SBAS) by Casu et al. (2014) to obtain 142 

incremental and cumulative time-series of InSAR Line-of-Sight (LOS) displacements as well as maps 143 

of average LOS velocity. In particular, the InSAR processing has been carried out via the ESA platform 144 

P-SBAS open-access on-line tool named G-POD (Grid Processing On Demand) that allows generating 145 

ground displacement time series from a set of SAR data (De Luca et al., 2015). 146 
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The P-SBAS G-POD tool allows the user to set some key parameters to tune the InSAR 147 

processing. In this work, we set a maximum perpendicular baseline (spatial baseline) of 400 m and 148 

maximum temporal baseline of 1500 days. The geocoded pixel dimension was set to ~80 m by 80 m 149 

(corresponding to averaging together 20 pixels in range and 4 pixels in azimuth).  150 

We initially set a coherence threshold to 0.8 (0 to 1 for low to high coherence) in order to 151 

select only highly coherent pixels in our interferograms. The 0.8 coherence threshold is used to 152 

select the pixels for the phase unwrapping step that is carried out by the Extended Minimum Cost 153 

Flow (EMCF) algorithm (Pepe and Lanari, 2006). By setting high values of this parameter the pixels 154 

in input to the EMCF algorithm are affected by less noise as compared to selecting low values, thus 155 

increasing the quality of the phase unwrapping step itself and reducing the noise in our final velocity 156 

maps and time-series (De Luca et al., 2015; Cignetti et al., 2016).  157 

We also inspected the series of interferograms and excluded individual interferograms with low 158 

coherence. We identified and discarded 29 noisy interferograms in track 215A and other 11 159 

interferograms in track 437D. Finally, we applied an Atmospheric Phase Screen (APS) filtering to 160 

mitigate further atmospheric disturbances (Hassen, 2001). Accordingly, we used a triangular 161 

temporal filter with a width of 400 days to minimize temporal variations shorter than about a year 162 

as we focus on steady deformations rather than seasonal changes. Shorter time interval of 300 days 163 

was also tested but provided more noisy time-series. 164 

The average velocity map and the incremental time-series of deformation obtained with the 165 

P-SBAS method have to be referred to a stable Reference Point. For our analysis, the reference point 166 

was initially set in the city of Massa because GPS measurements from Bennett et al. (2012) show 167 

that the surface velocities there are < 1mm yr-1; therefore, Massa can be considered stable. 168 

Assuming Massa as reference point, the average velocity map revealed the deformation pattern 169 

around the Prà di Lama lake. We then moved the reference point outside the sinkhole deformation 170 
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pattern but close to the village of Pieve Fosciana (Fig. S3a). Selecting a reference point close to our 171 

study area rather than in Massa allowed us to better minimize the spatially correlated atmospheric 172 

artefacts. 173 

As a final post processing step we also calculated the vertical and east-west components of the 174 

velocity field in the area covered by both the ascending and descending tracks and assuming no 175 

north-south displacement. Given that the study area is imaged by the ENVISAT satellite from two 176 

symmetrical geometries with similar incidence angles (few degrees of difference), the vertical and 177 

east-west components of the velocity field can simply be obtained solving the following system of 178 

equations (Manzo et al., 2006): 179 

{
 

 𝑣𝐻 = 
cos 𝜗

sin(2𝜗)
 (𝑣𝐷𝐸𝑆𝐶 − 𝑣𝐴𝑆𝐶) =  

𝑣𝐷𝐸𝑆𝐶 − 𝑣𝐴𝑆𝐶
2 sin 𝜗

𝑣𝑉 = 
sin 𝜗

sin(2𝜗)
(𝑣𝐷𝐸𝑆𝐶 + 𝑣𝐴𝑆𝐶) =

𝑣𝐷𝐸𝑆𝐶 + 𝑣𝐴𝑆𝐶
2 cos 𝜗

 180 

where  𝑣𝐻 and  𝑣𝑉 are the horizontal and vertical component of the velocity field, 𝑣𝐷𝐸𝑆𝐶  and 𝑣𝐴𝑆𝐶  181 

are the average LOS velocities in the Descending and Ascending tracks, respectively; 𝜗 is the 182 

incidence angle. 183 

The InSAR P-SBAS analysis shows that significant surface deformation occurs at Pieve Fosciana 184 

between 2003 and 2010. The observed deformation pattern consists of range increase mainly on 185 

the western flank of the Prà di Lama lake. The range increase is observed in both ascending and 186 

descending velocity maps (Fig. 4a, b), with average LOS velocities of up to -7.1 mm yr-1 decaying to 187 

-1 mm yr-1 over a distance of 400 m away from the lake. Elsewhere around the lake coherence is not 188 

kept due to the presence of both cropland and woodland cover, leading to decorrelation. However, 189 

few coherent pixels are identified on the eastern flank of the lake, in areas with buildings and sparse 190 

vegetation cover, suggesting that the deformation pattern may be circular, with a radius of ~600 m 191 

(Figs. 4 and 5). In order to increase the number of analysed pixels we tested decreasing our 192 

coherence threshold from 0.8 to 0.4. The results are displayed in Fig. S3b and show that only a few 193 
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more pixels are gained north of the sinkhole as compared to choosing a threshold of 0.8 (Fig. 4). We 194 

conclude that decreasing the coherence threshold does not allow to retrieve the entire deformation 195 

pattern, likely due to the fact the area is vegetated. 196 

The maps of vertical and East-West velocities show vertical rates of -4.6 mm yr-1 and horizontal 197 

eastward velocities of 5.4 mm yr-1 (Fig. 4c, d) consistent with subsidence and contraction centred at 198 

the lake. Furthermore, figure 5 shows that the current deformation pattern follows the topography, 199 

suggesting that subsidence at Prà di Lama is a long-term feature. The time-series of cumulative LOS 200 

displacements show that subsidence occurred at an approximately constant rate between the 2003 201 

and the 2008 but it slowed down in 2008 (Fig. 4e, f), indicating that subsidence at Prà di Lama occurs 202 

also between events of unrest. Furthermore, our time-series of vertical and east-west cumulative 203 

displacements also confirm that the fastest subsidence and contemporaneous eastward motion 204 

occurred until 2008 (Fig. 4 g, h). In order to better understand the mechanisms responsible for the 205 

sinkhole growth and the different types of episodic unrest we also analysed the seismicity.  206 

3.3 Seismicity  207 

Seismicity at the Prà di Lama lake was analysed using the catalogue ISIDe (Italian Seismological 208 

Instrumental and Parametric Data-Base) spanning the time period from 1986 to 2016. We calculated 209 

the cumulative seismic moment release using the relation between seismic moment and 210 

magnitudes given by Kanamori (1977). First, we analysed the seismic moment release and the 211 

magnitude content of the earthquakes in the area encompassing the sinkhole and the faults 212 

intersection (10 km radius, Fig. 1) to understand whether unrest at Prà di Lama is triggered by 213 

earthquakes along the active faults (Fig. 6). Figure 6a shows that although several seismic swarms 214 

occurred in the area, no clear temporal correlation between the swarms and the events of unrest 215 

at Prà di Lama is observed, suggesting that the majority of seismic strain released on faults around 216 

the Prà di Lama lake does not affect the activity of the sinkhole. We removed from the plot in figure 217 
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6a the large magnitude earthquake, Mw 4.8, on the 25th of January, 2013 in order to better visualize 218 

the pattern of seismic moment release in time. In any case, no activity at Prà di Lama was reported 219 

in January 2013. 220 

We also analysed the local seismicity around the Prà di lama lake, within a circular area of 3 221 

km radius around the lake (Fig. 1), to better understand the deformation processes occurring at the 222 

sinkhole and we found that swarms of small-magnitude earthquakes (ML ≤ 2) occurred during both 223 

events of unrest at Prà di Lama in 1996 and 2016 (Fig. 7a, b, c), while a few earthquakes with 224 

magnitudes > 2 occurred irrespective of the events of unrest. This indicates that seismicity during 225 

sinkhole activity is characterized by seismic energy released preferentially towards the small end of 226 

magnitudes spectrum. This pattern is specific of the sinkhole area as in the broader region (Fig. 6b, 227 

c) the majority of earthquakes magnitudes are in the range between ML > 2 and ML < 3 and few ML 228 

> 3 also occurred. We also analysed the hypocentres of the earthquakes around the Prà di lama lake 229 

(3 km radius) and find that these range between 4.5 and 11.5 km depth, indicating that deformation 230 

processes in the fault zone control the sinkhole activity. On the other hand, no earthquakes were 231 

recorded at Prà di Lama during the period of subsidence identified by InSAR between 2003 and 232 

2010, indicating that subsidence between events of unrest continues largely aseismically. 233 

To strengthen our seismicity analysis and clarify whether a connection between major 234 

tectonic earthquakes and sinkhole unrest exists, we also analysed the historical parametric seismic 235 

catalogues (Rovida et al., 2016; INGV Catalogo Parametrico dei Terremoti Italiani, CPTI15). Figure 8 236 

shows the occurrence of major earthquakes, with magnitude > 4.0 up to 20 km distant from Pieve 237 

Fosciana and the events of sinkhole unrest at Prà di lama. No clear connection between occurrence 238 

of large distant earthquakes and events of sinkhole unrest is observed, suggesting that the 239 

mechanisms responsible for activation of the Prà di Lama sinkhole should be attributed to local 240 

processes. 241 



11 
 

4. Discussion and conclusions 242 

A multi-disciplinary dataset of InSAR measurements, field observations and seismicity reveal 243 

that diverse deformation events occur at the Prà di Lama sinkhole. Two main events of sinkhole 244 

unrest occurred at Prà di Lama in 1996 and 2016 but the processes had different features. In 1996 245 

the lake-level dropped together with increased water outflow from the springs, while in 2016 246 

ground subsidence led to the expansion of the lake surface and fracturing. In 2016, fractures formed 247 

on the South-Western shore of the lake. The main active strike-slip fault is also oriented SW, 248 

suggesting a possible tectonic control on the deformation. 249 

We considered processes not related to the sinkhole activity that could explain the observed 250 

deformation at Prà di Lama. Active landslides can cause both vertical and horizontal surface motions 251 

(e.g. Nishiguchi et al., 2017). However, no landslides are identified in the deforming area around the 252 

sinkhole (Fig.3). Furthermore, the low topographic slopes rule out the presence of active landslides 253 

in the area. Concentric deformation patterns are observed above shallow aquifers (e.g. Amelung et 254 

al., 1999). However, deformation caused by aquifers have a seasonal pattern rather than continuous 255 

subsidence over the timespan of several years, as in Prà di Lama. A long-term subsidence could only 256 

be caused by over-exploitation of an aquifer but no water is pumped from the aquifers in the 257 

deforming area around Prà di Lama. We conclude that the observed InSAR deformation is caused 258 

by the sinkhole. 259 

InSAR analysis shows that continuous but aseismic subsidence of the sinkhole occurred 260 

between the two events of unrest, during the period 2003-2010. Instead swarms of small-261 

magnitude earthquakes coeval to the unrest events of 1996 and 2016 were recorded at depth 262 

between 4.5 and 11.5 km, indicating that a link between low magnitude seismicity and sinkhole 263 

activity exists. We suggest that seismic creep in the fault zone underneath Prà di Lama occurs, 264 

causing the diverse deformation events.  265 
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Seismic creep at depth could have induced pressure changes in the aquifer above the fault 266 

zone (1996 events) as well as causing subsidence by increased fracturing (2016 events). The 267 

seismicity pattern revealed by our analysis suggests that the Mt.Perpoli-T.Scoltenna strike-slip fault 268 

system underneath Prà di Lama is locally creeping, producing seismic sequences of low magnitude 269 

earthquakes. Similar seismicity patterns were observed along different active faults (i.e. Nadeau et al., 270 

1995; Linde et al. 1996; Rau et al., 2007; Chen et al., 2008; Harris, 2017). In 2006, along the 271 

Superstition Hills fault (San Andreas fault system, California) seismic creep has been favoured by 272 

high water pressure (Scholz, 1998; Wei et al., 2009; Harris, 2017). We suggest that along the fault 273 

zone below Prà di Lama an increase in pressure in the aquifer in 1996 caused fracturing at the 274 

bottom of the lake and upward migration of fluids rich in clays, in agreement with the observations 275 

of lake-level drop and mud-rich water ejected by the springs in 1996. Our interpretation is also in 276 

agreement with geochemical data indicating that the high salinity of thermal waters at Prà di Lama 277 

have a deep origin, ~2000 m, where fluid circulation dissolves evaporites and carbonates, creating 278 

cavities and then reaching the surface by rapid upwelling along the faults system (Gherardi and 279 

Pierotti, 2018). The presence of deep cavities and a thick non-carbonate sequence suggests that the 280 

Prà di Lama sinkhole is a deep-sited caprock collapse sinkhole according to the sinkhole classification 281 

of Gutiérrez et al. (2008, 2014). Sudden fracturing and periods of compaction of cavities created by 282 

enhanced rock dissolution and upward erosion in the fluid circulation zone could explain both 283 

sudden subsidence and fracturing, as in 2016, and periods of continuous but aseismic subsidence as 284 

in 2003-2010. Similar processes have been envisaged for the formation of a sinkhole at the 285 

Napoleonville Salt Dome, where a seismicity study suggests that fracturing enhanced the rock 286 

permeability, promoting the rising of fluids and, as a consequence, erosion and creation of deep 287 

cavities prone to collapse (Sibson, 1996; Micklethwaite et al., 2010; Nayak and Dreger, 2014; 288 

Yarushina et al., 2017). Recently, a sequence of seismic events was identified at Mineral Beach 289 
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(Dead Sea fault zone) and was interpreted as the result of cracks formation and faulting above 290 

subsurface cavities (Abelson et al., 2017).  291 

Precursory subsidence of years to few months has been observed to precede sinkhole collapse 292 

in carbonate or evaporitic bedrocks (e.g. Baer et al., 2002; Nof et al., 2013; Cathleen and Bloom, 293 

2014; Atzori et al., 2015; Abelson et al., 2017). However, the timing of these processes strongly 294 

depends on the rheological properties of the rocks (Shalev and Lyakhovsky, 2013). Furthermore, the 295 

presence of a thick lithoid sequence in Prà di Lama may delay sinkhole collapse, also in agreement 296 

with the exceptionally long timescale (~200 years) of growth of the Prà di Lama sinkhole (Shalev and 297 

Lykovsky, 2012; Abelson et al., 2017).  However, at present we are not able to establish if and when 298 

a major collapse will occur in Prà di Lama.  299 

We identified a wide range of surface deformation patterns associated with the Prà di Lama 300 

sinkhole and we suggest that a source mechanism for the sinkhole formation and growth is seismic 301 

creep in the active fault zone underneath the sinkhole.  This mechanism could control the evolution 302 

of other active sinkholes in Italy as well as in other areas worldwide where sinkhole form in active 303 

fault systems (e.g. Dead Sea area). InSAR monitoring has already shown to be a valid method to 304 

detect precursory subsidence occurring before a sinkhole collapse and the recent SAR missions, such 305 

as the European Sentinel-1, will very likely provide a powerful tool to identify such deformations. 306 
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 581 

Figure 1 - Study area. The Prà di Lama 582 
sinkhole is marked by the yellow star. 583 
Black tick lines are faults. Blue dots are 584 
the earthquakes between 1986 and 585 
2017. Focal mechanisms are from the 586 
Regional Centroid Moment Tensor 587 
(RCMT) catalogue. The yellow circles 588 
represent the areas with radii of 3km 589 
and 10 km used for the seismicity 590 
analysis. The red dot is the sinkhole of 591 
Camaiore (Buchignani et al., 2008; 592 
Caramanna et al. 2008). The red box in 593 
the inset marks the location of the 594 
area shown in the main figure. 595 
 596 
 597 
 598 



22 
 

 599 
 600 
Figure 2 – Geological setting of the study area. a) Geological, structural and geomorphological map of the area nearby Prà di Lama 601 
showing the main tectonic and lithostratigraphic units. b) Schematic sedimentary sequence of the Villafranchian deposits obtained 602 
from the well drilled at Prà di Lama (Modified from Chetoni 1995). c) Stratigraphic cross-section across the Garfagnana graben.  603 
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 604 
Figure 3 – Evolution of the Prà di Lama lake between 1994 and 2017. Lake shores variation have been retrieved from the analysis of 605 
Landsat image 606 
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 607 

 608 
Figure 4 – a, b) Maps of average surface velocity and its vertical (c) and East-West (d) components obtained from ENVISAT SAR images 609 
acquired between 2003 and 2010. Negative values indicate range increase. The white line in panel a) marks the cross-section shown 610 
in figure 4. The black star is the point used as reference for the InSAR-SBAS processing. e, f, g, h) Time-series of incremental 611 
deformation extracted from the pixel bounded with the white rectangle.  612 

 613 
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 614 

Figure 5 - Cross-section of topography and InSAR velocities along the A-A' profile as shown in figure 3a. 615 

 616 

 617 

Figure 6 – Seismicity features of an area 10 km in radius around the Prà di Lama lake. Cumulative seismic moment released in the 618 
area (a) and histograms of the number of earthquakes per month. Three different classes of magnitude have been created: Ml < 2.0 619 
(b), 2.0 < Ml < 3.0 (c) and Ml > 3.0 (d). The dataset covers the period between 1986 and 2017. The red transparent bars indicate the 620 
two events of unrest of 1996 and 2016. 621 

 622 
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 623 
Figure 7 - Seismicity features of an area 3 km in radius around the Prà di Lama lake. Plot of the cumulative seismic moment released 624 
in the area (a) and histograms showing the number of earthquakes occurred each month. Two different classes of Magnitude have 625 
been created: Ml < 2.0 (b), 2.0 < Ml < 3.0 (c). No events of Ml > 3.0 occurred in the area between 1986 and 2017. The red transparent 626 
bars indicate the two events of unrest of 1996 and 2016. 627 

 628 

 629 

Figure 8 – Comparison between the earthquakes (blue lines) in the Garfagnana area (INGV Catalogo Paramentrico dei Terremoti 630 
Italiani CPTI15, Rovida et al., 2016), and events of unrest at the Prà di Lama sinkhole (red lines).  631 

 632 

 633 
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Year Brief description of the event 

  
991 Seasonal pool fed by springs 

 
1828 Bursts of the springs water flow. Uprising of muddy waters and clays (Raffaelli, 1869; De 

Stefani, 1879) 

1843 Bursts of the springs water flow. Uprising of muddy waters and clays (Raffaelli, 1869; De 
Stefani, 1879) 

1876 Subsidence and fracturing (De Stefani, 1879) 

1877 Subsidence and fracturing (De Stefani, 1879) 

1962 Bursts of the spring water flow. Uprising of muddy waters and clays (Giovannetti, 1975) 

1969 
 
1985 

Abrupt falling of the water level and fracturing along the shores. The lake almost 
disappeared (Giovannetti, 1975) 
 
Arising of muddy waters in a well 

1996 Abrupt fall of the water level and fracturing along the shores 

2016-2017 Subsidence and fracturing 

Table 1 – Description of the activity at Prà di Lama lake 634 


