Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-62 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. | 1 | | |----------|--| | 2 | | | 3 | | | 4 | | | 5 | Paleotsunami deposits along the coast of Egypt correlate with | | | | | 6 | historical earthquake records of eastern Mediterranean | | 7
8 | | | 9 | | | 10 | | | 11
12 | | | 13 | Asem Salama, (1, 2, *), Mustapha Meghraoui (1**), Mohamed El Gabry (2, *), | | 14 | Said Maouche (3, *), Hesham Moussa Hussein (2, *), and Ibrahim Korrat (4) | | 15 | | | 16 | | | 17 | A CONTRACT CHIRACOLOGIC CONTRACT CONTRA | | 18 | LEOST-IPGS - CNRS - UMR 7516, 5 rue René Descartes, Strasbourg, France | | 19
20 | NRIAG, 11421 Helwan, Egypt CRAAG, Bouzareah, Algeria | | 21 | Dept. of Seismology, Mansoura University, Mansoura, Egypt | | 22 | 25pt of other long, manufactured and a suppression of the | | 23 | * Also at North Africa Group for Earthquake and Tsunami Studies (NAGET), Ne t40/OEA | | 24 | ICTP, Italy | | 25 | 24 4 4 6 6 6 6 6 7 6 7 6 7 7 6 7 7 7 7 7 | | 26 | **Corresponding author | | 27 | | | 28 | | | 29 | | | 30 | | | 31 | | | 32 | | | 33 | | | 34 | | | 35 | | | 36 | | | | | Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 37 38 Abstract. 39 We study the sedimentary record of past tsunamis along the coastal area west of Alexandria (NW Egypt) taking into account the occurrence of major historical earthquakes in the eastern 40 Mediterranean. The two selected sites at Kefr Saber (~32-km west of Marsa-Matrouh city) 41 42 and ~10 km northwest of El Alamein village are coastal lagoons protected by 2 to 20-m-high dunes parallel to the shoreline. Field data were collected by: 1) Coastal geomorphology along 43 estuaries, wedge-protected and dune-protected lagoons, and 2) identification of paleotsunamis 44 deposits and their spatial distribution using five trenches (1.5-m-depth) at Kefr Saber and 45 twelve cores (1 to 2.5-m-depth) at El Alamein. Detailed logging of sedimentary sections were 46 analysed using X rays, grain size and sorting, total organic and inorganic matter, bulk 47 mineralogy, magnetic susceptibility and radiocarbon dating necessary for the identification of 48 past tsunamis records. Generally of low energy, the stratigraphic succession made of marine 49 and alluvial deposits includes intercalated high-energy deposits made of mixed fine and 50 coarse sand with broken shells, interpreted as catastrophic layers correlated with tsunami 51 deposits. Although the radiocarbon dating of 46 samples consist in mixed old (> 13000 year 52 BP) and young (< 5500 year BP), dated charcoal and shell in sedimentary units allow the 53 correlation with the 24 June 1870 (Mw 7.5), 8 August 1303 (Mw ~8) and 21 July 365 (Mw 8 54 - 8.5) large tsunamigenic earthquakes that caused inundations in Alexandria and northern 55 Egyptian shoreline. Our results point out the size and recurrence of past tsunamis and the 56 potential for tsunami hazard over the Egyptian coastline and the eastern Mediterranean 57 58 regions. coartal 59 60 Discussion started: 12 March 2018 62 © Author(s) 2018, CC BY 4.0 License. #### 1. Introduction: Egypt has a well-documented historical catalogue of earthquakes and tsunamis 63 recorded in ancient texts and manuscripts. Original documents and archives from past 64 civilizations are considered as the principal sources of macroseismic data for major historical 65 66 earthquakes and tsunamis (Poirier and Taher, 1980; Maamoun et al., 1984; Ambraseys et al., 1994, 2009; Guidoboni et al., 1994, 2005; Soloviev et al. 2000, Tinti et al., 2001). The 67 catalogue of Ambraseys et al., 2009 reports that coastal cities of northern Egypt have 68 experienced repeated tsunamis inundations with severe damage in the past. While historical 69 earthquakes and tsunamis are well documented, it appears that there is a lack of holistic 70 investigations for tsunami deposits along the Mediterranean coastlines. The geomorphology 71 72 along the Mediterranean coastline of northern Egypt with low-level topography (Hassouba, 73 1995), dunes and lagoons constitutes an ideal natural environment for the geological record of past tsunamis. 74 75 The Eastern Mediterranean region experienced major earthquakes (with Mw > 7.5) mainly along the Hellenic subduction zone due to the convergence between the Eurasian and 76 77 African plates (Fig. 1; Ambraseys et al., 1994, Taymaz et al., 2004). Major historical tsunamis 78 in the eastern Mediterranean region that affected northern Egypt are triggered by large 79 earthquakes (Papadopoulos et al., 2014) but the possibility of landslide tsunami associated 80 with local earthquakes (El-Sayed et al., 2004) may also exist. Yalciner et al. (2014) estimated 81 that up to 500 km3 landslide volume, with wave height ranging from 0.4 to 4 m, might have 82 taken place offshore the Nile Delta. However, the effects of landslide tsunami are limited to 83 the nearby coastline as shown by the recent examples of landslide tsunamis in the 84 Mediterranean (Tinti et al., 2005). Tsunami research of the past 20 years has led to the discovery of coastal tsunami 85 when? sedimentary records dating back to thousands of years. Among the early studies, the evidence Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. is this relevant for the Mediterranean of more than 6 soil levels buried below tsunami deposits in the past 7000 years were found at 87 Puget Sound coastline of Washington state (Atwater, 1987). Nanayama et al. (2003) 88 recognized major tsunamis due to extensive coastal inundation along the eastern coast of 89 Hokkaido (northern Japan); the repeated sand sheet layers several kilometres inland evidenced 90 a 500-year tsunami cycle in the period between 2000 and 7000 years BP. Following the 2004 91 Sumatra earthquake (Mw 9.1) and tsunami, Malik et al. (2015) identified in trenches three 92 historical tsunamis during the past 1000 years along the coast of South Andaman Island 93 (India). In the Mediterranean, De Martini et al. (2012) identified two tsunamis deposits 94 during the first millennium BC and another one in 650-770 AD and estimated 385 year 95 average recurrence interval for strong tsunamis along the eastern coast of Sicily (Italy). 96 In this paper, we investigate the paleotsunami deposits in the northern coast of Egypt and their correlation with the historical tsunami catalogue of the Eastern Mediterranean. Using coastal geomorphology with trenching and coring, we examine the geological evidence of tsunami deposits using geochemical analysis, magnetic susceptibility and radiocarbon dating to identify the tsunamis records. The Bayesian simulation (Oxcal 4.2; Bronk-Ramsey, 2013) is applied to the radiocarbon results and stratigraphic succession of coastal deposits in order to generate a precise paleochronology of tsunami events. Finally, we discuss the evidence of paleotsunamis and their dating in comparison with the major historical tsunamigenic earthquakes of the Hellenic and Cyprus subduction zones. 106 107 108 109 110 97 98 99 100 101 102 103 104 105 #### 2. Major historical tsunamis of the Mediterranean coast of Egypt The tsunami catalogue of Egypt cites the work of Guidoboni et al. (1994, 2005) and Ambraseys (2009) that report several large historical tsunamigenic earthquakes with severe damage in the eastern Mediterranean regions (Table 1). Among these events, the tsunamis of Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 111 112 well as the Mediterranean coast of Egypt. Early in the morning of 21 July 365, an earthquake with estimated magnitude ~Mw 8-113 114 8.5 located offshore West of Crete generated a major tsunami that affected the eastern Mediterranean coastal regions (Ambraseys et al., 1994). A contemporaneous account from the
115 116 Roman historian Ammianus Marcellinus (born 325 - 330, died c. 391 - 400; Guidoboni et al., 1994) reported the sudden retreat of the sea and the occurrence of a "gigantic" wave inland 117 with inundation and damage to the Alexandria harbour and city where ships were lifted inland 118 on house roofs; the estimated wave height of this tsunami was calculated by Hamouda (2009) 119 to be larger than 8 m in Alexandria. The seismic source of this earthquake is located in west 120 121 Crete, according to archeological and historical damage distribution, combined with coastal uplift measurements and modelling (Fig. 1; Guidoboni et al., 1994; Stiros, 2001; Shaw et al., 122 123 2008 and Ambraseys, 2009). On 8 August 1303 a major earthquake with magnitude ~Mw 8 located in between 124 Crete and Rhodos islands generated a tsunami that greatly damaged the coastal cities of the 125 126 eastern Mediterranean (Guidoboni and Comastri, 2005; Ambraseys, 2009). Abu-El Fida (1907) reported in 1329 that the Alexandria city and Nile delta were flooded and many houses 127 were damaged in Cairo and northern Egypt. In Alexandria, part of the city walls collapsed, the 128 129 famous lighthouse was destroyed and some ships were torn apart carried up inland due to the tsunami waves (Abu-El Fida, 1907). In a recent synthesis of major seismic sources, 130 Papadopoulos et al. (2014) locate the 1303 earthquake in between Crete and Rhodos Islands 131 I wouldn't locate it in the massive lique! of the Hellenic subduction zone (Fig. 1). 132 133 On 24 June 1870, a large earthquake affected many places of the eastern 134 Mediterranean region and was felt in Alexandria at around 18 h with no damage in the city but with slight damage in Cairo (Ambraseys, 2009). In Alexandria coastline and Nile Delta, 135 21 July 365, 8 August 1303 and 24 June 1870 inundated the harbour of Alexandria city as and (or?) Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. ? wear the sea wave flooded the quays of ports and inland fields (Coumbary, 1870). The seismic source location of this earthquake at the eastern edge of Crete is inferred from the damage in Heraklion and felt shaking around the east Mediterranean (Fig. 1; Schmidt, J.F., 1879; Jusseret and Sintubin, 2017). Among these three reported earthquakes, it appears that the AD 365 and AD 1303 that can be classified as very large earthquakes (with Mw ≥ 8; Stiros, 2001; Shaw et al., 2008; Hamouda, 2006, 2009) generated major tsunamis with basin-wide impacts, while the 1870 earthquake may be of a lower magnitude (Mw ~7 − 7.5; Ben Menahem et al., 1991; Soloviev, 2000). Several studies of the 21 July 365 and 8 August 1303 historical earthquakes refer to tsunami waves with inundation in Alexandria and coastlines of northern Egypt, and therefore with the potential of tsunami records in the sedimentary deposits. However, there have been some debates on the 1870 event concerning its location, size and the possibility of tsunami waves, but several authors (Soloviev et al., 2000; Ben Menahem et al., 1979; Salamon et al., 2007; Papadopoulos et al., 2010; and Maramai et al., 2014) support the tsunami generation by 1870 earthquake. #### 3. Coastal geomorphology and site selection of paleotsunami records The northwest Mediterranean coast of Egypt forms the northern extremity of the Marmarica plateau which is a Miocene homoclinal limestone that extends west of Alexandria for about 500 km, acting as a major catchment area feeding the drainage system (Fig. 1). The plateau runs from the Qattara Depression southward to the piedmont plain northward with various elevations reaching ~100 m at Marsa Matrouh escarpment. The geomorphological landform of the study area is characterized by a 60-m-high northern plateau that includes ridges, sand dunes, lagoons, and rocky plains within a 20-km-wide strip along the coastline Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 160 161 171 172 173 174 175 176 177 178 179 180 181 182 183 184 Landy with home. (Fig. 1). The rocky Pleistocene limestone ridges include a veneer of carbonate sand that are mostly composed of oolitic grains (Frihy et al., 2010). 162 Coastal dune-ridges protect inner lagoons from the sea and constitute outstanding landform features at several locations parallel to the shoreline (Figs 2 and 3). These dunes are 163 weathered where the rocky headlands outcrop (Abbas et al., 2008). The 2 to 20-m-high 164 165 coastal beach-dune ridge mainly composed of oolitic and biogenic calcareous sand separates 166 coastal lagoons and sabkhas (salt lake) from the sea. The beach-dune ridge is developed along 167 the receding Quaternary shorelines and embayment of the Mediterranean Sea (Hassouba, 1995). The lagoons with flat depressions separated from the sea by the coastal dunes (with 168 different heights and sometimes with seawater outlets) are designated sites for the record of 169 170 past tsunami deposits. likely? not in 3! The accumulation of large boulders (Shah-Hosseini et al., 2016) near the selected sites is considered as a possible witness of past tsunami events. However, the boulders along the coastlines may either results from storms (Hall et al. 2006; Spiske et al. 2008) or tsunami waves (Goff et al. 2006; 2009; Morhange et al. 2006). The majority of boulders observed near our investigated sites shows imbricated positions of large blocks directed toward south, a situation comparable to the tsunamigenic boulders studied along the Algerian coastline (Maouche et al. 2009). The discrimination between storm and tsunami deposits is a challenge in the Mediterranean regions (Maouche et al., 2009; Marriner et al., 2017). However, the tsunami stratigraphic record is less frequent (according to Tinti et al., 2001) and often presents a specific sedimentary signature with mixed deposits that include: 1) The basal contact of tsunami layer is extremely sharp with loading structures where layers contain organic rich mud and vegetation (Matsumoto et al., 2008; Switzer and Jones 2008); 2) the presence of rip up clasts that also suggest considerable erosion of lagoon deposits usually associated with Discussion started: 12 March 2018 (c) Author(s) 2018. CC BY 4.0 License. 185 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 bivalve also have shells! tsunami deposits (Szezucinski et al 2006); 3) The tsunami deposits tend to be much more poorly sorted than storm deposits (Paris et al., 2007); 4) the large number of mixed and often broken bivalve and shells that occupy large vertical and lateral stratigraphic positions (Donato et al., 2008); 5) the tsunami deposits tend to have laminations and or cross bedding due to landward or seaward current (Tuttle et al., 2004); 6) the particle sizes of tsunami sediments fine landward from the shores (Srinivasalu et al., 2009); 7) the grain size are often bimodal particles size than the storm which tend to have unimodal particle size (Paris et al., 2007); 8) The increase of concentrations of Na, S, Cl, Mg with the presence of heavy minerals in tsunami deposits (Szczucinski et al., 2006; Babu et al., 2007); and 9) The low peak value of magnetic susceptibility linked to the amount of sand originated from the littoral dunes and reworked mixed sediments from tsunami waves (Font et al., 2010). The local geomorphological and topographic settings contribute to the site selection for paleotsunami investigations. Our site selection for trenching and coring took into account the accessibility to dry lagoons (during summer season) in areas with no urbanization or artificially reworked soil. Suitable sites for trenching and coring are located in areas protected from the sea by the rather low (~2-m-high) sand dune topography that allows tsunami waves and related material to deposit into the lagoon. Two ~200 km apart sites of seasonal dry lagoons have met the selection criteria for paleotsunami investigation (Figs. 1 and 2): 1) Kefr Saber located at ~32-km west of Marsa-Matrouh city, and 2) El Alamein site at ~10 km northwest of El Alamein city and ~150 km west of Alexandria. Five trenches were dug at Kefr Saber (Fig 2a), and 12 cores were performed at the El Alamein site (Fig 2b). 206 208 209 #### 4. Used methods for paleotsunami investigations The trench size is \sim 2 x 1 meter with \sim 1.5-m-depth depending on the water table reach; all trench walls exposed fine-grained sedimentary layers and were logged in details. The davily! an compared with Jeach Joynoute in his s. atia one not well wroble! Natural Hazards and Earth System Sciences Discussions 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 © Author(s) 2018. CC BY 4.0 License. maximum core depth is ~2.6 m and their distribution in the lagoons was planned to occupy an area from the depression (depo-centre) to the edge close to the outlet of seawater in order to observe any thickness variation of tsunami layers. The core tubes were split in half lengthwise, photographed using both normal and ultra-violet lightning accompanied by detail description of textures and sedimentary structures. An X-ray scanning was performed immediately after core opening and all cores were sent to the laboratory of the National Institute of Geophysics and Astronomy (NRIAG, Cairo) for sampling and further analysis. The magnetic susceptibility measurements were operated along cores and samples were collected for radiocarbon dating, physical, chemical and organic matter analyses. The magnetic susceptibility was measured for cores at the NRIAG Rock Magnetism laboratory then corrected against air by using Bartington compatible software. 120 samples were collected from cores then analysed for grain size analysis; X-ray diffraction using A Justu went. Philips PW 1730. The total organic and inorganic measurements were carried out at the laboratory of Central Metallurgical Research & Development Institute (CMRDI at Eltebbin,
Egypt). Statistics of the grain-size distribution were calculated using Folk equations (1968) to Snacine? obtain mean size and sorting of the sediments along the cores. The Radiocarbon dating of samples are carried out in three laboratories (Poznan laboratory - Poland, CIRAM in Bordeaux, France and Beta Analytical laboratory, USA) to ensure coherency and quality of results (see Tables 2 a and b). The collected samples are made of charcoal, bones, gastropods, shells and organic matter. The radiocarbon dating results of samples are subsequently corrected using a recent calibration curve (Reimer et al., 2013) and the Oxcal software (Bronk-Ramsay, 2009) for the probability density function with 20 233 uncertainty for each dated sample. In addition, from a succession of calibrated dates, a 234 Bayesian analysis provides the simulated age in probability density function of a catastrophic I think that this methodological approach derewer some more isplanation or do you siruply push some keys and get a date? event. The simulated age allows the correlation between the tsunami layer deposits, the related isotopic chronology and the historical tsunami events in catalogues. 237 238 239 240 242 244 246 249 253 235 236 ## 5. Description of trenches and cores sedimentary layers exposed / peut taled in The selected sites revealed a succession of sedimentary units typical of lagoon deposits with fine strata made of a mix of fine gravel, sand, silt and clay (Salama, 2017) At Any rdea of taxonomy? below muface both Kefr Saber and El Alamein sites, trenches and cores present comparable soft sediment 241 content and stratigraphy. The variation of sediments content in the different cores is due to the distance from the shore and to the core location in the lagoons with regard to dunes heights. A 243 detailed description of the trenches and cores at both Kefr Saber and El Alamein sites is presented here below: 245 distance to what? Regular spacing between trender? Distance to dune oridges? 5. 1. Kefr Saber site: Trenches P1, P2, P3 and P4 are 20 to 40 m distance, have quite similar sedimentary succession with fine-grained mostly alluvial deposits made of sandy-silty 247 layers with mixed coarse and white fine sand that contains broken shells of marine origin 248 (Fig. 3 and trench logs in supplemental material S1). A conspicuous layer of white mixed sand, gravel and broken shells with variable 2 to 15 cm thicknesses is found at 30 - 50 cm 250 depth in P1, P2, P3; its thickness decreases landward to 1 cm in P4 (see supplemental material 251 S1 a, b, c, d, e). Trench P5 which is close to the dunes and shoreline shows a succession of 252 coarse and fine sand, and 30 to 40 cm thick mixed with pebbles which, as observed in other trenches, are fining inland. According to Goff et al., 2006, the high energy fining inland 254 sedimentary sequence is related to tsunami deposits rather than storm deposits. The white 255 mixed sand with broke shells characterized by high-energy sedimentary deposits is interpreted 256 257 as of tsunami origin. The mixed radiocarbon dating of samples in trenches is an issue at Kefr Saber. Two 258 259 charcoal samples collected in Trench P1 at 35 cm and 53 cm depth display modern age yields In the abteact, the autions argue that they restigned the coaise layer a tomanique after studying a vamety of features and analytical results ... and here they just jump to this rutequetation on the bain of a landward diecean of fram size. I do not completely catch the idea. are, chedel Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 260 below surface 261 samples collected at 73 cm and 100 cm depth and both below the tsunami layer labelled 1 262 (Fig. S1-b) indicate 50 - 70 AD and 5300-5070 BC, respectively (see also Table 2a). In 263 Trench P4, four collected charcoal samples at 15 cm, 25 cm, 40 cm and 61 cm depth reveal ecovered modern ages (younger than 1650 AD). A fifth charcoal sample located at 60 cm depth 264 265 provides 17200- 15900 BC. In Trench P5, four charcoal samples are collected with the 266 uppermost sample located at 12 cm depth is dated at 360-50 BC, the second sample at 17 cm 267 depth show 30- 180 AD, the third, and fourth charcoal samples found at 33 cm and 37 cm depth are dated at 350 - 1050 BC and 2400-4000BC, respectively. The mixing between old 268 (older than 7000 years BP) and relatively young ages (younger than 2000 years BP) denotes rudicates points to reworking of former deposits and reducent on a later 269 of the deposit of reworked layers within an environment of young sedimentation in lagoon. 270 Results: Although the sedimentary deposits in trenches at Kefr Saber indicate mixed 271 and reworked sedimentation, the well identified coarse and fine white sand layer with broken 272 273 shells of marine origin located ~ 30 - 73 cm depth in all trenches P1 to P4 suggests a single 274 homogeneous sedimentary unit of relatively young age deposited in the lagoon. Considering 275 that the stratigraphic succession and related chronology are comparable in all trenches dug in 276 the same lagoon, we selected the radiocarbon dates younger than 2000 year BP that bracket 277 the white sandy layer unit (i.e., samples TSU P5 S4 and S5, TSU P3 S1 and S3 that predate (younger than 1650 AD) and 39000-38250 BC, respectively. In Trench P2, two other charcoal 281 282 relation e dies and 283 provided 1/22 Trovided (t) 278 279 280 North of the trench sites at Kefr Saber, the dating of shells (Dendropoma) of a sample collected in a large boulder provide a radiocarbon calibrated date of 940-1446 AD. The dating of Dendropoma collected in a boulder often marks the catastrophic coastal environmental change with displaced large boulders from an intertidal to shoreline position due to a tsunami the unit, and sample TSU P3 S2 that postdates the unit). The Oxcal dating simulation provides the 137 - 422 AD bracket of the white sandy layer unit that may be correlated with the tsunami deposits of the 21 July 365 earthquake (Fig. 4). Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. Do Goiff et al frid boulders with Dendio poura? awore that severe storius may (one able to diplace and rubicate large boulders even in novioual platforms event (Goff et al., 2012). The Dendropoma sample age at Kefr Saber may correlate with the 8 285 August 1303 earthquake and tsunami event that dragged large boulders on the shoreline in 286 agreement with the results of Shah-Hosseini et al. (2016). However, we could not identify the 287 288 1303 event in the trenches dug in the nearby lagoon at Kefr Saber. 5. 2. El Alamein site: The 12 cores extend between 1 m and 2.6 m depth and except 289 290 for cores 1 and 9 which are shown in Figures 5 a and b, the detailed stratigraphic logs and related measurements are presented in the supplemental material S2. In a previous 291 reconnaissance field investigation, a coarse and fine white sand layer was identified ~ 30 cm 292 depth in a test pit. Two charcoal samples El Al sal and El Al sa2 collected at 25 cm and 56 293 cm depth give 1680-1908 AD and 1661-1931 AD ages, respectively. The description of cores is as following: 295 294 296 Core 1: This core is located at ~166 m from the shoreline (Fig. 2 b), east of the study area behind the sand dunes and near the outlet of the seawater. The core depth reached ~2.14 m 297 and the stratigraphic section includes 3 tsunami layers recognized as following (Fig. 5 a 298 299 section 1 and its continuation at depth in Fig. S2-1): It comists of toorly-sorted The first layer is at ~12.5 cm depth with ~34.5 thick brown clay sediments with poor sorting, 300 fine grain sediments, with high peak in magnetic susceptibility, rich in organic matter, and X-301 ray image reflects clear lamination. The second layer which is located at ~70 cm depth has ~5 302 cm thickness, characterized by highly broken shells fragments with the extremely bad sorting 303 of sediments granulometry. The third layer at ~75 m depth is ~22 cm thick, made of pale 304 yellow sand with bad sorting of sediments size, and a peak in magnetic susceptibility. The 305 chemical analysis shows the presence of gypsum and minor goethite, and X-ray scanning 306 shows some turbiditic structures. A fourth tsunami layer is identified at 158 cm (see Fig. S2-1;) turbidites in the 307 section 2). It is characterized by pale brown silty clay, with broken shells fragments and 308 309 extremely poor sorting, and with a high peak of magnetic susceptibility. (1) If these are fragments, it means 12 that they are troken shells / bioclasts. Injuly broken?? please explain what you mean. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. with brodusts 334 310 Two samples were collected for radiocarbon dating from core 1. The first and uppermost sample is a charcoal fragment at 40 cm depth located within a layer of catastrophic 311 mixed sedimentary unit characterized by bad sorting, highly broken shells fragments and the 312 313 peak of magnetic susceptibility. We interpret this layer as of tsunami origin and although its stratigraphy is located close to the surface, the mixed and reworked sedimentation explains 314 315 the obtained old age 13985- 14415 BC (Table 2b). The second sample is a rodent bone at 50 cm depth and provides 403-603 AD calibrated age that postdate a catastrophic layer made of 316 317 white sandy layer with broken shells. This catastrophic layer may correlate well with the 365 AD major earthquake of the eastern Mediterranean. 318 Core 2: As shown in core 2 is ~90 cm deep located south of core 1 at ~264 m from the 319 shoreline (Fig. 2 b, Fig. S2 - 2). Two tsunami layers are identified. The first tsunami layer is 320 ue trated ~12 cm thick brown clay sediments at ~13 cm depth, mixed with gravel and sand. The layer 321 is rich in organic matter (> 1), with a small peak of magnetic susceptibility and where the 322 323 geochemical analysis shows a minor
component of goethite. The second layer at ~50 cm 324 depth is ~15 cm thick, made of mixed yellow sand with silty-clay pockets, broken shells 325 fragments, poor sorting and with peak magnetic susceptibility. It is rich in organic matter 326 comparing to the other layer, and the geochemical analysis shows minor component of halite. 327 Several samples were collected below and above the tsunami layers but, unfortunately, their content did not deliver enough carbon for dating. The two shells (gastropod) samples 328 329 collected at 75 cm and 77 cm depth (well below the lowermost tsunami layer, Fig.S2-2) have 330 calibrated dates 32971-34681 and 34362-36931 BC, respectively (Table 2b). These obtained 331 ages may well be due to a mixed and/or reworked sedimentation. 332 Core 3: This core is located at 270 m from the shoreline and the outlet of sea water has 333 revealed three tsunami layers (Fig. 2b and Fig. S2 - 3). The first tsunami layer is at ~25 cm presumable large/small? has revealed? place depth and corresponds to 26 cm thick pale brown clay characterized by broken shells © Author(s) 2018. CC BY 4.0 License. there descriptions need a little rewriting of for English is not a good one. echaps it sould be used didache it descriptions are given from proximed to distal, refactles of the immunity of one 350 351 352 353 354 355 356 357 358 359 (Fig. S2-4). fragments and sediments rich in organic matter. The second layer at \sim 70 cm depth is 17.5 cm 335 thick characterized by white sand laminated at the top with a peak of magnetic susceptibility 336 337 near zero value, and with high organic matter > 2. The third tsunami layer at 106 cm depth is 32 cm thick, characterized by yellow sand with minor illite and broken shells fragments. 338 Two shell samples were collected for dating at 37 cm and 45 cm depth and skey 339 340 calibrated dates 43618 BC and 34218-37224 BC respectively (Fig.S2-3 and Table 2b). These two samples are located within the stratigraphic tsunami layer 2 and may correspond to 341 reworked sediments due to the high energy sedimentation during the catastrophic event. 342 Core 4: The core is located at 435 m from the shoreline and shows sedimentary units where 343 we identify two tsunami layers with high magnetic susceptibility (Fig. S2 - 4). The first 344 tsunami layer is the white sand at ~12.5 cm depth 7 cm thick with poorly sorted sediments, 345 346 broken shells fragments with organic matter > 2. The second tsunami layer is a pale yellow sand at ~102 to 130 cm depth, characterized by broken shell fragments in a yellow sand with 347 a minor amount of illite and gypsum. 348 One shell sample collected for dating at 37 cm depth provides a calibrated date 32887-349 Core 5: This is the southernmost core in the El Alamein site, located at 490 m distance from the shoreline (Fig. 2 b; Fig. S2 - 5). The core reaches 73 cm depth and the sedimentary succession does not show any possible catastrophic sedimentary layer of tsunami origin. According to its content, core 5 may show the limit of inundation area with respect to at least the first and second tsunami layers. Core 6: This core is located south of the sand dunes at 320 m from the shoreline (Fig. 2 b). It 34447 BC respectively (Table 2b). This sample located in the stratigraphic tsunami layer apparently results from high energy reworked sedimentation during the catastrophic event remobilisation of older deposits under premushly dufter He mudated (flooded) area ould be heater put, milers you had deposite, you hand are is characterized by three tsunami layers (Fig. S2 - 6). The first tsunami layer is a ~24 cm thick Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 360 pale yellow sand with broken shells fragments (between 5 and 26 cm depth) and poorly sorted 361 sediments rich in organic matter (larger than 2.5). The second tsunami layer is ~18.5 cm thick 362 at 50 - 75 cm depth characterized by yellow sand with mixed gastropods and bivalves, and a high value of magnetic susceptibility. The third tsunami layer at 130 cm depth is ~20 cm 363 thick, rich in organic matter, characterized by white sand mixed with gravel and pebble and 364 broken shells fragments. 365 stell Three samples were collected for dating in core 6. The first sample is a gastropod/at 366 367 ~45 cm depth and shows 35002-37441 BC calibrated date. The second and third samples are 368 coral fragments at ~60 cm and ~80 cm depth that gave 42776-69225 BC and modern (younger than 1650AD) calibrated ages. The first sample is above the tsunami layer 2 while 369 the second sample was within the stratigraphic tsunami layer 2 (Fig S2-7). These samples may 370 result from mixed sedimentation and reworking due to high current waves transport of 371 372 tsunamis. 373 Core 7: This core was located at 273 m from the shoreline (Fig. 2 b). It is characterized by sedimentary units that may include three tsunami layers within 120 cm core depth (Fig. S2 -374 375 7). The first tsunami layer is a 6 cm thick brown sand with broken shell fragments at ~14 cm 376 depth and a considerable amount of gypsum with a minor amount of Illite and goethite. It is 377 rich with organic matter (> 2) of a swampy environment and the noticeable peak of magnetic 378 susceptibility. The second tsunami layer at 50 cm depth is 20 cm thick, characterized by laminated pale brown clay mixed with gravel and pebbles at the bottom. The third tsunami 379 380 layer is 15 cm thick at 115 cm depth characterized by white sand, bad sorting sediments with a wirw 381 382 383 aminor amount of pyrite. A single sample of shell fragment collected at 17 cm depth for radiocarbon dating within tsunami layer 1 provides 293-1113 BC. age © Author(s) 2018. CC BY 4.0 License. Miles 70 how wo have wells? Core 8: This core is located at 214 m from the shoreline (Fig. 2 b). Three tsunami layers are recognized (Fig. S2 - 8). The first tsunami layer is 16 cm thick pale silty clay at ~14 cm depth, rich in organic matter, with minor amount of goethite, characterized by highly broken shell fragments. The second layer is a 22 cm thick at ~52 cm depth, of pale yellow silty-clay with broken shells, characterized by a high peak of magnetic susceptibility and rich inorganic matter (>2.5). The third tsunami layer is 9 cm thick at ~128 cm depth, characterized by pale yellow sand with broken shells fragments and baddy sorted angular gravel sediments. No samples were suitable for dating in this core. Core 9: The core is located at 130 m from the shoreline. Three tsunami layers are recognized (Fig. 5 b; Fig. S2 - 9). The first tsunami layer is white sand at ~16 cm depth and 13 cm thick with ahigh content of organic matter and rips up clasts that appear in X-ray scanning (Fig. 5 b; Fig. S2 - 9). The first tsunami layer is white sand at ~16 cm depth and 13 cm thick with a high content of organic matter and rips up clasts that appear in X-ray scanning characterized by highly broken shell fragments and rich in organic matter. The second layer at 67 cm depth is 22 cm thick characterized by white sand, with a peak of magnetic susceptibility, high content of organic matter larger than 5. The third tsunami layer at 139 cm depth is 14 cm thick characterized by broken shell fragments and white sand with highly angular sediments that reflect the bad granulometric sorting. Two samples were collected for dating in core 9. The first sample is a gastropod shell located at 24 cm depth within the tsunami layer 1 that gives 1052-1888 BC calibrated age. The second sample at 55 cm depth is a bivalve (lamellibranch) located above the tsunami layer 2 dated at 40521-43169 BC calibrated age. These samples may have been transported and re-deposited due to high current waves of the tsunami events. Core 10: The core is located at 245 m from the shoreline (Fig. 2 b). Three tsunami layers are recognized (Fig. S2 - 10). The first tsunami layer is 9 cm thick brown silty clay, at ~19 cm depth with broken shells fragments, rich in organic matter (> 4) and high peak of magnetic susceptibility; rip up clasts and laminations appear in X-ray scanning. The second layer 38 cm pale what? Jellow/red/ green?... water later to death current/waves ? Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. thick brown sand at 48 cm depth with broken fragments of shells, peak of magnetic susceptibility and high organic matter (> 1.5) at the bottom of the layer. The third tsunami layer is 28 cm thick pale yellow sand at 101 cm depth characterized by rich organic matter and sediments that reflect the bad sorting. Two samples were collected for dating in core 10. The first sample located in the high content of org. matter tsunami layer 1 is a shell fragment at 24 cm depth that gives 2623-3521 BC calibrated age. The second sample located in the tsunami layer 2 is a rodent bone at 70 cm depthshowing 416 41256-46581 BC calibrated age (see also Table 2b). Both samples may result from reworked sedimentary units due to high current waves of tsunami events. with an estimated Core 11: The core is located at 151 m from the shoreline (Fig. 2 b). Three tsunami layers are recognized (Fig.S2 - 11). The first tsunami layer is 10 cm thick white sand with broken shell fragments at ~19 cm depth; the layer also shows high magnetic susceptibility, rich organic matter (> 4) with a high percent of gypsum (>50%). The second layer is 9 cm thick white sand at 76 cm depth, with broken shell fragments, a high peak of magnetic susceptibility and organic matter larger than 1.5. The third tsunami layer is 21 cm thick grey silty sand, with broken shell fragments at 107 cm depth; bad sorting, high organic rich matter and a minor amount of Illite and gypsum. Eight samples were collected for dating in core 11. The sedimentary units at 112 - 175 cm depth (core bottom) and related succession of ages between 3943 BC and 2475 BC (from shell gastropods and a charcoal fragment; see Table 2 b), may indicate a
consistent dating of the tsunami layer 3. However, the first sample (gastropod shell) at ~20 cm depth that gives 3638-4328 BC, the second sample (broken shell) at 62 cm depth with an age at 17869 - 18741 BC, and the 33294 - 36120 BC and 2619 - 3386 BC out of sequence dating (Table 2 b) indicate samples of transported and reworked shells and sediments probably due to high 433 energy tsunami deposits. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. Core 12: The core is located at 127 m from the shoreline (Fig 2 b). Three tsunami layers are recognized in section 1 and one tsunami layer in section 2 (Fig. S2 – 12 a, b). The first layer is ~7.5-cm-thick at ~19-cm-depth and is made of poorly sorted white sandy deposits, and highly broken gastropods and lamellibranch fossils. The layer is characterized by high values of organic matter and magnetic susceptibility. The second layer is ~13-cm-thick white sandy deposits intercalated with coarse brown sand at ~32.5-cm-depth, characterized by horizontal lamination, poor sorting sediments, rich in organic matter and high peak of magnetic susceptibility. The third layer is ~25-cm-thick grey sandy clay at 89-cm-depth, with laminations at the bottom of deposits, vertically aligned gastropods, broken shells fragments, rich in total organic matter and a high peak of magnetic susceptibility. A fourth tsunami layer of medium to fine pale yellow sand, with broken shells fragments, is identified in section 2 (Fig. S2 – 12 b) at 151 cm depth. It is characterized by and poor sorting, high peak of magnetic susceptibility, a large amount of organic matter (> 5.5) and high amount of gypsum. low ail the ord and gyphin? beyond the stade of the Five samples were collected for dating in core 12. In core section 1, the first sample is a gastropod found at 44 cm depth that gives an age of 3367-3366 BC. The second sample is a shell found at 108 cm depth and shows an age of 3097-3950 BC (Table 2 b). The third sample is a gastropod found at 114 cm depth dated at 3331-4050 BC. The fourth and fifth samples in core section 2,sample are gastropod shells found at 117 cm and 135 cm depth with calibrated age 39560- 40811 BC and 3365-4071 BC, respectively (Table 2 b). The fourth sample is off sequence with respect to the other samples and may result from sediment transport and reworking due to high energy tsunami waves. The other samples are in sequence from 4071 to 2457 BC age, comparable to the sedimentary succession of core 11. lt from Results: The sedimentary deposits in the El Alamein lagoon also result from intercalated high-energy marine deposits into low energy marine and alluvial deposits with reworked sedimentation. A first observation in almost all cores is the existence of the white 459 sand layer with broken shells of marine origin located 10 cm to 75 cm depth in El Alamein site, and the identified three to four tsunami layers. The tsunami layers and their catastrophic 460 content are identified in photography and X-rays, magnetic susceptibility, organic/mineral 461 content and by the existence of mixed coarse and fine sand with broken marine shells. A main 462 difficulty, however, is the age determination of the tsunami layers due to the mixed 463 464 radiocarbon dates that can be ranged in old and young ages, between 50000 year BP - 13430 465 year BP, and 5065 year BP - 125 year BP, respectively, in all cores. 466 As the sedimentary units in the 1 m to 2.6 m depth cores result from young deposition processes with high-energy marine units intercalated into low energy marine and alluvial 467 deposits, we consider the radiocarbon dating older than 13430 year BP as due to sedimentary 468 469 units that include reworked material. Considering that the succession of 2.6 m uppermost deposits and related stratigraphic chronology are comparable in all cores in the El Alamein 470 lagoon, we select the radiocarbon dates younger than 5500 year BP as representative of the 471 472 recent sedimentary units that include tsunami layers. Using the radiocarbon dating of samples 473 and related selected young ages, the sedimentary sequence of catastrophic layers and their 474 ages obtained from the Bayesian simulation (Oxcal 4.2.4; Bronk-Ramsey, 2013) allow a 475 correlation with the AD 365, AD 1303 and AD 1870 tsunamigenic earthquakes of the east Mediterranean Sea (Fig. 6). In addition, a fourth tsunami layer can be identified between 1126 476 477 BC and 1434 BC. 478 479 480 481 482 483 #### 6. Summary of results from trenching and coring The cores and trenches in both Kefr Saber and El Alamein sites show three main layers characterized by fine and coarse sand mixed with broken shell fragments that indicate the occurrence of high energy and catastrophic sedimentary deposits in the coastal lagoon environment (Figs. 2 a, b, and c, and Fig. 3). Although the two studied sites are ~200 km penetrate /expose show three main we assume that © Author(s) 2018. CC BY 4.0 License. 484 485 486 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 Ther-grained 487 Humer? 488 apart, a white sandy layer with broken shells is found in all trenches (see Fig. 3 and supplemental material S1 a, b, c, d, e) and cores (except for core 5, see Figs. 5 a and b, and supplemental material in Fig. S2 - 1 to 12). The recurrent white sandy deposits in trenches and cores are well visible coarse sand units mixed with gravel and broken shells that become fine landward (see trench P4, Fig. 3) or disappear when distant from the shore (core 5, Fig. S2 - 5). All these signatures with only three layers in the \sim 2 m thick sedimentary units indicate that this layer suggests tsunami deposits rather than storm. In most cores (Figures. 5 a and b, and supplemental material Fig. S2 - (1 - 12), the first tsunami layer is ~7.5-cm-thick at ~19 cm-depth and is made of poorly sorted white sandy deposits with broken gastropods and lamellibranch (shell) fossils. This layer is characterized by bi-modal grain size distribution with high value of organic matter and peak of magnetic susceptibility with a rich content in carbonates and quartz. The presence of goethite and pyrite heavy minerals was found in the cores at the base of layer 1, which contains rip up clasts from underlying sediments. The second layer is ~13-cm-thick at ~32.5-cm-depth characterized by white sandy deposits intercalated with coarse brown sand horizontal lamination, very poor sorting of sediments, rich in organic matter and with a high peak of magnetic susceptibility. The pebbles also are found at the base of this layer which reflects a loading structure. A considerable amount of heavy minerals like Goethite and Pyrite can be found in this layer. The third layer is ~25-cm-thick at ~89-cm-depth is made of grey sandy clay, with a high peak of magnetic susceptibility, laminations at the bottom of deposits, vertically aligned gastropods, broken shells fragments, and rich in total organic matter. In all three layers, the poorly sorted sediments and organic content greater than 5 mark the high energy deposits and tsunami records (Folk, 1968). All these characteristics at the El Alamein site lead us to Ju complette what do you nean? Doen tolk refer to tsuramis? interpret the three sedimentary layers as tsunami deposits. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 508 In a synthesis of all dated units in trenches and cores in Figures 4 and 6, the 509 sedimentary succession of low energy marine and alluvial deposits intercalated with high-510 energy deposits provides evidence for the identification of four tsunami deposits at Kefr Saber 511 and El Alamein sites. In the case of Kefr Saber trenches, the dating of charcoal fragments allows the bracket of a tsunami event with a simulated age between AD 137 and AD 422, 512 513 which includes the AD 365 western Crete earthquake (Figs. 4 and Table 2 a). The dating of sedimentary units at the El Alamein site turned out to be more complex due to the reworked 514 sedimentation with significant mix of old (> 13000 year BP) and young ages (< 5500 year BP; 515 Table 2 b). Using the latter ages, the radiocarbon dating (including the Oxcal Bayesian 516 analysis) of shells, bone and charcoals fragments at El Alamein site (Fig. 6) result in a 517 518 sequence of ages that allow the bracket of an event W between 1434 BC and 1126 BC, and event X between AD 48 and AD 715, and event Y between AD 1168 and AD 1689, and an 519 event Z between AD 1805 and AD 1935 (Figure 6). The three most recent simulated dates of 520 tsunami events X, Y and Z correlate with the seismogenic tsunamis of AD 365, AD 1303 and 521 522 AD 1870 reported in catalogues (Table 1). 523 524 525 526 527 528 529 530 531 532 #### Discussions and Conclusions The identification of tsunami deposits within the stratigraphic layers and results of radiocarbon dating allow the chronological simulation of the three most recent tsunami events (Figs. 4 and 5). The historical seismicity catalogue of the Eastern Mediterranean reported two significant tsunamigenic seismic events of the Hellenic subduction zone that affected the Mediterranean coast of Egypt: 1) The 21 July 365 earthquake (Mw 8.3 – 8.5; Stiros and Drakos, 2006; Shaw et al., 2008), 2) the 8 August 1303 earthquake (Mw 7.8 – 8.0; Abu Al Fida, 1907; Ambraseys, 2009). A third tsunami event is also reported during the 24 June 1870 earthquake (Mw 7 - 7.5), but despite some debates on its occurrence, the inundation of the which is the outin of that debate? I presume that you refer to the location of the Epicenter? Please uplain! au W.X.Yawa | 2 courentral usun or sruply Neprusal terms used by you during Jour ruesed ? I do not ree the need of All these simulations to u have trachets of aga and correlate with the described openomena. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 # so,
the tsumanij happened! there is no possible debate about tens fact Alexandria harbour leaves no alternative on the tsunami waves on the Egyptian coastline (see section 2). Hence, the dating of the three high energy sedimentary layers deposited along the Egyptian coastline at Kefr Saber and El Alamein sites correlate with the historically recorded seismogenic tsunamis of the Hellenic subduction zone. In our study, the distinction of tsunami sedimentary records from storm deposits is based on: 1) The record of the small number (3 to 4) layers while storm deposits controlled by seasonal climatic catastrophic events should have been more frequent. 2) The existence of white sand sheet layers with broken shells at two sites (Kefer Saber and El Alamein) located ~200 km apart, bearing comparable age, structure and texture. 3) The existence of organic rich clasts in sand sheets of some cores (Shi et al., 1995; Gelfenbaum and Jaffe, 2003) which indicates a catastrophic event with sufficient energy to break and erode the coastal barrier made of the shoreline rocky headlands, organic sediments and coastal dunes before reaching the lagoons. 4) The bimodal distribution of the grain size of sandy sedimentary units that include a large proportion of broken shell comparable to that of tsunami deposits (Goff et al., 2001, 2004). 5) The correlation between the simulated? ages of tsunami layers from the radiocarbon dating and the large historical tsunamigenic earthquakes of the eastern Mediterranean (Figs. 4 and 6). 6) The consistent depth of tsunami layers in cores of the El Alamein site (Fig. 7). The lagoon sedimentary environment is a natural site of mixed and reworked marine and continuated deposits that may explain the mixed radiocarbon dates (Tables 2 a and b). The lagoon sedimentary environment is a natural site of mixed and reworked marine and continental deposits that may explain the mixed radiocarbon dates (Tables 2 a and b). Indeed, by considering the mixed sedimentation of reworked deposits intercalated with new units, our selection of samples younger than 2000 year BP at Kefr Saber, and younger than 5500 year BP at El Alamein allowed us to distinguish between old and new isotopic dating and infer a consistent chronology of tsunami deposits. For instance at the El Alamein lagoon, the clear separation between old (50000 year BP to13430 year BP) and young (5065 year BP) rechaps really storms tuese are not your cores?] is two like tim in Egypt? Why simulated? Jou have datriess. but remoned to - 7 "in situ"] with respect to what? © Author(s) 2018. CC BY 4.0 License. 558 570 571 572 573 574 575 576 577 578 579 580 581 582 aud Bernascony 559 different origin and processes of deposition. The radiocarbon dating indicate that the white sand and coarse mixed layers represent deposits that may result from tsunamis events in 365, 560 correlate with 1303 and 1870 (see Table 1). The first two events are targe earthquakes with Mw≥8 with well 561 occurrence existence 562 documented tsunami waves in the historical sources. The evidence of the 365 tsunami seems 563 to be widely recorded through widespread massive turbidities of the eastern Mediterranean recognized? region (Stanley et al., 2006; Polonia et al., 2016). The four man catastrophic layers in 564 trenches and cores have physical and chemical characteristics that correlate with high energy 565 environmental conditions of tsunami deposits. The four high magnetic susceptibility peaks of 566 Maure water writer 567 the four deposits also correlate with the high value of organic matter and carbonates. 568 The record of past tsunami deposits is favored by the low topography and platform geomorphology along the Egyptian Mediterranean coastline) The coastal environment with 569 125 year BP) radiocarbon dating, with no intermediate dates of sedimentation, confirms the geomorphology along the Egyptian Mediterranean coastline. The coastal environment with similar lagoons and dunes with large areas with relatively flat morphology allowed the deposits of catastrophic marine deposits intercalated within alluvial deposits. The lagoon shapes elongated along the shoreline at Kefr Saber and El Alamein sites explain the similarity between the sedimentary units and the tsunami deposits. The correlation between the core deposits at El Alamein and trench deposits at Kefr Saber are marked by the dating of tsunami deposits and the correspondence with the AD 365 earthquake. The succession of sudden highenergy deposits with low energy and slow sedimentation may include reworked units with a disturbance in their chronological succession. In comparison with the trench results of Kefr Saber, the sedimentary sequence from cores at El Alamein reveals mixed old and young dates likely due to the sedimentary environment with large lagoon and nearby topography with the supply of colluvial and alluvial deposits. Despite the richness of charcoal fragments, bones and shells in the sedimentary record, the reworking implies significant out of sequence dating (1) including charded it free mure? and perhaps rodent bours? obviously, most of shells (manne) are is of the assumed afe of the high energy event. and large uncertainties (see Table 2 b, among 30 samples 12 dated samples are > 30 ka). Ju Ned . 15 tens what 7 ou ruply? many duried - land derived Discussion started: 12 March 2018 607 © Author(s) 2018. CC BY 4.0 License. Although the results of dated shells may be suspicious (due to the unclosed mineralogical 583 of what? system), their reliability is tested with the comparison of nearby radiocarbon dating. 584 The size of past tsunamis can be compared with the thickness of catastrophic 585 sedimentary units in trenches of Kefr Saber and core units of the El Alamein site. It appears 586 that the tsunami deposits of the AD 365 tsunamigenic earthquake have a larger thickness at 587 Kefr Saber site than at the El Alamein site. In contrast, the thickness of sedimentary layers of 588 the AD 1303 and AD 1870 are thicker at the El Alamein site. These observations can be 589 justified by the proximity of the tsunamigenic source in western Crete of the AD 365 590 earthquake with respect to the Kefr Saber paleotsunami site, and the proximity of the AD 591 1303 and AD 1870 seismic sources in the east Hellenic Arc with regards to the El Alamein 592 paleotsunami site. Our results on the identification of past tsunamis and their repetition along 593 594 the coastlines in Egypt and North Africa are decisive for the tsunami wave propagation and hazard models in the East Mediterranean Sea (Salama, 2017). 595 596 597 Author contribution: A. Salama and M. Meghraoui wrote the text manuscript; A. Salama did the analysis of trench 598 and core deposits, and interpretation of tsunami events; M. Meghraoui, M. El Gabry, H. 599 Hussein and I. Korrat did the earthquake data analysis and interpretation; all authors 600 contributed to the field investigations. 601 602 603 Competing interests: The authors declare that they have no conflict of interest. 604 605 Supplement: Supplementary data associated with this manuscript are: 606 Figures S1 a, b,c, d and e of five trench logs of Kefr Saber site (trench P4 as Fig. 3). Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 608 Figure S2 - 1 (section 2) to 10 of core descriptions of El Alamein site (cores 1 and 9 as Figs a and b). 609 610 611 612 Acknowledgments We are grateful to Prof. Hatem Odah and NRIAG administration, and staff for their keen 613 614 efforts and help during the development of this work. We are grateful to the North African Group for Earthquake and Tsunami studies (NAGET) and Drs. Assia Harbi, Adel Samy, 615 616 Hany Hassen, Mohamed Maklad, Mohamed Sayed for support and discussions. We are grateful to the "Centre d'Etudes Alexandrine" for the lending of the COBRA instrument for 617 coring. We address our special thanks to the Egyptian Armed Forces for issuing permissions 618 619 and their support during field work. This research programme is conducted with the funding 620 support of the ASTARTE EC project (Assessment, Strategy And Risk Reduction for 621 Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839), the French-Egyptian IMHOTEP 622 project, and the Academy of Scientific Research and Technology of Egypt. 623 624 625 References 626 Abbas, M.S., El-Morsy, M.H., Shahba, M.A. and Moursy, F.I.,: Ecological studies in coastal sand dune rangelands in the North-West of Egypt, Meeting of the Sub-network on 627 628 Mediterranean Forage Resources of the FAO-CIHEAM Inter-regional Cooperative 629 Research and Development Network on Pastures and Fodder Crops, Spai: , 389-393, 630 631 Abu al-Fida Ismail Ibn Hamwi (born 1273 - died 1331). : The Concise History of Humanity or Chronicles (in Arabic 'Tarikhu 'al-Mukhtasar fi Akhbar al-Bashar' in 1329). Al-632 633 Husayniyah Press, Cairo, 2 volumes, 1112 p., 1907. 634 Ambraseys, N.N., Melville, C.P. and Adam, R.D.: The seismicity of Egypt, Arabia and Red 635 Sea: A Historical Review, Cambridge University Press, 181 p., 1994. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. - 636 Ambraseys, N.: Earthquakes in the Mediterranean and Middle East: A Multidisciplinary - 637 Study of Seismicity up to 1900, Cambridge University Press, 947 p., 2009. - 638 Atwater, B.: Evidence for great holocene earthquakes along the outer coast of Washington - 639 state, Science, 236, 942 944, 1987. - 640 Babu, N., Suresh Babu D.S. and Mohan Das P.N.: Impact of tsunami on texture and - 641 mineralogy of a major placer deposit in southwest coast of India, Environmental Geology - 52, 71-80, 2007. - 643 Ben Menahem, A.: Earthquake catalogue for the Middle East (92 B.C. to 1980 A.D.) - Bollettino di Geofisica Teorica ed Applicata, 2I, 245-310, 1979. - 645 Ben Menahem, A.: Four thousand years of seismicity along the Dead Sea rift, Journal of - 646 Geophysical Research, 96, 195-216, 1991. - 647 Bronk-Ramsey, C.: Bayesian
analysis of Radiocarbon, Radiocarbon, 51(1), 337-360, 2009. - 648 - 649 Bronk-Ramsey, C., & Lee S.: Recent and Planned Developments of the Program OxCal, - 650 Radiocarbon, 55(2-3), 720-730, 2013. - 651 Coumbary, A.: Sur le tremblement de terre du 24 juin 1870, Nouvelles Météorologiques - 652 Paris, 3, 200-201, 1870. - 653 CMT catalogue; Centroid Moment Tensor catalogue of Harvard, - http://www.seismology.harvard.edusearch.html, 2018. - 655 De Martini, P.M., Barbano, M.S., Pantosti, D., Smedile, A., Pirrotta, C., Del Carlo, P., and - 656 Pinzi, S.: Geological evidence for paleotsunamis along eastern Sicily (Italy): An - overview: Natural Hazards and Earth System Sciences, 12 (8), 2569-2580, 2012. - 658 Donato, S.V., E.G. Reinhardt, J.I.Boyce, R. Rothaus & T. Vosmer.: Identifying tsunami - deposits using bivalve shell taphonomy, Geology, 36 (3), 199-202, 2008. - 660 El-Sayed, A., Korrat, I., and Hussein, H. M.: Seismicity and seismic hazard in Alexandria - (Egypt) and its surroundings, Pure and Applied Geophysics, 161, 1003-1019, 2004. - 662 Folk, R.L.: Petrology of sedimentary rocks, in Austin, Texas, HemphilPs Book Store, 182 p., - 663 1968. - 664 Font, E., C. Nascimento, Baptista M.A. & Silva P.F.: Identification of tsunami induced - deposits using numerical modelling and rock magnetism techniques: A study case of the - 666 1755 Lisbon tsunami in Algarve, Portugal, Physics of the Earth and Planets Interiors, - 667 182, 187-198, 2010 - 668 Frihy, O.E., Deabes, E. a., and El Gindy, A. a.: Wave Climate and Nearshore Processes on the - Mediterranean Coast of Egypt: Journal of Coastal Research, 261, 103-112, 2010. Discussion started: 12 March 2018 - 670 Galanopoulos, A.G.: The seismic sea-wave of 9 Iouliou 1956, Praktika Academy Athens, 32, - 671 90-101, 1957. - 672 Goff, J., Chague-Goff, C., and Nichol, S.: Palaeotsunami deposits: A New Zealand - 673 perspective, Sedimentary Geology, 143 (1-6), 2001. - 674 Goff, J. R., McFadgen, B. G., and Chagué-Goff, C.: Sedimentary differences between the - 675 2002 Easter storm and the 15th century Okoropunga tsunami, southeastern North Island, - 676 New Zealand, Marine Geology, 204, 235-250, 2004. - 677 Goff J, Dudley WC, de Maintenon MJ, Cain G, Coney JP.: The largest local tsunami in 20th - 678 century Hawaii, Marine Geology 226, 65-79, 2006 - 679 Goff, J.R., Lane, E., Arnold, J.: The tsunami geomorphology of coastal dunes, Natural - 680 Hazards Earth System Sciences, 9 (3), 847-854, 2009. - 681 Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D.: Progress in - 682 palaeotsunami research, Sedimentary Geology, 243, 70–88, 2012. - 683 Guidoboni, E., Comastri, A. and Traina G.: Catalogue of Ancient Earthquakes in the - 684 Mediterranean area up to the 10th century, INGV-SGA, Bologna, 504 p., 1994. - 685 Guidoboni, E., and A. Comastri: Catalogue of earthquakes and tsunamis in the Mediterranean - area from the 11th to the 15th century, INGV-SGA, Bologna, 1037 p., 2005. - 687 Gelfenbaum, G., and B. Jaffe .: Erosion and sedimentation from the 17 July, 1998 Papua New - Guinea tsunami, Pure and Applied Geophysics, 160, 1969–1999, 2003. - 689 Hassouba, A.B.H.: Quaternary Sediments from the Coastal Plain of Northwestern Egypt - 690 (from Alexandria to Elomayid), Carbonates and Evaporites, 10 (1), 8-44, 1995. - 691 Hall AM, Hansom JD, Williams DM, and Jarvis J.: Distribution, geomorphology and - 692 lithofacies of cliff- top storm deposits: examples from the high-energy coasts of Scotland - 693 and Ireland. Marine Geology, 232, 131–155, 2006. - 694 Hamouda, A.Z.: Numerical computations of 1303 tsunamigenic propagation towards - 695 Alexandria, Egyptian coast, Journal African Earth Science, 44, 37-44, 2006. - 696 Hamouda, A.Z.: A reanalysis of the AD 365 tsunami impact along the Egyptian - 697 Mediterranean coast, Acta Geophysica, 58 (4), 687-704, 2009. - 698 Jusseret, S. and Sintubin, M., Minoan Earthquakes: Breaking the Myth through - 699 Interdisciplinarity, Studies in Archaeological Sciences, Leuven University Press, 440 pp., - 700 2017 - 701 Maamoun, M., Megahed, A. and Allam, A.: Seismicity of Egypt, NRIAG Bulletin, IV (B), - 702 109-160, 1984. Discussion started: 12 March 2018 © Author(s) 2018, CC BY 4.0 License. - 703 Maramai, A., Brizuela, B., Graziani, L.: The Euro- Mediterranean tsunami catalogue. Annals - 704 of Geophysics, 57 (4), 1-26, 2014. - 705 Marriner, N., Kaniewski, D., Morhange, C., Flaux, C., Giaime, M., Vacchi, M., and Goff, J.: - Tsunamis in the geological record, Making waves with a cautionary tale from the - 707 Mediterranean, Science Advances, 1-12, 2017. - 708 Malik, J.N., Banerjee, C., Khan, A., Johnson, F.C., Shishikura, M., Satake, K., and Singhvi, - 709 A.K.: Stratigraphic evidence for earthquakes and tsunamis on the west coast of South - 710 Andaman Island, India during the past 1000years, Tectonophysics, 661, 49-65, 2015. - 711 Matsumoto, D., H. Naruse, S. Fujino, A.Surphawajruksakul, T., Jarupongsakul, N., Sakakura - 712 & M. Murayama: Truncated flame structures within a deposit of the Indian Ocean - 713 Tsunami: evidence of syn-sedimentary deformation, Sedimentology, 55, .1559-1570, - 714 2008. - 715 Maouche, S., Morhange, C. and Meghraoui, M.: Large boulder accumulation on the Algerian - 716 coast evidence tsunami events in the western Mediterranean, Marine Geology, 262 (1), - 717 96-104, 2009. - 718 Morhange, C., Marriner, N., Pirazzoli, P.A.: Evidence of Late-Holocene tsunami events from - 719 Lebanon, Z. Geomorphology, 46, 81-95, 2006. - 720 Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B.F., Shigeno, K., and - 721 Yamaki, S.: Unusually large earthquakes inferred from tsunami deposits along the Kuril - 722 trench, Nature, 424 (6949), 660-663, 2003. - 723 Paris, R., F., Lavigne, P., Wassmer, and J., Sartohadi: Coastal sedimentation associated with - the December 26, 2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). - 725 Marine Geology, 238, 93-106, 2007. - 726 Papadopoulos, G.A., E. Daskalaki, A. Fokaefs and N. Giraleas.: Tsunami hazard in the - 727 Eastern Mediterranean Sea: strong earthquakes and tsunamis in the West Hellenic Arc - 728 and Trench System, Journal Earthquake and Tsunami, 4 (3), 145-179, 2010. - 729 Papadopoulos, G. A., Grácia, E., Urgeles, R., Sallares, V., De Martini, P. M., Pantosti, D., - 730 González, M., Yalciner, A. C., Mascle, J., Sakellariou, D., et al.: Historical and pre- - 731 historical tsunamis in the Mediterranean and its connected seas: Geological signatures, - 732 generation mechanisms and coastal impacts, Marine Geology, 354, 81-109, 2014. - 733 Polonia, A., Vaiani, S.C., de Lange, G.J.: Did the A.D. 365 Crete earthquake/tsunami trigger - 734 synchronous giant turbidity currents in the Mediterranean Sea?, Geology, 44, 191-194, - 735 2016. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. - 736 Poirier, J. P. and Taher, M.A.: Historical Seismicity in the near and Middle East, North - 737 Africa, and Spain from Arabic Documents (VIIth- XVIIIth Century). Bulletin Society - 738 Seismology American, 70 (6), 2185-2201, 1980. - 739 Reimer PJ, and 24 co-authors.: Selection an treatment of data for radiocarbon calibration: an - vipdate to the International Calibration (IntCal) criteria, Radiocarbon, 55 (4), 1869-1887, - 741 2013. - 742 Salama, A.: Active tectonics and Paleo-tsunami records of the Northern Coast of Egypt, Ph.D - 743 thesis dissertation, University of Strasbourg (France), 429 pp., 2017. - 744 Salamon, A., Rockwell, T., Ward, S. N., Guidoboni, E. & Comastri, A.: Tsunami hazard - 745 evaluation of the Eastern Mediterranean: Historical analysis and selected - modeling, Bulletin of the Seismological Society America, 97, 705-724, 2007. - 747 Schmidt, J.F.: Studien ueber Erdbeben. 1-136, 316-360, Leipzig, 1879. - 748 Srinivasalu S, Rajeshwara-Rao N, Thangadurai N, Jonathan M P, Roy P D, Rammohan V and - 749 Saravanan P., 2009. Characteristics of 2004 tsunami deposits of northern Tamil Nadu - 750 coast, India: Boletin de la Sociedad Geologica Mexicana, 61, 111–118, 2009. - 751 Shah-Hosseini, M., Saleem, A., Mahmoud, A. and Morhange, C.: Coastal boulder deposits - 752 attesting to large wave impacts on the Mediterranean coast of Egypt, Natural Hazards, 83 - 753 (2), 849-865, 2016. - 754 Shaw, B., Ambraseys, N. N., England, P.C., Floyd, M., Gorman, G.J., Higham, T.F.G., - 755 Jackson, J., Nocquet, J-M., Pain, C. C., and Piggott, M. D.: Eastern Mediterranean - 756 tectonics and tsunami hazard inferred from the AD 365 earthquake, Nature Geoscience, 1 - 757 (April), 268-276, 2008. - 758 Shi, S., Dawson, A.G. & Smith, D.E. Coastal sedimentation associated with the December - 759 12th, 1992 tsunami in Flores, Indonesia, Pure and Applied Geophysics, 144, 525-536, - 760 1995. - 761 Soloviev, S.L., Solovieva, O.N., Go, C.N., Kim, K.S., and Shchetnikov, N.A.: Tsunamis in - 762 the Mediterranean Sea 2000 B.C.-2000 A.D., Advances in Natural and Technological - 763 Hazards Research, Kluwer Academic Publishers, Dordrecht, Netherlands, 13, 237 p., - 764 2000. - 765 Stanley, J.D. Bernasconi, M.P.: Holocene depositional patterns and evolution in - 766 Alexandria's eastern harbor, Egypt, Journal of Coastal Research, 22 (2), 283-297, 2006. - 767 Stiros, S. C.: The AD 365 Crete Earthquake and Possible Seismic Clustering During the - 768 Fourth to Sixth Centuries AD in the Eastern Mediterranean: A Review of Historical and - 769 Archaeological Data, Journal of Structural Geology, 23, 545-562, 2001. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. 796 770 Stiros, S., and Drakos, A.: A fault model for the tsunami-associated magnitude >8.5 Eastern 771 Mediterranean, AD 365 earthquake, Zeitschriftfür Geomorphologie, 146, 125-137, 772 773 Spiske, M., Böcz, Z., and Bahlburg, H.: The role of porosity in discriminating between tsunami and hurricane emplacement of boulders-a case study from the Lesser Antilles, 774 southern Caribbean, Earth Planet.
Science Letters, 268, 384-396, 2008. 775 Switzer, A. D. and Jones, B. G.: Large scale washover sedimentation in a freshwater lagoon 776 777 from the southeast Australian coast: sea level change, tsunami or exceptionally large storm?, The Holocene, 18 (5), 787-803, 2008. 778 779 Szczucinski, W., Chaimanee, N., Niedzielski, P., Rachlewicz, G., Saisuttichai, D., Tepsuwan, 780 T., Lorene, S. and Siepak, J.: Environmental and geological impacts of the 26 781 December 2004 Tsunami in coastal zone of Thailand- Overveiw of short and long term 782 effects. In: Polish Journal of Environmental studies, 15 (5), 793-810, 2006. Taymaz, T., Westaway, R., and Reilinger, R.: Active faulting and crustal deformation in the 783 784 Eastern Mediterranean region, Tectonophysics, 391, 1-9, 2004. Tinti, S., Maramai, A. and Graziani, L.: A New Version of the European Tsunami Catalogue: 785 Updating and Revision, Natural Hazards and Earth System Sciences, 1, 255-262, 2001. 786 787 Tinti, S., Manucci, A., Pagnoni, G., Armigliato, A., and Zaniboni, F.: The 30 December 2002 788 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the 789 eyewitness accounts, Natural Hazards and Earth System Science, 5 (6), 763-775, 2005. 790 Tuttle, M.P., Ruffman, A., Anderson, T., and Jeter, H.: Distinguishing tsunami from storm deposits in eastern North America: the 1929 Grand Banks tsunami versus the 1991 791 792 Halloween storm, Seismological Research letters, 75, 117-31, 2004. 793 Yalciner, A., Zaytsev, A., Aytore, B., Insel, I., Heidarzadeh, M., Kian, R., and Imamura, F.: A 794 Possible Submarine Landslide and Associated Tsunami at the Northwest Nile Delta. 795 Mediterranean Sea: Oceanography, 27, (2), 68-75, 2014. Discussion started: 12 March 2018 797 820 Figure captions 798 799 Figure 1: Seismicity (instrumental with M> 5.5) and main tectonic framework of the east 800 Mediterranean regions. Black boxes indicate the paleoseismic sites of Kefr Saber and El 801 Alamein east of the Nile delta. The major historical earthquakes (Table 1) AD 365 (Mw 8 -802 8.5), AD 1303 (Mw ~8) and AD 1870 (Mw ~7.5) are located along the Hellenic subduction 803 zone according to Guidoboni et al. (1994), Stiros (2001); Ambraseys (2009); Papadopoulos et 804 al. (2014) and Jusseret and Sintubin (2017). Focal mechanisms are CMT-Harvard (last accessed January 2018), and the background topography is from GEBCO. 805 806 Figure 2: Location of trenches and core sites at (a) Kafr Saber, (b) El Alamein (see also 807 808 Figure 1), and (c) Dune ridge and a lagoon south of the Mediterranean Sea as a selected site where? for coring and trenching. 809 pawarama. I can't distribush the size of scale 810 Figure 3: a) Trench dimensions at Kefr Saber, and (b) description of sedimentary layers of 811 812 trench P 4 with carbon dating sampling (yellow flag); the horizontal ruler indicates 20 cm there are two of them! 813 scale. 814 815 Figure 4: Radiocarbon dating calibrated with probability density function (pdf) using Oxcal 816 version 4.2 (Bronk-Ramsey, 2013) and chronology of sedimentary layers and tsunami record 817 of trenches at Kefr Saber. The dating characteristics are in Table 2 a. The Bayesian dating 818 simulation of the white sandy unit in Fig. 3 b can be correlated with the 365 AD tsunami 819 event. Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-62 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Natural Hazards 9 and Earth System 5 Discussion started: 12 March 2018 | 821 | Figure 5: a) Core 1 description with X-ray scanning, lithology log, magnetic susceptibility, | |-----|--| | 822 | mean grain size, sediment sorting, total organic and inorganic matter and bulk mineralogy. | | 823 | The arrows show the high values of each measurement that may correlate with tsunami | | 824 | deposits. Luse are hands with pointing brugers! | | 825 | b) Core 9 photography, X-ray scanning, lithology log, magnetic susceptibility, mean grain | | 826 | size, sediment sorting, total organic and inorganic matter and bulk mineralogy. The arrows | | 827 | show the high values of each measurement that may correlate with tsunami deposits. | | 828 | (Similar illustrations of cores 2 to 12 are in supplemental materials). | | 829 | | | 830 | Figure 6: Radiocarbon dating calibrated with probability density function (pdf) using Oxcal | | 831 | version 4.2 (Bronk-Ramsey, 2013) and chronology of sedimentary layers with dated tsunami | | 832 | records at El Alamein. The dating characteristics are in Table 2 b. Black pdfs refer to the | | 833 | dated samples and red pdfs are simulated dating of the four tsunami records. Three | | 834 | sedimentary records are correlated with the historical earthquake and tsunami catalogue of the | | 835 | eastern Mediterranean (See also Table 1). | | 836 | | | 837 | Figure 7: Depth distribution of tsunami layers in cores at the El Alamein site (see also core | | 838 | locations in Fig. 2 b). The depth correlation of paleotsunami layers indicates the consistent | | 839 | succession of deposits in the lagoon. Deposits of layers 1, 2 and 3 are related with tsunami | | 840 | events 1870 AD, 1303 AD and 365 AD of the East Mediterranean Sea (see also Fig. 6 and | | 841 | Table 1). Layer 4 corresponds to tsunami event 1491 – 1951 BC and is not reported in | | 842 | tsunami catalogues. | | 843 | | | 844 | | | 845 | | | 216 | | Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. | 047 | rable capitons | |-----|--| | 848 | Table 1: Major earthquakes of the eastern Mediterranean with tsunami wave reports in | | 849 | northern Egypt. Estimated magnitudes are given in Mw when calculated and in M when | | 850 | estimated. | | 851 | | | 852 | Table 2 a: Radiocarbon dating samples and calibrated ages at Kefr Saber site using OxCal | | 853 | v4.2.4 (Bronk-Ramsey, 2013). | | 854 | | | 855 | Table 2 b: Radiocarbon dating samples and calibrated ages in El Alamein site using OxCal | | 856 | v4.2.4 (Bronk-Ramsey, 2013) | | 857 | | | 858 | | | 859 | | | 860 | | | 861 | | © Author(s) 2018. CC BY 4.0 License. Table 1: Major earthquakes of the eastern Mediterranean with tsunami wave reports in northern Egypt. Estimated magnitudes are given in Mw when calculated and in M when estimated. | Date | Epicentre | Estimated
Magnitude | Comment | Reference Stiros and Drakos, 2006; Shaw et al., 2008, Hamouda 2009 | | |--------------|---|---|---|--|--| | 21 July 365 | Western Crete | 8.3 - 8.5
(M _w) | Tsunami northern
Egypt | | | | 18 Jan. 746 | Dead Sea Fault | 7.5 (M) | Tsunami eastern
Medit. | Ambraseys, 1962 | | | 881 - 882 | Palestine | Tsunami in ? Alexandria & Palestine | | Galanopoulos A., 1957 | | | 4 Jan. 1033 | Jordan Valley
Fault | 7.4 (M) | Tsunami northern
Egypt | Ambraseys, 1962 | | | 18 Jan. 1068 | Northern
Lebanon | 6.9 (M) Waves in Lebanon
Until northern
Egypt | | Ambraseys, 1962,
Soloviev et al., 2000 | | | 8 Aug. 1303 | Aug. 1303 Karpathos & Rhodos islands 8 (M) >8-m-high wave in Alexandria | | Abu al-Fida1329,
Ambraseys 2009,
Hamouda 2006 | | | | 24 June 1870 | Hellenic Arc | M _L 7.2 | Inundation in
Alexandria harbour | Ben-Menahem, 1979,
Soloviev et al., 2000 | | Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. Table 2 a: Radiocarbon dating samples and calibrated age at Kefr Saber site using OxCal v4.2.4 (Bronk-Ramsey, 2013). | No. | Sample
name | Laboratory
Name | Type of samples | Depth (m) | Date BP | Calibrated.
date | |-----|----------------|--------------------|-----------------|-----------|---------------------|---------------------| | 1 | KSB2S2 | Poznan | Dendropoma | Boulder | 890 ± 30 BP | 940 - 1446 AD | | 2 | TSU P1
S07B | Poznan | Charcoal | 35 | 110.14±0.3
BP | Modern | | 3 | TSU P1
S09B | CIRAM | Charcoal | 53 | 40560 BP | 39000-38250
BC | | 4 | TSU P3S2 | CIRAM | charcoal | 73 | 2000 BP | 50-70 AD | | 5 | TSU P3S3 | CIRAM | Charcoal | 100 | 6240 BP | 5300 - 5070 BC | | 6 | TSU P3
S2 | Poznan | Charcoal | 72 | 1075 ± 30 BP | 890 – 1020 AD | | 7 | TSU P4
S2 | CIRAM | Charcoal | 61 | Modern | 4 | | 8 | TSU P4
S3 | CIRAM | Charcoal | 40 | Modern | 2 | | 9 | TSU P4
S4 | CIRAM | Charcoal | 15 | Modern | | | 10 | TSU P4
S5 | Poznan | Charcoal | 60 | 15490 ± 70
BP | 17200 – 15900
BC | | 11 | TSU P4
S6 | Poznan | Charcoal | 25 | 101.42 ± 0.68
BP | 1700 – 1920 AD | | 12 | TSU P5S1 | Poznan | Charcoal | 12 | 2145 ± 30 BP | 360 - 50BC | | 13 | TSU P5S2 | Poznan | Charcoal | 37 | 4560 ± 300
BP | 4000 – 2400 BC | | 14 | TSU P5S3 | Poznan | Charcoal | 17 | 2060 ± 35 BP | 180 - 30 AD | | 15 | TSU P5S4 | Poznan | Charcoal | 33 | 2590 ± 140
BP | 1050 – 350 BC | 875 876 CIRAM Lab. science for art cultural heritage ,archeology department http://www.ciram-art.com/en/archaeology.html 878 Poznan Lab. Poznan Radiocarbon Laboratory, Poland, email: c.fourteen@radiocarbon.pl Poznan Lab. Poznan Radiocarbon Laboratory, Poland, email: c.fourteen@radiocarbon.pl http://radiocarbon.pl/index.php?lang=en. Beta Analytic radiocarbon dating, Miami, Florida, USA http://www.radiocarbon.com/, e-mail: lab@radiocarbon.com 879 880 881 © Author(s) 2018. CC BY 4.0 License. 891 892 893 Table 2 b: Radiocarbon dating samples and calibrated date in El Alamein site using OxCal v4.2.4 (Bronk-Ramsey, 2013) | No. | Sample name | Laboratory
Name | Type of samples | Depth
(m) | Date BP | Calibrated date
(2σ) | | |---------------------|----------------------|--------------------|---------------------
--------------|------------|-------------------------|--| | a AL1 S1 (test pit) | | CIRAM | charcoal | 25 | 130±20 | 1680-1908 AD | | | b | AL1 S2
(test pit) | CIRAM | charcoal | 56 | 190±20 | 1661-1931 AD | | | 1 | core 1/1sa1 | Poznan | charcoal | 40 | 13430±60 | 13985-14415 BC | | | 2 | core 1/1sa2 | Poznan | Bone | 50 | 1540±60 | 403-634 AD | | | 3 | core2/1sa4 | Poznan | gastropods | 77 | 35500±500 | 34362-36931 BC | | | 4 | core2/1sa6 | Poznan | gastropods | 75 | 32000±360 | 32971-34681 BC | | | 5 | core 3/1sa1 | Poznan | shell | 45 | 33500±600 | 34218- 37224 BC | | | 6 | core 3/1sa2 | Poznan | bivalve | 37 | 45000±2000 | 43618 BC | | | 7 | core 4/1sa1 | Poznan | shell | 28 | 31840±350 | 32887-34447BC | | | 9 | core 6/2 sa1 | Poznan | charcoal | 80 | 125±30 | <1620 AD | | | 10 | core 6/1 sa6 | Poznan | gastropod | 45 | 34000±400 | 35002-37441 BC | | | 11 | core 6/1sa9 | Poznan | coral | 60 | 50000±4000 | 42776-69225 BC | | | 12 | core 7/1sa1 | Poznan | shell | 17 | 3000±30 | 293-1113 BC | | | 12 | core 9/1sa1 | Poznan | gastropod | 24 | 3320±30 | 1052-1888 BC | | | 13 | core 9/1sa5 | Poznan | bivalve | 55 | 40000±800 | 40521-43169 BC | | | 14 | core 10/1sa2 | Poznan | bone | 70 | 42000±1300 | 41256-46581 BC | | | 15 | core10/1sa3 | Poznan | shells | 20 | 4515 ±30 | 2623-3521 BC | | | 16 | core11/2sa1 | Beta
analytic | roots | 139 | 4810±30 | 2666 - 2817 BC | | | 17 | core 11/1sa1 | Beta
analytic | gastropod | 20 | 5230±30 | 3638-4328 BC | | | 18 | core11/2Sa4 | Poznan | gastropod
+shell | 116 | 4500±35 | 2619-3386 BC | | | 19 | core11/2sa6 | Poznan | gastropod | 126 | 4405±35 | 2477-3368 BC | | | 20 | core11/2 sa11 | Beta
analytic | shells | 152 | 32500±500 | 33294-36120 BC | | | 21 | core 11/2sa2 | Beta
analytic | shell | 62 | 16900±60 | 17869-18741 BC | | | 22 | core 11-2 | Beta
analytic | charcoal | 180 | 5020±30 | 3710-3943 BC | | | 23 | core 11 2_5 | Poznan | gastropod | 121 | 4360±40 | 2457-3366 BC | | | 24 | core 12/1 sa1 | Poznan | gastropod | 44 | 5065±30 | 3367-4072 BC | | | 25 | core 12/2sa1 | Beta
analytic | gastropod | 108 | 4885±35 | 3097-3950 BC | | | 26 | core 12/2sa2 | Poznan | gastropod | 114 | 5000±35 | 3331-4050 BC | | | 27 | core 12/2 sa3 | Beta
analytic | broken
shell | 117 | 37940±420 | 39560 -40811 BC | | | 28 | core 12/2sa4 | Beta
analytic | roots | 135 | 5060±30 | 3365-4071 BC | | CIRAM Lab. science for art cultural heritage ,archeology department http://www.ciramart.com/en/archaeology.html Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. | 897
898
899
900
901 | • | Poznan Lab. Poznan Radiocarbon Laboratory, Poland, email: c.fourteen@radiocarbon.pl http://radiocarbon.pl/index.php?lang=en. Beta Analytic radiocarbon dating, Miami, Florida, USA http://www.radiocarbon.com/, e-mail: lab@radiocarbon.com | |---------------------------------|---|---| | 902 | | | | 903 | | | | 904 | | | This figure is so overcomped with sprubob and colours that it is almost ru possible to read Names (localities) are very small and readers will need a lens to read. Rense, please. You should indicate which seisuir found are there ated in test. And dearly releasing them. © Author(s) 2018. CC BY 4.0 License. Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-62 Manuscript under review for journal Nat. Hazards Earth Syst. Sci. Discussion started: 12 March 2018 © Author(s) 2018. CC BY 4.0 License. #### 914 Figure 3 b 915 Discussion started: 12 March 2018 Figure 4 917 918 I'd suffect using BP afer, as the traditional AC/DC is nonewhat confining. they, the authors may return to the Ac/DC womendature in the conclusions, to fit the more danieal pretures views! Kafr Saher Radiocarbon dating of sedimentary units and tsunami deposit Sample Sample Cal.age (20) Age Cal. Tsunami historical Name type catalogue TSU P3 S2 charcoal 820-1020 AD Simulated age of tsunami event X Tsunami (21 July 365) (137-422 AD) TSU PSS3 charcoal 30-180 AD TSU P3 S1 charcoal 49-59 AD **TSU P554** charcoal 360-50 BC TSU PSS4 charcoal 1050-350 BC 1500 1000 2000 1calBC/1calAD Calibrated date (calBC/calAD) 919 920 921 922 Figure 5 a 924 925 930 Figure 6 ### El Alamein Discussion started: 12 March 2018 ~N 932 ~ S - LAND 933 Figure 7 934 935 936