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Abstract. Lahars are erosive floods, mixtures of water and pyroclastic deposits, they look the biggest environmental disaster 

as number of fatalities in the volcanic areas. Security measures have been recently adopted in the threatened territories, by 15 

constructing retaining dams and embankments in key positions. Such solutions could involve a strong environmental impact 

for the works and the continuous accumulation of volcanic deposits, such that equilibrium conditions could lack far, 

triggering more disastrous events. An improved version of the Cellular Automaton model LLUNPIY for lahars simulations 

is presented. The growing frequency of lahars, maybe for the climatic change, in the Vascún Valley of Tungurahua Volcano, 

Ecuador has recently produced smaller and less dangerous events, sometimes favoured by the collapse of temporary ponds, 20 

generated by small landslides. An investigation is here performed in order to reproduce such situations in controlled way by 

the use of LLUNPIY simulations. Using precise field data, points are individuated where dams by backfills, easy to collapse, 

can produce momentary ponds; LLUNPIY simulations permit to project triggering of small lahars by minor rainfall events or 

to project in the case of larger rainfalls the anticipation of lahar detachment, avoiding simultaneous and dangerous 

confluence with other lahars. 25 

1 Introduction 

Lahars are one of the most devastating phenomena as amount of fatalities in volcanic areas. They are flows, other than 

common stream flow, and consist of pyroclastic deposits mixed to water. Their physical properties (density, viscosity, 

consistency) are very similar to wet concrete not yet hardening (Vallance, 2000). This fluid, under steep slopes conditions, is 

capable of reaching speeds up to100 km/h and distances up to 300 Km, it becomes solid when water is gradually released in 30 

flat areas, (Manville et al., 2013). 
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Lahars may be of primary type (or syneruptive) if directly related to volcanic eruptions, usually when glacier and/or snow 

are melt by pyroclastic or lava flows, lahars develop from mixing pyroclastic matter with water as the tremendous 1985 

Colombian event of Nevado del Ruiz (Pierson et al., 1990); another case could occur when a large quantity of water is 

available by the breakout of a natural lake because of eruption (Manville, 2010). 

Secondary lahars are produced when a largest water quantity is available directly by extreme meteorological events or 5 

indirectly by the overflow of superficial water bodies. Pyroclastic matter of previous eruptive activity is mobilized, e.g., the 

pyroclastic flows of Mt. Pinatubo, 1991 Philippines (Rodolfo et al., 1996).  

Soil erosion with water incorporation along streams increases the volume of both primary and secondary lahars. 

Two main triggering mechanisms are possible: 

a) process of mobilization related to pyroclastic sediments sometimes mixed with some exotic material (tephra): if 10 

superficial water amount overcomes a threshold, related to features of pyroclastic stratum and soil slope, then the percolation 

can cause a detachment in the unconsolidated stratum; 

b) process of erosion, depending mainly on the redistribution of volcanic sediment along the slopes (Leavesley et al., 1989; 

MAJOR et al., 2000): in fact unconsolidated tephra in surface is swept away by flows, mixing with water and gradually 

enlarging their volume because of contribution of both sediments and waters (Barclay et al., 2007). 15 

Different approaches were considered in literature for modelling lahars: empirical models (e.g. Schilling, 1998; Muñoz-

Salinas et al., 2009) were developed, accounting mainly for some phenomenological macro-observables, simplified 

hydrological and rheological models that reduce the lahar behavior to a Newtonian-like behavior (e.g. O'brien, 1993; Costa, 

1997), numerical methods approximating PDE (e.g. Pitman et al., 2003); Cellular Automata (CA) alternative methodology 

for lahar modelling will be exhibited later. 20 

In many issues of various disciplinary backgrounds, but regarding complex systems, research was able of progress thanks to 

computer simulations, permitting to develop multidisciplinary and transdisciplinary approaches, linked in part to the 

emergence of alternative computing paradigms, such as CA (Toffoli, 1984, Chopard, 1998, Iovine et al., 2007). 

CA themselves are a complex dynamic system that is “merged” in a discretized space/time. Space is regularly tessellated in 

cells; an identical input/output computing device (a Finite-State Machine, FSM, called also finite-state automa) is assigned to 25 

each cell; the output corresponds to the state of the cell, the input is given by the states of the cells of the “neighborhood”, 

that is specified by a pattern, that is constant in space and time. Complex dynamic systems, whose evolution depends 

exclusively on local interactions of their elementary components, may be usually well modelled by CA, that share the same 

feature of localism or acentrism (Chopard, 1998). 

CA applications may be extended to more complex systems, if the primitive definitions are expanded in order to capture a 30 

broader phenomenology: Multicomponent (more known as Macroscopic) Cellular Automata (MCA) account for phenomena, 

whose dynamics involves more interacting processes, often of different nature, furthermore in particular conditions the 

prerequisite of localism for a process may be weakened. This implies that the transition function has to be divided in parts, 

the “elementary processes”, that are computed sequentially, each one involves the updating of the MCA states; furthermore 
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the not local processes are introduced in MCA as “external influences”, they account for kinds of input from the “external 

world”, sometime of probabilistic type, e.g. raining, distribution of pyroclastic bombs during an eruption. A MCA step 

occurs when all the elementary processes and the functions related to “external influences” (Di Gregorio and Serra, 1999) are 

executed. 

A complex phenomenology can imply that the state has to account for very different features of the space physically 5 

corresponding to the cell; this involves that the state is defined by substates (e.g., the temperature, depth of pyroclastic 

stratum). The introduction of the substates involves an important advantage when surface phenomena are considered: 

features related to the third dimension may be expressed in terms of substates, it permits to develop two dimensions models, 

operating three-dimensionally in fact (Avolio et al., 2012). 

Simulations of flow-like landslides were performed by several versions of the MCA model SCIDDICA since 1987 for both 10 

subaerial and subaqueous debris/granular/mud flows (e.g., Barca et al., 1987; Avolio et al. 2008; Mazzanti et al., 2010; 

Avolio et al. 2013; Lupiano et al., 2014; Lupiano et al., 2015a; Lupiano et al., 2015b; Lupiano et al., 2015c; Lupiano et al., 

2017). Simulations of primary and secondary lahars were performed by the MCA model LLUNPIY (Machado et al., 2014; 

Machado et al., 2015a; Machado et al., 2015b; Chidichimo et al., 2016). 

LLUNPIY, SCIDDICA-SS3 and SCIDDICA-SS2 are our top models for simulating flow-like landslides and lahars, they 15 

permit to simulate the erosion process unlike other models, that were used in lahar simulation: LAHARZ (e.g., Schilling, 

1998; Muñoz-Salinas et al., 2009), TITAN2D (e.g., Sheridan, 2005; Williams, 2008; Córdoba et al., 2014). 

Reliable simulation tools are very important in order to organize security measures and test them in different conditions by 

computers, even if such instruments have to be used with extreme caution, because the complex problem of lahar hazard 

must be studied from an interdisciplinary way (Lane et al., 2003; Leung et al., 2003), safety measures can increase the 20 

disaster risk in several conditions.  

Beside tools of early warning, which could work only partially, beside temporary or definitive land evacuation which could 

involve a strong social impact and economic destitution, security measures have been adopted in volcanic territory, by 

constructing retaining dams, embankments, walls, dykes, levees, reservoirs in key positions for containing and deviating 

possible lahars (Scott, 1989; Verstappen, 1992; Aguilera, 2003; Künzler et al., 2012; Carey et al., 2012). This solution could 25 

involve a strong environmental impact both for the works and the continuous accumulation of volcanic deposits, such that 

equilibrium conditions could lack far, triggering more disastrous events (Janda et al., 1981, 1996; Scott, 1989; Procter et al., 

2010). 

The growing frequency of lahars in the area of Vascún Valley of Tungurahua Volcano, Ecuador, maybe for the climatic 

change, has recently produced smaller (shorter accumulation periods) and therefore less dangerous events (Mothes and 30 

Vallance, 2015). Moreover, small landslides, forming natural dams with temporary ponds, could easily trigger lahars by 

collapsing because of rainfalls; it sometime happens, e.g. the IGEPN (Instituto Geofísico Escuela Politecnica Nacional, 

Quito, Ecuador) reported such a case of August, 23 2008 (2008a; 2008b).  
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The use of simulation tools (from the cellular automata model LLUNPIY) needs detailed field data: DTM, depth of erodible 

pyroclastic stratum. It implies accurate geological investigations, including subsoil tomographies; permitting to individuate 

points, where dams by backfills, easy to collapse, can produce momentary ponds, whose breakdown can trigger a lahar 

(Machado, 2015c; Chidichimo et al., 2016). 

For such points, minor rainfall events can produce small lahars, major events will anticipate the lahar detachment, avoiding 5 

simultaneous confluence with other lahars. The control of the discharge channels could permit in various situations many 

combinations for a controlled triggering of lahars, in order to mitigate the lahar risk. 

The next chapter is devoted to the geological description of the Vascún Valley, the third chapter introduces LLUNPIY, the 

MCA model for simulating primary and secondary lahars, together with its validation in simulating some significant lahars 

of Vascún Valley. In the fourth chapter, the building of dams, easy to collapse, with discharge channel is considered, then 10 

favorable locations of dams are hypothesized for a controlled triggering of lahars, of which effects are simulated for possible 

events; at the end, conclusions and comments. 

2 Geological setting of Vascún valley  

Tungurahua is one of the most active and dangerous volcanoes in the Ecuadorian Andes (Cordillera Oriental) on the inside 

of the Sangay National Park; its summit, 5023 m.a.s.l., is positioned at longitude 78° 27’ W, latitude 01° 28’ S. It a 15 

stratovolcano, whose evolution involved the succession of three major volcanic edifices (Tungurahua I, Tungurahua II, 

Tungurahua III) since the mid-Pleistocene over a basement of metamorphic rocks. Historical eruptions have all originated 

from the summit crater. The main events of eruptive activity occurred between: 1640–1641, 1773–1777, 1886–1888, 1916–

1918 and from 1999 until the present (Hall et al., 1999; Ramón, 2009; Biggs et al., 2010). The average of eruptions in the 

last two thousand years is once per century according to the detailed studies of Le Pennec et al. (2008). They have been 20 

accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the 

volcano's base. The formation of rain-induced lahar is also a cause of danger. Approximately 32,000 live within the higher 

risk areas, mainly in rural villages and in the touristic (thermal springs) town of Baños de Agua Santa (Mothes et al., 2015). 

Baños de Agua Santa (1800 m.a.s.l.) is only 8 Km as the crow flies away from the summit; 30 Km to NW, 30 km to SW and 

140 km to N are the distances respectively from the towns of Ambato, Riobamba, and from the capital Quito. 25 
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Figure 1: Tungurahua Volcano. The Vascún Valley is inside the red box. 

The small glacier of Tungurahua volcano is reduced both for the global warming phenomenon and for the intensification of 

the volcanic activity after the 1999, therefore the today snow cover is completely negligible for generating primary lahars, 

consequently triggering of lahars with significant frequency and magnitude, is subordinated both to the intensity and 5 

duration of the rainfalls and the available quantity of fresh material along the slopes and within the principal canyons 

(Quebradas of the Rio Vascún, Juive Grade-La Pampa Valley, Achupashal Quebrada) and in a minor from other factors. 

Almost all the lahars are confined to the canyons and converge into Pastaza River (Mothes and Vallance, 2015). 

In fact, eruptive activity of Tungurahua volcano, during last years, has generated greater availability of pyroclastic debris 

that is periodically remobilized from atmospheric phenomena, often not particularly violent but prolonged for several days. 10 

Between 2000 and 2011, around 900 events rain-induced lahars were triggered (Mothes and Vallance, 2015).  

Generally, lahars magnitude is small and, consequently, causes limited damage. IGEPN, and its Acoustic-Flow-Monitor 

(AFM) station, which monitors passing of secondary lahars, detects most of lahars, while many others are traced by the 

Observatory of the Volcano Tungurahua (OVT), which is situated 13 km to the north-northwest of the crater, also with the 

observation contribution of local volunteers (vigias). 15 

2.1 The 2008 secondary lahars of Vascún Valley 

Rio Vascún, the most important river in the area, gave its name to the Valley on the NE flank of Tungurahua Volcano, it 

flows into the Rio Pastaza (Fig.1). The valley slopes exceed 35°-40°in the first steepest 3 km, while range from 20° to 6° in 
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the last less steeply 2-3 Km. Furthermore, the path of Rio Vascún is extremely sinuous in the upper 1-2 km of terraces, the 

river is there characterized by a succession of tight 90° bends.  

The Vascún Valley is highly susceptible to lahar flows that threaten the nearby populated areas which were inundated 

several times in the past years: the town of Baños, that extend in part of the depositional area, was affected several times, the 

thermal structure “El Salado”, that is located along the river banks, had been repeatedly damaged by passage of lahars (Fig. 5 

2),  

On August 13 2008 at an elevation of about 2200 m a.s.l., a small landslide produced a natural dam along Rio Vascún. The 

dam originated a pond with a length of 100 m, a depth of 3 m and a width of 20 m. After heavy rains on August 22, the dam 

collapsed and generated a lahar. The flow velocity was estimated in 15 m/s with a flow rate of 1120 m3/s and an average 

height of 4 m (IGEPN, 2008a and 2008b), this flow rate is ten times greater than that recorded in 2005 event (IGEPN, 2005, 10 

Williams et al., 2008). The lahar reached in 5 minutes El Salado and devastated the pools of the thermal spa, afterwards 

destroyed further downstream some houses of Las Ilusiones (a village of Baños district). 

 

 

Figure 2: a) Google Earth view of Tungurahua Volcano with indication of main localities of the study area; b) lahar at thermal 15 
structure of “El Salado”. 
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3 LLUNPIY model for lahar simulation 

LLUNPIY (Lahar modelling by Local rules based on an UNderlying PIck of Yoked processes, “llunp’iy” means flood in the 

Quechua language) is a model for simulating secondary and primary lahars according to MCA methodology applied to 

complex system, whose evolution may be mainly specified in terms of local interaction. MCA features of SCIDDICA-SS3 

(Avolio et al., 2013) and SCIDDICA-SS2 (Avolio et al., 2008; Lupiano et al., 2016; Lupiano et al., 2017) are inherited by 5 

LLUNPIY; LLUNPIY for secondary lahars is extensively defined in Machado et al. (2015b), here are reported only the 

features of the model, that were applied in the study cases (reduced version LLUNPIY/3r from SCIDDICA-SS2), where the 

initial phase is abrupt, it is given by the temporary pond collapse without water percolation and detachment subsequent to 

water inclusion, furthermore in the simulation of real and hypothesized events, all the lahars end into the Rio Pastaza, so the 

last phase of lahar deposition is omitted. LLUNPIY modelling of water percolation and water extrusion with pyroclastic 10 

debris deposition can be found also in Machado (2015c). 

3.1 Introduction to the LLUNPIY/3r version 

The following quintuple defines the two-dimensions (with hexagonal cells) MCA model LLUNPIY/3r  

<T, P, N, Q, > 

where: 15 

 T = {(x, y) | x, y ℕ, 0 ≤ x ≤ lx, 0 ≤ y ≤ ly} is the set of hexagonal cells, that tessellated the territory, where the 

phenomenon evolves; the cells are individuated by the points with integer co-ordinates (Fig.3, left) of their centers; 

ℕ is the set of the natural numbers. 

 P is the set of the both empirical and physical global parameters, they are related to the global common features of 

the phenomenon (Table 1); 20 

 N = < (1,−1), (0,−1) (−1,0), (−1,1), (0,1), (1,0), (0,0) > the neighborhood index, identifies the geometrical pattern of 

cells (Fig.3, right), which influence the state change of the “central” cell; index 0 is assigned to the central cell and 

indexes 1,..,6 are assigned to the six adjacent cells; #N=7. 

 Q is the finite set of states of the finite states machine (or automaton), incorporated in the cell; it is specified in 

terms of substates as their Cartesian product (Table 2). 25 

 : Q#N → Q is the deterministic transition function for each cell in T, the following “elementary” 

processescompose they account for the overall dynamics of the phenomenon: 

o mob, effects of mobilization 

o lo, lahar outflows 

o te, effect of turbulence 30 

o fc, composition of flows 
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Figure 3: a) The neighborhood of cell (5,6); b) neighborhood indexes. 

3.2 The elementary processes of LLUNPIY/3r 

We give in the following an outline of the of the transition function, by the elementary processes, each one updating the sub-

states, in order to capture the mechanisms; the complete execution of the function “external influence” and all the elementary 5 

processes complete a step of the MCA. Neighborhood index between square brackets, following substate specification, 

indicates the corresponding cell of the neighborhood. ∆𝑄𝑆 indicates variation of the sub-state 𝑄
𝑆
. 𝑄𝑆

′  indicates the new value 

of the substate 𝑄
𝑆
.  

Pyroclastic cover mobilization 

Soil features together with the quantity of water content determine a value ptm of mobilization threshold to be compared with 10 

the kinetic head 𝑄
𝐾𝐻

 of lahar debris inside the cell, when  𝑄
𝐾𝐻

> 𝑝
𝑡𝑚

, then the pyroclastic cover is eroded, the lahar 

thickness augments and altitude diminishes according to the following formula 

−𝑄𝐷 = 𝑄𝑇𝐻 =  −𝑄𝐴  =  (𝑄𝐾𝐻 − 𝑝𝑡𝑚)𝑝𝑝𝑒 ,        (1) 

There is correspondingly a dissipation of energy with a decrease of kinetic head according to the following formula:  

−𝑄𝐾𝐻  =  (𝑄𝐾𝐻 − 𝑝𝑡𝑚)𝑝𝑑𝑒   ,          (2) 15 

Effect of turbulence 

A loss of kinetic head occurs by turbulence at each LLUNPIY step according to the following equation: 

−∆𝑄𝐾𝐻 = 𝑝𝑑𝑡𝑄𝐾𝐻          (3) 

Lahar outflows 

𝑓[𝑖], 1  𝑖  6 , specify the outflows from the central cell toward the adjacent cell, 𝑓[0] is the part remaining in the central 20 

cell. They are computed is in two steps: application of the Algorithm of the Minimization of Differences, AMD (Avolio et 
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al., 2012; Di Gregorio and Serra, 1999) to the “heights” in the neighborhood of the central cell and calculation of the shift of 

the outflows (Avolio et al., 2013).  

AMD application computes the outflows, that minimize the “height” differences in the neighborhood (equation 7). An 

alteration of height values is introduced in the central cell for taking into account the outflow run-up; furthermore the 

viscosity is modelled by an adherence “𝑎𝑑ℎ” term, the lahar quantity, that cannot leave the central cell. It varies between the 5 

two extreme values 𝑎𝑑ℎ1 and 𝑎𝑑ℎ2, which depend on the composition of the pyroclastic debris at the maximum and 

minimum water content (Machado, 2015c).  

ℎ[0] =  𝑄𝐴[0] +  𝑄𝐾𝐻[0] +  𝑎𝑑ℎ ,          (4) 

ℎ[𝑖]  =  𝑄𝐴[𝑖] + 𝑄𝑇𝐻[𝑖], (1  𝑖  6) ,         (5) 

𝑞 =  𝑄𝑇𝐻[0]  −  𝑎𝑑ℎ =  ∑ 𝑓[𝑖]0  𝑖  6           (6) 10 

∑ (|(ℎ[𝑖] + 𝑓[𝑖])  −  (ℎ[𝑗] +  𝑓[𝑗])|){(𝑖,𝑗) 0  𝑖 < 𝑗  6}          (7) 

 

Figure 4: Outflow direction from central cell to the center of an adjacent cell in 3-dimensions. 

Each moving quantity (outflow) may be considered as a “cylinder”, that initially is entirely inside the cell, having a center of 

mass with co-ordinates of 𝑄𝑋[0]and 𝑄
𝑌
[0] and with the maximum possible radius. 15 

The shift “𝑠ℎ[𝑖]” of   𝑓[𝑖] is calculated according to the following formulae, where the movement of the mass center is 

specified as the mass movement on a constant slope with a constant coefficient of friction 𝑝𝑐𝑓, the movement of   𝑓[𝑖] is 

directed towards the center of cell 𝑖 , considering the slope angle [𝑖] (Fig.4). 

𝑠ℎ[𝑖]  = 𝑣𝑝𝑡  +  𝑔(𝑠𝑖𝑛θ[𝑖] − 𝑝𝑐𝑓𝑐𝑜𝑠[𝑖]) 𝑝𝑡
2/2 , (1  𝑖  6) ,       (8) 

with “𝑔” the acceleration of gravity, “𝑣” the initial velocity: 20 

𝑣 =  √(2𝑔𝑄𝐾𝐻[0])            (9) 

There are three possible outcomes: if the shifted cylinder is completely inside (outside) the central cell, there is only an 

internal (external) outflow, otherwise two cylinders form with mass center corresponding to the mass center of the internal 

outflow and of the external outflow. The new position of external and internal outflow accounts also for the variation of 

kinetic head. 25 
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Flows Composition 

Execution of the elementary process “lahar outflows” involves an updating of substates 𝑄𝐿𝑇 , 𝑄𝐾𝐻 , 𝑄𝑋, 𝑄𝑌 by the elementary 

process “Flows Composition”. It accounts for the loss of matter (𝑄𝐿𝑇) and corresponding variation of 𝑄𝐾𝐻 , 𝑄𝑋, 𝑄𝑌that is 

determined by the external outflows, while internal outflows don’t effect a loss of matter, just a shift, that determine still 5 

variations of the other previously quoted substates; inflows are determined by possible outflows of the neighbor cells 

towards the central cell (Machado et al., 2015). 

3.3 Simulations of 2008 lahars of Vascún valley 

We selected the 2005 and 2008 lahars of Vascún Valley for LLUNPIY simulations, because available (although incomplete) 

data of the flood phase (Machado et al., 2015b) would allow reliable simulations. Data of different sources were carefully 10 

compared and analyzed (Williams et al., 2008; IGEPN, 2008) in order to reconstruct as accurately as possible the two events 

(Machado et al., 2014a and 2014b).  

The same set of LLUNPIY parameters was used in the two cases except for the parameter of progressive erosion (ppe) 

because of different percentages of water in the soil. The 2005 event was triggered in a higher zone of Rio Vascún, when the 

water concentration in the soil by rainfall reached critical values in areas, where a slope threshold was exceeded. The 2008 15 

event was dissimilar, because the breaking of a temporary pond released suddenly a larger water quantity (in comparison 

with 2005 case) with strong turbulence, whose effects correspond to a higher value of the parameter of progressive erosion 

(Machado et al., 2015b). 

Here, we report extensively the results of simulations of 2008 event of the Vascún Valley in Machado et al. (2015b), because 

the causes of this event are given by a breaking of a temporary pond, that is the same phenomenology, whose development, 20 

we want to forecast. The reliability of results of the simulation in comparison with the real event permitted us to confide in 

the goodness of the method, the new simulations were performed with the same data precision and the same values of 

parameters.  

2008 pre-event morphological data are founded on a DEM, 5 m cell size, furthermore a constant depth of 5 m was presumed 

for pyroclastic stratum, because of lack of detailed surveys. So approximations, that affect simulations, are introduced. Such 25 

approximations can be reduced by an opportune survey of field data, e.g. by soil tomographies. 

The simulation of the 2008 lahar is shown in Fig. 5: the flow speed arrived up to 20 m/s in many areas of the valley, about 

970000 m3 is the quantity of eroded material. The maximum height obtained in the simulated flow (Fig. 6a) is 22 m and has 

been reached in some sectors where the valley is particularly narrow, while the estimated average value by IGPEN (2008a 

and 2008b) is 4 m. 30 

Table 3 compares some data of simulation by LLUNPY with corresponding field data of IGEPN (2008). It is possible to note 

that the data deriving from the simulations are not many different from the known measured ones. The flow velocity of 15 
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m/s represents an estimated value, not measured. These results demonstrate that LLUNPIY is a reliable model, if we take 

into account that simulation are based on incomplete, sometime very approximate data concerning the pre-event and post-

event, furthermore the inevitable errors in records related to this event have to be considered. Therefore an extension of 

LLUNPIY/3r is promising in order to introduce secondary phenomenological features to be tested. Simulations reproduce 

satisfactorily the overall dynamics of the events; there is a good matching between real and simulated lahar path, velocity 5 

and height of detrital flow; note that different approaches obtain always excellent results about the path because the lahar is 

canalized by steep faces.  

 

 

Figure 5: 2008 simulated event. a) Maximum thickness, b) Maximum velocity, and c) erosion depth. 10 

4 Lahar triggering and effects 

4.1 Building rudimental dams easy to collapse 

Momentary ponds form along watercourses in volcanic areas, when landslides of volcanic deposits, which are originated by 

pyroclastic flows and lahars, act as a dam by obstructing the stream bed. The most frequent cause of a breakout of such 

natural ponds is the overflow of water across the newly formed dam during violent rainfalls and subsequent erosion and 15 

rapid cutting down into the loose rock debris. The classification of the “Glossary of Meteorology” of the American 

Meteorological Society for rainfall intensity (Glickman, 2000) is here adopted according to the rate of precipitation Rp: 

measured in mm h-1: 

Light rain: Rp < 2.5 mm h-1; 

Moderate rain: 2.5 mm h-1 ≤ Rp < 10 mm h-1; 20 
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Heavy rain: 10 mm h-1 ≤ Rp ≤ 50 mm h-1; 

Violent rain: Rp > 50 mm h-1. 

Dam collapse occurs when instability conditions arise in the downstream slope. By eroding the obstruction and flowing 

downstream along the river bed, the initial surge of water will incorporate a dangerous volume of sediments. This can easily 

produce lahars with possible devastating effects for settlements in their path (Leung et al., 2003). 5 

Temporary dams with a similar (but controlled) behavior can be designed and built at low cost by local backfills in order to 

allow the outflow of streams produced by regular rainfall events. This result is achieved by properly dimensioning the 

embankment according to a stability analysis. The latter is made by comparing the forces tending to cause movement of the 

mass of pyroclastic material (force of water) with those tending to resist the movement (soil strength) (Lambe and Whitman, 

1979). The aforementioned approach is traditionally adopted to prevent dams failure, but it will be used, in this case, to 10 

ensure their collapse at a fixed water level. 

The Finite Element Method (FEM) was applied to perform the downstream slope stability analysis. The shear strength 

reduction (SSR) approach, which is one of the most popular techniques to perform FEM slope analysis, was adopted (Griffits 

et al., 1999). The SSR is simple in concept: it systematically reduces the shear strength envelope of material by a factor of 

safety (𝐹𝑆), and computes FEM models of the slope until deformations are unacceptably large or solutions do not converge. 15 

In classical soil mechanics, the factor of safety is the ratio of the shear strength at the plane of potential failure 𝜏𝑓 and the 

shear stress acting in the same plane 𝜏, namely: 

𝐹𝑆 = 𝜏𝑓/𝜏             (10) 

For the Mohr–Coulomb criterion, the previous equation reads: 

𝐹𝑆 = (𝑐 + (𝑠𝑛– 𝑢) · 𝑡𝑎𝑛𝜙)/𝜏 ,          (11) 20 

where 𝑐 is the cohesion and 𝜙 is the friction angle of the material, 𝑠𝑛 denotes the total normal stress and 𝑢 the pore pressure.  

For the Mohr–Coulomb model, a “reduced” set of material parameters 𝑐∗ and 𝜙∗ is computed: 

𝑐∗ = 𝑐/𝐹𝑆𝑛 ,            (12) 

𝑡𝑎𝑛𝜙∗ = 𝑡𝑎𝑛𝜙/𝐹𝑆𝑛            (13) 

The problem is then solved using this set of reduced material parameters while keeping all other parameters unchanged. If 25 

convergence is obtained, the 𝐹𝑆𝑛  value is increased and the problem is solved again. The lowest 𝐹𝑆𝑛  producing non-

convergence is reported as the “factor of safety” of the problem. If the resulting FS is greater than one, for a given water 

level stressing the upstream slope of the dam, the structure is stable. If the iterative procedure gives back a unitary 𝐹𝑆 value, 

the limit equilibrium conditions have been reached. This means that the coupling of both the dam geometrical configuration 

and the water level situation are going to produce the collapse of the structure. This last condition is the one that must be 30 

reached for the study purposes. The pore pressure distribution inside the dam body is a fundamental input for the strength 
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reduction analysis. Such distribution is obtained as a function of the hydraulic head stressing the upstream slope of the 

embankment. The filtration process, implemented in the finite element model, is based on the solution of the Laplace 

equation (Molinari et al., 2014; Chidichimo et al., 2015; Chidichimo et al., 2018): 

𝛻2ℎ = 0 ,            (14) 

where ℎ (x, y) represents the hydraulic head distribution within the dam body which is a function of the hydraulic 5 

conductivity of the dam material. Such dependence is defined by Darcy’s law: 

𝑞 = −𝐾𝛻ℎ = −𝐾 
𝑑

𝑑𝑙
(

𝑢

𝜌𝑔
+ 𝑧) ,          (15) 

where 𝑞  is Darcy’s velocity, 𝐾  is the hydraulic conductivity, 𝜌 is the water density, 𝑢  is the pore pressure and 𝑧  is the 

elevation above sea level. Several simulations were performed taking the parameters for the numerical model from the 

literature. Studies performed on the geotechnical properties of the volcanoclastic formation that is found in the Andes of 10 

Ecuador and Colombia, known as Cangahua, reported that the dry unit weight of the material was found to range around 14 

kN m-3 (Bommer et al., 2002). The strength parameters of volcanic sediments produced by recent eruptions were 

investigated by Orense et al., (2006), who found a value for the friction angle (𝜙) of these materials of about 40°, while the 

cohesion (𝑐) is close to zero. The hydraulic conductivity (𝐾) of pyroclastic beds was discovered to range between 10-4-10-5 m 

s-1 (Burgisser, 2012). A middle range value was adopted to implement the numerical models. The relatively high 15 

permeability of the pyroclastic material ensures the water outflow during the regular rainfall regimen. In case of extreme 

rainfall events (violent rains, typhoons, etc.), the volcanic material is no longer able to drain the water inflow producing the 

water level raising which will undermine the structure stability. The dams were thought to reach a height of 3 m and to hold 

out up to a maximum water level of 2.6 m. Assuming the aforementioned features, the first step started from the design of a 

stable dam configuration (Fig. 6a). This outcome was obtained trying different dimensioning solutions in order to avoid the 20 

early collapse of the structure due, for example, to its own weight. Figure 6b shows the water velocity field in the dam cross 

section, while Fig. 6c shows the failure surface in the downstream slope which is generated by a factor of safety of 1.28.  
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Figure 6: - a) cross sectional sketch of a stable dam with the main elements dimension; b) water velocity field moving in the dam 

body and associated phreatic surface; c) failure surface generated by a factor of safety of 1.28. 

Once a stable dam was obtained for the chosen working conditions, the second step was to repeat the strength reduction 

analysis several times by slowly increasing the inclination of the downstream slope until a unitary 𝐹𝑆 was reached. The 5 

inclination was increased using the corner between the downstream slope and the dam crest as a pivot point. This resulted in 

a gradual increase of the θ angle and a consequent reduction of the dam base. Figure 7 shows the analysis final result with 

the sizing specifications for an easy to collapse dam built in volcanoclastic material. To ensure a greater control over the 

natural dam collapse timing, a discharge channel can be arranged at the dam base. The degree of openness of this channel 

can be adjusted according to the flow rates values observed during the extreme rainfall events recorded over time in the area, 10 

in order to delay the achievement of the triggering hydraulic head. This ploy may be necessary to avoid the undesired 

simultaneous collapse of different dams; hazard could increase when different lahars are triggered at short time intervals and 

reach the confluence points almost at the same time. 
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Figure 7: a) cross sectional sketch of an instable dam with the main elements dimension; b) water velocity field moving in the dam 

body and associated phreatic surface; c) failure surface generated by a unitary factor of safety. 

4.2 Preliminary hypotheses and results of simulations 

LLUNPIY was validated for secondary lahars by simulating two events of February 12, 2005 and August 22, 2008 in the 5 

Vascún Valley of Tungurahua Volcano in Ecuador (Machado et al., 2014; Machado et al., 2015b). In particular, the 2008 

event is very important in order to confirm the value of the model parameters, tuned in the simulation even where the cause 

of the lahar was the breakdown of a temporary pond, generated by a small landslide. Those successful simulations permitted 

to be confident in the scenarios which could be realized by new simulations. Of course, a very accurate updating of 

geological data (DEM or DTM, detrital cover depth, etc.) and sufficient soil tomographies are necessary for applications in 10 

order to mitigate the lahar risk. 

An initial study was performed about the potentiality of applying security measures in the Vascún Valley by triggering lahars 

of planned size (the lahar level is here considered as the relevant datum) through the controlled collapse of rudimentary 

ponds.  

A preliminary analysis of the principal canyons of the Vascún Valley was performed in order to individuate favorable points 15 

for positioning embankments as dams; three points were chosen for building temporary dams: one located into Rio Vascún 

(1 in Fig. 8, Fig. 9, Fig.10), the second one located in a stream, tributary from the right (2 in Fig. 8, Fig. 9, Fig. 10), the third 

one located in a stream, tributary from the left (3 in Fig. 8, Fig. 9, Fig. 10). Rio Vascún in turn is tributary of much broader 
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Pastaza River, where lahars of Vascún Valley disperse. Simulations concern the lahars generated in the points 1, 2 and 3 

(Fig. 8, Fig. 9, Fig. 10), in short, lahar 1, 2 and 3. The same initial volume of 2008 event was selected for all the simulations 

except the last one. Three initial points permit to analyze an almost exhaustive set of possible conditions; we performed a 

sequence of simulations by LLUNPIY, of course, with the same parameters values of the successful simulation of 2008 

August 29 event. We present here some selected simulations, which look interesting for many considerations, which may be 5 

deduced by their analysis.  

 

Figure 8: Simultaneous triggering of lahars from points 1 and 2 (a), from points 2 and 3 (b). The maximum thickness of the lahar 

during the conjectured events is reported in meters according the legend. 

Initially, we considered two scenarios in order to investigate the effects of simultaneous and differed in time confluence of 10 

two lahars, the results of such simulations induced us to consider a larger set of cases. Two possible scenarios are here 

considered: the former one is generated by the simultaneous triggering from the points 1 with 4875 m3 of detachment volume 

and 2 with 4500 m3 of detachment volume (Fig. 8a), the second one is generated by the simultaneous triggering from the 

points 2 with the same previous detachment volume and 3 with 4250 m3 of detachment volume (Fig. 8b). The confluence of 
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the lahars in the Rio Vascún (for the following the confluence point) is almost simultaneous in the latter scenario, because of 

the similar distance between the triggering points and the confluence point; the situation is diverse for the former scenario, 

because the distances of the triggering points from the confluence point are very different. Intuitively the former case would 

be less dangerous, because the flood peaks of the two lahar cannot coincide at the confluence point, but the maximum 

thickness of lahar in the former scenario is 27 m., while the smaller value of 21 m. is detected in the latter scenario. The 5 

analysis of the two simulations showed that a very larger mass was eroded in the first part of the path from the point 1 in the 

former case. This unexpected result permits to plan an opportune strategy according to the degree of control for triggering 

lahars 1, 2 and 3 from the three respective points. If triggering can be well controlled with moderate/heavy rainfall, then the 

best choice is to trigger lahar 3 (smaller erosion) before lahar 1, so that lahar 3 anticipates part of the erosion process in the 

common path of both the lahars (1 and 3) as far as the confluence point and reduces consequently the thickness of the lahar 10 

1. When the peak of the lahar 3 is gone beyond the confluence point, then the lahar 2 can be triggered before the lahar 1, 

which has to be generated as late as possible. Anyway, the last lahar to be triggered has to be surely lahar 1 but a further 

investigation needs in order to understand better the priority between lahar 2 and 3; the study of single lahars generated in 

the points 1, 2 and 3 could solve the question, as it may be deduced with the following simulations with triggering single 

lahars.  15 

Lahar 1 causes the maximum erosion, with a maximum thickness of 26 m., because it follows the path of Rio Vascún, that is 

the largest rio in the valley (with a larger volume of pyroclastic cover to be eroded), lahar 3 shares a relevant part of the 

previous path and reaches a maximum thickness of 19 m., while the lahar 2, whose path is less large before its late 

confluence into Rio Vascún, involves the smallest erosion (maximum thickness of 16 m). Such results solve the doubt that 

we put forward with the first simulations.  20 

An operation of “cleaning” of pyroclastic cover could be projected by triggering initially lahar 2, with a first mobilization of 

the detrital cover as well for the area related to last part of the Rio Vascún from the confluence point of lahar 2 (maximum 

thickness 16 m, Fig.9b); when the lahar 2 dissolve into Pastaza river, lahar 3 could be triggered with a first erosion of the 

detrital cover between the confluence points of the lahars 2 and 3 into Rio Vascún, its maximum thickness does not 

overcome 16 m, (Fig.9c), then the most dangerous lahar 1 of Rio Vascún could start at the exhaustion of lahar 3, minimizing 25 

the hazard; the maximum thickness before the confluence of lahar 3 into Rio Vascún doesn’t overcome 22 m (Fig.8a and 

Fig.9a). 

We tested successfully the outcomes of this strategy by simulating the triggering of the three lahars in successive times, each 

one immediately after the exhaustion of the previous one; the first phase concerns the lahar 2 (Fig.9b), the maximum 

thickness doesn’t overcome 14 m in the last part of the path, from north of El Salado Bath to south of Baños.  30 
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Figure 9: Single triggerings: lahar generated in point 1 (a), in point 2 (b) and in point 3 (c). The legend specifies the maximum 

thickness of the lahar reached during the conjectured events for each point (cell). 

The erosion depth of pyroclastic cover after the lahar 2 exhaustion prevents that the maximum thickness of the successive 

lahar 3 overcomes 10-12 m after the confluence point with lahar 2 (Fig.10a) because of the reduced pyroclastic cover, while 5 

19 m are reached with triggering only the lahar 3 (Fig.9c). 

Finally, the most dangerous lahar 1 doesn’t overcome 4-8 m in the inhabited zones (Fig.10b), while it reaches 26 m of 

maximum thickness in the last part of the path (Fig.9a), when the other lahars 2 and 3 are not generated. 

This last result points out the importance of “cleaning” of pyroclastic cover according to an opportune strategy, that can be 

deduced by the outcomes of simulations, that explore all the possible significant cases. 10 
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Figure 10: Simulations of deferred triggering of lahars generated in point 3 (a), and 1(b). The legend specifies the maximum 

thickness of the lahar reached during the conjectured events for each point (cell). 

Last simulations concern two cases of simultaneous triggering of all the lahars with the same detachment volumes from 

points 1, 2 and 3 of the previous simulations (Fig. 11a) and the double detachment volumes from the same points (Fig. 11b) 5 

in order to understand how triggering larger volume could increase the lahar dangerousness. Results show that the maximum 

thickness of the lahar in the former case (Fig. 11a) is 28 m, while the maximum thickness of the lahar in the latter case (Fig. 

11b) is 29 m, just a meter more. A double initial volume does not involve a much larger erosion in this context, the joint 

effect of a larger volume and erosion doesn’t increase in dramatic way the high hazard of the situation. 

The overall results confirm the goodness of the strategy of triggering lahars at different times according to an accurate 10 

analysis of simulations after a precise knowledge of the geological features of the area of application. We remember that 

these simulations were obtained without sufficient data about the pyroclastic cover (it is obviously overestimated) because of 
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the lack of an adequate number of soil tomographies, that would have led to results with the desired precision, anyway, this 

problem doesn’t compromise the reliability and validity of the proposed methodology. 

 

Figure 11: Simulations of simultaneous triggering of lahars generated in point 1, 2, 3. In (a) with total detachment volume of 13625 

m3 and in (b) with total detachment volume of 27250 m3. The legend specifies the maximum thickness of the lahar reached during 5 
the conjectureded events for each point (cell). 

5 Conclusions and comments 

Our case study starts from examination of some significant natural events in the Vascún Valley, an area that is heavily 

exposed to lahar risk. Momentary ponds form along watercourses (rios) in the canyons of this volcanic zone, when landslides 

of volcanic deposits impede the normal flow. The most frequent cause of breakout of such natural ponds is the overflow of 10 

water across the newly formed dam and subsequent erosion and rapid down cutting into the loose rock debris. By eroding the 
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blockage and flowing out watercourse downstream, the initial surge of water will incorporate part of volcanic sediments and 

will generate lahars. The hazard related to these lahars depends both on the features of the temporary pond and the volcanic 

cover along the lahar path; a larger frequency of lahars produces smaller (shorter accumulation periods) and therefore less 

dangerous events. 

We explored the possibility to induce artificially lahars and performed many simulations for analyzing possible different 5 

scenarios for extremely complex situations; positive results of this case study permit us to settle a methodology and 

encourage us to continue this investigation. We propose for risk mitigation a controlled generation of small lahars by the 

collapse of temporary ponds at different times in order to avoid the superposition of different lahars with the same final path. 

Such a proposal is out of standard and is based on observations and study of favorable situations together with the usage of a 

robust and well validated model of simulation in order to choose the best procedures of intervention.  10 

The computational paradigm of Cellular Automata permitted to develop a reliable model for simulating the complex 

dynamics of the lahars. Reliable simulation tools permit to test various hypotheses and to create related scenarios to be 

analyzed.  

The possibility to simulate different scenarios permits to forecast the thickness of lahars, their velocity, times of their peaks, 

to operate the best choice as potential hazard with more efficient and reliable alert procedures. Applications of LLUNPIY 15 

need a thorough geological study of the area of interest, especially regarding morphology (DEM and DTM), pyroclastic soil 

cover, the composition of the erodible layer, also specified by soil tomography at the strategic points. Furthermore, it is also 

important to conduct a hydrological study of watercourses, where most likely the lahar are channeled. 

Feasibility studies confirmed the previous hypotheses of building weak dams with significant cost containment. Unexpected 

(and sometime dangerous) situations were evidenced by simulation results, which permit to evaluate the hazard of possible 20 

choices. Furthermore, more efficient and efficacious early warning protocols may be produced in such a context, social 

impact for partial evacuation could be mitigated. Interventions, that solve provisionally the lahar hazard, but involve future 

risks, can be avoided. The complexity of the objective presupposes a multidisciplinary (or perhaps transdisciplinary) 

approach, which implies an even greater effort to ensure those competences of different types (which are reflected by the 

various scientific extractions of the authors): geology, physics, mathematics, engineering, computer science can cooperate in 25 

achieving common goals. Protocols for mitigating the lahar risk can be developed in such a context, involving also social 

and political sciences (Leung et al., 2003). 

A pilot project at least with a temporary pond needs in order to experiment in safe conditions the triggering of a small lahar. 

This is a preliminary step for standard applications of this new strategy for reducing the risk of lahars. 

A further achievement is the extension of LLUNPIY for modelling the flows in the urbanized area as in the last versions of 30 

SCIDDICA (Lupiano et al., 2016, 2017). 
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Table 1 - Physical and empirical parameters 

Parameters Description 

pr 
cell radius (half the distance between the 
center of the central cell and the center of 
one of its adjacent neighbors)  

pt time corresponding to a MCA step 

pcf coefficient of friction 

pdt, energy dissipation due to turbulence 

ppe ,pde , ptm 
progressive erosion, energy dissipation 
due to erosion, threshold of mobilization 

pMadh, pmadh Max and min adherence  

pkhl loss of kinetic head 

 

  

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-406
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 28 January 2019
c© Author(s) 2019. CC BY 4.0 License.



28 

 

Table 2 - Substates 

Substates Description 

QA, QD, Altitude, pyroclastic stratum Depth; 

QLT, QKH Lahar Thickness, Lahar Kinetic Head,  

QX, QY 
the co-ordinates X and Y of the lahar center 
of mass inside the cell 

QE, QEX, QEY, QKHE 
(six components) 

External flow normalized to a thickness, 
External flow co-ordinates X and Y of mass 
center, Kinetic Head of External flow 

QI, QIX. QIY, QKHI 
(six components) 

Internal flow normalized to a thickness, 
Internal flow co-ordinates X and Y of mass 
center, Kinetic Head of Internal flow 
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Table 3 - Comparison between field and LLUNPIY simulation data 

 
Field data 

LLUNPIY 

output 

Maximum velocity  15 m/s 20 m/s 

Velocity at El Salado 4.7 m/s 6 m/s 

Time between start point and El Salado bath 5’ 4’ 50” 

Maximum flow between start point and El 

Salado 
640 m3/s 633 m3/s 

Total time between start point and Rio Pastaza - 9’ 

Total eroded debris  - 970000m3 
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