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Abstract. In drought years, it is important to have an estimate or prediction of the 5 

probability that a water shortage risk will occur to enable risk mitigation. This study 6 

developed an improved logistic probability prediction model for water shortage risk in 7 

situations when there is insufficient data. First, information flow was applied to select 8 

water shortage risk factors. Then, the logistic regression model was used to describe 9 

the relation between water shortage risk and its factors, and an alternative method of 10 

parameter estimation (maximum entropy estimation) was proposed in situations 11 

where insufficient data was available. Water shortage risk probabilities in Beijing 12 

were predicted under different inflow scenarios by using the model. There were two 13 

main findings of the study. (1) The water shortage risk probability was predicted to be 14 

very high in 2020, although this was not the case in some high inflow conditions. (2) 15 

After using the transferred and reclaimed water, the water shortage risk probability 16 
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declined under all inflow conditions (59.1% on average), but the water shortage risk 17 

probability was still high in some low inflow conditions. 18 

Keywords Information flow﹒Risk factors﹒Logistic regression model﹒Maximum 

entropy estimation﹒Insufficient data 

 19 

1 Introduction 20 

Nowadays, water shortages have become a serious problem in many parts of the 21 

world due to climate change, heightened demand of water and integrated urbanization, 22 

and there is a negative impact on the security and sustainable development of water 23 

resources (Giacomelli et al., 2008; Weng et al., 2015; Christodoulou 2011; Wang et al. 24 

2012; Yang et al. 2015 Qian et al. 2014; Li et al. 2014). Risk is a measure of the 25 

probability and severity of adverse effects (Haimes, 2009). It is important to have an 26 

estimate or prediction of the probability that a water shortage risk will occur so that 27 

effective measures for risk mitigation can be developed, particularly in the case of 28 

precipitation deficits (drought). 29 

Hashimoto et al. (1982) stated that risk can be described by the probability that a 30 

system is in an unsatisfactory state. How to predict or estimate risk probability is still 31 

an open issue with no definite solution. Mackenzie (2014) believed that an analyst 32 

should first develop a probability distribution over the range of consequences that 33 

fully describe the risk of an event. The simulation of probability distribution should be 34 

based on a large number of data (Bedford and Cooke, 2001; Giannikopoulou et al., 35 

2015). Unfortunately, a full probabilistic assessment is generally not feasible, because 36 
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there is insufficient data to quantify the associated probabilities (Tidwell et al., 2005). 37 

In some cases, frequency is often used as a substitute for probability in the risk 38 

assessment of water resources (Hashimoto et al., 1982; Rajagopalan et al., 2009; 39 

Sandoval-Solis et al., 2011), while in other cases, interval-valued probabilities and 40 

fuzzy probabilities have been proposed to elaborate the concept of an imprecise 41 

probability (Karimi and Hüllermeier, 2007). However, these approaches only consider 42 

the probability of the hazard without consideration of the impact of risk factors. The 43 

risk factors include characteristics of hazards and existing conditions of vulnerability 44 

that could potentially harm exposed people, property, services and so on (UNISDR, 45 

2009). There are many aspects of vulnerability arising from various physical, social, 46 

economic, and environmental factors (Qian et al., 2016; Haimes, 2006; UNISDR, 47 

2009). Therefore, it has been concluded that modeling risk probability requires a 48 

consideration of vulnerability (Haimes, 2006). Although increasing attention has been 49 

given to vulnerability assessment (Villagrán, 2006; Plummer, 2012), there have been 50 

few studies of the relation between risk probability and water resources vulnerability.  51 

A water shortage can either occurs or not occur, and therefore water shortage risk 52 

is a binary categorical variable. According to statistical theory, a logistic regression 53 

model is a nonlinear regression method of studying a binary categorical or 54 

multi-categorical variable and its impact factors (Breslow, 1988). Therefore, a logistic 55 

regression model can be used to describe the relation between water shortage risk and 56 

its impact factors. However, the logistic regression model often requires a large 57 

number of observed values of risk (i. e., samples that water shortage risk does or does 58 

Page 3

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-56
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 16 April 2018
c© Author(s) 2018. CC BY 4.0 License.



not occur) and risk factors for parameter estimation. The maximum likelihood 59 

estimation is often used for parameter estimation; a large number of observed values 60 

of riskand risk factors are required (Balakrishnan, 1992). However, the statistical data 61 

about risk and its factors are insufficient in China. Therefore, the method of maximum 62 

likelihood estimation is not applicable when the sample size is small. For this reason, 63 

we proposed an improved logistic regression model for predicting water shortage risk 64 

probability when data is insufficient (i.e. proposing an alternative method of 65 

parameter estimation for a logistic regression model when data is insufficient). 66 

Moreover, the backward mode is often applied for the selection of sensitive risk 67 

factors, but it cannot unravel the cause-effect relation between the water shortage risk 68 

and its factors.  69 

The contributions of our paper are as follows. First, we used a logistic regression 70 

model to predict water shortage risk probability. Then, we introduced an information 71 

flow (Liang, 2014) for the selection of sensitive risk factors. Compared with the 72 

backward mode, it was very easy to determine whether there was a cause and effect 73 

between the water shortage risk and its factors. Finally, we proposed an alternative 74 

method of parameter estimation (maximum entropy estimation) for a logistic 75 

regression model in situations with a lack of data. The new method requires only a 76 

few data, while maximum likelihood estimation requires a large amount of data. 77 

The remainder of the paper is organized as follows. Section 2 presents the 78 

principles and structure of the logistic probability prediction model for water shortage 79 

risk. Section 3 presents the application of the model and the results of the research and 80 
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Section 4 presents some conclusions and proposes future work. 81 

2 Materials and methods 82 

2.1 Study area 83 

Beijing, China's capital, is located in the northwest of the North China Plain, and 84 

consists of five river systems from the east to the west (Figure 1). The average annual 85 

precipitation is 585 mm. Precipitation in summer accounts for 70% of the total for the 86 

whole year. Beijing, with a population of more than 20 million, is faced with a severe 87 

shortage of water resources. The amount of self-generated water resources is only 88 

37.39×108 m3. The amount of water resources per capita is about 200 m3, which is 89 

about one eighth of the value of water resources per capita for China and one thirtieth 90 

of the global value of water resources per capita.  91 

The available surface water and groundwater is unable to meet the needs of the 92 

city's economic and social development. Some measures, such as the use of 93 

transferred and reclaimed water have been put in place to mitigate the water shortage. 94 

In 2014, through the South-to-North Water Diversion Project, water was channeled 95 

from the Danjiangkou Reservoir in central China’s Hebei province to Beijing. 96 

Reclaimed water is also essential for Beijing and is mainly used for agricultural 97 

irrigation and toilet flushing.  98 
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 99 

Figure 1. Distribution of river system of Beijing 100 

2.2 Data collection 101 

The data used in this paper were obtained from various sources. The inflow and 102 

precipitation sequences from 1956 to 2012 were provided by Beijing Hydrological 103 

Station. The water demand for 2020 was based on the Beijing City National 104 

Comprehensive Plan for Water Resources (Beijing Municipal Development and 105 

Reform Commission and Beijing Municipal Bureau of Water Affairs, 2009). The 106 

water supply sequence for 2020 in the inflow conditions of 1956–2012 was computed 107 

by an analysis of the balance between water supply and water demand. The 108 

population size and gross domestic product (GDP) from 1979 to 2012 were taken 109 

from the Statistical Yearbook 2014 of Beijing City (Statistical Bureau of Beijing City, 110 

2014). The total amount of water resources from 1979 to 2012 were provided by 111 

Beijing Hydrological Station. The water use statistics and data regarding the treatment 112 

of domestic sewage from 1979 to 2012 were taken from the Statistical Yearbook 2014 113 
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of Beijing City (Statistical Bureau of Beijing City, 2014). 114 

2.3 Model development 115 

A flowchart showing the operation of the probability prediction model for water 116 

shortage risk is given in Figure 2. 117 

  118 

Figure 2. Flowchart showing the operation of the improved probability prediction model for 119 

water shortage risk 120 

As can be seen from Figure 2 the model consists of a determination of water 121 

shortage risk factors and the construction of a logistic probability prediction model.  122 

2.3.1 Identification of water shortage risk factors 123 

Water shortage risk factors include characteristics of hazards and existing conditions 124 

of water resources vulnerability. Water resources vulnerability is referred to as the 125 

manifestation of the inherent states (e.g., physical, social, and ecological) of the water 126 

resources system that causes the system to be liable to a water shortage (Qian et al., 127 
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2016). According to the study of Plummer et al. (2012), there are 50 different water 128 

vulnerability assessment tools, and the water vulnerability indicators of these tools are 129 

quite different. Therefore, a universal standard understanding of water resource 130 

vulnerability indicators is difficult to develop. We established the indicators from 131 

perspective of hydrological conditions, water resources, water supply and water use. 132 

The risk factors are: precipitation ( P ), water resources per capita ( pW ), water 133 

consumption per GDP ( cW ), satisfactory rate of water demand ( rS ), and utilization 134 

rate of water resources ( rU ), proportion of industrial water use ( pIW ), proportion of 135 

agricultural water use ( pAW ), proportion of domestic water use ( pDW ) and the 136 

treatment rate of domestic sewage ( rDS ). These indicators are defined as follows 137 

(Qian et al., 2014): 138 

p

W
W

N
                          （1） 139 

whereW is the total amount of water resources, and N is the population size. 140 

c

theamountof wateruse
W

GDP
                   （2） 141 

ss gs as
r

W W W
U

W W


                       （3） 142 

where ssW is the surface water supply, gsW is the groundwater supply, and W is the 143 

total amount of water resources.  144 

t
r

DS
DS

DS
                           （4） 145 

where tDS  is the amount of sewage treated and DS is the total amount of sewage 146 

discharged.  147 

as
r

td

W
S

W
                           （5） 148 
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where asW  is the water supply, and tdW is the water demand.  149 

p

IW
IW

WU
                         （6） 150 

p

AW
AW

WU
                          （7） 151 

p

DW
DW

WU
                        （8） 152 

where IW is the industrial water use, AW is the agricultural water use, DW is the 153 

domestic water use and WU is total water use.  154 

2.3.2 Selection of important risk factors 155 

The purpose of this section was to select some important factors that have a 156 

significant impact on water shortage risk. Liang (2014) reported that the cause and 157 

effect between two time series can be measured by the time rate of information 158 

flowing from one series to the other. Liang proposed a concise formula for causal 159 

analysis. The causality is measured by information flow. Therefore, we can use the 160 

information inflow to unravel the cause-effect relation between the risk factors and 161 

water shortage risk.  162 

According to Liang (2014), for series 1X and 2X , the rate of information flowing 163 

(units: nats per unit time) from the latter to the former is  164 

2
11 12 2 , 1 12 1, 1

2 1 2 2
11 22 11 12

d dC C C C C
T

C C C C





                    (9) 165 

where ijC is the sample covariance between iX and jX , , ji dC is the covariance 166 

between iX and jX& ,and jX& is the difference approximation of jdX

dt
 using the Euler 167 

forward scheme. 168 
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                          , ,
,

j n k j n
j n

X X
X

k t
&  




                       (10) 169 

According to Liang (2014), with 1k  , for a general time series 1k  would be 170 

suitable. If 2 1 0T    or the absolute value of 2 1T  is less than 0.01, 2X does not 171 

cause 1X , otherwise it is causal. A positive 2 1T  means that 2X functions to make 1X  172 

more uncertain, while a negative value means that 2X  tends to stabilize 1X . Liang 173 

(2015) proposed a method of normalizing the causality between time series and the 174 

range of value for 2 1T   is 0 and 1.    175 

2.3.3 Correlation analysis of selected risk factors 176 

In theory, a probability prediction model requires variables to be mutually 177 

independent. Therefore, it is necessary to perform a correlation analysis. Because all 178 

of the factors are continuous variables, Pearson correlation coefficients are often 179 

applied. If the absolute correlation coefficient is greater than 0.5, there is a significant 180 

correlation between two factors.  181 

2.4 Risk probability prediction model using maximum entropy 182 

estimation 183 

A logistic regression model is a nonlinear regression method of studying a binary 184 

categorical or multi-categorical variable and its impact factors. Because a water 185 

shortage either occurs or does not occur, water shortage risk belongs to a binary 186 

categorical variable. Therefore, we can use a logistic regression model to simulate the 187 

relation between water shortage risk and its factors. Suppose the risk factors 188 

are   1,2, , ; 1, 2, ,ijx i n j mL L  , where ijx denotes the value of the jth  factor in 189 
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the ith  year. The risk sequence is   1, 2, ,iy i nL , 190 

where
0,

1,i

water shortage risk does not occur
y

water shortagerisk occurs


 


, and is the observed value of the ith 191 

year.  192 

  1 1,2, ,i i ijyp p x j m   L  is the conditional probability when iy =1 under 193 

the conditions of  1, 2, , ; 1, 2, ,ijx i n j mL L  . The logistic regression model is  194 

 1 1 2 2

1

1 i i m im
i x x x

e
p        


 K

                  (11) 195 

where 1 2, , , , mL    are the estimated parameters. The parameters are often 196 

determined by a maximum likelihood estimation. The log likelihood equation of 197 

computing 1 2, , , , mL     is as follows: 198 

1
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
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   
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    
     


                
    
    











   (12) 199 

According to Eq. (12), a large number of observed values of risk 200 

(  1, 2, ,iy i nL ) and its factors are required for parameter estimation. Unfortunately, 201 

the correlated samples between risk and its controlling factors are insufficient. It is 202 

therefore far better to estimate the parameters. In this case, the maximum likelihood 203 

estimation is not applicable for parameter estimation. An alternative approach for 204 

parameter estimation is therefore required.  205 

Thus, we proposed a new parameter estimation method based on the maximum 206 
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entropy principle. The new method is named after maximum entropy estimation. The 207 

new method does not require the observed values of risk, and it requires only some 208 

observed values of the factors. Its principle is as follows. 209 

For an observation, we can define its entropy to evaluate its degree of uncertainty. 210 

According to Jones and Jones (2000), the entropy of the ith observation of water 211 

shortage risk is  212 

 

     
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




  (13) 213 

where C is a positive value and   1 1,2, ,i i ijyp p x j m   L  is the 214 

conditional probability when iy =1 under the conditions of 215 

 1, 2, , ; 1, 2, ,ijx i n j mL L  . According to the maximum entropy principle, if the 216 

values of ( )iH P  reaches a maximum, the optimal parameters are obtained (Jones 217 

and Jones, 2000). The reasons for obtaining a solution based on the maximum entropy 218 

principle are as follows. ① It conforms to the principle of entropy increase, which 219 

states that the entropy of an isolated system tends to reach a maximum. ② It accords 220 

with the principle that the solution should be in line with the sample/data and the least 221 

hypotheses must be constructed regarding the unknown parts when the data is 222 

insufficient. ③ It fits the maximum multiplicity principle. The multiplicity of a state 223 

refers to the number of possible ways in which a system can evolve to that state. The 224 
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maximum multiplicity principle states that the greater the multiplicity of a state, the 225 

larger the possibility that a system is in this state.  226 

2.4.1 Parameter estimation 227 

Based on the analysis above, an optimization model can be constructed as follows: 228 

1
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



       （14） 229 

According to the extreme theory of multivariate function (Khuri 2003), we can 230 

obtain  231 
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  （15） 232 

The optimal estimation  1 2, , , ,j j m   L  can be obtained by solving Eq. 233 

(15). Numerical approaches are often used to obtain an approximate solution of Eq. 234 

(15) rather than its exact solution. Therefore, we made use of the optimization 235 

function of Matlab to estimate the parameters, i.e., the fminsearch function. If there 236 

are n observations, there are n  1, 2, ,iH i nL . It is impossible to find the parameters 237 

that make all the  1, 2, ,iH i nL reach the maximum value. According to the 238 

maximum entropy principle, the greater the entropy is, the larger the uncertainty of an 239 
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observation is. Therefore, the maximum value of the sequences , 1, 2, ,iH i nL was 240 

taken as the objective function of the optimization model.  241 

2.4.2 Goodness-of-fit test 242 

According to Brown (1982), a goodness-of-fit test should be made for evaluating the    243 

fitting effect of the logistic regression model and its ability to identify water shortage 244 

risk. In this study, the Kolmogorov-Smirnov Test (K-S) test and Pearson 2 test are 245 

used. 246 

2.4.2.1 K-S test (t) 247 

A K-S test is often applied as a fitting test. It can be used to test the ability of the 248 

model to identify water shortage risk. The value of K-S is between 0 and 1; the 249 

greater the value is, the better the logistic model is. The idea is as follows. 250 

Let  1nF x be the cumulative probability distribution of the samples that do not 251 

encounter a water shortage.  2nF x  is the cumulative probability distribution of the 252 

samples that encounter a water shortage. A two independent samples test is then 253 

applied to compare whether the empirical distribution functions of two samples are 254 

the same. The test is as follows: 255 

       0 1 2 1 1 2: :n n n nH F x F x H F x F x            （16） 256 

The value of K-S is: 257 

   1 2max n nK S F x F x                     （17） 258 

When N  , the cumulative distribution curve and probability density curve of 259 

two samples can be obtained. The value of K-S is the maximum value of the 260 

cumulative distribution functions. When the value of K-S is greater than 0.35, the 261 
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logistic regression model is applicable. The international classification standard of the 262 

logistic model is shown in Table 1 (Brown, 1982). 263 

Table 1. The international classification standard of the logistic model 264 

K-S The effect of the model 

<0.2 Bad 

0.2~0.4 General 

0.4~0.5 Good 

0.5~0.6 Better 

0.6~0.75 Very good 

0.75~1 Perfect 

 265 

2.4.2.2 Pearson 2 test 266 

The test is as follows: 267 

 0H : the fitting is good     1H : the fitting is bad         （18） 268 

The expression of the 2 statistic is as follows. 269 

 2

2

1

l
j j

j j

O E

E





                        （19） 270 

where 1 2, , ,j l L , l is the number of covariant types, jO is the observed 271 

frequency of the jth covariant type, and jE is the predicted frequency of 272 

the jth covariant type. The degree of freedom is the difference between the number of 273 

covariant types and parameters.  274 

3 Results and discussion 275 
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In this section, a logistic probability prediction model for water shortage risk is 276 

constructed and discussed, and the risk probability in 2020 in Beijing is predicted 277 

using the proposed model.  278 

3.1 Construction of the Logistic probability prediction model  279 

A sequence of risk factors were obtained for the period from 1979 to 2012, and were 280 

computed based on Eqs. (1)~(8). The risk sequence   1, 2, ,34iy i L  from 1979 281 

to 2012 was obtained as follows. According to Qian and Zhang et al. (2016), a water 282 

supply is deemed inadequate if the supply is less than the demand, leading to a water 283 

shortage in the water supply system. 
0,

1,i

water shortage does not occur
y

water shortage occurs


 


. 284 

Therefore, there are only 34-year data.  285 

3.1.1 Determination of water resources vulnerability indicators 286 

Based on the risk factors sequences from 1979 into 2012 (Table 2) and the method of 287 

normalized information inflow (Liang, 2015), the values of normalized information 288 

flow from the factors to risk are shown in Table 3. According to the normalized 289 

information flow results (Table 3), the value of the normalized information flow 290 

from pAW  to water shortage risk is only 0.0031, and it is very little. It was concluded 291 

that the pAW does not result in a water shortage risk. Therefore, pAW  was removed as 292 

risk factors.  293 

Table 2. The values of the risk factors and risk from 1979 to 2012 294 

Year cW  

(m3 per CNY) 

pW  

(m3 per capita)
rU P (mm) rDS (%) pAW pDW  pIW  rS  Risk

1979 0.36 426.15 1.12 652.00 10.20 0.56 0.10 0.33 0.71 0

1980 0.36 287.52 1.94 387.30 9.40 0.63 0.10 0.27 0.41 1
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1981 0.35 261.10 2.00 433.50 10.80 0.66 0.09 0.25 0.40 1

1982 0.30 391.44 1.29 585.10 10.90 0.61 0.10 0.29 0.62 1

1983 0.26 365.26 1.37 465.50 10.20 0.66 0.10 0.24 0.58 1

1984 0.18 407.36 1.02 442.10 10.00 0.55 0.10 0.36 0.79 0

1985 0.12 387.36 0.83 611.20 10.00 0.32 0.14 0.54 0.96 0

1986 0.13 262.94 1.35 560.30 8.90 0.53 0.20 0.27 0.59 1

1987 0.09 369.25 0.80 662.60 7.70 0.31 0.23 0.45 1.00 0

1988 0.10 369.27 1.08 594.70 7.40 0.52 0.15 0.33 0.74 0

1989 0.10 200.47 2.07 479.50 6.60 0.55 0.14 0.31 0.39 1

1990 0.08 330.20 1.15 662.40 7.30 0.53 0.17 0.30 0.70 0

1991 0.07 386.56 0.99 662.70 6.60 0.54 0.18 0.28 0.80 0

1992 0.07 203.63 2.07 500.00 1.20 0.43 0.24 0.33 0.39 1

1993 0.05 176.89 2.30 424.30 3.10 0.45 0.21 0.34 0.35 1

1994 0.04 403.73 1.01 727.70 9.60 0.46 0.23 0.32 0.79 0

1995 0.03 242.51 1.48 608.90 19.40 0.43 0.26 0.31 0.54 1

1996 0.02 364.22 0.87 669.40 21.20 0.47 0.23 0.29 0.92 0

1997 0.02 179.44 1.81 419.00 22.00 0.45 0.28 0.28 0.44 1

1998 0.02 302.67 1.07 687.40 22.50 0.43 0.30 0.27 0.75 0

1999 0.02 113.11 2.93 384.70 25.00 0.44 0.30 0.25 0.27 1

2000 0.01 123.64 2.40 446.60 39.40 0.41 0.33 0.26 0.33 1

2001 0.01 138.62 2.03 462.00 42.00 0.45 0.32 0.24 0.39 1

2002 0.01 113.13 2.15 413.00 45.00 0.45 0.34 0.22 0.37 1

2003 0.01 126.34 1.84 453.00 50.10 0.39 0.38 0.23 0.41 1

2004 0.01 143.36 1.52 539.00 53.90 0.39 0.39 0.22 0.50 1

2005 0.00 150.85 1.27 468.00 62.40 0.38 0.42 0.20 0.54 1

2006 0.00 154.97 1.14 448.00 73.80 0.37 0.45 0.18 0.57 1

2007 0.00 145.74 1.13 499.00 76.20 0.36 0.48 0.17 0.55 1

2008 0.00 201.77 0.74 638.00 78.90 0.34 0.51 0.15 0.78 0

2009 0.00 124.22 1.08 448.00 80.29 0.34 0.52 0.15 0.49 1

2010 0.00 117.64 0.99 524.00 81.00 0.32 0.42 0.14 0.52 1

2011 0.00 132.81 0.88 552.00 81.70 0.30 0.43 0.14 0.60 1

2012 0.00 190.89 0.58 708.00 83.00 0.26 0.45 0.14 0.88 0

 295 

According to Liang (2014), a positive value of the information flow means that 296 

the factor makes water shortage risk more uncertain, while a negative value means 297 

that the indicator tends to stabilize water shortage risk. Therefore, all the factors tend 298 

to make water shortage risk more uncertain. Furthermore, the impact of P , pW , 299 
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cW are very significant.  300 

Table 3. The values of information flow from the factors to water shortage risk 301 

Factors  Information flow 

cW  0.3560 

pW  0.4823 

rU  0.3109 

P  0.1575 

rDS  0.2413 

pIW  0.1320 

pAW  0.0031 

rS  0.1247 

pDW  0.1164 

 302 

A correlation analysis was performed on the remaining factors. The values of the 303 

Pearson correlation coefficients are shown in Table 4. 304 

Table 4. Pearson correlation coefficients for the relations between various factors 305 

Pearson correlation 

coefficients 

cW  pW  rU  P  rDS  pDW  pIW  rS  

cW  1 0.603 0.047 –0.066 –0.559 0.354  –0.780 0.047 

pW  0.603 1 –0.455 0.571 –0.682 0.654 –0.753 0.696 

rU  0.047 –0.455 1 –0.723 –0.268 0.026 –0.157 –0.869 

P  0.066 0.571 –0.723 1 –0.100 0.219 –0.064 –0.820 

Page 18

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-56
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 16 April 2018
c© Author(s) 2018. CC BY 4.0 License.



rDS  –0.559 –0.682 –0.268 –0.100 1 –0.802 0.902 –0.087 

pDW  0.354 0.654 0.026 0.219 –0.802 1 –0.715 0.354 

pIW  –0.780 –0.753 –0.157 –0.064 0.920 –0.715 1 –0.013 

rS  0.047 0.696 –0.869 0.820 –0.087 0.354 –0.013 1 

Based on the results in Tables 3 and 4, pAW , rS , pIW , and pDW  were 306 

removed as risk factors. Therefore, the selected factors for logistic regression model 307 

were cW , pW , rU , P and rDS .  308 

3.1.2 Construction of the logistic risk probability predication model  309 

The data for the risk and selected factors ( cW , pW , rU , P and rDS ) from 1979 to 310 

2012 (Table 2) are used to construct the logistic risk predication probability model. 311 

Because there is only 34 samples, it is impossible to estimate the parameters by the 312 

maximum likelihood estimation. Substituting the sequences of cW , pW , rU P and rDS  313 

from 1979 to 2012 (Table 2) into Eq. (14), the values of parameters obtained by 314 

maximum entropy estimation can be obtained. The estimated values for 315 

1 2 5, , , ,L     are 61.6386, 0.004, -0.1262, -12.4077, -0.012 and -29.0963.  316 

Therefore, the logistic regression model based on the maximum entropy 317 

estimation is as follows: 318 

 61.6386 0.004 0.1262 12.4077 0.012 29.0963

1

1 c p r rW W U P DS
Predicted probability

e
     




       (20) 319 

Substituting the sequences of cW , pW , rU , P and rDS  from 1979 to 2012 into Eq. 320 

(20), the predicted probability values of water shortage risk by the maximum entropy 321 

estimation is shown in Fig. 3.  322 
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 323 

Figure 3. The predicted probability generated by the maximum entropy estimation from 1979 324 

to 2012 325 

If 0.5 is taken as threshold used to judge whether water shortage risk occurs, then 326 

the prediction accuracy by using the maximum entropy estimation can be obtained, 327 

and is shown in Tables 5. From Table 5, it can be seen that the average accuracy rate 328 

using the maximum entropy estimation was very high (91.18%). The maximum 329 

entropy estimation does not need observed values of risk (  1, 2, ,iy i nL ), whereas 330 

the maximum likelihood estimation needs a large number of observed values of risk.  331 

Table 5. The prediction accuracy using the maximum entropy estimation 332 

 

The prediction is 

that risk occurs 

The prediction is that 

no risk occurs 

Accuracy rate 

Risk actually occurs 19 3 86.36% 

Risk actually does 

not occur 

0 12 100% 

The average 

accuracy rate 

  91.18% 
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The K-S test and Pearson 2 test are performed and the results of the tests are 333 

obtained. The value of K-S is 0.955 and according to Table 1, the logistic probability 334 

prediction model was applicable. Moreover, the probability value was 0.000(i.e., less 335 

than 0.05), so the null hypothesis was rejected. Therefore, the ability of the logistic 336 

regression model to predict water shortage is very strong. 337 

Substituting the observed frequency and the predicted frequency into Eq. (19), 338 

the value of the 2 statistics was 2.333 (the number of covariant type was 8). Because 339 

the number of parameters was 6, there were 2 degrees of freedom. The  2
0 1 2. was 340 

equal to 4.605 and was much greater than 2.333. Therefore, the null hypothesis was 341 

accepted, i.e., the fitting of the model was very good. Based on the results of the K-S 342 

test and Pearson 2 test, it was concluded that the model was applicable.  343 

3.2 Risk probability prediction in 2020 in Beijing 344 

3.2.1 Risk probability prediction (without considering the use of 345 

transferred and reclaimed water) 346 

Because the inflow of 2020 is unknown, the inflow condition in 2020 was assumed to 347 

be any annual inflow conditions from 1956 to 2012. In this section we predict the risk 348 

probability of 2020 under different inflow conditions from 1956 to 2012. The 349 

sequences for risk factors ( cW , pW , rU , P and rDS ) were obtained and computed as 350 

follows. The precipitation in 2020 is assumed to be any annual precipitation from 351 

1956 to 2012. First, an analysis of the balance between water supply and demand was 352 

performed and the sequences of water supply and demand under the inflow scenarios 353 

of 1956–2012 were obtained (Qian et al., 2016). The GDP of 2020 was the sum of the 354 
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gross agricultural product, gross industrial product, and gross product of the third 355 

industry (details of the third industry are shown in Appendix A), using information 356 

taken from the literature, and was estimated to be 4711.852 billion CNY (Qian et al., 357 

2016). N (the population size of 2020) was 24.43 million (Qian et al. 2016). The 358 

total amount of water resources from 1956 to 2020 were considered to consist of 359 

fifty-seven types of water resources in 2020. Substituting the total water resources 360 

sequences and N of 2020 into Eq. (1), the sequence of pW  could be computed. 361 

Substituting the water demand sequences and GDP of 2020 into Eq. (2), the sequence 362 

of cW could be computed. Substituting the sequence of the total water resources and 363 

water supply for 2020 into Eq. (3), the sequence of rU  could be obtained. The rDS of 364 

2020 was about 90% (Beijing Municipal Development and Reform Commission and 365 

Beijing Municipal Bureau of Water Affairs, 2009).  366 

Substituting the sequences of cW , pW , rU , P and rDS into Eq. (20), the probability 367 

that a water shortage risk will occur in 2020 under the inflow scenarios of 1956–2012 368 

was predicted, and is shown in Figure 4.  369 

In Figure 4, the horizontal axis represents the inflow conditions of 1956–2012. 370 

Figure 4 shows that in 2020, the water shortage risk probability exceeded 0.95 under 371 

33 different inflow conditions (accounting for 63.5% of all the inflow conditions) and 372 

exceeded 0.5 under 38 different inflow conditions (accounting for 73.1% of all the 373 

inflow conditions). In summary, there was a high probability of a water shortage risk 374 

in 2020, although the probability was very low in some high precipitation periods. 375 
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 376 

Figure 4. Risk probability under the inflow conditions of 1956–2012 377 

3.2.2 Risk probability prediction after using transferred and reclaimed 378 

water 379 

According to Qian et al. (2016), 1.05 billion m3 of water will have been transferred 380 

to Beijing in 2020 and the amount of reclaimed water used may reach 1 billion m3. 381 

After using transferred and reclaimed water, the total amount of water resources 382 

would increase, pW and rU would change and other indicators would remain 383 

unchanged. Therefore, the sequences of pW and rU  under the inflow scenarios of 384 

1956–2012 had to be computed again. Substituting the sequences of 385 

cW , pW , rU , P and rDS into Eq. (20), the water shortage risk probability in 2020 386 

under the inflow scenarios of 1956–2012 (after using transferred and reclaimed 387 

water) was predicted, and the results are shown in Figure 5. 388 
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 389 

Figure 5. Values of risk probability under the inflow conditions of 1956-2012 after using 390 

transferred and reclaimed water 391 

 392 

 393 

Figure 6. Comparison of risk probability before and after using transferred and reclaimed 394 

water 395 

From Figures 5 and 6, it was concluded that the water shortage risk probability 396 

would decline under all inflow conditions (59.1% on average). However, the water 397 
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shortage risk probability would still be high in some low inflow conditions. The risk 398 

probability exceeded 0.5 under 24 different inflow conditions (accounting for 46.2% 399 

of all inflow conditions). For example, the water shortage risk probability reached 1 400 

under the inflow conditions of 1999–2008.  401 

According to Qian et al. (2016), since 1999, Beijing has experienced drought in 402 

ten consecutive years. This has had a strong effect on the water resources of Beijing, 403 

including a significant reduction in surface water and severe over-exploitation of 404 

groundwater. This means that a water shortage may occur in 2020 under the inflow 405 

conditions of 1999–2008 although some measures have been taken. Moreover, water 406 

resources vulnerability was still high in 2020 after using transferred and reclaimed 407 

water (Qian et al., 2016). Therefore, we concluded that the water shortage risk 408 

probability would still be high in 2020 after using transferred and reclaimed water, 409 

especially in the case of precipitation deficits. 410 

4 Conclusions 411 

This study developed an improved logistic probability prediction model for water 412 

shortage risk in situations when there is insufficient data. The model consists of the 413 

following steps:  414 

(1) Information flow was used to select some important factors that were likely 415 

to have a significant impact on water shortage risk. This could determine the 416 

cause-effect relation between the water shortage risk and its factors. 417 

(2) The logistic regression model was applied to describe the nonlinear relation 418 

between water shortage risk and its factors. A new parameter estimation method based 419 
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on the entropy principle, i.e. maximum entropy estimation, was proposed for 420 

parameter estimation when insufficient data is available. 421 

The results of the study were as follows. In 2020, the probability that a water 422 

shortage risk will occur exceeded 0.95 under 33 different inflow conditions 423 

(accounting for 63.5% of all inflow conditions) and exceeded 0.5 under 38 different 424 

inflow conditions (accounting for 73.1% of all inflow conditions). After using the 425 

transferred and reclaimed water, the water shortage risk probability declined under all 426 

inflow conditions (by 59.1% on average), but the water shortage risk probability was 427 

still high for some low inflow conditions. Risk probability exceeded 0.5 under 24 428 

different inflow conditions (accounting for 46.2% of all inflow conditions).     429 

However, some problems still exist with regard to the maximum entropy 430 

estimation. Initial values of the parameters should be given for the optimization 431 

function, but the optimization function belongs to local optimization, which was very 432 

sensitive to the initial values. Therefore, we may obtain an unsatisfactory result if the 433 

initial values are not correct. How best to search for a global optimum is an important 434 

and difficult issue, and will be the focus of our further study. 435 

 436 

Appendix A. Glossary used in this paper 437 

1. Logistic regression model. It is nonlinear regression method of studying binary 438 

categorical or multi-categorical variable and its impact factors. 439 

2. Maximum likelihood estimation. It is a method of parameter estimation in 440 

statistics.  441 
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3. Maximum entropy estimation. We propose a new parameter estimation method 442 

for a logistic regression model when insufficient data is available. We called this new 443 

method maximum entropy estimation.  444 

4. Backward. It is a method of selecting the variables for a logistic regression model. 445 

The methods of selecting the variables for a logistic regression model include enter, 446 

forward and backward. 447 

5. Information flow. Information flow, proposed and named by Liang (2014), is a 448 

method for unraveling the cause-effect relation between time series. 449 

6. The extreme theory of multivariate function. This is a theory used for 450 

calculating extreme values in advanced mathematics. 451 

7. Two independent samples test. This is one type of Kolmogorov-Smirnov (K-S) 452 

test. The K-S test includes a one-sample K-S test, two independent sample test, and a 453 

test for several independent samples. 454 

8. The third industry. In China, the third industry is also known as the service 455 

industry, and includes the traffic and transportation industry, communication industry, 456 

and commercial industry. 457 

Appendix B.  Abbreviations used in this paper 458 

1. PLA   People’s Liberation Army of China. 459 

2. GDP   Gross domestic product 460 

3. P .    Precipitation. 461 

4. pW .   Water resources per capita 462 

5. cW    Water consumption per 10 thousand CNY GDP 463 
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6. rS     Satisfactory rate of water demand 464 

7. rU     Utilization rate of water resources 465 

8. pIW    Proportion of industrial water use 466 

9. pAW    Proportion of agriculture water use 467 

10. pDW    Proportion of domestic water use 468 

11. rDS    Treatment rate of domestic sewage 469 

12. CNY.   The Chinese Yuan 470 

13. K-S test.  Kolmogorov-Smirnov Test 471 
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