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Abstract: Improving the speed and accuracy of earthquake disaster loss evaluations is very 14 
important for disaster response and rescue. This paper presents a new method for urban damage 15 
assessments after earthquake disasters by using a change detection technique between bi-16 
temporal (pre- and post-event) high-resolution optical images. A similarity index derived from a 17 
pair of images was used to extract the characteristics of collapsed buildings. In this paper, the 18 
methods are illustrated using two case studies. Our results confirmed the effectiveness and 19 
precision of the proposed technique with optical data of the damage presented using a block scale. 20 

Keywords: change detection; earthquake; buildings damage 21 

1. Introduction 22 

After an earthquake disaster, obtaining the spatial distribution of earthquake damage 23 
information quickly and allotting limited resources to rescue activities is an important approach 24 
to reduce loss. Remote sensing (RS) is an efficient tool for obtaining building damage information 25 
over short periods (Joyce et al., 2009;Voigt et al., 2007;Fan et al., 2017). RAPIDMAP refers to the 26 
use of real-time remote sensing data acquired immediately after an earthquake to reveal the 27 
regional influence and extent of the earthquake (Erdik et al., 2011). 28 

The reduction in casualties in urban areas immediately following an earthquake can be 29 
improved if the location and severity of damages can be rapidly assessed. Many studies have 30 
presented rapid mapping techniques using aerial or satellite images and related geospatial data, 31 
and different methods have been developed (Wang and Li, 2015;Reinartz et al., 2013;Klonus et 32 
al., 2012;Chen and Hutchinson, 2011;Vu and Ban, 2010). In the literature, several papers have 33 
exploited information obtained from the changes between images. Rapid mapping was largely 34 
adopted to support the emergency management activities related to the major disasters that have 35 
occurred in recent years. For example, the Copernicus Emergency Management Service 36 
(Directorate Space) provides a large set of parameters for users to choose to produce rapid 37 
mapping. 38 

By using remote sensing images before and after an earthquake, we can effectively assess the 39 
post-earthquake damage. Depending on the data, different methods are used. A review 40 
presented in Reference (Joyce et al., 2009) described several rapid remote sensing assessment 41 
methods, the use of pre-earthquake and post-earthquake remote sensing images, and change 42 
detection methods commonly used for identifying damaged buildings. 43 

Due to the passive nature of optical satellite imaging, features or objects extracted from images 44 
may vary as a function of sensor type, orbital position, solar illumination, weather condition and 45 
the number of pre-processing steps. Therefore, significant challenges exist in developing robust 46 
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change detection and classification methods that will approach the accuracy level achieved by 47 
human intelligence. 48 

This article will examine a rapid assessment mapping method based on change detection. This 49 
method can be applied to satellite images and aerial images and has the following advantages: 50 
(1) The method is applicable to a variety of data sources and sensors; and (2) the method can 51 
rapidly achieve an estimated result with close to real-time automation in the aftermath of a 52 
disaster and with random access to data parameters and platforms that are necessary to complete 53 
the assessment. Although using various filtering, or morphological approaches can also achieve 54 
a similar result, this simple and efficient approach agrees with the core spirit of RAPIDMAP, i.e., 55 
"Rapid." 56 
1.1. Related Work 57 

In the context of rapid disaster mapping, visual interpretation-based, change detection-based, 58 
and machine learning-based methods are some of the approaches that have been explored, and 59 
related review articles can be found in Reference (Erdik et al., 2011). Studies of rapid mapping 60 
using synthetic aperture radar (SAR) data are not included in this section.  61 

Boccardo and Tonolo (Boccardo and Giulio Tonolo, 2015) described the use of remote sensing 62 
in emergency mapping for disaster response as well as the limitations of a satellite-based 63 
approach. Different types of remote sensing sensors, platforms, and techniques have been used 64 
to assess the impact and damage caused by earthquakes (Boccardo et al., 2015;Antonietta et al., 65 
2015;Svatonova, 2015). Schweier and Markus (Schweier and Markus, 2006) explained damage 66 
types of entire buildings and analyzed which geometrical features could be used to interpreted 67 
building damage. Although the observation of building roofs by optical imagery could not 68 
distinguish all types of destroyed buildings (Plank, 2014), a number of results have been 69 
presented after earthquake events and their accuracy were tested with field investigation data 70 
(Kerle, 2010;Booth et al., 2011). 71 

In the literature, several papers have exploited information carried by remote sensing images 72 
for earthquake damage mapping purposes. As a consequence, the most widely used technique 73 
for reliably assessing urban damage is visual inspection and interpretation (Ehrlich et al., 2009). 74 
In the case study of the Bam earthquake, visual damage interpretation (Stramondo et al., 75 
2006;Saito et al., 2005) based on the European Macroseismic Scale (EMS-98) was carried out 76 
building-by-building, comparing pre-event and post-event images. In Reference (Huyck et al., 77 
2005), Huyck and Adams used Neighborhood Edge Dissimilarities for citywide damage mapping 78 
with multi-sensor optical satellite imagery. The location and severity of post-earthquake building 79 
damage was determined by spectral changes, edge detection, and texture analysis, as described 80 
in Reference (Adams, 2004). Another approach for damage evaluation based on object (i.e., single 81 
building) recognition was presented in References . 82 

Compared to image gray values, edge, texture and gradient are near-constant features that 83 
are less influenced by time phases. Furthermore, different visual features provide complementary 84 
evidence for image interpretation. For example, the gradient represents the degree of variation of 85 
neighborhood gray values. Structural similarity, first proposed in Reference (Wang et al., 2004), 86 
has already been widely used for evaluating image quality. Based on structural similarity, many 87 
non-gray-value-based and feature-based change detection methods have been proposed. For 88 
example, Reference (Liu et al., 2005) proposed a method based on texture or gradient similarity 89 
validation and Liu (Liu et al., 2012) conducted an image quality assessment using gradient 90 
similarity.  91 
The rest of the paper is organized as follows. Section 2 presents an introduction to the experiment 92 
data. Section 3 describes and evaluates the gradient similarity index. Section 4 presents a 93 
flowchart of the rapid mapping method. In section 5, an experiment utilizing a remote sensing 94 
image from the study area is discussed. Finally, conclusions are drawn in Section 6. 95 
 96 
2. Study Area and Dataset 97 
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 98 
In this study, two different types of remote sensing data were used to analyze the convenience, 99 

efficiency: airborne data acquired from Ludian County and satellite data acquired from Yushu 100 
County. We used the same method to calculate the gradient similarity index to assessment 101 
building damage after earthquake with these datasets which have different spatial and spectral 102 
characteristics  103 
 104 
2.1. Airborne Data 105 
 106 

An Ms 6.5 earthquake shook Ludian County, Yunnan Province (China) on 3 August 2014, 107 
resulting in 3143 injuries, 617 deaths, and 112 missing persons (Xu et al., 2015). This event caused 108 
exceptionally severe damage at the epicenter, near the town of Longtoushan in Ludian County, 109 
and has been selected as our test area. Figure 1 shows the ruined buildings on both sides of the 110 
main road across the town of Longtoushan. As most of the buildings in this area were not 111 
designed to withstand seismic events, they remained vulnerable to ground motion (Xu et al., 112 
2015).  113 

 114 

Figure 1. Ruined buildings on both sides of the main road across the Longtoushan Town. This photo 115 
sourced from Reference (Xu et al., 2015). 116 
 117 
Two aerial images were acquired to map the damage caused by the earthquake in the town of 118 

Longtoushan. The image acquired in 2012 was denoted as the pre-event airborne image, and the 119 
image acquired on 4 August, 2014 was the post-event airborne image for the remainder of the 120 
study. The spatial and spectral characteristics of the two images were the same. These 121 
characteristics both had three spectral bands, R, G and B, and a spatial resolution of 0.2 m. (see 122 
Table 1) The images were geo-referenced and mapped to a cartographic projection. The co-123 
registered images are shown in Figure 2. 124 

 125 

 126 
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(a) The pre-event airborne image of Longtoushan town acquired in 2012. 127 
 128 

 129 

(b) The post-event airborne image of Longtoushan town acquired on 4 August 2014, the 130 
day after the earthquake. 131 

Figure 2. Pre- (a) and post-event (b) maps of the experimental area in Longtoushan town 132 
of Ludian in Yunnan. 133 

Table 1. The spatial and spectral characteristics of the used data.  134 

platform bands spatial 
resolution(m) 

Acquired time Location 

QuickBird pan 0.6 2010-04-15 Yushu 

Ikonos-2 pan 0.8 2007-11-22 Yushu 

airborne R, G, B 0.2 2014-08-07 Ludian 

airborne R, G, B 0.2 2012 Ludian 

 135 

2.2. Satellite Data 136 

Yushu County in Qinghai Province, China (geographical coordinates of 31.18N latitude 137 
and 96.78 E longitude) was hit by a 7.1 magnitude earthquake on 14 April 2010. This strong 138 
earthquake caused extensive damage to buildings, facilities, and more than 2000 people were 139 
dead. Fast and reliable information about the location, damage extent and damage level of the 140 
hard-hit areas, particularly urban areas, was important for the rescue planning actions.  141 

A post-earthquake QuickBird image from 2010-04-15 (just one day after the earthquake) 142 
and a pre-earthquake IKONOS-2 image which is imaged on 2007-11-22 was used in the study. 143 
For both the pre- and post-earthquake data, a multispectral image with three optical bands and 144 
a near infrared (NIR) band, and a panchromatic image, were available for the analysis. The spatial 145 
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resolution of the QuickBird panchromatic image was 0.6 m, and the 0.8 m spatial resolution of 146 
the Ikonos-2 panchromatic image was re-sampled to 0.6 m. (see Table 1). Furthermore, the 147 
radiometric resolution, originally 11-bit, was reduced to 8-bit. All images were projected to UTM 148 
47N and geo-registered. An overview of the images is shown in Figure 3. 149 

 

(a) 
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(b) 

Figure 3. Pre- (a) and post-event (b) maps of the experimental area in Yushu town of Qinghai 150 
Province, China. 151 

3. Change Detection Using the Gradient Similarity Index 152 

3.1. Structural Similarity Index 153 

The well-cited structural similarity (SSIM) index (Wang et al., 2004), which assumes that 154 
natural images are highly structured, has previously been used for evaluating remote sensing 155 
image quality and detecting change (Wang, 2010). The structural information in an image is 156 
defined as the attributes that represent the structure of the objects in the scene, independent of 157 
the average luminance and contrast (Wang et al., 2004).  158 

The structural similarity of two image blocks x and y is defined as follows: 159 

𝑙𝑙(𝑥𝑥,𝑦𝑦) =
2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 + 𝐶𝐶1
𝜇𝜇𝑥𝑥2 + 𝜇𝜇𝑦𝑦2 + 𝐶𝐶1

 (1) 

𝑐𝑐(𝑥𝑥,𝑦𝑦) =
2𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 + 𝐶𝐶2
𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝐶𝐶2

 (2) 

𝑠𝑠(𝑥𝑥,𝑦𝑦) =
𝜎𝜎𝑥𝑥𝑦𝑦 + 𝐶𝐶3
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 + 𝐶𝐶3

 (3) 

where 𝜇𝜇𝑥𝑥, 𝜇𝜇𝑦𝑦, 𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦 , and 𝜎𝜎𝑥𝑥𝑦𝑦 are the mean of image block x, mean of image block y, variance of 160 
image block x, variance of image block y, and covariance of block x and block y, respectively. 161 
𝐶𝐶1,𝐶𝐶2 and 𝐶𝐶3 are small constants used to prevent the denominator from equaling zero.  162 

The SSIM for the image blocks is given as follows: 163 
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SSIM(𝑥𝑥,𝑦𝑦) = [𝑙𝑙(𝑥𝑥,𝑦𝑦)]𝛼𝛼 ∙ [𝑐𝑐(𝑥𝑥,𝑦𝑦)]𝛽𝛽 ∙ [𝑠𝑠(𝑥𝑥,𝑦𝑦)]𝛾𝛾 (4) 

where 𝛼𝛼 ,β and γ are positive constants used to adjust the relative importance of the three 164 
components. The higher values of SSIM indicate greater similarity between the image blocks x 165 
and y. 166 

The schemes in References (Chen et al., 2006;Yang, 2006) were also based on SSIM and 167 
considered the importance of edges. In these schemes, one or more components of the SSIM were 168 
changed to calculate the values in the edge domain (note that the values were calculated in the 169 
pixel domain). For example, the structure comparison component was changed to the gradient 170 
domain, or both the contrast and structure comparison components were modified. In References 171 
(Kim et al., 2010) and (Cheng et al., 2010), a luminance comparison component was not included. 172 
As minor variants of SSIM, these schemes were lacking due to the considerations of the 173 
calibration and registration precision in remote sensing images. 174 

3.2. Gradient Similarity Index  175 

With the gradient image computed for bi-temporal images, the gradient similarity index 176 
for a target area can be described as the dissimilarity between structural features. Thus, a 177 
mathematical dissimilarity measure can be obtained to quantify the degree of structural damage. 178 
Mathematically, a dissimilarity measure is a functional that associates a numeric value with a 179 
pair of functions, whose value monotonically varies with a degree of dissimilarity between the 180 
two functions. In our treatment, the gradient similarity index used in this study was defined as 181 
follows: 182 

𝑔𝑔(𝑥𝑥,𝑦𝑦) =
2𝑔𝑔𝑥𝑥𝑔𝑔𝑦𝑦 + 𝐶𝐶4
𝑔𝑔𝑥𝑥2 + 𝑔𝑔𝑦𝑦2 + 𝐶𝐶4

 (5) 

where 𝑔𝑔𝑥𝑥 and 𝑔𝑔𝑦𝑦  are gradient values for the central pixels of image blocks and 𝐶𝐶4 is the small 183 
constant, shown in Equation (2), that is used to prevent the denominator from equaling zero (e.g., 184 
0.0001). In addition, 𝑔𝑔(𝑥𝑥,𝑦𝑦)  is the gradient similarity between x and y and its value lies in [0, 1]. 185 
The initial form of the proposed scheme in Equation (5) was mathematically similar to the 186 
luminance/contrast comparison term of SSIM and was more effective than that in the SSIM for 187 
remote sensing image change detection. 188 

The formulation for 𝑔𝑔(𝑥𝑥,𝑦𝑦) measures both image contrast (the degree of signal variation) 189 
change and image structure (structure of objects in the scene) change as the gradient value is a 190 
contrast-and-structure variant feature, as demonstrated in Reference (Liu et al., 2012). One may 191 
verify this property by recalling the observed damage in Figure 4; while a homogeneous roof 192 
becomes broken for interior boundaries or cluttered regions, the value calculated by the formula 193 
decreased and vice versa. 194 

Figure 4 illustrates three pairs of buildings extracted from pre- and post-event images; two 195 
of these buildings suffered different levels of structural damage. Among these buildings, the first 196 
building (A) collapsed after the earthquake, where the post-event image of A indicates that the 197 
exterior structural boundary was completely demolished. The complete boundary of the second 198 
building remained intact after the earthquake. 199 

Visual inspection of three example buildings indicated that the structural damage was 200 
primarily characterized by the changes in structural features between the pre- and post-201 
earthquake images. These structural features included exterior boundaries (structural footprints), 202 
interior discontinuities and homogeneous regions (structural roof) in the pre-event images, as 203 
well as interior boundaries and cluttered regions due to collapse in the post-event images. 204 
Although the afore-mentioned changes in structural features were diverse, they could be 205 
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described generally by observing changes in local intensity transitions between the bi-temporal 206 
images. 207 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4. Three pairs of example buildings in the pre- and post- images. Images (a) and (b) are the 208 
same building, which was acquired after the earthquake; while (c) and (d), and (e) and (f) are the 209 
same. 210 

Image gradient magnitudes can be used to amplify grey-level intensity transitions and the 211 
use of image gradients, including magnitude and orientation, is a traditional approach for 212 
extracting image features in computer vision. In addition, many other traditional image features 213 
exist, such as image moments, or co-occurrence texture features. By casting the gradient 214 
computation in the framework of scale-space theory (Bretzner and Lindeberg, 1999), advanced 215 
feature extraction methods such as scale-invariant feature transform (SIFT) have been proposed 216 
to achieve distortion-invariant image features to some degree.   217 

Gradient value was calculated using the Sobel operator (Surhone et al., 2010). In Figure 5, 218 
the resulting image gradient magnitudes corresponding to the pre- and post-event structures in 219 
Figure 3 are illustrated. As observed in both cases, structural features were successfully extracted 220 
with high magnitudes, where significant grey-level intensity transitions occur.  221 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5. Illustrations of gradient images corresponding to the same ID as in Figure 3. 222 

 223 

3.3. Improved Gradient Similarity Index 224 

Here, we considered that calibration and registration errors occur in remote sensing images. 225 
As the formulate g(x, y) is a structure variant feature derived from image gradient features, this 226 
method is robust for low precision calibration. 227 

If two images are not in perfect alignment before change detection, the resulting difference 228 
image will contain artifacts caused by the incomplete cancellation of unchanged background 229 
objects (Ledrew, 1992). These artifacts are referred to as ‘registration noise.’ One example is given 230 
in Figure 6., where the building in Figures 6a and 6b was not in accordance with the footprint of 231 
the building. It has been suggested that a geometric correction should result in the two images 232 
being within half a pixel of each other (Vu et al., 2005). If this accuracy can be achieved, the 233 
registration noise is likely to be less intense than the difference of any real change. However, it is 234 
often difficult to keep the geometric correction error below half a pixel for the entire image, 235 
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especially in rapid earthquake mapping scenes. The so-called 'standard error', or 'average 236 
residual error' provided by existing geometric-correction software are only estimates from many 237 
individual pixels (ground control points) selected from both images. This type of error inevitably 238 
influences building damage detection in difference images. 239 

  

(a) (b) 

Figure 6. An example for registration error in remote sensing images. The building in two image is 240 
the same and should lie in the rectangle if there is no registration error. 241 

 242 

In this study, a smoothing-like filter was used for registration-noise reduction. This was 243 
achieved by moving a max-filter over the similarity image and replacing the center pixel with the 244 
maximum value in the moving window. The max-filter function takes a similar form, 245 

S′(𝑊𝑊)=max(S(W), S(W′)) (6) 

where S(W) is the original gradient similarity, calculated using corresponding pixels from the 246 
pre-event and post-event; S(W′) is the candidate gradient similarity, calculated using pixels from 247 
the pre-event image with original position and pixels from post-event with a slide on basis of the 248 
original position; S'(W) is the end result. For example, S(W) was calculated between pixels within 249 
the red rectangle in Figure 7a and pixels within the red rectangle in Figure 7b, while S(W′) was 250 
calculated between pixels within the red rectangle in Figure 7a and pixels in a slide rectangle, 251 
such as the green or the blue one. All rectangles whose distance from the original position was 252 
less than the max offset was compared in this formula. The extent over which the gradient 253 
similarity index is calculated can be either a standard mesh grid or an irregular form derived 254 
from image segmentation or a shapefile feature. The max value of the offset is based on the 255 
precision of calibration. 256 

  257 

  

(a) (b) 
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Figure 7. Move-window illustrations on a simulating image. (a) and (b) are both a sub-image of the pre- and 258 
post-event image with the same size and at the same location. Every circle represents a pixel to be processed.  259 
a)  260 

4. Rapid Mapping Method for Damaged Buildings 261 

In this study, we present the first results of RAPIDMAP aimed at change detection based 262 
on pre- and post-event optical images. Two pre- and post-event images were used, as shown in 263 
Section 2. The acquisition time of the post-event image was just one day after the earthquake 264 
occurred, therefore we assumed that the destruction caused by the earthquake was captured 265 
completely. Our focus was on the possibility of a rough estimate of damage at a block scale. 266 

A multi-stage earthquake rapid mapping method based on change detection with gradient 267 
similarity was proposed. The general concept of the proposed method can be summarized as 268 
follows. To reduce spectral confusion between buildings and other ground objects (such as intact 269 
buildings and pavements) rather than extracting collapsed buildings directly from bi-temporal 270 
images of the entire study area, buildings and other relevant land-cover types were first extracted 271 
from post-event data using different features and masked. Images of the remaining area were 272 
then used to extract collapsed buildings and conduct rapid damage analysis.  273 

As object-based analysis methods generally outperform pixel-based methods, the 274 
detection of collapsed buildings was implemented at the object level in this study. Specifically, 275 
the proposed method included three successive steps. First, after segmentation of pre-event 276 
images, buildings, pavements (e.g., roads and parking lots), vegetation, and shadows, which 277 
were apparently not collapsed buildings, were extracted using pre-event imagery and masked. 278 
Both spectral and texture images of the remaining area were then classified to extract the 279 
collapsed buildings. Finally, a post-processing step was performed to refine the results obtained. 280 
The procedure of the proposed method is shown in Figure 8. 281 

 282 

 283 

Figure 8. Flowchart for rapid damage detection. 284 

4.1. Image Segmentation  285 
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As a prerequisite for object-based image analysis, image segmentation was first conducted 286 
to generate appropriate image objects (segments), which were used in the subsequent object-287 
based extraction of collapsed buildings (Vu et al., 2005;Wang and Li, 2015). Pre-event images 288 
were used in image segmentation to produce consistent objects. The Fractal Net Evolution 289 
Approach (FNEA) algorithm implemented in the eCognition software package—a widely used 290 
multi-resolution segmentation method—was adopted. However, this is not a general 291 
requirement, and any other multilevel segmentation method could have also been used. The 292 
FNEA algorithm is a region-merging technique that starts with each pixel forming one image 293 
object or region. At each step, a pair of image objects is merged into one larger object. The merging 294 
decision is based on local homogeneity criteria, describing the similarity of adjacent image objects. 295 
A ‘merging cost,’ which represents the degree of fitting, is also assigned to each possible merge. 296 
For a possible merge, the degree of fitting is evaluated and the merge is fulfilled if it is smaller 297 
than a given ‘least degree of fitting.’ The ‘least degree of fitting’ value is termed the scale 298 
parameter. The procedure stops when there are no more possible merges.   299 

After image segmentation, the average DN value of pixels within each segment for each 300 
band was calculated to represent spectral features of the segment. The normalized difference 301 
vegetation index (NDVI) average pixel value within each segment was also calculated to 302 
represent the NDVI value of the patch (i.e., object-level NDVI image) and was used to separate 303 
vegetation from non-vegetation.  304 

4.2. The Difference Image Generation for Damaged Buildings 305 

The simple assumption made in this study was that if a building was damaged, then its 306 
post-event height would change and the gradient similarity index between pre- and post-events 307 
would be less than the undamaged building. A change analysis was performed to detect the 308 
damaged buildings by the gradient similarity index (GSI) map. The change areas were detected 309 
by a supervised classification method. We can distinguish changed blocks from unchanged 310 
blocks based on a few label data with expert knowledge. We can easily get label data with GIS 311 
software such as ENVI.  312 

Before damage assessment, the vector data were edited as all obtained polygons did not 313 
indicate damaged buildings. Some polygons were vegetation or shadows, thus an NDVI 314 
threshold for vegetation and a mean DN value threshold for shadows was also applied. These 315 
polygons were cleared and polygon regions that may indicate a building region were evaluated.  316 

4.3. Object-Based Damage Assessment at the Block Level 317 

Given a pair of bi-temporal satellite images u0(x, y) and u1(x, y), the gradient similarity 318 
index defined in Equation (4) was used to generate similarity measurements at an individual 319 
patch. Due to the underlying monotonic relation between the damage measures and potential 320 
damage levels, simple thresholding or learning-based classification methods can be used to 321 
generate a pixel-wise, binary-level changing stage.  322 

Damage detection means discriminating damaged blocks from undamaged ones. To 323 
accomplish this, the developed approach targets finding debris areas and intact buildings. The 324 
flowchart for scale-space damage detection is illustrated in Figure 8. A leveling transformation 325 
applied to spectral information gradually flattened the image to identify homogeneous regions 326 
across the scale space. The debris areas, in contrast, were represented as the most heterogeneous 327 
areas. Edge information and its texture, therefore, were useful for delineating debris areas. The 328 
identification of possible intact buildings and debris areas were separately processed on the scale-329 
space prior to the final object-based crosscheck at the scale space. A detailed description of the 330 
processing in Figure 8 is given as follows.  331 
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First, the original pre-event image was used to generate an appropriate image block using 332 
image segmentation processing. Vegetation or shadow blocks recognized by NDVI and average 333 
DN values were masked out. Second, gradient similarity index images were calculated using the 334 
Equation provided in Section 3. The final step of damage mapping was to report the damage 335 
situation in an understandable format for stakeholders, such as disaster management 336 
practitioners, earthquake engineers and decision makers. One commonly used damage scale is 337 
the European Macroseismic Scale (EMS), which classifies damage and destruction as heavy 338 
damage, substantial to heavy damage, moderate damage, and light damage. An ‘open’ approach 339 
was designed here; damage information required presentation as a statistical summary of 340 
damage status for an image object or city block. In addition to maps of building status, it was 341 
necessary to compute the damage area ratio (DAR) for each city block, and to label it with 342 
different damage levels using the flowchart shown in Figure 10.  343 

DAR is computed as: 344 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖

𝐷𝐷𝑖𝑖
 (7) 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the DAR value on the ith object polygon; 𝑑𝑑𝑖𝑖𝑖𝑖 is the “damage flag” (with values 0 345 
or 1) indicating whether pixel j in the polygon was damaged by the earthquake; and 𝐷𝐷𝑖𝑖 is the total 346 
area of the ith polygon. 347 

5. Results and Discussion 348 

Following the methodology described in Section 4, extracted damage information from 349 
images is presented and discussed here. Entire data and IDL code used in this research can be 350 
seen on the website: (Ci, 2017). 351 

5.1 Airborne Data 352 

In Figure 2, a pair of bi-temporal panchromatic images were shown. The two images, with 353 
a resolution of 20 cm per pixel, were orthorectified and geo-registered. Local spatial alignment 354 
errors between different buildings in the bi-temporal images were frequently found. Hence, the 355 
scale max-filter size was chosen as 2.  356 

Figure 9 shows the damage detection (Figure 9a) and block level assessment (Figure 9b) 357 
results of the rapid damage mapping. Based on image segmentation and block, damage 358 
classification was produced. The National Disaster Reduction Commission of China (NDRCC) 359 
investigated 482 building in Ludian after the earthquake (NDRCC, 2014). In the field 360 
investigation data, 98% of simple structures (brick-wood or civil) were damaged or heavily 361 
affected, and 52.9% of non-simple structure (reinforced concrete) were damaged or heavily 362 
affected. In this experiment, 66% of pixels were identified as damaged. 363 

  

(a) (b) 
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Figure 9. Damage map of Longtoushan town where (a) is the change detection result where 364 
white represents damaged pixels; and (b) shows the id of each polygon, which can be 365 
found in Table 3. 366 

This experiment was implemented in the IDL programming language and used about 45 367 
min on a computer with an intel i7 3.4GHz CPU and 12G memory. Efficiency could be highly 368 
improved if we rewrote the code with parallel technology.   369 

 370 

5.2. Satellite Data 371 

We used the same method on the satellite dataset described in Section 2.2. Most buildings 372 
to the left of the study area were collapsed (Figure 10). The filter size selected was 2. Buildings on 373 
the left side of the image had a high probability of detection as collapsed buildings, which can be 374 
easily discovered by visual interpretation. The distribution of the gradient similarity index is 375 
drawn in Figure 10d in the two regions with green and blue lines. The gradient similarity index 376 
of the green region was obviously bigger than the blue region, and there were more intact 377 
buildings in the green region. Damaged buildings in the green region made the distribution of 378 
the green line more flat than the blue line. This distribution was also consistent with our opinion 379 
in this study. 380 

  

(a) (b) 
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(c) (d) 

Figure 10. Damage map of Jiegu town in Yushu, China where (a) is the change detection 381 
result and white represents the damaged pixels; (b) shows the id of each polygon, which 382 
can be found in Table 3. (c) Mark two regions to be analyzed; and (d) in the distribution of 383 
gradient similarity index. The green line in (d) represents the GSI distribution of the green 384 
region in (c) as well as the blue. 385 

5.3. Discussion 386 

We obtained the actual changed buildings by visual interpretation and overlaid it with the 387 
change detection results to get the precision statistics of the two experimental areas (see Table 2). 388 
To prove the effectiveness of moving distance, we compare the accuracy assessment of different 389 
moving distance in the table. From this table, the kappa was very low (around 0.3). The 390 
producer’s accuracy of intact building was very low. In particular, the low producer’s accuracy 391 
indicates that many intact areas were wrongly identified as damaged buildings. This may be 392 
because the roof of a building cannot represent the footprint of building when the building is 393 
high. A more sophisticated method and additional information sources, such as height data pre- 394 
and post- event, are required to solve these problems in detail assessment. Different moving 395 
distance can influence the accuracy. 396 

Table 2. The spatial and spectral characteristics of used data.  397 

Platform 
Moving 
distance 

Overall 
accuracy 

Kappa 

Damaged Intact 

User 
accuracy 

Producer’s 
accuracy 

User 
accuracy 

Producer’s 
accuracy 

Satellite 

0 57.33% 0.25 54.83% 68.12% 61.12% 47.18% 

1 61.49% 0.33 58.09% 68.09% 64.8% 55.29% 

2 63.63% 0.37 60.96% 69.51% 66.94% 58.09% 

Airborne 
0 53.8% 0.307 84.8% 64.49% 76.26% 45.4% 

1 59.17% 0.26 63.31% 66.25% 53.16% 49.94% 
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2 62.13% 0.32 65.41% 70.25% 57.06% 51.55% 

We also compared the DAR based on the calculated GSI and expert judgement in the study 398 
area. We divided the whole area into six blocks and send the image to four experts who have 399 
worked in damage assessment field for years. They marked the blocks with A-F to represent the 400 
damage intensity from the severe to slight. The average result of experts and the DAR of each 401 
block are shown in table 3. The DAR of each block can be found in figure 9b and 10b. Easy to see, 402 
there is a correlation between DAR and expert judgement.  403 

Table 3.  The expert judgements for study areas.  404 

 
City blocks 

1 2 3 4 5 6 

Satellite 
Expert judgement A C B E D E 

DAR 58 58 75 84 82 80 

Airborne 
Expert judgement D E F C A B 

DAR 85 75 64 56 48 66 

Overall, despite the limitations, the comparison shows good agreement for a quick 405 
estimation of damage intensity distribution, especially considering the focus was to produce 406 
geospatial products as a matter of urgency, based on the earliest available images. It also 407 
demonstrated the importance of these products as effective complements to on-going relief 408 
efforts. While the automated damage indication map cannot replace “in depth” damage 409 
assessments, and nor is that the intention; the aim is rather to provide a preliminary (but reliable) 410 
indication of damage distribution for initial disaster relief operations. 411 

6. Conclusions 412 

This approach overcomes some issues that often occur in rapid damage assessment 413 
scenarios: first, perfect matching of the images is not required as small shifts can be 414 
accommodated through object linking; second, data from different VHSR sensors can be 415 
compared; and third, parameterization of the rule set and final processing can be performed 416 
sufficiently fast to be used in an operational context.  417 

Finally, it should be emphasized that the automated approach presented herein was not 418 
designed to extract absolute values concerning damaged buildings, nor is it able to completely 419 
replace manual interpretation. Its strength lies in the ability to extract information rapidly (if the 420 
methodological assumptions hold true), thereby assisting users and manual interpreters to 421 
quickly obtain an impression of the spatial distribution of damage in emergency situations and 422 
provide a guide for further, more detailed, analyses. 423 
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