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Abstract. Drought is a major natural hazard in the Bolivian Altiplano that causes large agricultural losses, 

especially during a positive El Niño-Southern Oscillation (ENSO) phase. Empirical data for drought assessment 15 

purposes in this area are scarce and spatially uneven distributed. Due to these limitations we tested the 

performance of satellite imagery products for providing vegetation, land surface temperature (LST), precipitation 

and air temperature data on a local level. With this information, the Normalized Difference Vegetation Index 

(NDVI) and LST were used to classify drought events, associated with past ENSO phases. It was found that the 

most severe drought events generally occur during positive ENSO phase (El Niño years). We found that a decrease 20 

in vegetation is mainly driven by low precipitation and high temperature, and we identified areas where 

agricultural losses will be most pronounced under such conditions. The results show that droughts can be 

monitored using satellite imagery data when ground data are scarce or of poor data quality. The results can be 

especially beneficial for emergency response operations and for enabling a pro-active approach to disaster risk 

management against droughts. 25 

Keywords: Drought, agriculture, ENSO, NDVI, land surface temperature, climate variables, precipitation, and air 

temperature. 
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1. Introduction  

Agricultural production is highly sensitive to weather extremes, including droughts and heat waves. Losses due 

to such hazard events pose a significant challenge to farmers as well as governments worldwide (UNISDR, 2009, 

2015). Worryingly, the scientific community predicts an amplification of these negative impacts due to future 

climate change (IPCC, 2013). Especially in developing countries such as Bolivia, drought is a major natural hazard 5 

and Bolivia has experienced large socio-economic losses in the past due to such events (UNDP, 2011; Garcia and 

Alavi, 2018). However, the impacts vary on a seasonal and annual timescale, in regards to the hazard intensity, as 

well as the existing capacity to prevent and respond to droughts (UNISDR, 2009, 2015). Regarding the former, 

the El Niño Southern Oscillation (ENSO) plays an especially important role in several regions of the world, 

including the Bolivian Altiplano, as it drives losses of agricultural crops, and causes increased food insecurity 10 

(Kogan and Guo, 2017). Most important rainfed crops in the region include quinoa and potato (Garcia et al., 

2007). Generally speaking, agricultural productivity in the Bolivian Altiplano is low due to adverse weather and 

poor soil conditions (Garcia et al., 2003). On the other hand, low agricultural production levels can also be 

associated with the ENSO climate phenomena (Buxton et al., 2013). For this area, droughts are generally driven 

by the ENSO warm phases (Thompson et al., 1984; Garreaud and Aceituno, 2001; Vicente-Serrano et al., 2015). 15 

Previous research has addressed the influence of ENSO on agriculture in South America and the globe (see Iizumi 

et al., 2014; Ramirez-Rodrigues et al., 2014; Anderson et al., 2017). These studies were calling for a better 

understanding of the association between ENSO and agriculture to improve crop management practices and food 

security. 

The implementation of drought risk management approaches is now seen as fundamental (see e.g., the Sustainable 20 

Development Goals or the Sendai Framework for Risk Reduction) for sustainable development in vulnerable 

regions, including Latin American countries such as Bolivia (Verbist et al., 2016). To lessen the long-term impacts 

of these extreme events, the national government in Bolivia has taken several steps, e.g., to allocate budgets for 

emergency operations to compensate part of the losses occurred. Most of these measures are implemented ex-post 

(i.e., after a disaster event). However, based on ENSO forecasting, an El Niño event can be predicted 1 to 7 months 25 

ahead (Tippett et al., 2012) and consequently, there is an opportunity to implement additional ex-ante policies 

(i.e., before the event) to reduce societal impacts to droughts, increase preparedness, and generally improve current 

risk management strategies. 

One major constraint for drought risk management in Bolivia is the scarce and uneven distribution of weather and 

agricultural production related ground data. To circumvent this problem, we test satellite-based data products 30 
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(compared to available empirically gauged data) to provide a full coverage (in respect to land area) for drought 

assessment and its spatial distribution across the region. Due to the particular importance of ENSO for drought 

risk management, we additionally assess the impacts associated with ENSO on agriculture for the Bolivian 

Altiplano. Furthermore, we give indications what climate variables may be most important in which regions to 

predict drought losses that can further be used for hotspot selection. The paper is organized as follows, section 2 5 

presents the methodology applied and data used, and section 3 presents the corresponding results found. Section 

4 puts the results into a context of drought impact and hotspot selection with conclusion. 

2. Data Used and Methodology 

2.1 Ground data and satellite imagery 

The methodology applied is very much related to the data scarce situation for the Bolivian Altiplano and we 10 

therefore start with an introduction of available datasets that are used for our purposes. In regard to climate, the 

Altiplano has a pronounced southwest-northeast precipitation gradient (200–900 mm year−1) during the wet season 

occurring from November to March (Garreaud et al., 2003). Over 70% of total precipitation occur during summer 

months (from December to February, see Fig. 1a) in association with the South American Monsoon (see Zhou 

and Lau, 1998; Garreaud et al., 2003). Time series of monthly precipitation at 12 locations as well as mean, 15 

maximum, and minimum temperature at 8 locations from September 1981 to August 2015 were available from 

the National Service of Meteorology and Hydrology (SENAMHI) of Bolivia (see Table A1). These data sets have 

less than 10% of missing data.  

As already indicated, precipitation and temperature gauge locations are unevenly distributed and mainly 

concentrated in the northern Bolivian Altiplano. To improve the spatial coverage of climate related data, monthly 20 

quasi-rainfall time series from satellite data the Climate Hazards Group InfraRed Precipitation with station data 

(CHIRPS) were included in our study. CHIRPS represents a 0.05° spatial resolution satellite imagery and a quasi-

global rainfall dataset from 1981 to the near present (Funk et al., 2015). The advantage of using CHIRPS is the 

high spatial resolution of data, obtained with resampling of TMPA 3B42 (with 0.25° grid cell). The spatial 

resolution represents a better option for agricultural studies as well and therefore is most appropriate for our 25 

approach (CHIRPS is described in detailed at http://chg.geog.ucsb.edu/data/chirps/). 
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Fig. 1. (a) Gauged mean monthly total precipitation and average maximum and minimum temperature from September 1981 

to August 2015. (b) Mean monthly NDVI at the same spatial locations. Lower and upper box boundaries 25th (Q1) and 75th 

(Q3) percentiles, respectively, line inside box is median, lower and upper error lines 1.5 times the interquartile range (Q3-Q1) 

from the top or bottom of the box, white circles data falling outside 1.5 times the interquartile rage. 

Additionally, satellite monthly mean air temperature was obtained from the Physical Sciences Division (PSD) of 

the US National Oceanic and Atmospheric Administration (NOAA, https://www.esrl.noaa.gov/psd/) defined by 

Willmott and Matsuura. The satellite air temperature dataset has a resolution of 0.5° and was available during the 

study period from September 1981 to August 2015. 5 

Apart from climate datasets, NDVI was assembled from the Advanced Very High Resolution Radiometer 

(AVHRR) sensors by the Global Inventory Monitoring and Modelling System (GIMMS) at semi-monthly (15 

days) time step with a spatial resolution of 0.08ᵒ. NDVI 3g.v1 (third generation GIMMS NDVI from AVHRR 

sensors) was available from September 1981 to August 2015. The NDVI is an index that presents a range of values 

from 0 to 1, bare soil values are closer to 0, while dense vegetation is close to 1 (Holben, 1986). NDVI 3g.v1 10 

GIMMS provides information to differentiate valid values from possible errors due to snow, cloud, and 

interpolation. These errors were removed from the dataset and replaced with the nearest neighbour value.  

Additionally, Land Surface Temperature (LST) was obtained from the Global Land Data Assimilation System 

(GLDAS) by the Noah Land Surface Model L4 monthly version 2.0. The LST dataset has a resolution of 0.25° 
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and it was available for the study period from September 1981 to August 2015. Agricultural land in the Bolivian 

Altiplano covers about 20,000 km2, and it was spatially identified based on the land use map developed by the 

Autonomous Authority of the Lake Titicaca (for the northern Altiplano) in 1995 at a scale of 1:250,000 (UNEP, 

1996), and the Ministry of Development Planning in 2002 using Landsat imagery and ground information at a 

scale 1:1,000,000 (geo.gob.bo, for the southern Altiplano). 5 

2.2 Validation of satellite-based data products 

The performance of the satellite-based data (compared to empirical ground data, see Fig. 2) to accurately estimate 

amount of rainfall (for example to assess rain detection capability) was based on statistical measures for monthly 

pair-wise time series, including categorical analyses and follows the methodology applied in previous studies in 

this region for comparison reasons (Blacutt et al., 2015; Satgé et al., 2016). The mean error (ME), bias, and mean 10 

absolute error (MAE) were calculated based on Wilks (2006). These measures evaluate the prediction accuracy 

of the satellite data compared to gauged data. The ME and bias show the degree of over- or underestimation (Duan 

et al., 2015). In contrast, as measuring the absolute deviation, MAE shows only non-negative values. The ME, 

bias, and MAE perfect match correspond to zero between gauge observation and satellite-based estimate. 

Furthermore, and similar to Blacutt et al. (2015) and Satgé et al. (2016), the Spearman’s rank correlation was 15 

computed to estimate the goodness of fit to observations. To evaluate results, as in similar studies, correlation 

coefficients larger or equal to 0.7 were considered as reliable (Condom et al., 2011; Satgé et al., 2016). The ME, 

bias, and MAE were calculated, respectively according to Eqn. (1), (2), and (3) (Table 1). 

Table 1. Accuracy measures for satellite data performance evaluation. Here, N is the number of samples, 𝑆𝑖 is the satellite-

based dataset for month 𝑖, and 𝐺𝑖 is the gauged dataset for the same month. H is a hit, F is a false alarm, and M is a miss. 20 

Statistical indicator Abbreviation Units Equation   

Mean error  ME mm, oC ∑(𝑆𝑖 − 𝐺𝑖) / 𝑁  
(1) 

Bias  Bias  % ∑(𝑆𝑖 − 𝐺𝑖) / ∑ 𝐺𝑖 × 100  
(2) 

Mean absolute error MAE % ∑|(𝑆𝑖 − 𝐺𝑖) / 𝐺𝑖| / 𝑁 × 100  
(3) 

Probability of detection POD  - H / (H + M) 
(4) 

False alarm ratio FAR - F / (H + F) 
(5) 
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Fig. 2. Mean of total annual precipitation from September 1981 to August 2015 for: (a) gauged precipitation data (circles) and 

isohyets (solid line), (b) the CHIRPS satellite rainfall product, and (c) Bolivia, and the major political divisions of the Bolivian 

Altiplano: La Paz, Oruro and Potosi. 

Two statistical indicators based on a contingency table were computed for the categorical statistics, namely 

Probability of Detection (POD) and False Alarm Ratio (FAR). The POD indicates what fraction of the observed 

events that was correctly estimated, and FAR indicates the fraction of the predicted events that did not occur 

(Bartholmes et al., 2009; Ochoa et al., 2014; Satgé et al., 2016). The POD and FAR range from 0 to1, where 1 is 

a perfect score for POD, and 0 is a perfect score for FAR. These measures were used to evaluate the satellite 5 

estimations. Here, the rainfall amounts are considered as binary values, i.e., rain occurrence or absence. Based on 

this approach, three counting variables were taken into account: the number of events when the satellite rain 

estimation and the rain gauge report a rain event (hit or H), when only the satellite reports a rain event but no rain 
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on the ground is observed (false alarm or F), and when only the rain gauge reports a rain event but not the satellite 

and therefore is a miss (M). The POD and FAR were calculated, respectively according to Eqn. (4) and (5) (Table 

1). 

Besides the precipitation data, satellite temperature data were validated using ground data. The satellite air 

temperature was correlated with the mean gauged temperature at the same spatial location. The mean temperature 5 

of the gauged data was calculated using the arithmetic mean between the maximum and minimum temperature. 

The regression performance was evaluated using the monthly pair wise time series to define the Spearman’s rank 

correlation, relative ME, bias, and MAE. 

2.3 Drought associated with ENSO 

Healthy vegetation usually shows enlarged near infrared and reduced visible red band, and shows a low surface 10 

temperature due to the absorption of thermal infrared radiation (Kogan and Guo, 2017). Therefore, vegetation 

indices and land surface temperature (LST) are widely used for water and energy balance approaches (see Moran 

et al., 1994; Corbari et al., 2010; Sánchez et al., 2012; Helman et al., 2015). Previous findings indicate a negative 

(positive) relationship between LST and NDVI caused by limited moisture (energy-temperature) availability for 

vegetation growth (Karnieli et al., 2010). Drought spells typically present low NDVI and high LST due to 15 

vegetation deterioration and higher contribution of the soil signal (Kogan, 2000). Here, we study the relationship 

between LST and NDVI using the Vegetation Health Index (VHI, Eqn. (8)) developed by Kogan (1995) that 

combines the Vegetation Condition Index (VCI, Eqn. (6)) and Temperature Condition Index (TCI, Eqn. (7)). VCI 

is a normalized NDVI that allows to seek the variability of the signal, showing an increased VCI when NDVI 

increases. (Kogan, 1995; Kogan, 2000; Kogan and Guo, 2017). In contrast, the TCI formulates a reverse ratio 20 

compared to the VCI, decreasing when LST increases, assuming that higher land surface temperatures suggest a 

decreasing soil moisture causing stress of the vegetation canopy. 

Table 2. Drought classification indices.  

Drought index Acronym Equation   

Vegetation Condition Index  VCI (𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) / (𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) (6) 

Temperature Condition Index TCI (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑖) / (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛) (7) 

Vegetation Health Index VHI 0.5  𝑉𝐶𝐼 + 0.5  𝑇𝐶𝐼 (8) 
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where NDVIi, NDVImax and NDVImin (LST, LSTmax and LSTtmin) are monthly NDVI (LST) and the month absolute 

maximum and minimum from September 1981 to August 2015, respectively. We took a mean of VCI and TCI assuming that 

they equally contribute to the VHI. 

The VCI, TCI, and VHI was defined for each month during the growing season (from September to April). We 

assumed the occurrence of drought event when the indices were lower than 40%. The classification of drought 5 

was established based on the severity of the event in which five classes were defined: extreme (≤10), severe, 

(≤20), moderate (≤30), mild (≤40), and no (>40) drought (Bhuiyan and Kogan, 2010). 

The drought events were further classified based on the occurrence of El Niño and La Niña events (Table 3). The 

classification ENSO was obtained from Null (2018). El Niño and La Niña events were identified from 5 

consecutive overlapping 3-month mean sea surface temperature for the Niño 3.4 region (in the tropical Pacific 10 

Ocean). A moderate El Niño (La Niña) was defined as 5 consecutive overlapping 3-month periods at or above the 

+1.0 o to + 1.4 oC anomaly (-1.0 o to -1.4 oC), strong El Niño (La Niña) event for a threshold between +1.5 o to 

+1.9 oC anomaly (-1.5 o to -1.9 oC anomaly), and a very strong El Niño event for a threshold equal or greater than 

+2 oC anomaly (https://ggweather.com/enso/oni.htm). For this study, a neutral or weak phase was defined as a 

threshold between -0.9 o to +0.9 oC anomaly.  15 

Table 3. El Niño and La Niña phases (from Null (2018)). 

El Niño La Niña 

Moderate Strong Very Strong Moderate Strong 

1986-87 1987-88 1982-83 1995-96 1988-89 

1994-95 1991-92 1997-98 2011-12 1998-99 

2002-03  2015-16  1999-00 

2009-10    2007-08 

    2010-11 

 

2.4 Regression of vegetation and climate variables 

A stepwise regression approach was used to quantify the dependency between vegetation and satellite-based 

climate variables (precipitation and temperature; Eqn. 10) further to be used for hotspot selection. In more detail, 20 

the results presented here are a combination of forward and backward selection techniques to increase the 

robustness of the results (in terms of explanatory power, i.e., variability explained, as well as variable selection, 

i.e., same variable selected across a range of possible models). The independent variable considered was NDVI, 
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and the dependent variables were selected to include precipitation and air temperature (for the same spatial 

location across the study region). We assumed that NDVI represents the crop phenological stages of the growing 

season that is from September to April (Fig. 1). Precipitation was selected as predictor due to its relevance for 

water availability for vegetation growth. Precipitation is the main source of water in the Altiplano because only 

9% of the Bolivian cropped surface area are irrigated (INE, 2015). Air temperature is a relevant variable due to 5 

photosynthetic and respiration processes (Karnieli et al., 2010). Firstly, the NDVI was related to CHIRPS rainfall 

datasets. Secondly, air temperature was included in the analysis. For this, only the NDVI grids for agricultural 

land were selected. Since, agricultural production data are scarce in the region, we suggest that crop yield data 

can be improved using the NDVI. Besides improving the crop yield resolution, the NDVI also allows to analyse 

the variability of vegetation at a monthly time scale. This makes it possible to analyse the phenology of the studied 10 

crops through to the growth phases. NDVI estimates the vegetation vigour (Ji and Peters, 2003) and crop 

phenology (Beck et al., 2006). The final regression model therefore is 

𝑁𝐷𝑉𝐼 = 𝛽0 + 𝛽1 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (10) 

For the forward selection, the variables were entered into the model one at a time in an order determined by the 

strength of their correlation with the criterion variable (only including variables if they present a confidence level 

of 95%). The effect of adding each variable was assessed during its entering stage, and variables that did not 15 

significantly add to the fit of the model were excluded (Kutner et al., 2004). For backward selection, all predictor 

variables were entered into the model first. The weakest predictor variable was then removed and the regression 

fit re-calculated. If this significantly weakened the model then the predictor variable was re-entered, otherwise it 

was deleted. This procedure was repeated until only useful predictor variables (in a statistical sense, e.g., 

significant as well as model fit) remained in the model (Rencher, 1995). The results were compared with results 20 

from literature regarding phenology and weather-related characteristics of crops.  

It should be noted that the precipitation in the Altiplano shows a marked rainy season from November to March. 

The peak of precipitation is in December and January (Fig. 1a). And, NDVI displays a peak in March and April 

(Fig. 1b). The lag between the precipitation and NDVI is reasonable since vegetation requires time to grow (e.g., 

Shinoda, 1995; Cui and Shi, 2010; Chuai et al., 2013). Considering this lag-time, the 3-month time series of NDVI 25 

was regressed with the 3-month time series of the climate variables (satellite-based data products of precipitation 

and air temperature) during the growing period for the agricultural land. First, the NDVI and the climate variables 

were related considering the overlapped 3-month time series, and afterwards a relation was developed considering 

a lag from 1 to 4 months between NDVI and climate variables, resulting 22 regressions per NDVI grid. The 
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regressions were developed for each NDVI grid separately, associated with the nearest precipitation and air 

temperature dataset. Previous to the stepwise regression analysis, the 3-month time series of NDVI, satellite 

precipitation and satellite air temperature data were standardized. 

3. Results  

Validation of the satellite rain data using empirical precipitation data from the weather stations was done for the 5 

12 locations where gauge precipitation data were available (see Fig. 2 and Table A1). The qualitative methods 

discussed in section 2.2 for the CHIRPS rainfall estimates show differences between summer (from December to 

March) and winter season (from June to August). CHIRPS data show better accuracy during summer. The 

precipitation during the austral summer is highly relevant because it concentrates the 70% of the annual rainfall 

(Garreaud et al., 2003) and it occurs during the growing season. During May, CHIRPS data show lower accuracy 10 

compared to the other months. The precipitation from May to August is almost null in the study area (Fig. 1) and 

it will be further described as the dry season. This season presents stable atmospheric conditions with few 

precipitation events (Garreaud et al., 2003). 

Interestingly, the spearman rank correlation between monthly gauged precipitation and satellite rain product 

datasets was significant (p-value <0.05) for all locations. The correlation coefficients (r) vary from 0.5 to 0.8 15 

(mean = 0.7). The ME and bias disclose an underestimation of precipitation estimation during October, November, 

and April, and an overestimation during the summer season (mean = 5 mm and 7%, respectively) with a peak in 

February. For the MAE coefficient, CHIRPS estimations are more accurate during the rainy season (mean = 31%). 

In contrast, CHIRPS data indicate poor accuracy during the dry season (mean MAE = 92%). From June to August, 

CHIRPS data present an underestimation of the gauged precipitation (mean bias = -39%). Summarizing these 20 

observations, we conclude that the CHIRPS-rainfall dataset is more accurate during the rainy season, and it 

represents an adequate alternative in case of lack of gauged data or in case of poor data quality. However, it should 

be noted that such data still must be used with caution considering the uncertainties due to the under or 

overestimation of precipitation along the heterogeneous topography of the Altiplano (see Paredes-Trejo et al., 

2016; Paredes-Trejo et al., 2017; Rivera et al., 2018). 25 
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Fig. 3. Monthly accuracy measures of CHIRPS-rainfall data product. Mean monthly values are represented by black circles, 

and bars represent the standard error of the mean. 

Moving from rainfall to temperature, the inter-annual temperature at the 8 locations varied considerably between 

summer (from December to March) and winter (from June to August), including a larger variance for the minimum 5 

temperature (Fig. 1a). The mean monthly air temperature from satellite data was compared with mean temperature 

of gauged data. The satellite air temperature underestimated the mean gauged temperature, and this error could be 

due to the high elevation and cloud coverage. The spearman correlation at the 8 stations displayed coefficients 

from 0.1 to 0.7. From November to April, air temperature satellite-based estimations show significant correlations 

(p-value <0.05). Large correlations are shown during summer season (mean = 0.7), while the other months show 10 

rather weak correlations. ME and bias show a slight underestimation from October to April (mean = -0.5 and -4% 

respectively), and an overestimation from May to August (mean = 0.3 and 12% respectively). Finally, MAE is 

about 10% from September to April, higher values develop during winter season (mean = 32%). In conclusion, 

the satellite air temperature data product performs better from November to April. Similar to the precipitation 

data, the application of satellite air temperature data must take into account the potential errors due to the 15 

estimation uncertainties, mainly during winter season.  
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Fig. 4. Same as Fig. 3 but for accuracy measures of satellite-based air temperature data product. 

As discussed above, the VCI, TCI, and VHI were calculated during the growing season. The sowing period 

depends on the initial soil moisture content, therefore the beginning of the growing season oscillates from 

September to November (Garcia et al., 2015). For this reason, the drought severity was classified considering the 5 

mean of VCI, TCI, and VHI for the agricultural land during November-April. Figure A1 shows mean monthly 

VCI from November 1981 to April 2015. The major drought events (severe or extreme) are visible in 1982-83, 

1983-84, and 2009-10. Followed by moderate drought events during 1987-88, and 1993-94, and several mild 

events. Figure A2 shows the mean monthly TCI, where the major drought events (severe or extreme) occurred in 

1982-83, 1987-88, 1997-98, 2004-05, and 2009-10. Followed by moderate drought events during 1981-82, 1983-10 

84, 1994-95, 2006-07, and 2008-09, and several mild events as well. Finally, Fig. A3 shows the VHI results, in 

which the major drought events occurred during 1982-83, 2004-05, and 2009-10. 

Further, we related drought indices with the ENSO phases (Table 4). Extreme, and severe droughts were generally 

found during El Niño phase. The extreme drought of 1982-83, coincided with a very strong El Niño phase. For 

this event, the largest economic losses caused by droughts during the study period were reported (Table 5). 15 

Followed by the very strong El Niño phase of 1997-98, which reported the second largest economic losses. Besides 

these two main drought events, the strong El Nino 1987-88 coincided with an extreme/moderate drought 

(TCI≤10%, VCI≤30%) classification. During this period, large economic losses were reported as well (Table 5). 

In contrast, the strong El Niño 1991-92 showed low severity (mild drought VCI≤40%), and no economic losses 
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were reported. This indicates that despite El Niño phenomenon is generally associated with drought in the 

Altiplano, there are several other mechanisms that drive a drought occurrence and determine its severity. For 

instance, dry (wet) and warm (cool) conditions during El Niño (La Niña) phases are generally shown in the tropics 

(Garreaud et al., 2003). However, an anomalous location and intensity of zonal wind anomalies could cause 

disturbances of the warming and cooling air patterns causing rainfall anomalies on the Altiplano (Garreaud and 5 

Aceituno, 2001). This is the case of the dry La Niña 1988-89 that showed a mild drought classification (TCI≤40%). 

Table 4. Drought indices classification during ENSO phases. 

ENSO Drought  VCI TCI VHI 

El Niño 

Extreme  1982-83, 1987-88, 1997-98  

Severe  1982-83, 2009-10 2009-10  1982-83, 2009-10 

Moderate 1987-88 1994-95  

Mild 1986-87, 1991-92 1986-87 1994-95, 1997-98 

La Niña Mild 1995-96, 2007-08, 2010-11 1988-89  

Neutral/ 

weak 

Extreme  2004-05  

Severe  1983-84   

Moderate 1993-94 
1981-82, 1983-84, 2006-07, 

2008-09 
2004-05 

Mild 
1981-82, 1996-97,  

2003-04, 2008-09 

1984-85 1990-91  

1993-94 2014-15 

1981-82, 1983-84, 1990-91, 

1993-94, 2005-06, 2008-09 

 

One severe (1983-84) and one extreme (2004-05) event occurred during a neutral/weak ENSO. The severe drought 

(VCI ≤ 20%) occurred during a neutral phase of 1983-84. This coincides with the findings of Vicente-Serrano et 10 

al. (2015), that analyzed the standardized precipitation/evaporation index in Bolivia, which is an alternative 

technique to characterize a meteorological drought. The extreme drought (TCI ≤ 10%) of 2004-05 occurred in 

November and December. From January to April of 2004-05 the VCI and VHI were above 40%, and there were 

no claims of drought losses in the Altiplano for this particular year (Table 5). Besides these two events, moderate 

and mild droughts also occurred during non El Niño phases. 15 

Table 5 shows that five drought events were reported during a neutral ENSO phase. In 2012-13, the largest impact 

occurred, affecting about 80 000 people in the Altiplano (Desinventar, 2020). Despite that the mean of the drought 

indices indicates no drought during this period (VCI, TCI, and VHI >40%), some spatial locations in the study 
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region indicated the occurrence of a drought event in November and December (21% and 29% of the total studied 

grids showed mild and moderate droughts for the TCI and VCI respectively). 

Table 5. Drought impact in Bolivia (from EM-DAT (2020), BID (2016), and CAF (2000)). 

Year ENSO phase Affected people Total damage ('000 US$) 

1982-83 El Niño 3 083 049 917 200 

1987-88 El Niño  48 400 

1989-90 Neutral 283 160  

1997-98 El Niño  279 310 

1993-94 Neutral 50 000  

1999-00 La Niña 20 000  

2003-04 Neutral 55 000  

2007-08 La Niña 27 500  

2009-10 El Niño 62 500 100 000 

2012-13 Neutral 340 355  

2013-14 Neutral 51 180  

 

Regarding the relationship between vegetation and climate variables, we note that the precipitation season occurs 5 

mainly during the austral summer months (from December to March), and the vegetation development shows a 

lag with a maximum development of about March and April (Fig. 1). The NDVI (Fig. 1b) shows a similar growing 

pattern as the crop phenology in the region, which starts in September and ends in April. Maximum and minimum 

temperature varies during the year. Higher temperature during the austral summer leads to higher 

evapotranspiration and a decrease of water retained in the root zone. With this presumption, stepwise linear 10 

regression models were tested using 3-month time series of NDVI as dependent variable and 3-month time series 

of satellite-based data product of precipitation and air temperature as independent variables (Eqn. (10)). The 

stepwise regression was defined considering the overlapped 3-month time series, and the 3-month time series with 

a lag from 1 to 4 months at the same spatial location over the agricultural land.  

The results of the stepwise regression show larger coefficient of determination (R2) in the northern and central 15 

Bolivian Altiplano, starting from the southern Lake Titicaca and moving southwards to the Lake Poopó, and close 

to the rivers paths. Lower R2 is shown along the southwestern Bolivian Altiplano, that could be explained through 

the large variance of the NDVI, which may depend to on other factors besides precipitation and temperature, 

including crop management. Figure 5 shows the R2 of the best fit regression in the Bolivian Altiplano for the 
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three-month period of NDVI and the climate variables (precipitation and temperature) during the beginning and 

end of the growing season. It can be seen that the NDVI depends largely on the studied climate variables. This 

may be due to the crop´s sensitivity for water stress during specific stages of the growing season. For instance the 

most sensitive stages of the quinoa crop are the emergence, flowering, and grain development (see Geerts et al., 

2008; Geerts et al., 2009), and the near absence of irrigation practices in most of these regions.  5 

 

Fig. 5. Coefficient of determination (R2) of NDVI for the 3-month time series for a) SON, b) OND, c) MAM and d) MAM 

and the climate variables (satellite precipitation and air temperature products) for SON, SON, FMA, and MAM respectively. 

The significant regression coefficients for precipitation (air temperature) cover: a) 45% (98%), b) 64% (91%), c) 95% (96%), 

and d) 23% (98%) of the total studied grids that represent the agricultural land.  10 

In more detail, the stepwise regression results for the overlapping 3-month time series of NDVI and climate 

variables for SON (September, October, and November) show statistically significant coefficients for precipitation 

and air temperature at 45% and 98% the agricultural area in the Bolivian Altiplano with a median of 0.2 and 0.7, 

respectively (Fig. 5a). This indicates that the NDVI increases with more rain and higher air temperature. 

Interestingly, the significant regression coefficients of NDVI for OND (October, November, and December) 15 

associated with precipitation and air temperature for SON cover 64% and 91% of the agricultural area, and have 

a positive median of 0.3 and 0.4, respectively (Fig. 5b). A time-lag of one month shows larger spatial coverage of 
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response of vegetation to precipitation anomalies. Here, the largest coefficient of determination are shown in areas 

surrounding the Lake Titicaca. Moreover, the response of the NDVI for MAM (March, April, and May) to the 

studied climate anomalies for FMA (February, March and April) covers 95% and 96% of the agricultural land for 

precipitation and air temperature, respectively (Fig. 5c). This mostly shows coefficients of determination ranging 

from 0.4 to 0.8, and positive regression coefficients for precipitation and air temperature have a median of 0.5 and 5 

0.4, respectively. The hours of sun required for crop development could be the explanation for the time-lag 

between vegetation and the climate variables. In addition, the lag differences between vegetation and precipitation 

can be explained by topography, land cover, ground-water, and soil properties (Yarleque et al., 2016). Finally, the 

regression for NDVI and climate variables for the overlapped 3-month time series of MAM shows significant 

coefficients at 23% and 98% of the agricultural land, with a median of 0.4 and 0.6 for precipitation and air 10 

temperature, respectively (Fig. 5d). Hence, the vegetation response to precipitation is limited for the last 

overlapped 3-month time series of the growing season. However, it should be noted that air temperature remains 

an important variable. 

To summarize, while acknowledging some important limitations, we found the CHIRPS dataset adequate to be 

used for drought risk assessment in case of severe data scarcity for the Bolivian Altiplano. Furthermore, we found 15 

that the vegetation variance can be explained by precipitation and air temperature. More specifically, we point out 

the relevance of precipitation as the main water source for vegetation development and air temperature as a driver 

of photosynthetic processes. Precipitation is particularly important at the early and late phenological stages, in 

which crops are more sensitive to water shortage. This is the case for the main crops in region, i.e., quinoa and 

potato. For the quinoa crop, the most sensitive phases to water stress are the emergence, flowering, and grain 20 

development (see Geerts et al., 2008; Geerts et al., 2009). The most sensitive phases of the potato crop to water 

stress is the tuber initiation and bulking (van Loon, 1981; Alva et al., 2012). On the other hand, air temperature is 

relevant for vegetation productivity, and overall, we found a positive relation between vegetation and air 

temperature. However, in prolonged dry periods, high air temperature could increase the evapotranspiration rates, 

and in consequence, decrease the soil moisture (Huang et al., 2019). This scenario could impact negatively the 25 

vegetation, as this is the case of the drought events of 1982-83 and 1997-98, where large production losses were 

reported (Santos, 2006).  
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4. Discussion and Conclusion 

We employed a satellite dataset product and tested its empirical accuracy as well as performance to similar (but 

with coarser resolution) datasets available for the Bolivian Altiplano region. Afterwards spatio-temporal patterns 

of satellite precipitation and air temperature anomalies were explored based on monthly time series during the 

period of September 1981 to August 2015. Drought severity was evaluated based on a drought classification 5 

scheme using NDVI and LST. Finally, association between the spatial distribution of NDVI with precipitation 

and air temperature was examined. Using these datasets, it was shown that drought risk (measured through various 

drought indices) increases substantially during El Niño years (Table 4 and 5), and as a consequence the socio-

economic vulnerability of farmers will likely increase during such periods. ENSO forecasts as well as drought 

severity (through drought indices) can help to determine possible hotspots of crop deficits during the growing 10 

season. Through empirical relationship with climate variables on the local scale our approach can enable a pro-

active approach to disaster risk management against droughts. As it was shown here, ENSO warm phase related 

characteristics are especially important in the context of extreme drought events and could therefore be 

incorporated within early warning systems as standard practice. Despite these challenges for development of 

drought early warning systems (see FAO, 2016, 2017), applications have been successful in the past (e.g., Global 15 

Information and Early Warning System (GIEWS) of FAO, and Famine Early Warning System (FEWS) of 

USAID). Monitoring and predicting ENSO can therefore significantly contribute to reduce the risk of disasters. 

This study is a first attempt to provide an assessment of drought impact on agriculture in relation to the ENSO 

phenomenon for the Bolivian Altiplano. We focused on where vegetation is more affected by droughts over 

agricultural land and how this can be clarified using satellite imagery. It is important to note that the variance of 20 

drought indices (as well as NDVI) to a large extend is explained by precipitation and air temperature anomalies 

in the studied region. The agriculture in this semi-arid region is ecologically fragile and the main water source is 

precipitation, and thus crop production is considerably affected by precipitation anomalies. However, while an 

overall response of vegetation variance to precipitation and air temperature is evident, it is important to consider 

other variables, such as evapotranspiration and soil moisture to improve risk-based models. Another important 25 

issue is the time-lag of the response of vegetation to precipitation and air temperature anomalies, which shows a 

hysteresis of 1-2 months. These findings provide information for future drought risk management and early 

warning system applications. In addition, with such information agricultural models can be set up and risk 

management plans with better accuracy determined. 
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APPENDIX 

Table A1. Spatial location of the studied weather stations where gauged precipitation data are available, the stations that also 

present temperature maximum and minimum data indicate T on the column of temperature.  

No Station name Latitude Longitude Altitude Temperature 

[1] Ayo Ayo -17.1 -68.0 3888  

[2] Calacoto -17.3 -68.6 3830 T 

[3] Collana -16.9 -68.3 3911 T 

[4] El Alto Aeropuerto -16.5 -68.2 4034 T 

[5] El Belen -16.0 -68.7 3833 T 

[6] Oruro Aeropuerto -18.0 -67.1 3701 T 

[7] Patacamaya -17.2 -67.9 3793  

[8] Salla -17.2 -67.6 3500  

[9] San Juan Huancollo -16.6 -68.9 3829  

[10] Santiago de Huata -16.1 -68.8 3845 T 

[11] Tiahuanacu -16.6 -68.7 3863 T 

[12] Viacha -16.7 -68.3 3850 T 

 

 5 

Fig. A1. Monthly mean of the VCI (%) from November 1981 to April 2015. Values below 40% (dashed line) represent a 

drought event. 
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Fig. A2. Same as Fig. A1 but for the TCI. 

 

Fig. A3. Same as Fig. A1 but for the VHI. 


