Point-by-Point reply to the comments

We thank the editor and both anonymous referees for their constructive comments. We have addressed all of them in the following point-to-point rebuttal letter and we incorporated the changes in a revised manuscript. Specifically, we have strengthened the case for the presence of an active sinkhole in Pieve Fosciana by adding a geomorphological and structural map, a geological cross-section and a stratigraphic log from borehole data. Furthermore, we expanded the seismicity analysis and added a figure clearly showing lack of correlation between distant earthquakes and sinkhole unrest. We also included a description of a recent geochemical study showing that fluids at Prà di Lama migrate along faults from a carbonatic reservoir at 2 km depth. We believe that the additional evidences show to greater confidence that the Prà di Lama lake is a sinkhole whose formation and growth is linked to the local active tectonics.

As comments by the reviewers have some common themes, we have sorted each reviewer's comments and grouped those that have common themes.

Editor

Major revisions are required to the manuscript, in order to consider it for publication. In addition to the comments by the referees, I suggest the Authors to refer to internationally recognized classification on sinkholes, such as that proposed in Gutierrez et al. (2008, 2014) rather than referencing to single publications. This well help the reader to have a better understanding of the processes authors are describing.

Further, Authors do not take into any account a number of papers dealing exactly with the topic of the manuscript, that is the relations between sinkhole and seismicity. I kindly invite the Authors to consider such references when preparing the revised version of the manuscript. Below Authors will find a list of suggested references:

Del Prete, S., Iovine, G., Parise, M., Santo, A., 2010b. Origin and distribution of different types of sinkholes in the plain areas of Southern Italy. Geodin. Acta 23, 113–127.

Gutiérrez, F., Guerrero, J., Lucha, P., 2008. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ. Geol. 53, 993–1006.

Gutierrez F., Parise M., De Waele J. & Jourde H., 2014, A review on natural and human-induced geohazards and impacts in karst. Earth Science Reviews, vol. 138, p. 61-88, doi: 10.1016/j.earscirev.2014.08.002.

Iovine G. & Parise M., 2008, I sinkholes in Calabria. In: Nisio S. (a cura di) I fenomeni naturali di sinkhole nelle aree di pianura italiane. Memorie Descrittive della Carta Geologica d'Italia, vol. 85, p. 335-386.

Kawashima, K., Aydan, O., Aoki, T., Kishimoto, I., Konagal, K., Matsui, T., Sakuta, J., Takahashi, N., Teodori, S.-P., Yashima, A., 2010. Reconnaissance investigation on the damage of the 2009 L'Aquila, Central Italy earthquake. J. Earthq. Eng. 14, 817–841.

Parise, M., Perrone, A., Violante, C., Stewart, J.P., Simonelli, A., Guzzetti, F., 2010. Activity of the Italian National Research Council in the aftermath of the 6 April 2009 Abruzzo earthquake: the Sinizzo Lake case study. Proc. 2nd Int. Workshop "Sinkholes in the Natural and Anthropogenic Environment", Rome, pp. 623–641.

Santo, A., Del Prete, S., Di Crescenzo, G., Rotella, M., 2007. Karst processes and slope instability: some investigations in the carbonate Apennine of Campania (southern Italy). In: Parise, M., Gunn, J. (Eds.), Natural and Anthropogenic Hazards in Karst Areas: Recognition, Analysis, and Mitigation. Geological Society, London. 279, pp. 59–72.

Response: We modified our manuscript as suggested. We now use in our manuscript the international classification of sinkholes proposed by *Gutierrez et al. (2008, 2014)* see changes to the text at lines 29-35 and 289-291. We also improve the description of seismically induced sinkholes in Italy by referring to all the suggested papers in the discussion section, see changes at lines 50-54.

Reviewer 1.

- the few number of independent sources (SBAS, historical data, field survey, and seismic analysis);

their variable quality levels (field observations not enough extended);

- their limited nature (there is no geomorphological map, no structural map, no trenching, no SBAS field validations, no sub-surface geophysics, no boreholes);

- structural map is not presented while this source of data is interesting to link the genesis of the depression with a possible seismic creep;

- geomorphological maps, at local and regional scales, should be drawn in order to confirm that this depression is really a singularity in the landscape. There is no evidence anywhere that this depression is an isolate case or that similar phenomena can be observe elsewhere in the region. It is really important to clarify the status of this de-pression because if it is an isolated case, then, it can be considered a very interesting indicator regarding the tectonic activity in the region;

- the stratigraphy is very poorly described and the thickness of the different layers below the depression is incomplete. A carbonate layer is mentioned in the text (Tuscan Nappe Unit) but not its depth while this layer is a good candidate to be the siege of dissolution phenomena leading to ground subsidence at the surface.

Reviewer 2, specific comment 2.1:

The paper lacks essential data on the geomorphic context, including a detailed map. The latter may show the presence of landslides or other sinkholes in the area. A thorough geomorphological analysis is needed to identify the active processes in the study area and distinguish their relative importance in the sinkhole deformation dynamic. Such as: detailed mapping, trenching combined with geochronological data (to study the geological record and increase the temporal registry), and geophysics.

Response: We agree with the reviewers that a better description of the stratigraphy, geology, tectonic structures, and geomorphology of the Pieve Fosciana area is needed to improve the paper, providing more compelling evidences of the presence of an active sinkhole and its relationship to tectonics. Therefore, we added a geomorphological and structural map (Fig. 2a) as well as a geological cross-section of the study area (Fig. 2c). The latter shows the stratigraphy of the Prà di Lama sinkhole and the presence, at ~ 2 km depth, of carbonatic and evaporitic formations. The geomorphological map also shows the presence of the Prà di Lama sinkhole and the lack of landslides in the area affected by ground motion as identified by InSAR. The Prà di Lama sinkhole is an isolated feature in the region being the only mapped sinkhole in the entire Garfagnana graben (Caramanna et al., 2008); the closest sinkholes are near the Tuscany coast. We added to figure 1 the locations of the sinkholes to clearly show the Prà di Lama site is an isolated case. We also expanded on the field observations by adding photos of fractures and cracks around the lake that further document the deformation activity at Prà di Lama (Supp. Fig. 1 and Suppl. Fig. 2). Observations from a 200 m-deep borehole have been also added, showing the detailed stratigraphy (Fig. 2b). A recent study from Gherardi and Pierotti (2018), expanding on previous research (Baldacci et al., 2007), uses geo-chemical analyses of the Prà di Lama spring waters and concludes that the high salinity (~5.9g/kgw) and temperature (~57 °C) are explained by hydrothermal circulation be-tween 1.3 and 2 km depth in an evaporitic-carbonate reservoir. The results from this study are in agreement with the presence of a deep sinkhole at Prà di Lama, and the evaporitic-carbonate reservoir likely corresponds to the anhydrite of the Burano Fm. and the calcareous-dolomitic breccia of the Calcare Cavernoso Fm., as shown by our geologic cross-section Fig. 2c). More importantly, the un-mixing of deep waters in shallow aquifers is interpreted by Gherardi and Pierotti (2018) as an evidence of the rapid upwelling of deep waters along the main tectonic structures (Baldacci et al., 2007). The conclusions reached by the authors have been added to the manuscript in the discussion section. Our revised dataset now includes observations from completely independent methods spanning surface deformation (InSAR), structural geology, seismicity, geomorphology, borehole stratigraphy and a century-long historical record of sinkhole activity. We now also include a comparison of our results to independent geochemistry results. Several independent lines of evidence that support our conclusions are now provided. Data from subsurface geophysics and trenching in Pieve Fosciana are not available and their high cost prevents us to obtain these datasets at present. While these data provide a more detailed view of the source geometry and fault activity, we believe that the main conclusions reached by our study are still supported and our dataset adds new and relevant information to the debate about sinkhole formation and their link to active tectonic structures. We hope that our study will raise the scientific interest in the area and that subsurface geophysics and trenching will be carried out in the future.

Reviewer 1.

Partial temporal and spatial overlap. (most information are concentrated in the last two decades);

- The historical record is a too limited set of observations. They are informative but could become much more relevant if they were complemented by trenching and dating as it is done in paleo-seismology in combination with historical data does not allow a clear understanding of the sinkhole formation. The idea of seismic creep seems to me not supported by a robust analysis performed at local and regional scales. The sub-surface geophysical facet is missing and therefore it is very difficult to be convinced with this explanation. Much deeper investigations are still needed.

Response: The first information about the Prà di Lama lake date back to the 991 A.D., when it was reported that a depression filled by a lake formed from a series of previously isolated springs. We added this explanation to the manuscript to clarify that the historical record allows us to define the time-scale of sinkhole formation. Furthermore, the historical record shows well the episodic behaviour of the sinkhole; this has also been clarified in the manuscript. We agree with the reviewer that the historical record is limited and therefore we complemented it with InSAR, seismicity and structural geology data that have now been expanded to include geomorphology, borehole stratigraphy and a comparison to a recently published geochemistry study. See also our previous response. Regarding the seismicity analysis, we used a reputed catalogue, the Italian national catalogue of seismicity recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and available online (http://cnt.rm.ingv.it/search). We already analysed the seismic moment release and magnitude contents both in the broader tectonic region and at the local scale. The complete dataset containing all the low magnitude events (MI < 2.0) dates back to the 1986. Other historical catalogue exists, but earthquakes locations are not accurate, nor are the magnitudes. This makes it difficult to attribute an earthquake to one of the faults nearby the lake. Thus, we decided to limit our analysis to seismic data from 1986 and we clarified this in the manuscript. To strengthen our tectonic interpretation, we expanded the section on fault creep providing examples where a comparable fault activity has been suggested. We have shown examples from Taiwan (Rau et al., 2007; Chen et al., 2008; Harris, 2017) and Parkfield (California) (Nadeau et al., 1995, Harris, 2017). InSAR is a fairly recent technique and we do not have data past the last few decades thus we have complemented our observations of recent subsidence to structural geology providing stronger evidences of the longer-term tectonic activity in the area. We added a more detailed structural geology map showing the faults in the area.

Comment: The authors are performing some comparisons with the Dead Sea sink-holes. In Israel, lot of geophysical studies have been performed in the last 15 years to create a robust model combining geomorphological mapping, structural inputs, InSAR ground deformations and shallow geophysical study results (e.g. Ezersky et al.). In this paper, most of the data are not sufficient to quantify/to observe a possible link between seismic creep and the dynamic of the collapsed area. Aware of the literature regarding the Dead Sea sinkholes, I would like to point out the attention of the authors on a circular

depression located in the Jordanian Dead Sea zone and named "Birkat El Haj". It is described as a salt collapse structure. A priori, it seems to me that a comparison in term of genesis could be established.

Response: We added to our discussion section the example of the Birkat El Haj sinkhole as suggested.

Comment: the authors described the depression as a circular feature. However, the analysis of the contours indicates that the depression is more elliptical than circular. The lowest elevations (lake) are not located in the centre of the ellipse but rather in the SW side. This asymmetry and the cracks mapped during the field survey suggest a gradual migration SW wards from the original collapse. Is this SW-NE direction important with regard to the structural data in the region? If validated, this interpretation would means that trenches could be excavated in the NE part of the depression to potentially reveal former shorelines of the lake

Response: The temporal reconstruction shows that the lake had a quasi-circular shape between 1994 and 2014. The events of 1996, in fact, consisted in a lake-level fluctuation accompanied by slumping of the shores and cracks formation (yellow lines in Fig. 3 and Supp. Fig. 1). No significant changes in the lake's shape or dimension occurred in 1996. The elliptical shape results from the last event of 2016. During that event fracture formed in the SW as a consequence of subsidence. The main active strike-slip fault is also oriented SW, suggesting a tectonic control on the deformation and in agreement with our interpretation of tectonic-induced sinkhole. This explanation has been added to the manuscript. Figure 3 has also been modified as requested and a structural map (Fig 2a) has been added in our manuscript together with photos (Supp. Fig. 1 and Supp. Fig. 2) that better document the most recent phenomena.

Comment: The SBAS analysis presents interesting results but the reference point is not indicated. Besides, what is the stability of the reference point chosen?

Response: Although the location of the reference point was indicated in our original manuscript as a black star in figure 3, we acknowledge its visibility should be improved and we have modified the figure. The reference point was initially set in the city of Massa because GPS measurements from *Bennett et al. (2012)* show that the surface velocities there are < 1mm/yr, therefore, Massa can be considered stable. Assuming Massa as reference point, the retrieved LOS deformation maps revealed the extent of the deformation pattern around the Pieve Fosciana. We then selected a reference point outside the deformation pattern but close to Pieve Fosciana town (white star in Supp. Fig. 3). The reason of this change (that can be done in post processing and does not affect the result accuracy) is due to the fact that the new reference point is closer to our deformation signal than Massa, allowing us to reduce the impact of the atmospheric artefacts in the LOS displacement time series. The tropospheric artefacts are spatially correlated and thus can be considered almost identical in areas close to the reference point. Therefore, by using a reference point close to the deformation signal, the impact of tropospheric disturbances can be minimized. This procedure in summary implies that the quality of the final measurements is improved in the area under study.

Comment: SBAS deformation pattern suggests that the subsidence area is much wider than the actual depression revealed by contour lines. SBAS coherence threshold 0.8 is much too high and a map with coherence level at 0.4-0.5 should be drawn to try to display the whole deformation pattern. Of course, there will be much more noise but this is the conditions to get the maximum from the images.

Response: We chose a coherence threshold of 0.8 in order to guarantee that only reliable pixels are analysed and interpreted here. The 0.8 value is referred to the threshold used for the phase unwrapping step by the Extended Minimum Cost Flow (EMCF) algorithm. By setting high values of this parameter the pixels in input to the EMCF algorithm are affected by less noise thus increasing the quality of the phase unwrapping step itself. This approach has shown to be also effective in areas affected by low coherence values (*Cignetti et al. 2016*). In any case, according to the Reviewer's request, we reprocessed the data using a coherence threshold of 0.4. The new results are displayed in Supplementary Fig. 3 and show that

only a few more pixels are gained north of the sinkhole as compared to our original results. We conclude that by decreasing the coherence threshold we cannot retrieve the whole deformation pattern. This is likely due to the fact the area is highly vegetated.

Comment: SBAS points selected with coherence at 0.8 level indicated important ground movements that should have created series of fissures and fractures in the buildings of the nearby village. The collection of those pieces of evidence is necessary to validate the SBAS observations. Furthermore, those evidences should be linked to the structural context of the depression.

Response: There have been no reports of fractures or fissures in the buildings of the village, this is likely because the subsidence pattern is relatively broad compared to the size of a building thus there is no significant strain applied to the buildings. Structural damages are the consequence of high strain rates applied to individual buildings (*Arangio et al., 2013*). The only presence of fractures occurred in an abandoned building in the immediate vicinity of the lake. However, InSAR is not coherent in this area and a direct comparison between the deformation field and the building damage cannot be derived.

Reviewer 2

General Comments: The authors present an interesting piece of work with interpretations on the activity of one sinkhole in a seismically active zone. Essentially, the work proposes the following conclusions/interpretations: (1) The dynamics of the analysed sinkhole, characterised by progressive subsidence, punctuated by events of more rapid displacement and ground fissuring (1996, 2016), are attributed to creeping faults in the area that induce fracturing, permeability increase and enhanced dissolution. (2) Based on DInSAR data, ground deformation affects a large area around the sink-hole lake with horizontal displacement rates as high as the vertical ones. However, I consider that such conclusions/interpretations are not properly justified, and authors should consider and discuss other alternative interpretations. Concerning point (1), authors should also consider other potential controlling factors such as precipitation and groundwater level changes. Moreover, the available data does not seem to be sufficient to rule out the role of major morphogenetic earthquakes on sinkholes in Italy. Regarding point (2), authors should consider the option that ground displacement with significant horizontal component on the NW margin of the sinkhole could be related to a landslide, favoured by debuttressing-undermining at the foot of the slope due to sinkhole subsidence.

Response: We are glad that the reviewer finds our results interesting. We agree that seismic creep is one interpretation but other possible source mechanisms should be addressed. We included a geomorphologic map of the Pieve Fosciana area showing that no landslide has been identified in the actively deforming area. Furthermore, the low topographic slope rules out the presence of an active landslide. On the other hand, a recent geochemical study (*Gherardi and Pierrotti, 2018*) shows that waters at Prà di Lama raise from a deep aquifer (~2000 m) along a fractures system. This is in agreement with the presence of a fault and a deep-sited caprock collapse sinkhole (*Gutierrez et al., 2008, 2014*). The horizontal eastward motion derived by InSAR is in agreement with contraction toward the centre of the sinkhole as a result of subsidence. We added this discussion to the paper.

Precipitations can influence the groundwater level and thus ground motions but these patterns have a seasonal trend rather than continuous subsidence over a timespan of several years, as shown by our InSAR analysis. A long-term subsidence could potentially be caused by over-exploitation of an aquifer but no water is pumped from the aquifers in the deforming area. We added this explanation to the manuscript at lines 260-269. Furthermore, the broad subsidence pattern observed a Pieve Fosciana (Fig. 4 and 5) indicates a deep source, likely the 2 km depth carbonatic-evaporite formation. The hypothesis of seismic creep along an active fault remains our favourite interpretation because this mechanism can explain the

variety of observations, ranging from surface subsidence as seen by InSAR, lake level fluctuations documented in the historical record, mapped faults from structural geology and upward fluid migration from geochemistry.

Although the relationship between active faults, creep and surface features, like sinkholes, is a relatively new research topic, it is well established that faults creep both seismically and aseismically (*e.g. Linde et al. 1996; Wei et al. 2013*). In particular, seismic creep has been reported along different active faults (*i.e. Linde et al. 1996, Nadeau et al., 1995; Rau et al., 2007; Chen et al., 2008; Harris, 2017*). Relationships between creeping faults and fluid migration causing enhanced permeability are also widely reported in literature (*i.e. Wei et al., 2009; Scholz, 1998; Yarushina et al., 2017; Sibson, 1996; Micklethwaite et al., 2010*). These observations justify the hypothesis of seismic creep at Prà di Lama because of the presence of an active faults, evidences of deep fluid migration and a mapped sinkhole. We added this explanation to the manuscript together with an expanded section detailing the above-mentioned examples of seismic creep, see changes at lines 280-283.

To strengthen our seismicity analysis and clarify whether a connection between major tectonic earthquakes and sinkhole unrest exists, we analysed both the historical and instrumented seismic catalogues (INGV Catalogo Parametrico dei Terremoti Italiani, CPTI15). We now include a new figure (Fig.8) showing the occurrence of major earthquakes, with magnitude > 4.0 up to 20 km distant from Pieve Fosciana and the recorded events of unrest at the sinkhole. The figure shows that there is no clear connection between occurrence of large distant earthquakes and events of sinkhole unrest, therefore the mechanisms responsible for the Prà di Lama sinkhole formation should be attributed to local processes.

Comment 2.2: I believe the sinkhole definition used (lines 29-30) is inadequate since not all the sinkholes form due to cavity collapse. There are other genetic processes. The authors should clearly indicate the type of sinkhole they are investigating, explaining the subsidence mechanisms in relationship with the local stratigraphy. I consider that revising this paper: Parise, M., Closson, D., Gutiérrez, F. et al. Environ Earth Sci (2015) 74: 7823. https://doi.org/10.1007/s12665-015-4647-5; could help. The cover is underlain by flysch. Do you have deep-seated caprock collapse sinkholes?

Response: We modified the sentence "Sinkholes are quasi-circular depressions in the ground surface that form due to the breakdown of subterranean cavities" to "Sinkholes are closed depressions with internal drainage typically associated with karst environments", following the definitions by *Ford and Williams (2007)* and *Gutierrez et al. (2008, 2014)*. We than added a brief description of the main genetic processes, as suggested by the reviewer, and clarified that we study a sinkhole classified as deep-sited caprock collapse sinkhole, according to *Gutiérrez et al. (2008, 2014)*. We explained the subsidence mechanisms in relationship with the local stratigraphy by clarifying that collapse of deep cavities caused by fluid circulation occurs in carbonatic-evaporitic formations located at 1.3-2 km depth and covered by a thick non-carbonatic sequence. See changes at lines 29-49.

Comment 2.3: The authors conclude that "a source mechanism for the sinkhole formation and growth is seismic creep in the active fault zone underneath the sinkhole". Although this hypothesis looks innovative, it is not well supported by the presented data. The casual relationship between creep tectonic deformation and sinkhole activity remains as an unproved hypothesis. I encourage the authors to add sub-subface geophysical and structural data to test their hypothesis.

Response: We agree that the explanation of a tectonic-induced sinkhole is new and we provided a new structural geology map (Fig 2a) as well as a geology cross-section (Fig. 2c) showing that faults geometries are consistent with a structural control on the sinkhole. We also added a discussion section including examples of active faults characterized by seismic creep analogous to our case. In particular we presented

the examples of Taiwan (*Rau et al., 2007; Chen et al., 2008; Harris, 2017*) and Parkfield (California) (*Nadeau et al., 1995; Harris, 2017*).

List of relevant changes

- Line 3. Prof. Giacomo D'amato Avanzi (Dipartimento di Scienze della Terra Università di Pisa) has been added as co-author of the paper for his contribution of geomorphological information in Pieve di Fosciana.
- Lines 29-32. The sentence "Sinkholes are quasi-circular depressions in the ground surface that form due to the breakdown of subterranean cavities" has been modified to "Sinkholes are closed depressions with internal drainage typically associated with karst environments", following the definition by Ford and Williams (2007) and Gutierrez et al. (2008, 2014)
- Lines 33-49. A better description of the several types of sinkholes has been provided following the classification of *Gutierrez et al. (2008, 2014)* and by referring to *Del Prete et al. (2010) Parise et al., (2010),* as suggested by the editor
- Lines 50-54. A more complete review of Italian seismically-induced sinkholes has been provided by referring to *Parise and Vennari (2013), Parise et al. (2010), Kawashima et al. (2010), Santo et al. (2007),* as suggested by the editor.
- **Lines 88-90.** The stratigraphic sequence of Prà di Lama lake has been completed by describing the deeper formations.
- **Lines 91-95.** We added a description of the geomorphological features characterizing the Prà di Lama lake.
- Lines 100-109. The geochemical analyses of the Prà di Lama springs and the related conclusions provided by *Gherardi and Pierotti (2018)* have been added to our manuscript to better constrain our hypotheses.
- Lines 161-166. We have added a section describing the role of the coherence threshold in the InSAR P-SBAS processing.
- **Lines 174-181.** We have added a section to describe the selection of the reference point and its effect on the final results
- Lines 189-203. We have added a section showing the results of the processing test using a coherence threshold of 0.4, as suggested by the referees
- Lines 242-249. In the seismicity chapter, we have added a section containing the results of the analysis of the Historical Catalogue (CPTI15) and we have shown the lack of correspondence between strong historical earthquakes and events of unrest at Prà di Lama
- **Lines 258-267.** We considered other geological processes that could explain the observed deformation at Prà di Lama, as suggested by the referees

- **Lines 283-286.** We included the geochemical analysis of spring waters (*Gherardi and Pierotti, 2018*) in our discussion.
- Lines 286-288. We classified the Prà di Lama sinkhole as a deep-sited caprock collapse sinkhole using the classification of *Gutierrez et al. (2008, 2014),* as suggested by the editor
- **Figure 1** has been modified to show that the Prà di Lama sinkhole is an isolated feature in the region being the only mapped sinkhole in the entire Garfagnana graben. In Particulare, a red dot has been added to indicate the Camaiore sinkhole and a yellow star has been used to indicate the Prà di Lama sinkhole.
- Figure 2 This is a new figure. It consists of a geological, geomorphological and structural map (Fig. 2a) accompanied by a shallow stratigraphic log from *Chetoni (1995)* (Fig 2b) and a geological cross-section (Fig 3).
- **Figure 3** has been modified to better show the fracture pattern formed during the unrest event of 1996.
- **Figure 8** has been added to show the comparison between the historical seismic catalogue and the events of unrest at Prà di Lama.
- **Supplementary material** has been included. Supplementary material 1 and 2 contain pictures of the two recent events of unrest at Prà di lama (1996, 2016). Supplementary material 3 show the InSAR processing results using a coherence threshold of 0.4.

- 1 GROWTH OF A SINKHOLE IN A SEISMIC ZONE OF THE NORTHERN APENNINES (ITALY)
- <u>Alessandro La Rosa^{1,2}</u>, Carolina Pagli², Giancarlo Molli², Francesco Casu³, Claudio De Luca³,
 Amerino Pieroni⁴ and Giacomo D'amato Avanzi²
- 4
- ¹ Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, 50121 Firenze, Italy
- 6 ² Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria, 53, 56126 Pisa, Italy

³ CNR, Consiglio Nazionale delle Ricerche, Istituto per il Rilevamento Elettromagnetico dell'Ambiente (IREA CNR), Via Diocleziano, 328, 80124 Napoli, Italy

- 9 ⁴ Pro.Geo. s.r.l. Via Valmaira, 14, 55032, Castelnuovo di Garfagnana, Italy
- 10

11 Keywords: Sinkhole, InSAR, Seismicity

12 Abstract

Sinkhole collapse is a major hazard causing substantial social and economic losses. However, 13 14 the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkholes-related hazard challenging. 15 Furthermore, more than 40% of the sinkholes of Italy are in seismically hazardous zones; it 16 17 remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary dataset of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà 18 19 di Lama lake is a long-lived sinkhole that was formed over a century ago in active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level 20 changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1 mm yr⁻ 21 22 ¹ occurred during 2003-2008, between events of unrest. Earthquakes on the major faults near the sinkhole are not a trigger to sinkhole activity but small-magnitude earthquakes at 4-12 km depth 23 occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of 24 25 seismic creep in an active fault zone at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole. 26

28 **1. Introduction**

29 Sinkholes are quasi-circular depressions in the ground surface that form due to the breakdown of subterranean cavities (Neuendorf et al., 2005) Sinkholes are closed depressions with 30 internal drainage typically associated with karst environments, where the exposed soluble rocks 31 32 are dissolved by circulating ground water (dissolution sinkholes) but other types of sinkholes also 33 exist. Subsidence sinkholes, for example, can form for both internal erosion and dissolution of 34 covered layers leading to downward gravitational deformations such as collapse, sagging or suffosion (Ford and Williams, 2007; Gutiérrez et al., 2008; Gutiérrez et al., 2014). Deep sinkholes 35 have been often observed along seismically active faults indicating a causal link between sinkhole 36 formation and active tectonics (Faccenna et al., 1993; Closson et al., 2005; Florea, 2005; Harrison 37 38 et al., 2002; Del Prete et al., 2010; Parise et al., 2010; Wadas et al., 2017). In some cases, t+he 39 processes responsible for the formation of these sinkholes have been attributed to fracturing and 40 increased permeability in the fault damage zone promoting fluid circulation and weathering of soluble rocks at depth. Additionally, when carbonate bedrocks lie below thick non-carbonate 41 formations, stress changes caused by faulting may cause decompression of confined aquifers 42 43 favouring upward migration of deep acid-fluids hence promoting erosion and collapses (e.g. 44 Harrison et al., 2002; Wadas et al., 2017).; a process known as Deep Piping (Caramanna et al., 2008) Seismically-induced stress changes could also trigger collapse of unstable cavities - as in the 45 46 case of the two Sinkhole formation can also be triggered by faulting and two sinkholes that formed near En Gedi (Dead Sea) following the M_w 5.2 earthquake on the Dead Sea Transform Fault in 2004 47 (Salamon, 2004). Sinkhole subsidence and collapses are a major hazard and cause substantial 48 49 economic and human losses globally (Frumkin and Raz, 2001; Wadas, 2017; Closson, 2005). 50 In Italy, a total of 750 sinkholes have been identified and the 40% of them are along active

51 faults (Caramanna et al., 2008) but this number could be underestimated due to the high

52 <u>frequency of sinkholes both related to karst and anthropogenic origin (Parise and Vennari, 2013).</u>
 53 <u>Seismicity induced sinkhole deformation have been often observed in Italy (*e.g. Parise et al., 2010; Santo et al., 2007*).
 54 <u>Kawashima et al., 2010; Santo et al., 2007</u>).
</u>

The sinkhole of Prà di Lama, near the Pieve Fosciana town (Lucca, Italy), is a quasi-circular 55 depression filled by a lake. (Caramanna et al., 2008). Prà di Lama is located in the seismically 56 57 active Apennine range of Northern Tuscany, at the intersection between two active faults (Fig. 1). 58 Hot springs are also present at Pieve Fosciana suggesting that fluid migration along the faults 59 planes occurs. Sudden lake-level changes of up to several meters, ground subsidence, surface fracturing and seismicity have occurred repeatedly since at least 991 A.D. (Nisio, 2008). The most 60 recent deformation events occurred in March 1996 and between May 2016 and October 2017. 61 However, the processes that control the growth of the Prà di Lama sinkhole remain unclear. 62 63 Furthermore, whether seismicity along the active faults around Prà di Lama may trigger sinkhole subsidence or collapse is debated. 64

In this paper we combine recent InSAR observations, seismicity, and surface mapping, as well as historical records of lake-level changes and ground subsidence at the Prà di Lama from 1828 to understand the mechanisms of sinkhole growth in an active fault system.

68 2. Geological setting

The area of the Prà di Lama sinkhole is located within the Garfagnana basin (Fig.1), an extensional graben in the western Northern Apennines, a NW-SE trending fold-and-thrust belt formed by the stack of different tectonic units caused by the convergence of the Corsica-European and Adria plates. The current tectonic regime of the Apennines is characterized by shortening in the eastern sector of the Apennine range and extension in the westernmost side of the range (*Elter et al., 1975; Patacca and Scandone, 1989; Bennett et al., 2012*). The contemporaneous eastward migration of shortening and upper plate extension are believed to be caused by the roll-

76 back subduction during the counter-clockwise rotation of the Adria plate (Doglioni, 1991; Meletti et al., 2000; Serpelloni et al., 2005; Faccenna et al., 2014; Le Breton et al., 2017). Extension started 77 4-5 Ma ago leading to the formation of several NW-SE-oriented grabens, bounded by NE-dipping 78 and SW-dipping normal faults that are dissected by several NE-trending, right-lateral strike-slip 79 80 faults (Fig. 1). The inner northern Apennines are a seismically active area, where several 81 earthquakes with M_W > 5 occurred, including the largest instrumentally recorded earthquake, M_w 82 6.5, in 1920 (Tertulliani and Maramai, 1998; Rovida et al., 2016; Bonini et al., 2016) and the most 83 recent M_w 5.1 earthquake in 2013 (*Pezzo et al., 2014; Stramondo et al., 2014; Molli et al., 2016*).

The uppermost stratigraphy at Prà di Lama consists of an 8m-thick layer of alluvial and palustrine gravels and sandy deposits containing pity levels, covering an ~<u>85</u>m-thick sandy-to-silty fluvio-lacustrine deposits with low permeability (from Villafranchian to present age) (*Chetoni, 1995*) (Fig.2a and b). These deposits cover a <u>~1000m-thick</u> turbiditic sequence (Macigno Fm). Below it, a sequence of carbonate rocks pertaining to the Tuscan Nappe Unit is present <u>reaching</u> down to a depth of ~2000 m, where anhydrites (Burano fm.) and calcareous-dolomitic breccias (Calcare Cavernoso Fm.) overlie the Tuscan Metamorphic Units (Fig. 2c).

91 <u>The Prà di Lama lake lies at the centre of a depression (Fig. 2 and 5). The low slopes</u> 92 <u>characterizing the topography of the area results in the absence of active gravitational ground</u> 93 <u>motions (Fig 2). Furthermore, the Prà di Lama sinkhole is an isolated feature in the region being</u> 94 <u>the only mapped sinkhole in the entire Garfagnana graben (*Caramanna et al., 2008*); the closest 95 <u>sinkhole is in Camaiore (Lucca) near the Tuscany coast (Fig.1).</u></u>

The Prà di Lama sinkhole is located at the intersection between two seismically active faults: the Corfino normal fault (*Di Naccio et al., 2013; Itacha working group, 2003; ISIDe working group, 2016*) and the right-lateral strike-slip fault M.Perpoli-T.Scoltenna that recently generated the Mw 4.8 earthquake in January 2013 (Fig.1) (*Vannoli, 2013; Pinelli, 2013; Molli et al., 2017*). Hot water 100 springs are also present at Prà di Lama (Bencini et al., 1977; Gherardi and Pierotti, 2018)-and some 101 of them have a water temperature of ~40 °C (Bencini et al., 1977). Geochemical analyses of the Prà di Lama spring waters by Gherardi and Pierotti (2018), expanding on previous research (Baldacci et 102 al., 2007), suggest that both shallow and deep aquifers are present below Prà di Lama (Fig. 2b). 103 104 Shallow aguifers have low salinity and low temperature while waters feeding the thermal springs 105 have high temperature (~57 °C) and high salinity (5.9g/kgw), suggesting the presence of a deep 106 aquifer at ~2000 m into the anhydrite and the calcareous-dolomitic breccia. The high salinity of 107 the deep groundwaters is associated with dissolution of the deep evaporitic formations. Furthermore, un-mixing of deep and shallow waters is interpreted by *Gherardi and Pierotti (2018)* 108 as an evidence of their rapid upwelling likely occurring along the existing faults. 109

Prà di Lama was classified as a Deep Piping Sinkhole (DPS) as it is a circular depression that formed on thick impermeable sediments in a fracture zone, likely due to erosion of soluble rocks at depth (*Caramanna et al., 2008*). Hot springs are also a common feature of DPSs due to the presence of pressurized aquifers together with a system of fractures favouring fluid circulation.

114 **3. Data**

115 Century-scale historical records of sinkhole activity are available at Prà di Lama and allow us 116 to determine the timescale of sinkhole evolution as well as to characterize the different events of 117 unrest, in particular the two most recent events in 1996 and 2016. InSAR time-series analysis is 118 also carried out to measure ground deformations in the Prà di Lama sinkhole in the time period 119 between events of unrest. Finally, the local catalogue of seismicity (ISIDE catalogue, INGV) is used 120 to inform us on the timing and types of brittle failures in the area of the sinkhole.

121 **3.1 Historical Record**

122 The first historical record of the Prà di Lama sinkhole dates back to the 991 A.D., when the 123 area was described as a seasonal shallow pool fed by springs. Since then, the depression grew and several events of unrest consisting of fracturing and fluctuations of the lake level were reported
(*Raffaelli, 1869; De Stefani, 1879, Giovannetti, 1975*) (Table 1). In particular, eight events of unrest
were reported, giving an average of 1 event of unrest every 26 years. We conducted direct
observation of surface deformation around the lake for the two most recent events in 1996 and
2016.

In 1996, the lake level experienced a fall of up to 4 m (Fig. <u>32 and Fig. S1</u>) and at the same time the springs outside the lake suddenly increase the water outflow. Clay and mud were also ejected by the springs outside the lake while fractures and slumps occurred within the lake due to the water drop (Fig. <u>32 and Fig. S1</u>). The unrest lasted approximately 2 months, from March to April 1996. During the final stages, the water level in the lake rose rapidly recovering its initial level and contemporaneously the springs water flow reduced.

In June 2016, an event of unrest consisting of ground subsidence on the western and southern sides of the Prà di Lama lake started and lasted approximately 9 months, until February 2017. During this period fractures formed and progressively grew, increasing their throw to up to 70 cm and affecting a large area on the western side of the lake (Fig. <u>32 and Fig. S2</u>). Subsidence around the lake resulted in an increase of the lake surface in particular on the western side and formation of tensile fractures (Fig. <u>32 and Fig. S2</u>). Unlike the 1996 events of unrest, no lake level changes or increase of water flow from the springs around the lake were observed.

142 **3.2 InSAR**

InSAR is ideally suited to monitor localized ground deformation such as caused by sinkholes as it can observe rapidly evolving deformation of the ground at high spatial resolution (*Baer et al.,* 2002; Castañeda et al., 2009; Atzori et al., 2015; Abelson et al., 2017). Furthermore, the availability of relatively long datasets of SAR images in the Apennine allows us to study the behaviour of the Prà di Lama sinkhole using multi-temporal techniques. We processed a total of 200 interferograms 148 using SAR images acquired by the ENVISAT satellite between 2003 to 2010 from two distinct tracks 149 in Ascending or Descending viewing geometry (tracks 215 and 437). We used the Small BAseline Subset (SBAS) multi-interferogram method originally developed by Berardino et al. (2002) and 150 recently implemented for parallel computing processing (P-SBAS) by Casu et al. (2014) to obtain 151 152 incremental and cumulative time-series of InSAR Line-of-Sight (LOS) displacements as well as maps 153 of average LOS velocity. In particular, the InSAR processing has been carried out via the ESA 154 platform P-SBAS open-access on-line tool named G-POD (Grid Processing On Demand) that allows 155 generating ground displacement time series from a set of SAR data (De Luca et al., 2015).

The P-SBAS G-POD tool allows the user to set some key parameters to tune the InSAR processing. In this work, we set a maximum perpendicular baseline (spatial baseline) of 400 m and maximum temporal baseline of 1500 days. The geocoded pixel dimension was set to ~80 m by 80 m (corresponding to averaging together 20 pixels in range and 4 pixels in azimuth).

We initially set a coherence threshold to 0.8 (0 to 1 for low to high coherence) in order to select only highly coherent pixels in our interferograms. <u>The 0.8 coherence threshold is used to</u> select the pixels for the phase unwrapping step that is carried out by the Extended Minimum Cost Flow (EMCF) algorithm (*Pepe and Lanari, 2006*). By setting high values of this parameter the pixels in input to the EMCF algorithm are affected by less noise as compared to selecting low values, thus increasing the quality of the phase unwrapping step itself and reducing the noise in our final velocity maps and time-series (*De Luca et al., 2015*; <u>Cignetti et al., 2016</u>).

We also inspected the series of interferograms and excluded individual interferograms with low coherence. We identified and discarded 29 noisy interferograms in track 215A and other 11 interferograms in track 437D. Finally, we applied an Atmospheric Phase Screen (APS) filtering to mitigate further atmospheric disturbances (*Hassen, 2001*). Accordingly, we used a triangular temporal filter with a width of 400 days to minimize temporal variations shorter than about a year as we focus on steady deformations rather than seasonal changes. Shorter time interval of 300days was also tested but provided more noisy time-series.

The average velocity map and the incremental time-series of deformation obtained with the 174 P-SBAS method have to be referred to a stable Reference Point. For our analysis, the reference 175 176 point was initially set in the city of Massa because GPS measurements from Bennett et al. (2012) 177 show that the surface velocities there are < 1mm/yr, therefore, Massa can be considered stable. 178 Assuming Massa as reference point, the average velocity map revealed the deformation pattern 179 around the Prà di Lama lake. We then moved the reference point outside the sinkhole deformation pattern but close to Pieve Fosciana town (Fig. S3a). Selecting a reference point close 180 to our study area rather than in Massa allowed us to better minimize the spatially correlated 181 182 atmospheric artefacts.

As a finalurther post processing step we also calculated the vertical and east-west components of the velocity field in the area covered by both the ascending and descending tracks and assuming no north-south displacement. Given that the study area is imaged by the ENVISAT satellite from two symmetrical geometries with similar incidence angles (few degrees of difference), the vertical and east-west components of the velocity field can simply be obtained solving the following system of equations (*Manzo et al., 2006*):

189
$$\begin{cases} v_{H} = \frac{\cos \vartheta}{\sin(2\vartheta)} (v_{DESC} - v_{ASC}) = \frac{v_{DESC} - v_{ASC}}{2\sin \vartheta} \\ v_{V} = \frac{\sin \vartheta}{\sin(2\vartheta)} (v_{DESC} + v_{ASC}) = \frac{v_{DESC} + v_{ASC}}{2\cos \vartheta} \end{cases}$$

where v_H and v_V are the horizontal and vertical component of the velocity filed, v_{DESC} and v_{ASC} are the average LOS velocities in the Descending and Ascending tracks, respectively; ϑ is the incidence angle.

193The InSAR P-SBAS analysis shows that significant surface deformation occurs at Pieve194Fosciana between 2003 and 2010. The observed deformation pattern consists of range increase

195 mainly on the western flank of the Prà di Lama lake. The range increase is observed in both 196 ascending and descending velocity maps (Fig. 43a, b), with average LOS velocities of up to -7.1 mm yr⁻¹ decaying to -1 mm yr⁻¹ over a distance of 400 m away from the lake. Elsewhere around the lake 197 coherence is not kept due to ground vegetation cover but few coherent pixels on eastern flank of 198 199 the lake suggest that the deformation pattern may be circular, with a radius of ~600 m (Fig. 4 and 200 5). In order to increase the number of analysed pixels we tested decreasing our coherence threshold from 0.8 to 0.4. The results are displayed in Fig. S3b and show that only a few more 201 202 pixels are gained north of the sinkhole as compared to choosing a threshold of 0.8 (Fig. 4). We conclude that decreasing the coherence threshold does not allow to retrieve the entire 203 204 deformation pattern, likely due to the fact the area is vegetated.

205 The maps of vertical and East-West velocities show vertical rates of -4.6 mm yr⁻¹ and horizontal 206 eastward velocities of 5.4 mm yr⁻¹ (Fig. <u>4</u>-2, d) consistent with subsidence and contraction centred at the lake. Furthermore, figure 54 shows that the current deformation pattern follows the 207 topography, suggesting that subsidence at Prà di Lama is a long-term feature. The time-series of 208 209 cumulative LOS displacements show that subsidence occurred at an approximately constant rate 210 between the 2003 and the 2008 but it slowed down in 2008 (Fig. 43e, f), indicating that 211 subsidence at Prà di Lama occurs also between events of unrest. Furthermore, our time-series of 212 vertical and east-west cumulative displacements also confirm that the fastest subsidence and 213 contemporaneous eastward motion occurred until 2008 (Fig. 43 g, h). In order to better understand the mechanisms responsible for the sinkhole growth and the different types of 214 episodic unrest we also analysed the seismicity. 215

216 **3.3 Seismicity**

217 We analysed the seismicity at the Prà di Lama lake using the catalogue ISIDe (Italian 218 Seismological Instrumental and Parametric Data-Base) spanning the time period from 1986 to 219 2016. We calculated the cumulative seismic moment release using the relation between seismic moment and magnitudes given by Kanamori (1977). First, we analysed the seismic moment 220 release and the magnitude content of the earthquakes in the area encompassing the sinkhole and 221 the faults intersection (10 km radius, Fig. 1) to understand whether unrest at Prà di Lama is 222 223 triggered by earthquakes along the active faults (Fig. 65). Fig. 46a shows that although several 224 seismic swarms occurred in the area, no clear temporal correlation between the swarms and the 225 events of unrest at Prà di Lama is observed, suggesting that the majority of seismic strain released 226 on faults around the Prà di Lama lake does not affect the activity of the sinkhole. We removed 227 from the plot in Fig. <u>64</u>a the large magnitude earthquake, M_w 4.8, on the 25th of January 25, 2013 228 in order to better visualize the pattern of seismic moment release in time. In any case, no activity 229 at Prà di Lama was reported in January 2013.

230 We also analysed the local seismicity around the Prà di lama lake, within a circular area of 3 km radius around the lake (Fig. 1), to better understand the deformation processes occurring at 231 232 the sinkhole (Fig. 6) and we found that swarms of small-magnitude earthquakes ($M_{L} \leq 2$) occurred 233 during both events of unrest at Prà di Lama in 1996 and 2016 (Fig. 76a, b, c), while a few 234 earthquakes with magnitudes > 2 occurred irrespective of the events of unrest. This indicates that seismicity during sinkhole activity is characterized by seismic energy released preferentially 235 236 towards the small end of magnitudes spectrum. This pattern is specific of the sinkhole area as in 237 the broader region (Fig. <u>65</u>b, c) the majority of earthquakes magnitudes are in the range between $M_L > 2$ and $M_L < 3$ and few $M_L > 3$ also occurred. We also analysed the hypocentres of the 238 239 earthquakes around the Prà di lama lake (3 km radius) and find that these range between 4.5 and 240 11.5 km depth, indicating that deformation processes in the fault zone control the sinkhole 241 activity. On the other hand, no earthquakes were recorded at Prà di Lama during the period of subsidence identified by InSAR between 2003 and 2010, indicating that subsidence between
events of unrest continues largely aseismically.

244 To strengthen our seismicity analysis and clarify whether a connection between major 245 tectonic earthquakes and sinkhole unrest exists, we also analysed the historical parametric seismic 246 catalogues (Rovida et al., (2016), INGV Catalogo Parametrico dei Terremoti Italiani, CPTI15). Figure 247 8 shows the occurrence of major earthquakes, with magnitude > 4.0 up to 20 km distant from 248 Pieve Fosciana and the events of sinkhole unrest at Pra di lama. No clear connection between occurrence of large distant earthquakes and events of sinkhole unrest is observed, suggesting that 249 250 the mechanisms responsible for activation of the Prà di Lama sinkhole should be attributed to 251 local processes.

4. **Discussion and conclusions**

A multi-disciplinary dataset of InSAR measurements, field observations and seismicity reveal that diverse deformation events occur at the Prà di Lama sinkhole. Two main events of sinkhole unrest occurred at Prà di Lama in 1996 and 2016 but the processes had different features. In 1996 the lake-level dropped together with increased water outflow from the springs, while in 2016 ground subsidence led to the expansion of the lake surface and fracturing. In 2016, fractures form in the South-Western shore of the lake. The main active strike-slip fault is also oriented SW, suggesting a possible tectonic control on the deformation.

260 <u>We also considered processes not related to the sinkhole activity that could explain the</u> 261 <u>observed deformation at Prà di Lama. Active landslides can cause both vertical and horizontal</u> 262 <u>surface motions (e.g. *Nishiquchi et al., 2017*). However, no landslides are identified in the 263 <u>deforming area around the sinkhole (Fig.3). Furthermore, the low topographic slopes rule out the</u> 264 <u>presence of active landslides in the area. Concentric deformation patterns are observed above</u></u> shallow aquifers (e.g. Amelung et al., 1999). However, deformation caused by aquifers have a
 seasonal pattern rather than continuous subsidence over the timespan of several years, as in Pra
 di Lama. A long-term subsidence could only be caused by over-exploitation of an aquifer but no
 water is pumped from the aquifers in the deforming area around Pra di Lama. We conclude that
 the observed InSAR deformation is caused by the sinkhole.

Furthermore, InSAR analysis shows that continuous but aseismic subsidence of the sinkhole occurred between the two events of unrest, during the period 2003-2010. Instead swarms of small-magnitude earthquakes coeval to the unrest events of 1996 and 2016 were recorded at depth between 4.5 and 11.5 km, indicating that a link between <u>low magnitude</u> seismicity and sinkhole activity exists. We suggest that seismic creep in the fault zone underneath Prà di Lama occurs, causing the diverse deformation events.

276 Seismic creep at depth could have induced pressure changes in the aquifer above the fault zone (1996 events) as well as causing subsidence by increased fracturing (2016 events). The 277 seismicity pattern revealed by our analysis suggests that the Mt.Perpoli-T.Scoltenna strike-slip 278 279 fault system underneath Prà di Lama is locally creeping, producing seismic sequences of low 280 magnitude earthquakes. Similar seismicity patterns were observed along different active faults 281 (i.e. Linde et al. 1996, Nadeau et al., 1995; Rau et al., 2007; Chen et al., 2008; Harris, 2017). In 282 2006, along the Superstition Hills fault (San Andreas fault system, California) where seismic creep 283 has been is favoured by high water pressure (Wei et al., 2009; Scholz, 1998; Harris, 2017). We suggest that along the fault zone below Prà di Lama an increase in pressure in the aquifer in 1996 284 caused fracturing at the bottom of the lake and upward migration of fluids rich in clays, in 285 286 agreement with the observations of lake-level drop and mud-rich water ejected by the springs in 287 1996. Our interpretations is also in agreement with geochemical data indicating that the high 288 salinity of thermal waters at Prà di Lama have a deep origin, ~2000 m, where fluid circulation

289 dissolves evaporites and carbonates, creating cavities and then reaching the surface by rapid 290 upwelling along the faults system (Gerardi and Pierotti, 2018). The presence of deep cavities and a thick non-carbonate sequence suggests that the Prà di Lama sinkhole is a deep-sited caprock 291 collapse sinkhole according to the sinkhole classification of Gutiérrez et al. (2008, 2014). Sudden 292 293 fracturing and periods of compaction of cavities created by enhanced rock dissolution and upward 294 erosion in the fluid circulation zone could explain both sudden subsidence and fracturing, as in 295 2016, and periods of continuous but aseismic subsidence as in 2003-2010. Similar processes have 296 been envisaged for the formation of a sinkhole at the Napoleonville Salt Dome, where a seismicity study suggests that fracturing enhanced the rock permeability, promoting the rising of fluids and, 297 298 as a consequence, erosion and creation of deep cavities prone to collapse (Yarushina et al., 2017; Sibson, 1996; Micklethwaite et al., 2010, Nayak and Dreger, 2014). Recently, a sequence of seismic 299 300 events was identified at Mineral Beach (Dead Sea fault zone) and was interpreted as the result of 301 cracks formation and faulting above subsurface cavities (Abelson et al., 2017).

302 Precursory subsidence of years to few months has been observed to precede sinkhole collapse in carbonate or evaporitic bedrocks (e.g. Baer et al., 2002; Nof et al., 2013; Cathleen and 303 304 Bloom, 2014; Atzori et al., 2015; Abelson et al., 2017). However, the timing of these processes 305 strongly depends on the rheological properties of the rocks (Shalev and Lyakhovsky, 2013). 306 Furthermore, the presence of a thick lithoid sequence in Prà di Lama may delay sinkhole collapse, 307 also in agreement with the exceptionally long timescale (~200 years) of growth of the Prà di Lama 308 sinkhole (Carammanna et al., 2008; Shalev and Lykovsky, 2012; Abelson et al., 2017). However, at present we are not able to establish if and when a major collapse will occur in Prà di Lama. 309

We identified a wide range of surface deformation patterns associated with the Prà di Lama sinkhole and we <u>suggest_conclude</u>-that a source mechanism for the sinkhole formation and growth is seismic creep in the active fault zone underneath the sinkhole. This mechanism could control the evolution of other active <u>sinkholes DPSs</u> in Italy as well as in other areas worldwide where sinkhole form in active fault systems (e.g. Dead Sea area). InSAR monitoring has already shown to

be a valid method to detect precursory subsidence occurring before a sinkhole collapse and the

- recent SAR missions, such as the European Sentinel-1, will very likely provide a powerful tool to
- 317 identify such deformations.

- 319 References
- 320
- Abelson, M., Aksinenko, T., Kurzon, I., Pinsky, V., Baer, G., Nof, R., & Yechieli, Y.: Nanoseismicity forecast
 sinkhole collapse in the Dead Sea coast years in advance. <u>https://doi.org/10.1130/G39579.1</u> (2017)
- Amelung, F., Galloway, D.L., Bell, J.W., Zebker, H.A., and Laczniak, R.J.: Sensing the ups and downs of Las
 Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. *Geology*,
 27 (6), 483-486. <u>https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2</u> (1999)
- Atzori, S., Baer, G., Antonioli, A., & Salvi, S.: InSAR-based modelling and analysis of sinkholes along the Dead
 Sea coastline. Geophysical Research Letters, 42, 8383–8390. <u>https://doi.org/10.1002/2015GL066053</u>
 (2015)
- Baldacci, F., Botti, F., Cioni, R., Molli, G., Pierotti, L., Scozzari, A., Vaselli, L.: Geological-structural and hydrogeochemical studies to identify sismically active structures: case history from the Equi Terme-Monzone hydrothermal system (Northern Apennine – Italy). *Geoitalia, 6th Italian Forum of Earth Sciences. Rimini* (2007).
- Bencini, A., Duchi, V., Martini, M.: Geochemistry of thermal springs of Tuscany (Italy). *Chemical Geology*, 19, 229-252. (1977)
- Baer, G., Schattner, U., Wachs D., Sandwell, D., Wdowinski, S., Frydman, S.: The lowest place on Earth is
 subsiding An InSAR (Interferomeric Synthetic Aperture Radar) Perspetive. Geological Society of
 America Bullettin, 114 (1), 12-23. <u>https://doi.org/10.1130/00167606(2002)114<0012:TLPOEI>2.0.CO;2</u>
 (2002)
- Bennet, R.A., Serpelloni, E., Hreinsdottir, S., Brandon, M.T., Buble, G., Basic T., Casale, G., Cavaliere, A.,
 Anzidei, M., Marjonovic, Minelli, G., Molli, G., & Montanari, A.: Syn-convergent extension observed
 using the RETREAT GPS network, northern Apennines, Italy. *Journal of Geophysical Research*, *117*.
 <u>https://doi.org/10.1029/2011JB008744 (</u>2012)
- Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E.: A new algorithm for surface deformation monitoring
 based on Small Baseline Differential SAR interferograms. *IEEE International Geoscience and Remote Sensing Symposium*, 40(11). https://doi.org/10.1109/TGRS.2002.803792 (2002)
- Bonini, M., Corti, G., Donne, D. D., Sani, F., Piccardi, L., Vannucci, G., Genco, R., Martelli, L., Ripepe, M.:
 Seismic sources and stress transfer interaction among axial normal faults and external thrust fronts in

- 348the northern Apennines (Italy): a working hypothesis based on the 1916-1920 time-space cluster of349earthquakes. Tectonophysics, 680, 67–89. https://doi.org/10.1016/j.tecto.2016.04.045 (2016)
- Caramanna, G., Ciotoli, G., Nisio, S.: A review of natural sinkhole phenomena in Italian plain areas. *Natural Hazards*, 45, 145–172. <u>https://doi.org/10.1007/s11069-007-9165-7</u> (2008)
- Castañeda, C., Gutiérrez, F., Manunta, M., Galve, J. P.: DInSAR measurements of ground deformation by
 sinkholes, mining subsidence, and landslides, Ebro River, Spain. *Earth Surf. Process. Landforms*, 34, 11,
 1562–1574. <u>https://doi.org/10.1002/esp.1848</u> (2009)
- Casu, F., Elefante, S., Imperatore, P., Zinno, I., Manunta, M., De Luca, C., & Lanari, R: SBAS-DInSAR parallel
 processing for deformation time-series computation. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 7(8), 3285–3296. <u>https://doi.org/ 10.1109/JSTARS.2014.2322671b</u>
 (2014)
- Cathleen, J., & Blom, R.: Bayou Corne, Louisiana, sinkhole: Precursory deformation measured by radar
 interferometry. Geology. 42 (2), 111-114. <u>https://doi.org/10.1130/G34972.1 (2014)</u>
- Chen, K.H., Nadeau, R.M., Rau, R.: Characteristic repeating earthquakes in an arc-continent collision
 boundary zone: The Chihshang fault of eastern Taiwan. Earth and Planetary Science Letters.
 <u>https://doi.org/10.1016/j.epsl.2008.09.021</u> (2008)
- Chetoni, R.: Terme di Prà di Lama (Pieve Fosciana, Lu), indagine geognostica sulle aree dissestate nel marzo
 1996. Geological Report. (1996)
- <u>Cignetti, M., Manconi, A., Manunta, M., Giordan, D., De Luca, C., Allasia, P., Ardizzone, F.: Taking Advantage</u>
 <u>of the ESA G-POD Service to Study Ground Deformation Processes in High Mountain Areas: A Valle</u>
 <u>d'Aosta Case Study, Northern Italy. *Remote Sensing*, 8, 852. https://doi.org/10.3390/rs8100852 (2016)
 </u>
- Closson, D.: Structural control of sinkholes and subsidence hazards along the Jordanian Dead Sea coast.
 Environvmental Geology, 47 (2), 290-301. <u>https://doi.org/10.1007/s00254-004-1155-4 (2005)</u>
- Closson, D., Karaki, N.A., Klinger, Y., & Hussein, M. J.: Subsidence and Sinkhole Hazard Assessment in the
 Southern Dead Sea Area, Jordan. *Pure and Applied Geophysics*, 162, 221–248.
 https://doi.org/10.1007/s00024-004-2598-y (2005)
- Rovida A., Locati M., Camassi R., Lolli B., Gasperini P.: CPTI15, the 2015 version of the Parametric Catalogue
 of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. <u>http://doi.org/10.6092/INGV.IT-</u>
 <u>CPTI15 (2016)</u>
- De Luca, C., Cuccu, R., Elefante, S., Zinno, I., Manunta, M., Casola, V., Rivolta, G., Lanari, R., Casu, F.: An On Demand Web Tool for the Unsupervised Retrieval of Earth's Surface Deformation from SAR Data: The
 P-SBAS Service within the ESA G-POD Environment. *Remote Sensing*, 7(11), 15630-15650.
 https://doi.org/10.3390/rs71115630 (2015)
- 381 De Stefani, C.: Le Acque Termali di Pieve Fosciana. *Memorie della Società Toscana di Scienze Naturali*, 4,
 382 72-97 (1879)
- Del Prete, S., Iovine, G., Parise, M., Santo, A.: Origin and distribution of different types of sinkholes in the
 plain areas of Southern Italy. *Geodinamica Acta 23/1-3, 113-127*. https://doi.org/10.3166/ga.23.113 127 (2010)

- Di Naccio, D., Boncio, P., Brozzetti, F., Pazzaglia, F. J., & Lavecchia, G.: Morphotectonic analysis of the
 Lunigiana and Garfagnana grabens (northern Apennines, Italy): Implications for active normal faulting.
 Geomorphology, 201, 293–311. <u>https://doi.org/10.1016/j.geomorph.2013.07.003</u> (2013)
- Doglioni, C.: A proposal for the kinematic modelling of the W-dipping subduction possible applications to
 the Tyrrhenian-Apennines system. Terra Nova, 3, 423-434. <u>https://doi.org/10.1111/j.1365-</u>
 3121.1991.tb00172.x (1991)
- Elter, P., Giglia, G., Tongiorgi, M., Trevisan, L.: Tensional and compressional areas in the recent (Tortonian
 to Present) evolution of the Northern Apennines. *Bollettino di Geofisica Teorica ed Applicata*, 65 (8)
 (1975)
- Faccenna, C. Florindo, F., Funiciello, R., Lombardi, S.: Tectonic setting and Sinkhole Features: case histories
 from Western Central Italy. *Quaternary Proceedings*, *3*, 47–56 (1993)
- Faccenna, C. Becker, T.W., Miller, S.M., Serpelloni, E., & Willet, S.D.: Isostasy, dynamic topography, and the
 elevation of the Apennines of Italy. Earth and Planetary Science Letters, 407, 163–174.
 https://doi.org/10.1016/j.epsl.2014.09.027 (1993)
- Florea, L. J.: Using State-wide GIS data to identify the coincidence betwen sinkholes and geologic structure.
 Journal of Cave and Karst Studies, (August), 120–124. Retrieved from
 http://digitalcommons.wku.edu/geog_fac_pub/14 (2005)
- 403 Ford, D.C., Williams, P., 2007.: Karst Hydrogeology and Geomorphology. Wiley, Chichester, (562 pp.)
- 404 Frumkin, A., & Raz, E.: Collapse and subsidence associated with salt karstification along the Dead Sea.
 405 *Carbonates and Evaporites*, 16(2), 117–130. <u>https://doi.org/https://doi.org/10.1007/bf03175830</u>
 406 (2001)
- 407 Giovannetti, F.: Pieve Fosciana Ieri e Oggi. (1975)
- 408Gherardi, F., Pierotti, L.: The suitability of the Pieve Fosciana hydrothermal system (Italy) as a detection site409forgeochemicalseismicprecursors.AppliedGeochemistry410https://doi.org/10.1016/j.apgeochem.2018.03.009 (2018)
- Gutierréz, F., Guerrero, J., Lucha, P. A genetic classification of sinkholes illustrated from evaporite
 paleokarst exposures in Spain. Environmental Geology, 53. https://doi.org/10.1007/s00254-007-0727 5 (2008)
- 414 <u>Gutierréz, F., Parise, M., De Waele J., Jourde, H.: A review on natural and human-induced geohazards and</u>
 415 <u>impacts in karst. Earth-Science Reviews, 138. https://doi.org/10.1016/j.earscirev.2014.08.002 (2014)</u>
- Hanssen, R. F.: Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publisher.
 <u>https://doi.org/10.1007/0-306-47633-9 (2001)</u>
- Harris, R.A.: Large earthquakes and creeping faults. *Reviews of Geophysics*, 55, 169-198.
 <u>https://doi.org/10.1002/2016RG000539 (</u>2017)
- Harrison, R. W., Newell, W. L., & Necdet, M.: Karstification Along an Active Fault Zone in Cyprus. Atlanta,
 Georgia. U.S. Geological Survey Water-Resources Investigations Report 02-4174 (2002)
- 422 ISIDe working group version 1.0 (2016)

- Johnson, A. G., Kovach, R. L., & Nur, A.: Pore pressure changes during creep events on the San Andreas
 Fault. *Journal of Geophysical Research*, 78 (5). <u>https://doi.org/10.1029/JB078i005p00851 (1973)</u>
- Kanamori, H.: The Energy Release in Great Earthquakes. Journal of Geophysical Research, 82(20).
 https://doi.org/10.1029/JB082i020p02981 (1977)
- Kawashima, K., Aydan, O., Aoki, T., Kishimoto, I., Konagal, K., Matsui, T., Sakuta, J., Takahashi, N., Teodori,
 S.-P., Yashima, A.: Reconnaissance investigation on the damage of the 2009 L'Aquila, Central Italy
 earthquake. Journal of Earthquake Engineering. 14, 817–841.
 https://doi.org/10.1080/13632460903584055 (2010)
- Le Breton, E., Handy, M., Molli, G., & Ustaszewski K.: Post-20 Ma Motion of the Adriatic Plate: New
 Constraints from Surrounding Orogens and Implications for Crust-Mantle Decoupling. Tectonics, 36.
 https://doi.org/10.1002/2016TC004443 (2000)
- Linde, A.T., Gladwin M.T., Johnston, M.J.S., Gwyther, R.L. and Bilham, R.G.: A slow earthquake sequence on
 the San Andreas fault. Nature, 383. https://doi.org/10.1038%2F383065a0 (1996)
- Manzo, M., Ricciardi, G.P., Casu F., Ventura, G., Zeni, G., Borgström S., Berardino, P., Del Gaudio, C., Lanari,
 R.: Surface deformation analysis in th Ischia Island (Italy) based on spaceborne radar interferometry.
 Journal of Volcanology and Geothermal Research 151, 399-416.
 https://doi.org/10.1016/j.jvolgeores.2005.09.010 (2006)
- Meletti, C., Patacca, E., & Scandone P.: Construction of a Seismotectonic Model: The Case of Italy. *Pure and applied Geophysics*, 157, 11-35. <u>https://doi.org/10.1007/PL00001089</u> (2000)
- Micklethwaite, S., Sheldon, H. A., & Baker, T.: Active fault and shear processes and their implications for
 mineral deposit formation and discovery. *Journal of Structural Geology*, *32*(2), 151–165.
 https://doi.org/10.1016/j.jsg.2009.10.009 (2010)
- Molli, G., Torelli, L., & Storti, F.: The 2013 Lunigiana (Central Italy) earthquake: Seismic source analysis from
 DInSar and seismological data, and geodynamic implications for the northern Apennines. A discussion.
 Tectonophysics, 668–669, 108–112. <u>http://dx.doi.org/10.1016/j.tecto.2015.07.041 (</u>2016)
- Molli, G., Pinelli, G., Bigot, A., Bennett R., Malavieille J., Serpelloni E.: Active Faults in the inner northern
 Apennines: a multidisciplinary reappraisal. From 1997 to 2016: Three Destructive Earthquakes along
 the Central Apennnine Fault system, Italy. July 19th-22nd 2017 Camerino, Volume Abstract (2017)

- 452 <u>Nadeau, R.M., Foxal, W., McEvilly, T.V.: Clustering and Periodic Recurrence of Microearthquakes on the San</u>
 453 <u>Andreas Fault at Parkfield, California. Science, 267. https://doi.org/10.1126/science.267.5197.503</u>
 454 (1995)
- Nayak, A., & Dreger, D. S.: Moment Tensor Inversion of Seismic Events Associated with the Sinkhole at
 Napoleonville Salt Dome, Louisiana. *Bullettin of the Seismological Society of America*, 104(4), 1763–
 1776. <u>https://doi.org/10.1785/0120130260</u> (2014)
- 458 Neuendorf, K., Mehl, J., Jackson, J.: Glossary of geology, 5th edn. *American Geological Institute*, 779 pp.
 459 (2005)
- 460 Nishiguchi, T., Tsuchiya, S., Imaizumi, F.: Detection and accuracy of landslide movement by InSAR analysis
 461 using PALSAR-2 data. *Landslides*, 14:1483–1490. https://doi.org/10.1007/s10346-017-0821-z (2017)

- 462 Nisio, S.: The sinkholes in Tuscany Region. *Memorie Descrittive Carta Geologica d'Italia LXXXV* (2008)
- 463 Nof, R. N., Baer, G., Ziv, A., Raz, E., Atzori, S., & Salvi, S.: Sinkhole precursors along the Dead Sea, Israel,
 464 revealed by SAR interferometry. *Geology*, 41, (9), 1019-1022. <u>https://doi.org/10.1130/G34505.1</u>
 465 (2013)
- Parise, M., Perrone, A., Violante, C., Stewart, J.P., Simonelli, A., Guzzetti, F.: Activity of the Italian National
 Research Council in the aftermath of the 6 April 2009 Abruzzo earthquake: the Sinizzo Lake case
 study. Proc. 2nd Int. Workshop "Sinkholes in the Natural and Anthropogenic Environment", Rome, pp.
 http://doi.org/623-641. 10.13140/2.1.3094.1127 (2010)
- Parise, M. and Vennari, C.: A chronological catalogue of sinkholes in Italy: the first step toward a real
 evaluation of the sinkhole hazard. In: Land L, Doctor DH, Stephenson JB, editors. 2013. Sinkholes and
 the Engineering and Environmental Impacts of Karst: Proceedings of the Thirteenth Multidisciplinary
 Conference, May 6-10, Carlsbad, New Mexico: NCKRI Symposium 2. Carlsbad (NM): National Cave and
 Karst Research Institute. http://doi.org/10.5038/9780979542275.1149 (2013)
- Patacca, E., & Scandone, P.: Post-Tortonian mountain building in the Apennines, the role of the passive
 sinking of a relic lithospheric slab. The Lithosphere in Italy, 157–176 (1989)
- Pepe, A. and Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of
 multitemporal differential SAR interferograms. *IEEE Transaction in Geoscience and Remote Sensing*,
 44, 9, 2374–2383. <u>http://doi.org/10.1109/TGRS.2006.873207</u> (2006)
- Pezzo, G., Boncori, J.P.M., Atzori, S., Piccinini, D., Antonioli, A., Salvi, S.: The 2013 Lunigiana (Central Italy)
 earthquake: Seismic source analysis from DInSAR and seismological data, and geodynamical
 implications for the northern Apennines. Tectonophysics 636, 315–324.
 <u>http://dx.doi.org/10.1016/j.tecto.2014.09.005.</u> (2014)
- 485 Pinelli, G.: Tettonica recente e attiva nell'Appennino interno a Nord dell'Arno: una revisione delle strutture
 486 e delle problematiche. Diploma Thesis (89 pp) (2013)
- 487 Raffaelli, R.: Sulle acque termali di Pieve Fosciana (1869)

- Rau, R., Chen, K.H., Ching, K.: Repeating earthquakes and seismic potential along the northern Longitudinal
 Valley fault of Taiwan. Geophysical Research Letters, 34. http://doi.org/10.1029/2007GL031622
 (2007)
- 491 Rovida A., Locati M., Camassi R., Lolli B., Gasperini P.: CPTI15, the 2015 version of the Parametric Catalogue
 492 of Italian Earthquakes. *Istituto Nazionale di Geofisica e Vulcanologia*. <u>http://doi.org/10.6092/INGV.IT-</u>
 493 <u>CPTI15 (2016)</u>
- 494 Salamon, A.: Seismically induced ground effects of the February 11, 2004, M L = 5.2, North-eastern Dead
 495 Sea earthquake. *Geological Survey of Israel Report* (2004)
- 496 Santo, A., Del Prete, S., Di Crescenzo, G., and Rotella M.: Karst processes and slope instability: some
 497 investigations in the carbonate Apennine of Campania (southern Italy). In: Parise, M., Gunn, J. (Eds.),
 498 Natural and Anthropogenic Hazards in Karst Areas: Recognition, Analysis, and Mitigation. *Geological* 499 Society, London, 279, pp. 59–72. http://doi.org/10.1144/SP279.60305-8719/07 (2007)
- 500 Serpelloni, E., Anzidei, M., Baldi, P., Casula, G., & Galvani, A.: Crustal velocity and strain -rate fields in Italy 501 and surrounding regions: New results from the analysis of permanent and non-permanent GPS

- 502
 networks. Geophysical Journal International, 161(3), 861–880.
 https://doi.org/10.1111/j.1365

 503
 246X.2005.02618.x (2005)
- Shalev, E., & Lyakhovsky, V.: Viscoelastic damage modeling of sinkhole formation. *Journal of Structural Geology*, 42, 163–170. <u>https://doi.org/10.1016/j.jsg.2012.05.010</u> (2012)
- 506 Scholz, C. H.: Earthquakes and friction laws. *Nature*, 391, 37–42. <u>https://doi.org/10.1038/34097 (1998)</u>
- Sibson, R. H.: Roughness at the Base of the Seismogenic Zone: Contributing Factors. *Journal of Geophysical Research*, 87 (B7), 5791-5799. <u>https://doi.org/10.1029/JB089iB07p05791</u> (1984)
- Sibson, R. H.: Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18
 (8),1031-1042. <u>https://doi.org/10.1016/0191-8141(96)00032-6 (1996)</u>
- 511 Stramondo, S., Vannoli, P., Cannelli, V., Polcari, M., Melini, D., Samsonov, S., Moro, M., Bignami, C., & Saroli, M.: X- and C-band SAR surface displacement for the 2013 Lunigiana earthquake (Northern Italy): a 512 513 breached relay ramp? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. http://dx.doi.org/10.1109/JSTARS.2014.2313640 (2014) 514
- Tertulliani, A., & Maramai, A.: Macroseismic evidence and site effects for the Lunigiana (Italy) 1995
 Earthquake. *Journal of Seismology*, 2 (3), 209–222. <u>https://doi.org/10.1023/A:1009734620985</u> (1998)
- 517 Vannoli, P.: Il terremoto in Garfagnana del 25 gennaio 2013 visto dal geologo. Retrieved from
 518 <u>https://ingvterremoti.wordpress.com/2013/02/06/il-terremoto-del-25-gennaio-2013-visto-dal-</u>
 519 <u>geologo/#more-3132 (2013)</u>
- Wadas, S. H., Tanner, D. C., Polom, U., & Krawczyk, C. M.: Structural analysis of S-wave seismics around an
 urban sinkhole; evidence of enhanced suberosion in a strike-slip fault zone. *Natural Hazards and Earth System Sciences*. <u>https://doi.org/10.5194/nhess-2017-315</u> (2017)
- Wei, M., Sandwell, D., & Fialko, Y.: A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault,
 southern California. *Journal of Geophysical Research*, 114, B07402,
 <u>https://doi.org/10.1029/2008JB006135 (2009)</u>
- Yarushina, V. M., Podladchikov, Y.Y., Minakov, A., & Räss, L.: On the Mechanisms of Stress-Triggered
 Seismic Events during Fluid Injection. *Sixth Biot Conference on Poromechanics, American Society of Civil Engineers*. <u>https://doi.org/10.1061/9780784480779.098 (</u>2017)
- 529
- 530
- 531
- 532
- 533
- 534
- 535

548 549 550 551 552 553 Figure 1 - Study area. The Pieve Fosciana Prà di Lama sinkhole area is marked by the red dotyellow star. Black tick lines are faults. Blue dots are the earthquakes between 1986 and 2017. Focal mechanisms are from the Regional Centroid Moment Tensor (RCMT) catalogue. The yellow circles represent the areas with radii of 3km and 10 km used for the seismicity analysis. The red dot is the sinkhole of Camaiore (Caramanna et al. 2008). The red box in the inset marks the location of the area shown in the main figure.

Figure 2 – Geological setting of the study area. a) Geological, structural and geomorphological map of the area nearby Prà di Lama
 showing the main tectonic and lithostratigraphic units. b) Schematic sedimentary sequence of the Villafranchian deposits obtained
 from the well drilled at Prà di Lama (*Modified from Chetoni 1995*). c) Stratigraphic cross-section across the Garfagnana graben.

Figure 3 – Evolution of the Prà di Lama lake between 1994 and 2017. Lake shores variation have been retrieved from the analysis
 of Landsat image

Figure 4 – a, b) Maps of average surface velocity and its vertical (c) and East-West (d) components obtained from ENVISAT SAR
 images acquired between 2003 and 2010. Negative values indicate range increase. The white line in panel a) marks the cross section shown in figure 4. The black star is the point used as reference for the InSAR-SBAS processing. e, f, g, h) Time-series of
 incremental deformation extracted from the pixel bounded with the white rectangle.

Figure 6 – Seismicity features of an area 10 km in radius around the Prà di Lama lake. cumulative seismic moment released in the area (a) and histograms of the number of earthquakes per month. Three different classes of magnitude have been created: MI < 2.0 (b), 2.0 < MI < 3.0 (c) and MI > 3.0 (d). The dataset covers the period between 1986 and 2017. The red transparent bars indicate the two events of unrest of 1996 and 2016.

578 Figure 7 - Seismicity features of an area 3 km in radius around the Prà di Lama lake. Plot of the cumulative seismic moment released in the area (a) and histograms showing the number of earthquakes occurred each month. Two different classes of Magnitude have been created: MI < 2.0 (b), 2.0 < MI < 3.0 (c). No events of MI > 3.0 occurred in the area between 1986 and 2017. The red transparent bars indicate the two events of unrest of 1996 and 2016.

Year	Brief description of the event
991	Seasonal pool fed by springs
1828	Bursts of the springs water flow. Uprising of muddy waters and clays (<i>Raffaelli, 1869; De Stefani, 1879</i>)
1843	Bursts of the springs water flow. Uprising of muddy waters and clays (<i>Raffaelli, 1869; De Stefani, 1879</i>)
1876	Subsidence and fracturing (De Stefani, 1879)
1877	Subsidence and fracturing (De Stefani, 1879)
1962	Bursts of the spring water flow. Uprising of muddy waters and clays (Giovannetti, 1975)
1969	Abrupt falling of the water level and fracturing along the shores. The lake almost disappeared (<i>Giovannetti, 1975</i>)
1985	
	Arising of muddy waters in a well
1996	Abrupt fall of the water level and fracturing along the shores
2016-2017	Subsidence and fracturing

591 Table 1 – Description of the activity at Prà di Lama lake