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Abstract. In drought years, it is important to have an estimate or prediction of the 5 

probability that a water shortage risk will occur to enable risk mitigation. This study 6 

developed an improved logistic probability prediction model for water shortage risk in 7 

situations when there is insufficient data. First, information flow was applied to select 8 

water shortage risk factors. Then, the logistic regression model was used to describe 9 

the relation between water shortage risk and its factors, and an alternative method of 10 

parameter estimation (maximum entropy estimation) was proposed in situations 11 

where insufficient data was available. Water shortage risk probabilities in Beijing 12 

were predicted under different inflow scenarios by using the model. There were two 13 

main findings of the study. (1) The water shortage risk probability was predicted to be 14 

very high in 2020, although this was not the case in some high inflow conditions. (2) 15 

After using the transferred and reclaimed water, the water shortage risk probability 16 
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declined under all inflow conditions (59.1% on average), but the water shortage risk 17 

probability was still high in some low inflow conditions. 18 

Keywords Information flow﹒Risk factors﹒Logistic regression model﹒Maximum 

entropy estimation﹒Insufficient data 

 19 

1 Introduction 20 

Nowadays, water shortages have become a serious problem in many parts of the 21 

world due to climate change, heightened demand of water and integrated urbanization, 22 

and there is a negative impact on the security and sustainable development of water 23 

resources (Giacomelli et al., 2008; Weng et al., 2015; Christodoulou 2011; Wang et al. 24 

2012; Yang et al. 2015 Qian et al. 2014; Li et al. 2014). Risk is a measure of the 25 

probability and severity of adverse effects (Haimes, 2009). It is important to have an 26 

estimate or prediction of the probability that a water shortage risk will occur so that 27 

effective measures for risk mitigation can be developed, particularly in the case of 28 

precipitation deficits (drought). 29 

Hashimoto et al. (1982) stated that risk can be described by the probability that a 30 

system is in an unsatisfactory state. How to predict or estimate risk probability is still 31 

an open issue with no definite solution. Mackenzie (2014) believed that an analyst 32 

should first develop a probability distribution over the range of consequences that 33 

fully describe the risk of an event. The simulation of probability distribution should be 34 

based on a large number of data (Bedford and Cooke, 2001; Giannikopoulou et al., 35 

2015). Unfortunately, a full probabilistic assessment is generally not feasible, because 36 
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there is insufficient data to quantify the associated probabilities (Tidwell et al., 2005). 37 

In some cases, frequency is often used as a substitute for probability in the risk 38 

assessment of water resources (Hashimoto et al., 1982; Rajagopalan et al., 2009; 39 

Sandoval-Solis et al., 2011), while in other cases, interval-valued probabilities and 40 

fuzzy probabilities have been proposed to elaborate the concept of an imprecise 41 

probability (Karimi and Hüllermeier, 2007). However, these approaches only consider 42 

the probability of the hazard without consideration of the impact of risk factors. The 43 

risk factors include characteristics of hazards and existing conditions of vulnerability 44 

that could potentially harm exposed people, property, services and so on (UNISDR, 45 

2009). There are many aspects of vulnerability arising from various physical, social, 46 

economic, and environmental factors (Qian et al., 2016; Haimes, 2006; UNISDR, 47 

2009). Therefore, it has been concluded that modeling risk probability requires a 48 

consideration of vulnerability (Haimes, 2006). Although increasing attention has been 49 

given to vulnerability assessment (Villagrán, 2006; Plummer, 2012), there have been 50 

few studies of the relation between risk probability and water resources vulnerability.  51 

A water shortage can either occurs or not occur, and therefore water shortage risk 52 

is a binary categorical variable. According to statistical theory, a logistic regression 53 

model is a nonlinear regression method of studying a binary categorical or 54 

multi-categorical variable and its impact factors (Breslow, 1988). Therefore, a logistic 55 

regression model can be used to describe the relation between water shortage risk and 56 

its impact factors. The parameters of a logistic regression model are often estimated 57 

by a maximum likelihood estimation; a large number of observed values of risk (i. e., 58 

reviewer
Evidenziato

reviewer
Nota

reviewer
Evidenziato

reviewer
Nota
This sentence should be better clarified. You give a definition of water shortage in paragraph 2.4.   it would be more appropriate to  provide such  definition here.  

reviewer
Evidenziato



samples that water shortage risk does or does not occur) and risk factors are required 59 

for parameter estimation (Balakrishnan, 1992). However, the statistical data about risk 60 

and its factors are insufficient in China. Therefore, the method of maximum 61 

likelihood estimation is not applicable when the sample size is small. For this reason, 62 

we propose an alternative method of parameter estimation for a logistic regression 63 

model when data is insufficient. Moreover, the backward mode is often applied for the 64 

selection of sensitive factors, but the calculation is very complicated.   65 

The contributions of our paper are as follows. First, we used a logistic regression 66 

model to explore the nonlinear relation between water shortage risk and its factors. 67 

Then, we introduced an information flow (Liang, 2014) for the selection of significant 68 

risk factors. Compared with the backward mode, it was very easy to determine 69 

whether there was a cause and effect between the water shortage risk and its factors. 70 

Finally, we proposed an alternative method of parameter estimation (maximum 71 

entropy estimation) for a logistic regression model in situations with a lack of data. 72 

The new method requires only a few data, while maximum likelihood estimation 73 

requires a large amount of data.  74 

 The remainder of the paper is organized as follows. Section 2 presents the 75 

principles and structure of the logistic probability prediction model for water shortage 76 

risk. Section 3 presents the application of the model and the results of the research and 77 

Section 4 presents some conclusions and proposes future work. 78 

2 Materials and methods 79 

2.1 Study area 80 
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Beijing, China's capital, is located in the northwest of the North China Plain, and 81 

consists of five water systems from the east to the west (Figure 1). The average annual 82 

precipitation is 585 mm. Precipitation in summer accounts for 70% of the total for the 83 

whole year. Beijing, with a population of more than 20 million, is faced with a severe 84 

shortage of water resources. The amount of self-generated water resources is only 85 

37.39×108 m3. The amount of water resources per capita is about 200 m3, which is 86 

about one eighth of the value of water resources per capita for China and one thirtieth 87 

of the global value of water resources per capita.  88 

The available surface water and groundwater is unable to meet the needs of the 89 

city's economic and social development. Some measures, such as the use of 90 

transferred and reclaimed water have been put in place to mitigate the water shortage. 91 

In 2014, through the South-to-North Water Diversion Project, water was channeled 92 

from the Danjiangkou Reservoir in central China’s Hebei province to Beijing. 93 

Reclaimed water is also essential for Beijing and is mainly used for agricultural 94 

irrigation and toilet flushing.  95 

 96 



Figure 1. Distribution of water system of Beijing 97 

2.2 Data collection 98 

The data used in this paper were obtained from various sources. The inflow and 99 

precipitation sequences from 1956 to 2012 were provided by Beijing Hydrological 100 

Station. The water demand for 2020 was based on the Beijing City National 101 

Comprehensive Plan for Water Resources (Beijing Municipal Development and 102 

Reform Commission and Beijing Municipal Bureau of Water Affairs, 2009). The 103 

water supply sequence for 2020 in the inflow conditions of 1956–2012 was computed 104 

by an analysis of the balance between water supply and water demand. The 105 

population size and gross domestic product (GDP) from 1979 to 2012 were taken 106 

from the Statistical Yearbook 2014 of Beijing City (Statistical Bureau of Beijing City, 107 

2014). The total amount of water resources from 1979 to 2012 were provided by 108 

Beijing Hydrological Station. The water use statistics and data regarding the treatment 109 

of domestic sewage from 1979 to 2012 were taken from the Statistical Yearbook 2014 110 

of Beijing City (Statistical Bureau of Beijing City, 2014). 111 

2.3 Model development 112 

A flowchart showing the operation of the probability prediction model for water 113 

shortage risk is given in Figure 2. 114 



  115 

Figure 2. Flowchart showing the operation of the improved probability prediction model for 116 

water shortage risk 117 

As can be seen from Figure 2 the model consists of a determination of water 118 

shortage risk factors and the construction of a logistic probability prediction model.  119 

2.3.1 Identification of water shortage risk factors 120 

Water shortage risk factors include characteristics of hazards and existing conditions 121 

of water resources vulnerability. Water resources vulnerability is referred to as the 122 

manifestation of the inherent states (e.g., physical, social, and ecological) of the water 123 

resources system that causes the system to be liable to a water shortage (Qian et al., 124 

2016). According to the study of Plummer et al. (2012), there are 50 different water 125 

vulnerability assessment tools, and the water vulnerability indicators of these tools are 126 

quite different. Therefore, a universal standard understanding of water resource 127 

vulnerability indicators is difficult to develop. We established the indicators from 128 

reviewer
Nota
The different steps of flowchart should be shortly described

reviewer
Evidenziato

reviewer
Evidenziato

reviewer
Nota
The choice of risk factors should be justified and discussed.



perspective of hydrological conditions, water resources, water supply and water use. 129 

The risk factors are: precipitation ( P ), water resources per capita ( pW ), water 130 

consumption per GDP ( cW ), satisfactory rate of water demand ( rS ), and utilization 131 

rate of water resources ( rU ), proportion of industrial water use ( pIW ), proportion of 132 

agricultural water use ( pAW ), proportion of domestic water use ( pDW ) and the 133 

treatment rate of domestic sewage ( rDS ). These indicators are defined as follows 134 

(Qian et al., 2014): 135 

p

W
W

N
                          （1） 136 
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where IW is the industrial water use, AW is the agricultural water use, DW is the 150 

domestic water use and WU is total water use.  151 

2.3.2 Selection of important risk factors 152 

The purpose of this section was to select some important factors that have an 153 

significant impact on water shortage risk. Liang (2014) reported that the cause and 154 

effect between two time series can be measured by the time rate of information 155 

flowing from one series to the other. Liang proposed a concise formula for causal 156 

analysis. The causality is measured by information flow. Therefore, we can use the 157 

information inflow to unravel the cause-effect relation between the risk factors and 158 

water shortage risk.  159 

According to Liang (2014), for series 1X and 2X , the rate of information flowing 160 

(units: nats per unit time) from the latter to the former is  161 

2
11 12 2 , 1 12 1, 1

2 1 2 2
11 22 11 12

d dC C C C C
T

C C C C





                    (9) 162 

where ijC is the sample covariance between iX and jX , , ji dC is the covariance 163 

between iX and jX ,and jX is the difference approximation of jdX

dt
 using the Euler 164 

forward scheme. 165 

                          , ,
,

j n k j n
j n

X X
X

k t
  




                       (10) 166 

According to Liang (2014), with 1k  , for a general time series 1k  would be 167 

suitable. If 2 1 0T    or the absolute value of 2 1T  is less than 0.01, 2X does not 168 

cause 1X , otherwise it is causal. A positive 2 1T  means that 2X functions to make 1X  169 



more uncertain, while a negative value means that 2X  tends to stabilize 1X . Liang 170 

(2015) proposed a method of normalizing the causality between time series and the 171 

range of value for 2 1T   is 0 and 1.    172 

2.3.3 Correlation analysis of selected risk factors 173 

In theory, a probability prediction model requires variables to be mutually 174 

independent. Therefore, it is necessary to perform a correlation analysis. Because all 175 

of the factors are continuous variables, Pearson correlation coefficients are often 176 

applied. If the absolute correlation coefficient is greater than 0.5, there is a significant 177 

correlation between two factors.  178 

2.4 Risk probability prediction model using maximum entropy 179 

estimation 180 

A logistic regression model is a nonlinear regression method of studying a binary 181 

categorical or multi-categorical variable and its impact factors. Because a water 182 

shortage either occurs or does not occur, water shortage risk belongs to a binary 183 

categorical variable. Therefore, we can use a logistic regression model to simulate the 184 

relation between water shortage risk and its factors. Suppose the risk factors 185 

are   1,2, , ; 1, 2, ,ijx i n j m   , where ijx denotes the value of the jth  factor in 186 

the ith  year. The risk sequence is   1, 2, ,iy i n , 187 

where
0,

1,i

water shortage risk does not occur
y

water shortagerisk occurs


 


, and is the observed value of the ith 188 

year.  189 

  1 1,2, ,i i ijyp p x j m     is the conditional probability when iy =1 under 190 
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the conditions of  1, 2, , ; 1, 2, ,ijx i n j m   . The logistic regression model is  191 

 1 1 2 2

1

1 i i m im
i x x x

e
p        


 

                  (11) 192 

where 1 2, , , , m    are the estimated parameters. The parameters are often 193 

determined by a maximum likelihood estimation. The log likelihood equation of 194 

computing 1 2, , , , m     is as follows: 195 

1

1

1

1

1

1

exp

0

1 exp

exp

0 1, 2, ,

1 exp

m

j ijn
j

i m
i

j ij
j

m

j ijn
j

i ijm
ij

j ij
j

x
L

y

x

x
L

y x j m

x



 


 

 


 













   
   

         
    
     


                
    
    











   (12) 196 

According to Eq. (12), a large number of observed values of risk 197 

(  1, 2, ,iy i n ) and its factors are required for parameter estimation. Unfortunately, 198 

the correlated samples between risk and its controlling factors are insufficient. It is 199 

therefore far better to estimate the parameters. In this case, the maximum likelihood 200 

estimation is not applicable for parameter estimation. An alternative approach for 201 

parameter estimation is therefore required.  202 

Thus, we proposed a new parameter estimation method based on the maximum 203 

entropy principle. The new method is named after maximum entropy estimation. The 204 

new method does not require the observed values of risk, and it requires only some 205 

observed values of the factors. Its principle is as follows. 206 

For an observation, we can define its entropy to evaluate its degree of uncertainty. 207 
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According to Jones and Jones (2000), the entropy of the ith observation of water 208 

shortage risk is  209 
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  (13) 210 

where C is a positive value and   1 1,2, ,i i ijyp p x j m     is the 211 

conditional probability when iy =1 under the conditions of 212 

 1, 2, , ; 1, 2, ,ijx i n j m   . According to the maximum entropy principle, if the 213 

values of ( )iH P  reaches a maximum, the optimal parameters are obtained (Jones 214 

and Jones, 2000). The reasons for obtaining a solution based on the maximum entropy 215 

principle are as follows. ① It conforms to the principle of entropy increase, which 216 

states that the entropy of an isolated system tends to reach a maximum. ② It accords 217 

with the principle that the solution should be in line with the sample/data and the least 218 

hypotheses must be constructed regarding the unknown parts when the data is 219 

insufficient. ③ It fits the maximum multiplicity principle. The multiplicity of a state 220 

refers to the number of possible ways in which a system can evolve to that state. The 221 

maximum multiplicity principle states that the greater the multiplicity of a state, the 222 

larger the possibility that a system is in this state.  223 

2.4.1 Parameter estimation 224 

Based on the analysis above, an optimization model can be constructed as follows: 225 
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According to the extreme theory of multivariate function (Khuri 2003), we can 227 

obtain  228 
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  （15） 229 

The optimal estimation  1 2, , , ,j j m     can be obtained by solving Eq. 230 

(15). Numerical approaches are often used to obtain an approximate solution of Eq. 231 

(15) rather than its exact solution. Therefore, we made use of the optimization 232 

function of Matlab to estimate the parameters, i.e., the fminsearch function. If there 233 

are n observations, there are n  1, 2, ,iH i n . It is impossible to find the parameters 234 

that make all the  1, 2, ,iH i n reach the maximum value. According to the 235 

maximum entropy principle, the greater the entropy is, the larger the uncertainty of an 236 

observation is. Therefore, the maximum value of the sequences , 1, 2, ,iH i n was 237 

taken as the objective function of the optimization model.  238 

2.4.2 Goodness-of-fit test 239 

According to Brown (1982), a goodness-of-fit test should be made for evaluating the    240 
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fitting effect of the logistic regression model and its ability to identify water shortage 241 

risk. In this study, the Kolmogorov-Smirnov Test (K-S) test and Pearson 2 test are 242 

used. 243 

2.4.2.1 K-S test (t) 244 

A K-S test is often applied as a fitting test. It can be used to test the ability of the 245 

model to identify water shortage risk. The value of K-S is between 0 and 1; the 246 

greater the value is, the better the logistic model is. The idea is as follows. 247 

Let  1nF x be the cumulative probability distribution of the samples that do not 248 

encounter a water shortage.  2nF x  is the cumulative probability distribution of the 249 

samples that encounter a water shortage. A two independent samples test is then 250 

applied to compare whether the empirical distribution functions of two samples are 251 

the same. The test is as follows: 252 

       0 1 2 1 1 2: :n n n nH F x F x H F x F x            （16） 253 

The value of K-S is: 254 

   1 2max n nK S F x F x                     （17） 255 

When N  , the cumulative distribution curve and probability density curve of 256 

two samples can be obtained. The value of K-S is the maximum value of the 257 

cumulative distribution functions. When the value of K-S is greater than 0.35, the 258 

logistic regression model is applicable. The international classification standard of the 259 

logistic model is shown in Table 1 (Brown, 1982). 260 

Table 1. The international classification standard of the logistic model 261 

K-S The effect of the model 
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<0.2 Bad 

0.2~0.4 General 

0.4~0.5 Good 

0.5~0.6 Better 

0.6~0.75 Very good 

0.75~1 Perfect 

 262 

2.4.2.2 Pearson 2 test 263 

The test is as follows: 264 

 0H : the fitting is good     1H : the fitting is bad         （18） 265 

The expression of the 2 statistic is as follows. 266 

 2

2

1

l
j j

j j

O E

E





                        （19） 267 

where 1 2, , ,j l  , l is the number of covariant types, jO is the observed 268 

frequency of the jth covariant type, and jE is the predicted frequency of 269 

the jth covariant type. The degree of freedom is the difference between the number of 270 

covariant types and parameters.  271 

3 Results and discussion 272 

In this section, a logistic probability prediction model for water shortage risk is 273 

constructed and discussed, and the risk probability in 2020 in Beijing is predicted 274 

using the proposed model.  275 

3.1 Construction of the Logistic probability prediction model  276 
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A sequence of risk factors were obtained for the period from 1979 to 2012, and were 277 

computed based on Eqs. (1)~(8). The risk sequence   1, 2, ,34iy i   from 1979 278 

to 2012 was obtained as follows. According to Qian and Zhang et al. (2016), a water 279 

supply is deemed inadequate if the supply is less than the demand, leading to a water 280 

shortage in the water supply system. 
0,

1,i

water shortage does not occur
y

water shortage occurs


 


. 281 

Therefore, there are only 34-year data.  282 

3.1.1 Determination of water resources vulnerability indicators 283 

Based on the risk factors sequences from 1979 into 2012 (Table 2) and the method of 284 

normalized information inflow (Liang, 2015), the values of normalized information 285 

flow from the factors to risk are shown in Table 3. According to the normalized 286 

information flow results (Table 3), the value of the normalized information flow 287 

from pAW  to water shortage risk is only 0.0031, and it is very little. It was concluded 288 

that the pAW does not result in a water shortage risk. Therefore, pAW  was removed as 289 

risk factors.  290 

Table 2. The values of the risk factors and risk from 1979 to 2012 291 

Year cW  

(m3 per CNY) 

pW  

(m3 per capita)
rU P (mm) rDS (%) pAW pDW  pIW  rS  Risk

1979 0.36 426.15 1.12 652.00 10.20 0.56 0.10 0.33 0.71 0

1980 0.36 287.52 1.94 387.30 9.40 0.63 0.10 0.27 0.41 1

1981 0.35 261.10 2.00 433.50 10.80 0.66 0.09 0.25 0.40 1

1982 0.30 391.44 1.29 585.10 10.90 0.61 0.10 0.29 0.62 1

1983 0.26 365.26 1.37 465.50 10.20 0.66 0.10 0.24 0.58 1

1984 0.18 407.36 1.02 442.10 10.00 0.55 0.10 0.36 0.79 0

1985 0.12 387.36 0.83 611.20 10.00 0.32 0.14 0.54 0.96 0

1986 0.13 262.94 1.35 560.30 8.90 0.53 0.20 0.27 0.59 1

1987 0.09 369.25 0.80 662.60 7.70 0.31 0.23 0.45 1.00 0

1988 0.10 369.27 1.08 594.70 7.40 0.52 0.15 0.33 0.74 0
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1989 0.10 200.47 2.07 479.50 6.60 0.55 0.14 0.31 0.39 1

1990 0.08 330.20 1.15 662.40 7.30 0.53 0.17 0.30 0.70 0

1991 0.07 386.56 0.99 662.70 6.60 0.54 0.18 0.28 0.80 0

1992 0.07 203.63 2.07 500.00 1.20 0.43 0.24 0.33 0.39 1

1993 0.05 176.89 2.30 424.30 3.10 0.45 0.21 0.34 0.35 1

1994 0.04 403.73 1.01 727.70 9.60 0.46 0.23 0.32 0.79 0

1995 0.03 242.51 1.48 608.90 19.40 0.43 0.26 0.31 0.54 1

1996 0.02 364.22 0.87 669.40 21.20 0.47 0.23 0.29 0.92 0

1997 0.02 179.44 1.81 419.00 22.00 0.45 0.28 0.28 0.44 1

1998 0.02 302.67 1.07 687.40 22.50 0.43 0.30 0.27 0.75 0

1999 0.02 113.11 2.93 384.70 25.00 0.44 0.30 0.25 0.27 1

2000 0.01 123.64 2.40 446.60 39.40 0.41 0.33 0.26 0.33 1

2001 0.01 138.62 2.03 462.00 42.00 0.45 0.32 0.24 0.39 1

2002 0.01 113.13 2.15 413.00 45.00 0.45 0.34 0.22 0.37 1

2003 0.01 126.34 1.84 453.00 50.10 0.39 0.38 0.23 0.41 1

2004 0.01 143.36 1.52 539.00 53.90 0.39 0.39 0.22 0.50 1

2005 0.00 150.85 1.27 468.00 62.40 0.38 0.42 0.20 0.54 1

2006 0.00 154.97 1.14 448.00 73.80 0.37 0.45 0.18 0.57 1

2007 0.00 145.74 1.13 499.00 76.20 0.36 0.48 0.17 0.55 1

2008 0.00 201.77 0.74 638.00 78.90 0.34 0.51 0.15 0.78 0

2009 0.00 124.22 1.08 448.00 80.29 0.34 0.52 0.15 0.49 1

2010 0.00 117.64 0.99 524.00 81.00 0.32 0.42 0.14 0.52 1

2011 0.00 132.81 0.88 552.00 81.70 0.30 0.43 0.14 0.60 1

2012 0.00 190.89 0.58 708.00 83.00 0.26 0.45 0.14 0.88 0

 292 

According to Liang (2014), a positive value of the information flow means that 293 

the factor makes water shortage risk more uncertain, while a negative value means 294 

that the indicator tends to stabilize water shortage risk. Therefore, all the factors tend 295 

to make water shortage risk more uncertain. Furthermore, the impact of P , pW , 296 

cW are very significant.  297 

Table 3. The values of information flow from the factors to water shortage risk 298 

Factors  Information flow 

cW  0.3560 
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pW  0.4823 

rU  0.3109 

P  0.1575 

rDS  0.2413 

pIW  0.1320 

pAW  0.0031 

rS  0.1247 

pDW  0.1164 

 299 

A correlation analysis was performed on the remaining factors. The values of the 300 

Pearson correlation coefficients are shown in Table 4. 301 

Table 4. Pearson correlation coefficients for the relations between various factors 302 

Pearson correlation 

coefficients 

cW  pW  rU  P  rDS  pDW  pIW  rS  

cW  1 0.603 0.047 –0.066 –0.559 0.354  –0.780 0.047 

pW  0.603 1 –0.455 0.571 –0.682 0.654 –0.753 0.696 

rU  0.047 –0.455 1 –0.723 –0.268 0.026 –0.157 –0.869 

P  0.066 0.571 –0.723 1 –0.100 0.219 –0.064 –0.820 

rDS  –0.559 –0.682 –0.268 –0.100 1 –0.802 0.902 –0.087 

pDW  0.354 0.654 0.026 0.219 –0.802 1 –0.715 0.354 

pIW  –0.780 –0.753 –0.157 –0.064 0.920 –0.715 1 –0.013 

rS  0.047 0.696 –0.869 0.820 –0.087 0.354 –0.013 1 



Based on the results in Tables 3 and 4, pAW , rS , pIW , and pDW  were 303 

removed as risk factors. Therefore, the selected factors for logistic regression model 304 

were cW , pW , rU , P and rDS .  305 

3.1.2 Construction of the logistic risk probability predication model  306 

The data for the risk and selected factors ( cW , pW , rU , P and rDS ) from 1979 to 307 

2012 (Table 2) are used to construct the logistic risk predication probability model. 308 

Because there is only 34 samples, it is impossible to estimate the parameters by the 309 

maximum likelihood estimation. Substituting the sequences of cW , pW , rU P and rDS  310 

from 1979 to 2012 (Table 2) into Eq. (14), the values of parameters obtained by 311 

maximum entropy estimation can be obtained. The estimated values for 312 

1 2 5, , , ,     are 61.6386, 0.004, -0.1262, -12.4077, -0.012 and -29.0963.  313 

Therefore, the logistic regression model based on the maximum entropy 314 

estimation is as follows: 315 

 61.6386 0.004 0.1262 12.4077 0.012 29.0963

1

1 c p r rW W U P DS
Predicted probability

e
     




       (20) 316 

Substituting the sequences of cW , pW , rU , P and rDS  from 1979 to 2012 into Eq. 317 

(20), the predicted probability values of water shortage risk by the maximum entropy 318 

estimation is shown in Fig. 3.  319 
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 320 

Figure 3. The predicted probability generated by the maximum entropy estimation from 1979 321 

to 2012 322 

If 0.5 is taken as threshold used to judge whether water shortage risk occurs, then 323 

the prediction accuracy by using the maximum entropy estimation can be obtained, 324 

and is shown in Tables 5. From Table 5, it can be seen that the average accuracy rate 325 

using the maximum entropy estimation was very high (91.18%). The maximum 326 

entropy estimation does not need observed values of risk (  1, 2, ,iy i n ), whereas 327 

the maximum likelihood estimation needs a large number of observed values of risk.  328 

Table 5. The prediction accuracy using the maximum entropy estimation 329 

 

The prediction is 

that risk occurs 

The prediction is that 

no risk occurs 

Accuracy rate 

Risk actually occurs 19 3 86.36% 

Risk actually does 

not occur 

0 12 100% 

The average 

accuracy rate 

  91.18% 
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The K-S test and Pearson 2 test are performed and the results of the tests are 330 

obtained. The value of K-S is 0.955 and according to Table 1, the logistic probability 331 

prediction model was applicable. Moreover, the probability value was 0.000(i.e., less 332 

than 0.05), so the null hypothesis was rejected. Therefore, the ability of the logistic 333 

regression model to predict water shortage is very strong. 334 

Substituting the observed frequency and the predicted frequency into Eq. (19), 335 

the value of the 2 statistics was 2.333 (the number of covariant type was 8). Because 336 

the number of parameters was 6, there were 2 degrees of freedom. The  2
0 1 2. was 337 

equal to 4.605 and was much greater than 2.333. Therefore, the null hypothesis was 338 

accepted, i.e., the fitting of the model was very good. Based on the results of the K-S 339 

test and Pearson 2 test, it was concluded that the model was applicable.  340 

3.2 Risk probability prediction in 2020 in Beijing 341 

3.2.1 Risk probability prediction (without considering the use of 342 

transferred and reclaimed water) 343 

Because the inflow of 2020 is unknown, the inflow condition in 2020 was assumed to 344 

be any annual inflow conditions from 1956 to 2012. In this section we predict the risk 345 

probability of 2020 under different inflow conditions from 1956 to 2012. The 346 

sequences for risk factors ( cW , pW , rU , P and rDS ) were obtained and computed as 347 

follows. The precipitation in 2020 is assumed to be any annual precipitation from 348 

1956 to 2012. First, an analysis of the balance between water supply and demand was 349 

performed and the sequences of water supply and demand under the inflow scenarios 350 

of 1956–2012 were obtained (Qian et al., 2016). The GDP of 2020 was the sum of the 351 



gross agricultural product, gross industrial product, and gross product of the third 352 

industry (details of the third industry are shown in Appendix A), using information 353 

taken from the literature, and was estimated to be 4711.852 billion CNY (Qian et al., 354 

2016). N (the population size of 2020) was 24.43 million (Qian et al. 2016). The 355 

total amount of water resources from 1956 to 2020 were considered to consist of 356 

fifty-seven types of water resources in 2020. Substituting the total water resources 357 

sequences and N of 2020 into Eq. (1), the sequence of pW  could be computed. 358 

Substituting the water demand sequences and GDP of 2020 into Eq. (2), the sequence 359 

of cW could be computed. Substituting the sequence of the total water resources and 360 

water supply for 2020 into Eq. (3), the sequence of rU  could be obtained. The rDS of 361 

2020 was about 90% (Beijing Municipal Development and Reform Commission and 362 

Beijing Municipal Bureau of Water Affairs, 2009).  363 

Substituting the sequences of cW , pW , rU , P and rDS into Eq. (20), the probability 364 

that a water shortage risk will occur in 2020 under the inflow scenarios of 1956–2012 365 

was predicted, and is shown in Figure 4.  366 

In Figure 4, the horizontal axis represents the inflow conditions of 1956–2012. 367 

Figure 4 shows that in 2020, the water shortage risk probability exceeded 0.95 under 368 

33 different inflow conditions (accounting for 63.5% of all the inflow conditions) and 369 

exceeded 0.5 under 38 different inflow conditions (accounting for 73.1% of all the 370 

inflow conditions). In summary, there was a high probability of a water shortage risk 371 

in 2020, although the probability was very low in some high precipitation periods. 372 
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Figure 4. Risk probability under the inflow conditions of 1956–2012 374 

3.2.2 Risk probability prediction after using transferred and reclaimed 375 

water 376 

According to Qian et al. (2016), 1.05 billion m3 of water will have been transferred 377 

to Beijing in 2020 and the amount of reclaimed water used may reach 1 billion m3. 378 

After using transferred and reclaimed water, the total amount of water resources 379 

would increase, pW and rU would change and other indicators would remain 380 

unchanged. Therefore, the sequences of pW and rU  under the inflow scenarios of 381 

1956–2012 had to be computed again. Substituting the sequences of 382 

cW , pW , rU , P and rDS into Eq. (20), the water shortage risk probability in 2020 383 

under the inflow scenarios of 1956–2012 (after using transferred and reclaimed 384 

water) was predicted, and the results are shown in Figure 5. 385 
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Figure 5. Values of risk probability under the inflow conditions of 1956-2012 after using 387 

transferred and reclaimed water 388 

 389 

 390 

Figure 6. Comparison of risk probability before and after using transferred and reclaimed 391 

water 392 

From Figures 5 and 6, it was concluded that the water shortage risk probability 393 

would decline under all inflow conditions (59.1% on average). However, the water 394 



shortage risk probability would still be high in some low inflow conditions. The risk 395 

probability exceeded 0.5 under 24 different inflow conditions (accounting for 46.2% 396 

of all inflow conditions). For example, the water shortage risk probability reached 1 397 

under the inflow conditions of 1999–2008.  398 

According to Qian et al. (2016), since 1999, Beijing has experienced drought in 399 

ten consecutive years. This has had a strong effect on the water resources of Beijing, 400 

including a significant reduction in surface water and severe over-exploitation of 401 

groundwater. This means that a water shortage may occur in 2020 under the inflow 402 

conditions of 1999–2008 although some measures have been taken. Moreover, water 403 

resources vulnerability was still high in 2020 after using transferred and reclaimed 404 

water (Qian et al., 2016). Therefore, we concluded that the water shortage risk 405 

probability would still be high in 2020 after using transferred and reclaimed water, 406 

especially in the case of precipitation deficits. 407 

4 Conclusions 408 

This study developed an improved logistic probability prediction model for water 409 

shortage risk in situations when there is insufficient data. The model consists of the 410 

following steps:  411 

(1) Information flow was used to select some important factors that were likely 412 

to have a significant impact on water shortage risk. This could determine the 413 

cause-effect relation between the water shortage risk and its factors. 414 

(2) The logistic regression model was applied to describe the nonlinear relation 415 

between water shortage risk and its factors. A new parameter estimation method based 416 



on the entropy principle, i.e. maximum entropy estimation, was proposed for 417 

parameter estimation when insufficient data is available. 418 

The results of the study were as follows. In 2020, the probability that a water 419 

shortage risk will occur exceeded 0.95 under 33 different inflow conditions 420 

(accounting for 63.5% of all inflow conditions) and exceeded 0.5 under 38 different 421 

inflow conditions (accounting for 73.1% of all inflow conditions). After using the 422 

transferred and reclaimed water, the water shortage risk probability declined under all 423 

inflow conditions (by 59.1% on average), but the water shortage risk probability was 424 

still high for some low inflow conditions. Risk probability exceeded 0.5 under 24 425 

different inflow conditions (accounting for 46.2% of all inflow conditions).     426 

However, some problems still exist with regard to the maximum entropy 427 

estimation. Initial values of the parameters should be given for the optimization 428 

function, but the optimization function belongs to local optimization, which was very 429 

sensitive to the initial values. Therefore, we may obtain an unsatisfactory result if the 430 

initial values are not correct. How best to search for a global optimum is an important 431 

and difficult issue, and will be the focus of our further study. 432 

 433 

Appendix A. Glossary used in this paper 434 

1. Logistic regression model. It is nonlinear regression method of studying binary 435 

categorical or multi-categorical variable and its impact factors. 436 

2. Maximum likelihood estimation. It is a method of parameter estimation in 437 

statistics.  438 
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3. Maximum entropy estimation. We propose a new parameter estimation method 439 

for a logistic regression model when insufficient data is available. We called this new 440 

method maximum entropy estimation.  441 

4. Backward. It is a method of selecting the variables for a logistic regression model. 442 

The methods of selecting the variables for a logistic regression model include enter, 443 

forward and backward. 444 

5. Information flow. Information flow, proposed and named by Liang (2014), is a 445 

method for unraveling the cause-effect relation between time series. 446 

6. The extreme theory of multivariate function. This is a theory used for 447 

calculating extreme values in advanced mathematics. 448 

7. Two independent samples test. This is one type of Kolmogorov-Smirnov (K-S) 449 

test. The K-S test includes a one-sample K-S test, two independent sample test, and a 450 

test for several independent samples. 451 

8. The third industry. In China, the third industry is also known as the service 452 

industry, and includes the traffic and transportation industry, communication industry, 453 

and commercial industry. 454 

Appendix B.  Abbreviations used in this paper 455 

1. PLA   People’s Liberation Army of China. 456 

2. GDP   Gross domestic product 457 

3. P .    Precipitation. 458 

4. pW .   Water resources per capita 459 

5. cW    Water consumption per 10 thousand CNY GDP 460 



6. rS     Satisfactory rate of water demand 461 

7. rU     Utilization rate of water resources 462 

8. pIW    Proportion of industrial water use 463 

9. pAW    Proportion of agriculture water use 464 

10. pDW    Proportion of domestic water use 465 

11. rDS    Treatment rate of domestic sewage 466 

12. CNY.   The Chinese Yuan 467 

13. K-S test.  Kolmogorov-Smirnov Test 468 
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