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An improved logistic probability prediction model for water shortage

risk in situations with insufficient data
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Abstract. In drought years, it is important to have an estimate or prediction of the
probability that a water shortage risk will occur to enable risk mitigation. This study
developed an improved logistic probability prediction model for water shortage risk in
situations when there is insufficient data. First, information flow was applied to select
water shortage risk factors. Then, the logistic regression model was used to describe
the relation between water shortage risk and its factors, and an alternative method of
parameter estimation (maximum entropy estimation) was proposed in situations
where insufficient data was available. Water shortage risk probabilities in Beijing
were predicted under different inflow scenarios by using the model. There were two
main findings of the study. (1) The water shortage risk probability was predicted to be
very high in 2020, although this was not the case in some high inflow conditions. (2)

After using the transferred and reclaimed water, the water shortage risk probability
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declined under all inflow conditions (59.1% on average), but the water shortage risk
probability was still high in some low inflow conditions.
Keywords Information flow . Risk factors . Logistic regression model . Maximum

entropy estimation - Insufficient data

1 Introduction @

Nowadays, water shortages have become a serious problem in many parts of the
world due to climate change, heightened demand of water and integrated urbanization,
and there is a negative impact on the security and sustainable development of water
resources (Giacomelli et al., 2008; Weng et al., 2015; Christodoulou 2011; Wang et al.
2012; Yang et al. 2015 Qian et al. 2014; Li et al. 2014). Risk is a measure of the
probability and severity of adverse effects (Haimes, 2009). It is important to have an
estimate or prediction of the probability that a water shortage risk will occur so that
effective measures for risk mitigation can be developed, particularly in the case of
precipitation deficits (drought).

Hashimoto et al. (1982) stated that risk can be described by the probability that a
system is in an unsatisfactory state. How to predict or estimate risk probability is still
an open issue with no definite solution. Mackenzie (2014) believed that an analyst
should first develop a probability distribution over the range of consequences that
fully describe the risk of an event. The simulation of probability distribution should be
based on a large number of data (Bedford and Cooke, 2001; Giannikopoulou et al.,

2015). Unfortunately, a full probabilistic assessment is generally not feasible, because
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there is insufficient data to quantify the associated probabilities (Tidwell et al., 2005).
In some cases, frequency is often used as a substitute for probability in the risk
assessment of water resources (Hashimoto et al., 1982; Rajagopalan et al., 2009;
Sandoval-Solis et al., 2011), while in other cases, interval-valued probabilities and
fuzzy probabilities have been proposed to elaborate the concept of an imprecise
probability (Karimi and Hiillermeier, 2007). However, these approaches only consider
the probability of the hazard without consideration of the impact of risk factors. The
risk factors include characteristics of hazards and existing conditions of vulnerability
that could potentially harm exposed people, property, services and so on (UNISDR,
2009). There are many aspects of vulnerability arising from various physical, social,
economic, and environmental factors (Qian et al., 2016; Haimes, 2006, UNISDR,
2009). Therefore, it has been concluded that modeling risk probability requires a
consideration of vulnerability (Haimes, 2006). Although increasing attention has been
given to vulnerability assessment (Villagran, 2006; Plummer, 2012), there have been
few studies of the relation between risk probability and water resources vulnerability.
A water shortage can either occurs or not occur, and therefore water shortage risk
is a binary categorical Variable@cording to statistical theory, a logistic regression
model is a nonlinear regression method of studying a binary categorical or
multi-categorical variable and its impact factors (Breslow, 1988). Therefore, a logistic
regression model can be used to describe the relation between water shortage risk and
its impact factors. The parameters of a logistic regression model are often estimated

by a maximum likelihood estimation; a large number of observed values of risk (i. e.,


reviewer
Evidenziato

reviewer
Nota

reviewer
Evidenziato

reviewer
Nota
This sentence should be better clarified. You give a definition of water shortage in paragraph 2.4.   it would be more appropriate to  provide such  definition here.  

reviewer
Evidenziato


63

64

66

67

68

71

72

73

74

75

76

77

78

79

80

likelihood etimaton is ot applicable when the sampl size i smal, K52 rsson,
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The contributions of our paper are as follows. First, we used a logistic regression

model to explore the nonlinear relation between water shortage risk and its factors.

‘Then, we introduced an information flow (Liang, 2014) for the selection of significant
risk factors. Compared with the backward mode, it was very easy to determine
whether there was a cause and effect between the water shortage risk and its factors. [C
Finally, we proposed an alternative method of parameter estimation (maximum
entropy estimation) for a logistic regression model in situations with a lack of data.
The new method requires only a few data, while maximum likelihood estimation
requires a large amount of data.

The remainder of the paper is organized as follows. Section 2 presents the
principles and structure of the logistic probability prediction model for water shortage
risk. Section 3 presents the application of the model and the results of the research and
Section 4 presents some conclusions and proposes future work.

2 Materials and methods

2.1 Study area
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Beijing, China's capital, is located in the northwest of the North China Plain, and
consists of five water systems from the east to the west (Figure 1). The average annual
precipitation is 585 mm. Precipitation in summer accounts for 70% of the total for the
whole year. Beijing, with a population of more than 20 million, is faced with a severe
shortage of water resources. The amount of self-generated water resources is only
37.39x10% m*. The amount of water resources per capita is about 200 m®, which is
about one eighth of the value of water resources per capita for China and one thirtieth
of the global value of water resources per capita.

The available surface water and groundwater is unable to meet the needs of the
city's economic and social development. Some measures, such as the use of
transferred and reclaimed water have been put in place to mitigate the water shortage.
In 2014, through the South-to-North Water Diversion Project, water was channeled
from the Danjiangkou Reservoir in central China’s Hebei province to Beijing.
Reclaimed water is also essential for Beijing and is mainly used for agricultural

irrigation and toilet flushing.
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Figure 1. Distribution of water system of Beijing
2.2 Data collection
The data used in this paper were obtained from various sources. The inflow and
precipitation sequences from 1956 to 2012 were provided by Beijing Hydrological
Station. The water demand for 2020 was based on the Beijing City National
Comprehensive Plan for Water Resources (Beijing Municipal Development and
Reform Commission and Beijing Municipal Bureau of Water Affairs, 2009). The
water supply sequence for 2020 in the inflow conditions of 1956-2012 was computed
by an analysis of the balance between water supply and water demand. The
population size and gross domestic product (GDP) from 1979 to 2012 were taken
from the Statistical Yearbook 2014 of Beijing City (Statistical Bureau of Beijing City,
2014). The total amount of water resources from 1979 to 2012 were provided by
Beijing Hydrological Station. The water use statistics and data regarding the treatment
of domestic sewage from 1979 to 2012 were taken from the Statistical Yearbook 2014
of Beijing City (Statistical Bureau of Beijing City, 2014).
2.3 Model development
A flowchart showing the operation of the probability prediction model for water

shortage risk is given in Figure 2.
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Identitication of Water shortage risk factors

Information flow i Correlation analvss

Selection of important risk factors

'

Building logistic regression model

' '

Estimating the parameters using
maximum entropy estimation

'

Construction of probability prediction
model for water shortage risk

Fitting test

Figure 2. Flowchart showing the operation of the improved probability prediction model for
water shortage risk

As can be seen from Figure 2 the model consists of a determination of water
shortage risk factors and the construction of a logistic probability prediction model. @
2.3.1 Identification of water shortage risk factors @
Water shortage risk factors include characteristics of hazards and existing conditions
of water resources vulnerability. Water resources vulnerability is referred to as the
manifestation of the inherent states (e.g., physical, social, and ecological) of the water
resources system that causes the system to be liable to a water shortage (Qian et al.,
2016). According to the study of Plummer et al. (2012), there are 50 different water
vulnerability assessment tools, and the water vulnerability indicators of these tools are
quite different. Therefore, a universal standard understanding of water resource

vulnerability indicators is difficult to develop. We established the indicators from
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perspective of hydrological conditions, water resources, water supply and water use.

The risk factors are: precipitation (P), water resources per capita (W), water
consumption per GDP (W, ), satisfactory rate of water demand (S, ), and utilization
rate of water resources (U, ), proportion of industrial water use (IW,), proportion of
agricultural water use (AW,), proportion of domestic water use (DW,) and the
treatment rate of domestic sewage (DS, ). These indicators are defined as follows
(Qian et al., 2014):

p

W _w (D
N

whereW is the total amount of water resources, and N is the population size.

W= theamount of water use
’ GDP

W,S + W, W
Uu = S 9s _ las (3 )
—m W 2

whereW is the surface water supply, W is the groundwater supply, land Wis the

(2)

total amount of water resources.

DS, = [[))z‘ (4

where DS, is the amount of sewage treated and DS is the total amount of sewage

discharged.

S _Vh (5)
w

where W, is the water supply, and W, is the water demand.

W, = (6)
Wu

aw, =W (7
WU

DwW _bw (8)

P WU
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where IW is the industrial water use, AW is the agricultural water use, DW is the

domestic water use and WU is total water use.

2.3.2 Selection of important risk factors
The purpose of this section was to select some important factors that have an
significant impact on water shortage risk. Liang (2014) reported that the cause and
effect between two time series can be measured by the time rate of information
flowing from one series to the other. Liang proposed a concise formula for causal
analysis. The causality is measured by information flow. Therefore, we can use the
information inflow to unravel the cause-effect relation between the risk factors and
water shortage risk.

According to Liang (2014), for series X, and X, , the rate of information flowing
(units: nats per unit time) from the latter to the former is

T _ C]]CIZCZ,d] - C122C1,d1 (9)
> ¢,}C,,-C,C,,>
11 ~22 11¥12

where C; is the sample covariance between X; and X, , C;, is the covariance
|

between X, and Xj ,andeis the difference approximation Ofd_tj using the Euler

forward scheme.

5 o R =X (10)
In kAt

According to Liang (2014), with k >1, for a general time series k =1would be

suitable. If T

21

=0 or the absolute value of T,

is less than 0.01, X, does not

cause X, , otherwise it is causal. A positiveT.

21

- means that X, functions to make X,
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more uncertain, while a negative value means that X, tends to stabilize X, . (Liang
(2015) proposed a method of normalizing the causality between time series and the
range of value for T, ,, isOand 1. @

2.3.3 Correlation analysis of selected risk factors

In theory, a probability prediction model requires variables to be mutually
independent. Therefore, it is necessary to perform a correlation analysis. Because all
of the factors are continuous variables, Pearson correlation coefficients are often
applied. If the absolute correlation coefficient is greater than 0.5, there is a significant

correlation between two factors. @

2.4 Risk probability prediction model using maximum entropy
estimation

A logistic regression model is a nonlinear regression method of studying a binary
categorical or multi-categorical variable and its impact factors. Because a water
shortage either occurs or does not occur, water shortage risk belongs to a binary
categorical variable. Therefore, we can use a logistic regression model to simulate the
relation between water shortage risk and its factors. Suppose the risk factors
are{xij (i=12,--,n;j=1, 2,---,m)} , where x; denotes the value of the jth factor in
the ith year. The  risk  sequence  is {yi (i= 1,2,---,n)} ,

0, water shortage risk does not occur . .
where y, = ] , and is the observed value of the ith
1, water shortagerisk occurs @

year.

p, = p(yi = l‘xij (i=1, 2,---,m)) is the conditional probability wheny,=1 under
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191 the conditions of X; (i =1,2,---,n;j=1,2,---, m) . The logistic regression model is

1
192 P = (e BXin+ BoXia e+ FnXim ) . @

1+e

193 where «,f,,[,, -, B,are the estimated parameters. The parameters are often

194  determined by a maximum likelihood estimation. —

590 R e O S AHE A AAREE) I i cose, he maximun lkelhood <)

201  estimation is not applicable for parameter estimation. An alternative approach for

202  parameter estimation is therefore required.

203 Thus, we proposed a new parameter estimation method based on the maximum
204  entropy principle. The new method is named after maximum entropy estimation. The
205 new method does not require the observed values of risk, and it requires only some
206  observed values of the factors. Its principle is as follows.

207 For an observation, we can define its entropy to evaluate its degree of uncertainty.
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According to Jones and Jones (2000), the entropy of the ith observation of water
shortage risk is

H(pi)=—C[P.1nP.+(1—Pi)1n(1—P-)]

=—C{Piln(1_PiPi]+ln(l—Pi)} (13)

[a+iﬂjxuj

1+exp[-[a+gﬂjxﬁﬂ —m(1+eXp[a+gﬂinjn

v

where C is a positive value and p, = p(yi =1|Xij (i =1,2,~--,m)) is the
conditional ~ probability = when 'y, =1  under the conditions of
X; (i =1,2,---,n; j =1, 2,---,m). According to the maximum entropy principle, if the

values of H(P) reaches a maximum, the optimal parameters are obtained (Jones

and Jones, 2000). The reasons for obtaining a solution based on the maximum entropy

larger the possibility that a system is in this state.  [C)

2.4.1 Parameter estimation

Based on the analysis above, an optimization model can be constructed as follows:
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(14

~

[a+iﬂjxijj .
max H =-C = - —]n{l+exp(a+2ﬂjxij ]J
1+exp{—[a+2ﬂjxij] =l

According to the extreme theory of multivariate function (Khuri 2003), we can

obtain

o e eSS of-5m) |

(15

bl o] e
] e

The optimal estimation @, f3; (j =1,2,---,m) can be obtained by solving Eq.

“ {1+@<pHa+sz, }} @@(%Zﬂ’%]

(15). Numerical approaches are often used to obtain an approximate solution of Eq.

(15) rather than its exact solution.

-Goodness-of-fit test

According to Brown (1982), a goodness-of-fit test should be made for evaluating the
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fitting effect of the logistic regression model and its ability to identify water shortage
risk. In this study, the Kolmogorov-Smirnov Test (K-S) test and Pearson y° test are
used.
2.4.2.1 K-S test (t)
A K-S test is often applied as a fitting test. It can be used to test the ability of the
model to identify water shortage risk. The value of K-S is between 0 and 1; the
greater the value is, the better the logistic model is. The idea is as follows.

LetF, (X) be the cumulative probability distribution of the samples that do not
encounter a water shortage. F, (X) is the cumulative probability distribution of the
samples that encounter a water shortage. A t@independent samples test is then
applied to compare whether the empirical distribution functions of two samples are
the same. The test is as follows:

Hy:F,(x)=F,(x) H:F, (x)=F,(x) (16)

The value of K-S is:

K-S =max

Fnl(x)—Fz(x)‘ a7

When N — oo, the cumulative distribution curve and probability density curve of
two samples can be obtained. The value of K-S is the maximum value of the
cumulative distribution functions. When the value of K-S is greater than 0.35, the
logistic regression model is applicable. The international classification standard of the
logistic model is shown in Table 1 (Brown, 1982).

Table 1. The international classification standard of the logistic model

K-S The effect of the model
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<0.2 Bad

0.2~0.4 General
0.4~0.5 Good
0.5~0.6 Better
0.6~0.75 Very good
0.75~1 Perfect

2.4.2.2 Pearson y*test
The test is as follows:
H,: the fitting is good H, : the fitting is bad (18)

The expression of the y” statistic is as follows.

2 ' (Oj_Ej)2
X =Z— (19)
j=1 =

]

where j=1,2,---,1 , Iis@; number of covariant types, (O, s the observed
frequency of the jth covariant type, and E; is the predicted frequency of
the Jth covariant type. The degree of freedom is the difference between the number of
covariant types and parameters.
3 Results and discussion
In this section, a logistic probability prediction model for water shortage risk is
constructed and discussed, and the risk probability in 2020 in Beijing is predicted
using the proposed model.

3.1 Construction of the Logistic probability prediction model
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A sequence of risk factors were obtained for the period from 1979 to 2012, and were
computed based on Egs. (1)~(8). The risk sequence {yi (i=1, 2,---,34)} from 1979
to 2012 was obtained as follows. According to Qian and Zhang et al. (2016), a water

supply is deemed inadequate if the supply is less than the demand, leading to a water

0, water shortage does not occur
1, water shortage occurs '

shortage in the water supply system. Y, ={
Therefore, there are only 34-year data.

3.1.1 Determination of water resources vulnerability indicators

Based on the risk factors sequences from 1979 into 2012 (Table 2) and the method of
normalized information inflow (Liang, 2015), the values of normalized information

flow from the factors to risk are shown in Table 3. According to the normalized

information flow results (Table 3), the value of the normalized information flow

from AW, to water shortage risk is only 0.0031, and it is very little.{It was concluded
that the AW, does not result in a water shortage risk. Therefore, AW, was removed as

risk factors.

Table 2. The values of the risk factors and risk from 1979 to 2012

Year W. W, U, P@mm) DS, (%) AW, DW, 6 IW S  Risk
(m? per CNY)  (m’ per capita)
1979 0.36 426.15 1.12 652.00 1020 0.56 0.10 0.33 0.71 O
1980 0.36 287.52 1.94 387.30 940 0.63 0.10 0.27 0.41 1
1981 0.35 261.10 2.00 433.50 10.80 0.66 0.09 0.25 040 1
1982 0.30 391.44 1.29 585.10 1090 0.61 0.10 0.29 0.62 1
1983 0.26 365.26 1.37 465,50 1020 0.66 0.10 0.24 0.58 1
1984 0.18 407.36 1.02 442,10 10.00 0.55 0.10 036 0.79 0
1985 0.12 387.36 0.83 611.20 10.00 0.32 0.14 0.54 096 O
1986 0.13 262.94 1.35 560.30 8.90 0.53 020 0.27 0.59 1
1987 0.09 369.25 0.80 662.60 7.70 0.31 023 045 1.00 O
1988 0.10 369.27 1.08 594.70  7.40 052 0.15 033 074 O
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1989 0.10 200.47 2.07 47950 6.60 0.55 0.14 0.31 039 1
1990 0.08 330.20 1.15 662.40 730 053 0.17 030 0.70 O
1991 0.07 386.56 099 662.70 6.60 054 0.18 0.28 0.80 0
1992 0.07 203.63 2.07 500.00 120 043 024 033 039 1
1993 0.05 176.89 230 42430 3.10 045 021 034 035 1
1994 0.04 403.73 1.01 727770 9.60 046 023 032 0.79 0
1995 0.03 242.51 1.48 60890 1940 043 0.26 031 054 1
1996 0.02 364.22 0.87 669.40 2120 047 023 029 092 0
1997 0.02 179.44 1.81 419.00 22.00 045 028 0.28 044 1
1998 0.02 302.67 1.07 687.40 2250 043 030 027 0.75 O
1999 0.02 113.11 2.93 38470 25.00 044 030 0.25 027 1
2000 0.01 123.64 240 446.60 3940 041 033 0.26 033 1
2001 0.01 138.62 2.03 462.00 42.00 045 032 024 039 1
2002 0.01 113.13 2.15 413.00 45.00 045 034 022 037 1
2003 0.01 126.34 1.84 453.00 50.10 039 038 023 041 1
2004 0.01 143.36 1.52 539.00 5390 039 039 022 050 1
2005 0.00 150.85 1.27 468.00 6240 038 042 0.20 054 1
2006 0.00 154.97 1.14 448.00 73.80 037 045 0.18 0.57 1
2007 0.00 145.74 1.13 499.00 76.20 036 048 0.17 0.55 1
2008 0.00 201.77 0.74 638.00 7890 034 051 0.15078 0
2009 0.00 124.22 1.08 448.00 80.29 034 0.52 0.15 049 1
2010 0.00 117.64 0.99 524.00 81.00 032 042 0.14 052 1
2011 0.00 132.81 0.88 552.00 81.70 030 043 0.14 0.60 1
2012 0.00 190.89 0.58 708.00 83.00 026 045 0.14 088 0

According to Liang (2014), a positive value of the information flow means that
the factor makes water shortage risk more uncertain, while a negative value means

that the indicator tends to stabilize water shortage risk. Therefore, all the factors tend

to make water shortage risk more uncertain. (Furthermore, the impact of P, W,
W_ are very significant.

Table 3. The values of information flow from the factors to water shortage risk

Factors Information flow

W, 0.3560

=
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W, 0.4823

U, 0.3109
P 0.1575
DS, 0.2413
|Wp 0.1320
AWp 0.0031
S, 0.1247
DWp 0.1164
299
300 A correlation analysis was performed on the remaining factors. The values of the

301 Pearson correlation coefficients are shown in Table 4.

302 Table 4. Pearson correlation coefficients for the relations between various factors

Pearson correlation

W, W, U p DS, DW, Iw, s
coefficients
WC 1 0.603 0.047 -0.066 -0.559 0.354 -0.780 0.047
Wp 0.603 1 -0.455 0.571 -0.682 0.654 -0.753 0.696
U r 0.047 —0.455 1 -0.723 -0.268 0.026 -0.157 -0.869
P 0.066 0.571 -0.723 1 -0.100 0.219 -0.064 -0.820
DSr -0.559 -0.682 -0.268 -0.100 1 -0.802 0.902 -0.087
D\Np 0.354 0.654 0.026 0.219 -0.802 1 -0.715 0.354
IWp -0.780 -0.753 -0.157 -0.064 0.920 -0.715 1 -0.013

S 0.047 0.696 —0.869 0.820 —0.087 0.354 -0.013 1
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Based on the results in Tables 3 and 4, AW, , S , IW,, and DW, were

removed as risk factors. Therefore, the selected factors for logistic regression model

wereW, , W, ,U ,PandDS, . @

3.1.2 Construction of the logistic risk probability predication model

The data for the risk and selected factors (W, ,Wp ,U,,PandDS,) from 1979 to
2012 (Table 2) are used to construct the logistic risk predication probability model.
Because there is only 34 samples, it is impossible to estimate the parameters by the
maximum likelihood estimation. Substituting the sequences ofW,,W ,U, Pand DS,
from 1979 to 2012 (Table 2) into Eq. (14), the values of parameters obtained by
maximum entropy estimation can be obtained. The estimated values for
a, B, By, Bs are 61.6386, 0.004, -0.1262, -12.4077, -0.012 and -29.0963.

Therefore, the logistic regression model based on the maximum entropy

estimation is as follows:

1

Predicted probability =
p y -(61.6386+0.004Wc—0.1262Wp—]2.4077Ur—0.012P—29.0963D8r)

(20)
1+e

Substituting the sequences of W, ,Wp ,U,,Pand DS, from 1979 to 2012 into Eq.

(20), the predicted probability values of water shortage risk by the maximum entropy

estimation is shown in Fig. 3.
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321 Figure 3. The predicted probability generated by the maximum entropy estimation from 1979 @
322 to 2012
323 If 0.5 is taken as threshold used to judge whether water shortage risk occurs, then

324  the prediction accuracy by using the maximum entropy estimation can be obtained,
325  and is shown in Tables 5. From Table 5, it can be seen that the average accuracy rate
326  using the maximum entropy estimation was very high (91.18%). (The maximum
327  entropy estimation does not need observed values of risk (y, (i =12,--, n)), whereas
328  the maximum likelihood estimation needs a large number of observed values of risk. @

329 Table 5. The prediction accuracy using the maximum entropy estimation

The predictionis ~ The prediction is that

Accuracy rate

that risk occurs no risk occurs
Risk actually occurs 19 3 86.36%
Risk actually does
0 12 100%
not occur

The average
91.18%

accuracy rate
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The K-S test and Pearson y”test are performed and the results of the tests are
obtained. The value of K-S is 0.955 and according to Table 1, the logistic probability
prediction model was applicable. Moreover, the probability value was 0.000(i.e., less
than 0.05), so the null hypothesis was rejected. Therefore, the ability of the logistic
regression model to predict water shortage is very strong.

Substituting the observed frequency and the predicted frequency into Eq. (19),
the value of the y” statistics was 2.333 (the number of covariant type was 8). Because
the number of parameters was 6, there were 2 degrees of freedom. The ¥, (2)was
equal to 4.605 and was much greater than 2.333. Therefore, the null hypothesis was
accepted, i.e., the fitting of the model was very good. Based on the results of the K-S
test and Pearson y” test, it was concluded that the model was applicable.

3.2 Risk probability prediction in 2020 in Beijing

3.2.1 Risk probability prediction (without considering the use of

transferred and reclaimed water)

Because the inflow of 2020 is unknown, the inflow condition in 2020 was assumed to
be any annual inflow conditions from 1956 to 2012. In this section we predict the risk
probability of 2020 under different inflow conditions from 1956 to 2012. The
sequences for risk factors (W,,W,,U ,PandDS,) were obtained and computed as
follows. The precipitation in 2020 is assumed to be any annual precipitation from
1956 to 2012. First, an analysis of the balance between water supply and demand was
performed and the sequences of water supply and demand under the inflow scenarios

of 19562012 were obtained (Qian et al., 2016). The GDP of 2020 was the sum of the
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gross agricultural product, gross industrial product, and gross product of the third
industry (details of the third industry are shown in Appendix A), using information
taken from the literature, and was estimated to be 4711.852 billion CNY (Qian et al.,
2016). N (the population size of 2020) was 24.43 million (Qian et al. 2016). The
total amount of water resources from 1956 to 2020 were considered to consist of
fifty-seven types of water resources in 2020. Substituting the total water resources
sequences and N of 2020 into Eq. (1), the sequence of W, could be computed.
Substituting the water demand sequences and GDP of 2020 into Eq. (2), the sequence
of W, could be computed. Substituting the sequence of the total water resources and
water supply for 2020 into Eq. (3), the sequence of U, could be obtained. The DS, of
2020 was about 90% (Beijing Municipal Development and Reform Commission and
Beijing Municipal Bureau of Water Affairs, 2009).

Substituting the sequences of W, ,W,U, , P and DS, into Eq. (20), the probability
that a water shortage risk will occur in 2020 under the inflow scenarios of 19562012
was predicted, and is shown in Figure 4.

In Figure 4, the horizontal axis represents the inflow conditions of 1956-2012.
Figure 4 shows that in 2020, the water shortage risk probability exceeded 0.95 under
33 different inflow conditions (accounting for 63.5% of all the inflow conditions) and
exceeded 0.5 under 38 different inflow conditions (accounting for 73.1% of all the
inflow conditions). In summary, there was a high probability of a water shortage risk

in 2020, although the probability was very low in some high precipitation periods.
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Figure 4. Risk probability under the inflow conditions of 19562012

3.2.2 Risk probability prediction after using transferred and reclaimed

water

According to Qian et al. (2016), 1.05 billion m? of water will have been transferred
to Beijing in 2020 and the amount of reclaimed water used may reach 1 billion m?.

After using transferred and reclaimed water, the total amount of water resources

would increase, W, andU, would change and other indicators would remain

unchanged. Therefore, the sequences of W andU, under the inflow scenarios of

19562012 had to be computed again. Substituting the sequences of

W,,W,,U,,Pand DS, into Eq. (20), the water shortage risk probability in 2020
under the inflow scenarios of 1956-2012 (after using transferred and reclaimed

water) was predicted, and the results are shown in Figure 5.
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Figure 5. Values of risk probability under the inflow conditions of 1956-2012 after using

transferred and reclaimed water
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Figure 6. Comparison of risk probability before and after using transferred and reclaimed
water
From Figures 5 and 6, it was concluded that the water shortage risk probability

would decline under all inflow conditions (59.1% on average). However, the water
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shortage risk probability would still be high in some low inflow conditions. The risk
probability exceeded 0.5 under 24 different inflow conditions (accounting for 46.2%
of all inflow conditions). For example, the water shortage risk probability reached 1
under the inflow conditions of 1999-2008.

According to Qian et al. (2016), since 1999, Beijing has experienced drought in
ten consecutive years. This has had a strong effect on the water resources of Beijing,
including a significant reduction in surface water and severe over-exploitation of
groundwater. This means that a water shortage may occur in 2020 under the inflow
conditions of 1999-2008 although some measures have been taken. Moreover, water
resources vulnerability was still high in 2020 after using transferred and reclaimed
water (Qian et al., 2016). Therefore, we concluded that the water shortage risk
probability would still be high in 2020 after using transferred and reclaimed water,
especially in the case of precipitation deficits.

4 Conclusions

This study developed an improved logistic probability prediction model for water
shortage risk in situations when there is insufficient data. The model consists of the
following steps:

(1) Information flow was used to select some important factors that were likely
to have a significant impact on water shortage risk. This could determine the
cause-effect relation between the water shortage risk and its factors.

(2) The logistic regression model was applied to describe the nonlinear relation

between water shortage risk and its factors. A new parameter estimation method based
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on the entropy principle, i.e. maximum entropy estimation, was proposed for
parameter estimation when insufficient data is available.

The results of the study were as follows. In 2020, the probability that a water
shortage risk will occur exceeded 0.95 under 33 different inflow conditions
(accounting for 63.5% of all inflow conditions) and exceeded 0.5 under 38 different
inflow conditions (accounting for 73.1% of all inflow conditions). After using the
transferred and reclaimed water, the water shortage risk probability declined under all
inflow conditions (by 59.1% on average), but the water shortage risk probability was
still high for some low inflow conditions. Risk probability exceeded 0.5 under 24
different inflow conditions (accounting for 46.2% of all inflow conditions).

However, some problems still exist with regard to the maximum entropy
estimation. Initial values of the parameters should be given for the optimization
function, but the optimization function belongs to local optimization, which was very
sensitive to the initial values. Therefore, we may obtain an unsatisfactory result if the
initial values are not correct. How best to search for a global optimum is an important

and difficult issue, and will be the focus of our further study.

Appendix A.(Glossary used in this paper [

1. Logistic regression model. It is nonlinear regression method of studying binary
categorical or multi-categorical variable and its impact factors.

2. Maximum likelihood estimation. It is a method of parameter estimation in

statistics.


reviewer
Evidenziato

reviewer
Nota
I don't think that the glossary is useful


439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

3. Maximum entropy estimation. We propose a new parameter estimation method
for a logistic regression model when insufficient data is available. We called this new
method maximum entropy estimation.

4. Backward. It is a method of selecting the variables for a logistic regression model.
The methods of selecting the variables for a logistic regression model include enter,
forward and backward.

5. Information flow. Information flow, proposed and named by Liang (2014), is a
method for unraveling the cause-effect relation between time series.

6. The extreme theory of multivariate function. This is a theory used for
calculating extreme values in advanced mathematics.

7. Two independent samples test. This is one type of Kolmogorov-Smirnov (K-S)
test. The K-S test includes a one-sample K-S test, two independent sample test, and a
test for several independent samples.

8. The third industry. In China, the third industry is also known as the service
industry, and includes the traffic and transportation industry, communication industry,
and commercial industry.

Appendix B. Abbreviations used in this paper

1.PLA  People’s Liberation Army of China.

2. GDP  Gross domestic product

3. P. Precipitation.

4. W,.  Water resources per capita

5. W Water consumption per 10 thousand CNY GDP

c
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6. S, Satisfactory rate of water demand

7. U, Utilization rate of water resources
8. IW,  Proportion of industrial water use
9. AW Proportion of agriculture water use

p

10. DW,  Proportion of domestic water use
11. DS,  Treatment rate of domestic sewage
12. CNY.  The Chinese Yuan

13. K-S test. Kolmogorov-Smirnov Test
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