
We want to thank the reviewers for their continued support, detailed comments, and valuable 

recommendations. Each suggestion was discussed in detail, and we have rewritten the paper 

accordingly. And, we have improved the clarity and correctness of phrasing throughout our manuscript. 

Please find below our detailed response to the comments of the anonymous referees. 

Anonymous Referee #1 

General comment  
The authors integrate remote sensing products (Normalized Difference Vegetation Index, land surface 

temperature, and precipitation), meteorological observations (nearsurface air temperature and 

precipitation), and crop yield data to assess the impacts of ENSO on quinoa and potato yield in the 

Bolivian Altiplano. The purpose of the study is to develop a statistical framework that can be employed 

to reduce drought impacts on agricultural production in a region where surface data are scarce. The 

study shows that the remote sensing products listed above are sufficiently accurate when compared 

against ground observations, and that the positive ENSO phase significantly decreases crop yields. The 

framework is then employed to identity hotspots that are most vulnerable to droughts. The MS presents 

a relevant contribution to drought-related risk assessments in a region that is poorly studied. My main 

concern is related to the bias correction of land surface temperature, as explained in the main 

comments below. Also, the presentation of the methods section requires some attention. I recommend 

considering the MS for publication in NHESS after major revision. 

Main comments  
- The authors assume that land surface temperature (LST) and near-surface air temperature 

should be equal. This is a misconception as both variables present different processes. LST 

directly follows from the Stefan-Boltzmann law and therefore depends on outgoing long wave 

radiation and surface emissivity. Nearsurface air temperature, on the other hand, is affected by 

other processes, such as turbulent heat fluxes. The authors use near-surface air temperature 

measurements to "bias correct" remotely-sensed LST using an approach by Zhou and Wang 

(2016). This does not make much sense, as LST and near-surface air temperature should differ. 

Furthermore, the cited study by Zhou and Wang (2016) actually uses ground measurements of 

LST rather than near-surface air temperature to bias correct remotely-sensed LST. I propose 

three alternative approaches to address this issue: the authors could (i) rerun their analysis 

using LST directly, (ii) find an approach how to spatially interpolate near-surface air 

temperature, or (iii) use an already existing air temperature data set that has been published 

elsewhere (e.g. data from the climate research unit).  

Response: The database used previously in our manuscript was “global monthly land surface air 
temperature” from the Global Historical Climatology Network and the Climate Anomaly 
Monitoring System (GHCN and CAMS) defined by Fan and van den Dool (2008). In the revised 
version we now used the monthly air temperature dataset from University of Delaware 
developed by Willmott and Matsuura (see 
http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html). Furthermore, the 
air temperature database is now properly named along the manuscript.  
 

http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html


- I suggest that the authors improve the presentation of the methods section by including the 

equations employed in their statistical framework (e.g. the NashSutcliffe efficiency (E) 

coefficient, POD, and FAR). 

Response: The equations used for the statistical analysis were now included in the methods 

section and explicitly referred to throughout the manuscript. 

Detailed comments  
- P01L14 Please spell out ENSO before using the acronym. 

Response: The El Niño Southern Oscillation (ENSO) is now spelled out at the first time that it is 

mentioned in the manuscript.  

- P01L17 You write that "droughts can be better predicted using a combination of satellite 

imagery and ground-based available data". Better than ground-based available data alone? 

Please be explicit. 

Response: The new version of the manuscript mentions: “The results show that droughts can be 

monitored using satellite imagery data when ground data are scarce or of poor data quality”. 

- P01L18 You write that "satellite climate data were associated with" NDVI. This is a very vague 

formulation to outline your approach. Please be more precise 

Response: The manuscript was modified and the new text includes: “…we tested the 

performance of satellite imagery products for providing vegetation, land surface temperature 

(LST), precipitation and air temperature data. With this information, we assessed drought 

impact on agriculture by associating vegetation with precipitation and air temperature”. 

- P01L19 You started out your abstract on the topic of drought and are now jumping to "the crop 

production variability". Please find a more elegant way to include the topic of crop production 

variability. I would include this above when you describe the research problem. 

Response: Now two main modifications were included in the manuscript to avoid confusion. 

Firstly, the title was modified to: “Drought impact in the Bolivian Altiplano agriculture associated 

with El Niño Southern Oscillation using satellite imagery data.” This includes agriculture as one 

of the focal points of our study. Secondly, in the abstract the following text was now included to 

be more specific about our contribution: “Drought is a major natural hazard in the Bolivian 

Altiplano that causes large agricultural losses, especially during a positive El Niño-Southern 

Oscillation (ENSO) phase. However, empirical data for drought assessment purposes in this area 

are scarce, spatially uneven distributed. Due to these limitations we tested the performance of 

satellite imagery products for providing vegetation, land surface temperature (LST), 

precipitation and air temperature data on a local level. With this information, the Normalized 

Difference Vegetation Index (NDVI) and LST were used to classify drought events, and associated 

with past ENSO phases. It was found that the most severe drought events generally occur during 

positive ENSO phase (El Niño years). We found a decrease in vegetation is mainly driven by low 

precipitation and high temperature rates, and we identify areas where losses will be most 

pronounced under such conditions. The results show that droughts can be monitored using 

satellite imagery data when ground data are scarce or of poor data quality. The results can be 

especially beneficial for emergency response operations and for enabling a pro-active approach 

to disaster risk management against droughts.” 



- P01L19 You are jumping back and forth between methods and results. I think you could improve 

the readability of your abstract when you first outline your approach and then the results 

Response:  The abstract was modified, please see our response above. 

- P01L21 I would replace "indicate" with "identify". 

Response: Identified is now used instead. 

- P02L02 I would include a reference here, e.g. UNDP, 2011: Tras las huellas del cambio climatico 

en Bolivia: Estado del arte del conocimiento sobre adaptacion al cambio climatico agua y 

seguridad alimentaria. United Nations Development Program - Bolivia, 144 pp  

Response: The references UNDP, 2011; Garcia and Alavi, 2018 were now included in the text. 

- P03L14 You could include a reference for SAMS here, e.g. Zhou, J., and K. M. Lau, 1998: Does a 

monsoon climate exist over South America? J. Climate, 11, 1020- 1040.  

Response: The references Garreaud et al., 2003; Zhou and Lau, 1998 were included.  

- P03L19 Please explain more clearly how exactly the gap filling was done. 

Response:  Data gaps were no longer filled, only in-situ precipitation and temperature data sets 

with less than 10% of missing data were considered for the analysis. This analysis was carried 

out relating the in-situ data with the satellite-based data of precipitation and temperature for 

pair-wise time series. This is mentioned in the section 2.2 Validation of satellite-based data 

products. We included more information to avoid confusion. 

- P03L25 You mention the resolution three times. Please avoid redundancy 

Response: Now, the resolution is mentioned only once. 

- P04L14 Reformulate. I suggest you write "An E equal to 1 corresponds ..." 

Response: E is no longer used as a statistical measurement as other measures as suggested are 

now introduced. 

- P04L08 I suggest you provide the equations for the Nash-Sutcliffe efficiency (E) coefficient, POD, 

and FAR 

Response:  All the equations used for the statistical accuracy measures were included in the 

revised manuscript. Please see Table 1. 

- P06L10 This paragraph suggests that land surface temperature (LST) and nearsurface air 

temperature should be equal. Please refer to my general comment above to address this 

misconception. 

Response:  Air temperature, no LST, was used as a predictor. However, it was wrongly named. 

Now, we have re-written the text and it is properly named in the manuscript (see also response 

to the main comments). 

- P06L28 Delete "and the" or restructure sentence. 

Response:  “and the data set spans” was deleted from the text. 

- P07L16 This sentence is vague. Do you mean NDVI grid cells? Also, NDVI does not "simulate" 

crop yield. Please rephrase. 

Response:  This sentence was removed. 

- P07L20 Please define accumulated degree days. 



Response: ADD is no longer used as a predictor, and the analysis now includes the 3-month time 

series of air temperature during the growing season instead. We explain the reasoning for that 

in more detail in the text.  

- P07L22 Better than what?  

Response:  The text was modified to: “For this, only the NDVI grids at the agricultural land were 

selected”. 

- P07L26 Spell out and define GDD here.  

Response: GDD is no longer used in the analysis.  

- P11L28 Please refer to my general comment above. 

Response: Please see the main comment response. 

- P11L30 Typo, replace p = 001 with p = 0.01. 

Response:  The typo was corrected. 

- P12L03 Please refer to my general comment above.  

Response: Please see the main comment response. 

- P15L18 I would move any discussion on insurance policy and drought mitigation to the 

discussion section. 

Response: This information was moved to discussion section. 

- P16L15 Avoid vague formulations such as "There are numerous cases in many countries". Also, it 

is not accurate to say that the impacts of ENSO are particularly strong in the mid-latitudes. 

Response:  This sentence was removed.  

- Figure 01 please specify the percentiles, min, max, and outliers of the boxplots in the Figure 

caption. The same comment applies to Figure 5. 

Response: Now included, e.g. lower and upper boundaries 25th (Q1) and 75th (Q3) percentiles, 

respectively, line inside box is median, lower and upper error lines 1.5 times the interquartile 

rage (Q3 - Q1) from the top or bottom of the box, white circles data falling outside 1.5 times the 

interquartile rage. 

  



Anonymous Referee #2 
 

GENERAL COMMENT  
The paper is focused in the study of drought risk generated by climatic variables during ENSO 

occurrences and it is oriented to agricultural issues and related impacts on Bolivian Andes. For the last, 

the authors used potato and quinoa crop measurement data, to be related with temperature and 

precipitation information on ENSO composite periods. Additionally, the document assessed the 

detection of specific drought hotspot areas in base the NDVI vegetation index. Crops were related with 

NDVI variability, and the last was linked with climate variables as precipitation and accumulated degree 

day data. In general, the document is oriented to impacts on agriculture generate by droughts during 

strong El Niño events. 

 

MAIN COMMENTS  
- The authors didn’t clarify their risk definition, for example, in front to an extreme drought even 

during any kind of warm ENSO phase, the risk can be very low or cero if the direct affected 

population has very low vulnerability. Then, the mention of risk implies knowledge about the 

conception of risk, vulnerability and hazardous events (i.e., the danger amount), which are not 

well described in the current document. 

Response: The reviewed manuscript focuses on drought impact in the Bolivian Altiplano 

agriculture associated with El Niño Southern Oscillation using satellite imagery data. The aim is 

to provide information to support disaster risk management using satellite imagery. It is 

tested/compared to empirical observations so that it can be used for risk reduction of crop 

production losses. We focus on the severity of drought events. The severity drought is described 

in the manuscript (please see the results section, Tables 4 and 5 and appendix Fig. A1-A3). 

- Lack of good bibliography review. 

Response: Previous related studies were reviewed in more detail and relevant information is 

included in the manuscript, please see reference section. 

- P1 section 1. The general idea is the impacts of ENSO in agriculture and food security, but there 

is not so much to risk. 

Response: As mentioned above, considering that the manuscript focuses on drought impact on 

agriculture associated with ENSO. The manuscript title and content now describe more 

accurately the study approach. 

- P3 L4. The title is covering a lot of issues. Risk is not only studied on agricultural context. My 

suggestion is to change the title to something like “Agricultural drought impacts during the 

ENSO over the Bolivian Altiplano”. 

Response: Thank you for the suggestion.The title was modified to “Drought impact in the 

Bolivian Altiplano agriculture associated with El Niño Southern Oscillation using satellite imagery 

data”.  

- P3 L23. CHIRPS is a good dataset for precipitation information, since it is a mixed observation 

product (satellite products, station data, etc.), but here is necessary to indicate the problems 



using it over Andes or over South America. Several papers are pointing out that the CHIRPS 

across the Andes overestimate/underestimate in lower/higher values, respectively. 

Paredes-Trejo et al. 2016. Intercomparison of improved satellite rainfall estimation with CHIRPS 

gridded product and rain gauge data over Venezuela. 

https://doi.org/10.20937/ATM.2016.29.04.04  

Paredes-Trejo et al. 2017. Validating CHIRPS-based satellite precipitation estimates in Northeast 

Brazil. https://doi.org/10.1016/j.jaridenv.2016.12.009  

Rivera et al. 2018. Validation of CHIRPS precipitation dataset along the Central Andes of 

Argentina. https://doi.org/10.1016/j.atmosres.2018.06.023 

Response: Thank you for the references. They were very helpful. The manuscript now indicates 

the uncertainties of using satellite-based precipitation data, and the recommended references 

are included in the results section.  

- P4 L3. The LST-NDVI association is usually used for drought monitoring, then why didn’t the 

authors explain nothing about it in the introduction and/or in the section 2.1?  

Karnieli et al., 2010. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits 

and Limitations. https://doi.org/10.1175/2009JCLI2900.1 

Response: The manuscript now includes more information about NDVI and LST as relevant 

drought indicators. Moreover, the classification of drought using NDVI and LST is now included 

in detail as well (see sections 2.3 and 3). 

- P5 L5. Since the raw data have cyclicity/periodicity parts, then the 0.7 Spearman correlation 

should represent a very low association or linearity. Before to start the comparison, it is 

necessary that the authors remove the cyclicity/periodicity parts from the assessed information.  

Response: To avoid errors from periodicity, the accuracy measures of the satellite-based data 

products of precipitation and air temperature were defined for each month of the time series 

(see sections 2.3 and 3). 

- P6 L10. The LST definition is different that the gauged air temperature from weather stations. 

LST is defined by Stephan-Boltzmann law, and on the other hand, the air temperature is defined 

by climate patterns and process. Moreover, as before indicated, the LST-NDVI relationship is a 

good method for monitoring drought, more than air temperature – NDVI. The authors should 

work with the LST but need to improve the correction procedure with some in ground LST 

measurements or other alternative way.  

Response: The database used previously was “a global monthly land surface air temperature” 

from the Global Historical Climatology Network and the Climate Anomaly Monitoring System 

(GHCN and CAMS) defined by Fan and van den Dool (2008). For the modified manuscript, we 

used the monthly air temperature dataset from University of Delaware developed by Willmott 

and Matsuura (see http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html).  

Now, the air temperature database is properly named along the manuscript.  

https://doi.org/10.20937/ATM.2016.29.04.04
https://doi.org/10.1016/j.jaridenv.2016.12.009
https://doi.org/10.1016/j.atmosres.2018.06.023
https://doi.org/10.1175/2009JCLI2900.1
http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html


- P7 L8. The crop yield vs NDVI is given values on 0.6 Spearman correlation, and it is yielding a 

little ambiguous result, the authors should bring information like, for example, how much is the 

explained variance of this relationship? i.e., How much does the NDVI explain the yield?  

Response: The reviewed manuscript does not include the association of crop yield and NDVI as a 

technique to discard NDVI grids. In contrast, we now assume that NDVI generally simulates 

properly the crop production. This is because the elimination of NDVI grids from the agricultural 

land could ignore relevant information. As well, we want to avoid some uncertainties originated 

from the crop yield dataset. For instance, the crop yield data do not take in consideration the 

crop rotation that are represented by different crops in the same area across sequenced 

growing seasons. We include the limitations as well as advantages using this approach in the 

discussion section and also provide some ways forward in that regard. 

- P7 section 2.4. Was only a set of 2 predictors that were assessed in the regression analysis? if 

not, which are the other discarded predictors in the regression analysis? more than see the 

statistical results, the Authors should explain the physical reasons why the others preselected 

predictors were considered as potential predictors and why they were discarded.  

Response: This text is now included in the manuscript: “For the study, we assumed that NDVI 

simulates the stages of the crop phenological stages that is from September to April (Fig. 1). 

Precipitation was selected as predictor for its relevance on water availability for vegetation 

growth. Precipitation is the main source of water in the Altiplano because only 9 percent of the 

Bolivian cropped surface area is irrigated (INE, 2015). Air temperature is a relevant variable due 

to its involvement on photosynthetic and respiration processes (Karnieli et al., 2010).” We also 

discussed the results in more detail. 

- P9 section 3. The data analysis should be done after to remove the cyclicity/periodicity of the 

data, to be comparable between them.  

Response: To avoid errors originated from cyclicity/periodicity, now the analysis is developed 

for each month for the accuracy measures of satellite/based data products and the classification 

of drought. The stepwise regression between NDVI and climate variables were developed using 

a standardized 3-month time series. “Previous to the stepwise regression analysis, the 3-month 

time series of NDVI, satellite precipitation and satellite air temperature were standardized”. 

- P10 L7. This could be moved to conclusion section. 

Response: The text was modified (see sections 3 and 4). 

- P10 L8. “all dataset had acceptable bias” this affirmation is something subjective since the bias 

can be between 15% to 35%, then it is far to be considered as an acceptable bias. More than the 

references indicated for the authors (those can show values acceptable in other context), Can 

the authors show any way or calculation to corroborate that that range of bias is “acceptable”? 

Another option, in my point of view, is removed this assumption.  

Response: Now the text includes:  “Summarizing these observations we conclude that CHIRPS-

rainfall dataset is an adequate alternative in case of lack of gauged data or in case of poor data 

quality. However, it should be noted that such data still must be used with caution considering 

the uncertainties due to the under or overestimation of precipitation along the heterogeneous 

topography of the Altiplano (see Paredes-Trejo et al., 2016;  Paredes-Trejo et al., 2017;  Rivera et 

al., 2018).” 



And: 

“In conclusion, the satellite air temperature data product perform adequately from November 

to April. Similar to the precipitation data, the application of satellite air temperature data must 

take into account the potential errors due to the estimation uncertainties, mainly during winter 

season”. 

 

- P11 L27. Again, the LST temperature has a different physical definition than air temperature. 

Moreover, the LST- ENSO relationship is given as the ENSO alters the air temperature patterns 

globally, and that air temperature influences vegetation and agricultural productivity (Glennie 

and Anyamba, 2018), then on ground level, additionally that air temperature, the vegetation 

cover, albedo, and soil properties (and others) are affecting the ground temperature generated 

by emitted radiation on the ground. This means that the ENSO-LST and ENSO- air temperature 

teleconnections have different mechanisms, then the correction of LST with air temperature has 

not sense since we expect to assess the crop yields. Hence, the suggestion that the LST 

underestimation could be due to elevation and/or cloud cover is not correct too. Glennie and 

Anyamba, 2018. Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop 

yields in the United States Corn Belt from 1982 to 2014. 

https://doi.org/10.1016/j.jag.2017.12.011  

Response: As mentioned above the database used in the analysis was air temperature, however 

it was misnamed, now it is properly named along the text. Moreover, now we employed 

another air temperature data base that is the monthly air temperature dataset from University 

of Delaware developed by Willmott and Matsuura 

(http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html).  

 

- P12 L25-L26. This phrase is ambiguous. Something that the authors can do is to calculate the 

explained variance per each predictor, and it associates with location coordinates.  

Response: This text was removed, and now the results show the findings using the spatial 

coordinates (see Fig. 5). 

- P13 L5-L6. Although the lag values are expected to be between 3 or 4 months, the lag 

differences between precipitation and vegetation per location can be explained on base to local 

landscape elements (e.g., Yarleque et al. 2016). Yarleque, C., M. Vuille, D. R. Hardy, A. Posadas, 

and R. Quiroz (2016), Multiscale assessment of spatial precipitation variability over complex 

mountain terrain using a high-resolution spatiotemporal wavelet reconstruction method, J. 

Geophys. Res. Atmos., 121, 12,198–12,216, doi:10.1002/2016JD025647.  

Response: Thank you for the useful reference, it is now included in the results section of the 

manuscript.  

 

- P13 L11-L12. “The hours of sun required for crop development could be the explanation for 

these results” It is true in part, see me previous comment. On this Andes region is necessary 

consider aquifer or ground water level changes (i.e., moisture on ground level) from 

Mountainous regions to flatter/lower elevation areas. 

Response: The manuscript now mentions the findings of Yarleque et al. 2016. 

 

http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html


- P14 L4. Here was linked a generated index with sea surface temperature anomalies against the 

crop yield signal with anomalies+ periodicity/cyclicity?. If this is the case, then I expect that the 

results bring a kind of non-physical statistical information.  

Response:  Now the analysis includes the classification of drought using NDVI and LST. The 

drought events were analyzed and compared with ENSO phases. The classification of drought 

was developed for each month to avoid errors from periodicity. 

 

- Figure 5. In this figure is given boxplots with only the 1982-1983 strong El Niño case as outlier, 

the rest of cases for quinoa and potato are given a non-statistical difference with other years, 

since the rest of cases are intercepting the range of the boxplots, i.e., between the maximum 

and minimum possible values, contradicting the conclusions of the authors.  

Response: This figure is no longer in the manuscript. More information to avoid confusion in 

regards to results found was included. 

 

- P16 L1. How is the “magnitude of assistance” calculated/estimated? 

Response: This sentence was modified to “Our approach can enable a pro-active approach to 

disaster risk management against droughts.” 

DETAILED COMMENTS  
- P6 L7. Four or three? P6 L7. “but not the satellite not and” changes to “but not the satellite 

and”. P8 L5. “potato was 4◦C and 3◦C for quinoa” changes to “potato and quinoa were 4◦C and 

3◦C, respectively” P8 L10. What’s “5 percent level” exactly mean? P9 L7. “with” changes to 

“during”. P9 L11. Add “strong” before that “El Niño” P9 L12. Add “strong” before that “El Niño”. 

P12 L7. Remove “is”. P12 L11. “. And” Changes to “, and”. P14 L7. “warm” changes to “strong”. 

P15 L2. Add “strong” before that “El Niño”. P15 L9. Add “strong” before that “El Niño”. P15 L20. 

Remove “is”. 

Response:  All the detailed comments from page 6 to page 15 were modified following the 

referee suggestions. 
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Abstract. Drought is a major natural hazard in the Bolivian Altiplano that causes large agricultural losses to 15 

farmers, especially during a positive El Niño-Southern Oscillation (ENSO) phases. However, eEmpirical data for 

drought assessment risk estimation purposes in this area are scarce and spatially uneven distributed. Due to these 

limitations, similar to many other regions in the world, we tested the performance of satellite imagery data 

products for providing vegetation, land surface temperature (LST), precipitation and air temperature data on a 

local level. The results show that droughts can be better predicted using a combination of satellite imagery and 20 

ground-based available data. With this information, Consequently, the satellite climate data were associated with 

the Normalized Difference Vegetation Index (NDVI) in order to evaluate the crop production variabilityWthat the 

Normalized Difference Vegetation Index (NDVI) and LST were used to classify drought events, associated with 

past ENSO phases. Moreover, NDVI was used to target specific drought hotspot regions. FurthermoreIt was found 

that, the most severe drought events generally occur during positive ENSO phase (El Niño years)., a significant 25 

We found that a decrease in crop yieldsvegetation is mainly driven by low precipitation and high temperature, and 

we indicate identified areas where agricultural losses will be most pronounced under such conditions. The results 

show that droughts can be monitored using satellite imagery data when ground data are scarce or of poor data 

quality. The results can be especially beneficial can be used for emergency response operations and for enablinge 
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a pro-active approach to disaster risk management against droughts. This includes economic-related and risk 

reduction strategies such as insurance and irrigation. 

Keywords: Drought risk management, agriculture, ENSO, NDVI, land surface temperature, climate variables, 

precipitation, and air temperatureNDVI, Quinoa and pPotato yield. 

1. Introduction  5 

Agricultural production is highly sensitive to weather extremes, including droughts and heat waves. Losses due 

to such extreme hazardous events pose a significant challenge to farmers as well as governments worldwide 

(UNISDR, 2009, 2015). Worryingly, the scientific community predicts an amplification of these negative impacts 

due to future climate change (IPCC, 2013). Especially in developing countries such as Bolivia, drought is a major 

natural hazard and Bolivia Bolivia has experienced large socio-economic losses in the past due to such events 10 

(UNDP, 2011; Garcia and Alavi, 2018). However, the impacts vary on a seasonal and annual timescale, in regards 

to the hazard intensity, and as well as the existing capacity to prevent and respond to droughts (UNISDR, 2009, 

2015). Regarding the former, the El Niño Southern Oscillation (ENSO) plays an especially important role in 

several regions of the world, including the Bolivian Altiplano, as it drives losses ofin agricultural crops, and causes 

increased food insecurity (Kogan and Guo, 2017). Most important rainfed crops in the region include quinoa and 15 

potato (Garcia et al., 2007). Generally speaking, agricultural productivity in the Bolivian Altiplano is low due to 

adverse weather and poor soil conditions (Garcia et al., 2003). On the other hand, low agricultural production 

levels can also be associated with the ENSO climate phenomena (Buxton et al., 2013). For this area, droughts are 

generally driven by the ENSO warm phases (Thompson et al., 1984; Garreaud and Aceituno, 2001; Vicente-

Serrano et al., 2015). Previous research has addressed the influence of ENSO on agriculture in South America and 20 

the globe (see Iizumi et al., 2014; Ramirez-Rodrigues et al., 2014; Anderson et al., 2017). Moreover, Anderson et 

al. (2017) synthetized published studies on this topic. TheThese studies were calling for suggest that a better 

understanding of the association between ENSO and agriculture to could improve the crop management practices 

and food security. 

In this regard, the Sustainable Development Goals (SDGs) state that priorities for adaptation to climate change 25 

include water and agricultural dimensions. These, in turn, can be related to extreme natural hazardous phenomena 

including floods, droughts, and higher temperatures (UN, 2016). The implementation of drought risk management 

approaches is now seen as fundamental (see e.g., the Sustainable Development Goals or the Sendai Framework 

for Risk Reduction) for developing a strategic plan processes and the planning of mitigation policy measures for 
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sustainable development in vulnerable regions, including Latin American countries such as Bolivia (Verbist et al., 

2016). To lessen the long-term impacts of these extreme events, the national government in Bolivia has taken 

several steps, e.g., to allocate budgets for emergency operations to compensate part of the losses occurred., which 

are usually evaluated ex-post (i.e. after the event). Most of these measures are implemented ex-post (i.e., after a 

disaster event). However, based on ENSO forecasting, an El Niño event can be predicted 1 to 7 months ahead 5 

(Tippett et al., 2012) and consequently, there is an lso opportunity to implement additional ex-ante policies (i.e., 

before the event) to reduce societal impacts to droughts, increase preparedness, and generally improve current risk 

management strategies. 

This paper addresses the corresponding question how a risk based approach can be used to determine the potential 

need of resources during droughts and provide ways forward how to determine hotspot areas where it is most 10 

likely that such resources would be needed. One major constraint for developing countries, when it comes to 

analyseOne major constraint for drought risk management in Bolivia current and future drought occurrences, is 

the scarce and uneven and scarce distribution of weather and crop agricultural production related ground data. To 

circumvent this problem, we suggest to usetest  rainfall, land surface temperature, and vegetation satellite-based 

data products (compared to available empirically gauged data) so as to providehave a full coverage (in respect 15 

toof land area) for drought risk assessment and its spatial distribution in the study areaacross the region. 

Furthermore, these data are combined with empirically gauged precipitation and , temperature atand crop yield 

data on the ground level to enhance the knowledge and provide consistent relationship between agriculturale 

production and climate variability. Due to the particular importance of ENSO for drought risk managementFinally, 

wethe approach is used to  additionally assess thedrought risk impacts on agriculture associated with ENSO on 20 

agriculture for the Bolivian Altiplano that is which was found to be significantly important to be considered within 

any drought risk management strategy. Furthermore, we give indications what climate variables may be most 

important in which regions to predict drought losses that can further be used for hotspot selection.  We provide 

ways forward to tackle these challenges using a risk based approach. The paper is organized as follows, section 2 

will presents the methodology applied and data used, and while section 3 presents the will corresponding results 25 

found. Section 4 puts the results into a context of drought impact and hotspot selection with conclusion.presents 

the results. Section 4 gives a discussion in regards to risk management strategies and finally, section 4 concludes 

and provides an outlook to the future. 
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2. Data Used and Methodology 

2.1 Ground data and satellite imagery 

The methodology applied is very much related to the data scarce situation for the Bolivian Altiplano and we 

therefore start with an introduction of available datasets that are used for our purposes. In regard to 

climateClimate-wise, the Altiplano has a pronounced southwest-northeast precipitation gradient (200–900 mm 5 

year−1) during the wet season occurring from November to March (Garreaud et al., 2003). Over 760% of total 

precipitation occur during summer months (from December to FebruaryDJF, see Fig. 1a) in association with the 

South American Monsoon (SAM) (see Fig. 1a)(see Zhou and Lau, 1998; Garreaud et al., 2003). Time series of 

monthly precipitation at 23 12 locations as well as mean, maximum, and minimum temperature at 811 locations 

from September 1981 to August 2015 were obtainedavailable from the National Service of Meteorology and 10 

Hydrology (SENAMHI) of Bolivia (see Table A1). Initially, the available precipitation data set included 65 gauges 

but only 23 were used as they had These data sets have less than 10% of missing data. (chosen as cut-off point for 

use in the analysis). Data gaps were filled with mean monthly values from the full dataset. 

As already indicated, precipitation and temperature gauge locations are unevenly distributed and mainly 

concentrated in the northern Bolivian Altiplano. To improve the spatial coverage of rainfall climate related data, 15 

monthly quasi-rainfall time series from satellite data were therefore included in our study. T the Climate Hazards 

Group InfraRed Precipitation with station data (CHIRPS) were included in our study. from the quasi-global 

rainfall dataset was used. CHIRPS represents a 0.05° spatial resolution satellite imagery and is a quasi-global 

rainfall dataset from 1981 to the near present with a satellite resolution of 0.05° (Funk et al., 2015). The advantage 

of using CHIRPS is the higher spatial resolution of data, i.e., the resolution of 0.05°, obtained with resampling of 20 

TMPA 3B42 (with 0.25° grid cell). The spatial resolution represents a better option for agricultural studies as well 

and therefore is most appropriate for our approach (CHIRPS is described in detailed at 

http://chg.geog.ucsb.edu/data/chirps/). 
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Fig. 1. (a) Gauged Mmean monthly total precipitation and average maximum and minimum temperature from September 1981 

to August 2015 of the 23 gauged stations. (b) The mMean monthly NDVI at the same spatial locations. Lower and upper box 

boundaries 25th (Q1) and 75th (Q3) percentiles, respectively, line inside box is median, lower and upper error lines 1.5 times 

the interquartile range (Q3-Q1) from the top or bottom of the box, white circles data falling outside 1.5 times the interquartile 

rage. 
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Additionally, satellite monthly mean land surface air temperature (LST) was obtained from the Physical Sciences 

Division (PSD) of the US National Oceanic and Atmospheric Administration (NOAA, 

https://www.esrl.noaa.gov/psd/) defined by Willmott and MatsuuraGlobal Historical Climatology Network and 

the Climate Anomaly Monitoring System (GHCN and CAMS,  

https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html) from the US National Oceanic and 5 

Atmospheric Administration (NOAA) defined by Fan and van den Dool (2008). The satellite air temperature 

dataset LST has a resolution of 0.5° and was it is conveniently also available during the study period from 

September 1981 to August 2015.  

Apart from climate datasets, NDVI was assembled from the Advanced Very High Resolution Radiometer 

(AVHRR) sensors by the Global Inventory Monitoring and Modelling System (GIMMS) at semi-monthly (15 10 

days) time steps with a spatial resolution of 0.08ᵒ. NDVI 3g.v1 (third generation GIMMS NDVI from AVHRR 

sensors) was available from September 1981 to August 2015. The NDVI is an index that presents a range of values 

from 0 to 1, bare soil values are closer to 0, while dense vegetation is close to 1 (Holben, 1986). NDVI 3g.v1 

GIMMS provides information to differentiate valid values from possible errors due to snow, cloud, and 

interpolation . These errors were removed from the dataset and replaced with the nearest neighbour value.  15 

Additionally, Land Surface Temperature (LST) was obtained from the Global Land Data Assimilation System 

(GLDAS) by the Noah Land Surface Model L4 monthly version 2.0. The LST dataset has a resolution of 0.25° 

and it was available for the study period from September 1981 to August 2015. Agricultural land in the Bolivian 

Altiplano covers about 20,000 km2, and it was spatially identified based on the land use map developed by the 

Autonomous Authority of the Lake Titicaca (for the northern Altiplano) in 1995 at a scale of 1:250,000 (UNEP, 20 

1996), and the Ministry of Development Planning in 2002 using Landsat imagery and ground information at a 

scale 1:1,000,000 (geo.gob.bo, for the southern Altiplano). 

2.2 Validation of satellite-based data rainfall and temperature products using gauged data 

The performance of the satellite-based data products(compared to empirical ground data, see Fig. 2)  to accurately 

estimate amount of rainfalls (i.e.,for example to assess rain detection capability) was based on statistical measures 25 

for monthly pair-wise time series, including categorical analyses and follows the methodology applied in previous 

studies in this region for comparison reasons as suggested in the literature (Blacutt et al., 2015; Satgé et al., 2016). 

The mean error (ME), also called bias, and mean absolute error (MAE) wereas calculated based on Wilks (2006). 
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Additionally, the Nash-Sutcliffe efficiency (E) coefficient was calculated based on Nash and Sutcliffe (1970). 

These measures evaluate the prediction accuracy of the satellite data compared to the gauged data. The ME and 

bias shows the degree of over- or underestimation (Duan et al., 2015), and the E  coefficient evaluates the 

prediction accuracy compared to observations. In contrast, as measuring the absolute deviation, MAE shows only 

non-negative values. TheAn ME, bias, and MAE  equals to one that corresponds to ahave perfect match 5 

correspond equal to zero between gauge observation and satellite-based estimate and zero indicates that the 

satellite estimations are as accurate as the mean of observed data. Negative values indicate that the observed mean 

is better than satellite-based estimate, see Nash and Sutcliffe (1970) for more details. Furthermore, and similar to 

Blacutt et al. (2015) and Satgé et al. (2016), the Spearman’s rank correlation was computed to estimate the 

goodness of fit to observations. To evaluate results, as done in similar studies, correlation coefficients larger or 10 

equal to 0.7 with a significance level of 0.01 were considered as reliable (Condom et al., 2011; Satgé et al., 2016). 

The ME, bias, and MAE were calculated, respectively according to Eqn. (1), (2), and (3) (Table 1). 

Table 1. Accuracy measures for satellite data performance evaluation. Here, N is the number of samples, 𝑆𝑖 is the satellite-

based dataset for month 𝑖, and 𝐺𝑖 is the gauged dataset for the same month. H is a hit, F is a false alarm, and M is a miss. 

Statistical indicator Abbreviation Units Equation   

Mean error  ME mm, oC ∑(𝑆𝑖 − 𝐺𝑖) / 𝑁  
(1) 

Bias  Bias  % ∑(𝑆𝑖 − 𝐺𝑖) / ∑ 𝐺𝑖 × 100  
(2) 

Mean absolute error MAE % ∑|(𝑆𝑖 − 𝐺𝑖) / 𝐺𝑖| / 𝑁 × 100  
(3) 

Probability of detection POD  - H / (H + M) 
(4) 

False alarm ratio FAR - F / (H + F) 
(5) 

 15 
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Fig. 2. MThe mean of the total annual precipitation from September 1981 to August 2015 for: (a) gauged precipitation data 

(circles) and isohyets (solid line), (b) the CHIRPS satellite rainfall product, and (c) Bolivia, and the major political divisions 

of the Bolivian Altiplano: La Paz, Oruro and Potosi, where crop yield data areis available in the Altiplano. 

Two statistical indicators based on a contingency table were computed for the categorical statistics, namely 

Probability of Detection (POD) and False Alarm Ratio (FAR). The POD indicates whatich fraction of the observed 

events that was correctly estimated, and FAR indicates the fraction of the predicted events that did not occur 

(Bartholmes et al., 2009; Ochoa et al., 2014; Satgé et al., 2016). The POD and FAR range from 0 to1, where 1 is 

a perfect score for POD, and 0 is a perfect score for FAR. The categorical statistic measuresThese measures were 5 

used to evaluate the satellite estimations. Here, the rainfall amounts are considered as discrete binary values, i.e., 

rain occurrence or absence. Based on this approach, four three scenarios counting variables were taken into 

account: the number of events when the satellite rain estimation and the rain gauge report a rain event (hit or H), 
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when only the satellite reports a rain event but is ano rain on the ground is observed  (false alarm or (F), and when 

only the rain gauge reports a rain event but not the satellite not and therefore is a miss (M). The POD and FAR 

were calculated, respectively according to Eqn. (4) and (5) (Table 1). 

Besides the precipitation data,  also satellite temperature data were validated using ground data. The LST satellite 

air temperature was correlated with the mean gauged temperature at the same spatial location. The mean 5 

temperature of the gauged data was calculated using the arithmetic mean between the maximum and minimum 

temperature. The relationship enables to correct the LST with a linear regression equation (Zhou and Wang, 2016). 

The regression performance was evaluated using the monthly pair wise time series to define the Spearman’s rank 

correlation, relative ME,  or bias, and MAEand the E coefficient. 

2.3 Drought associated with ENSO 10 

Healthy vegetation usually shows enlarged near infrared and reduced visible red band, and shows a low surface 

temperature due to the absorption of thermal infrared radiation (Kogan and Guo, 2017). Therefore, vegetation 

indices and land surface temperature (LST) are widely used for water and energy balance approaches (see Moran 

et al., 1994; Corbari et al., 2010; Sánchez et al., 2012; Helman et al., 2015). Previous findings indicate a negative 

(positive) relationship between LST and NDVI caused by limited moisture (energy-temperature) availability for 15 

vegetation growth (Karnieli et al., 2010). Drought spells typically present low NDVI and high LST due to 

vegetation deterioration and higher contribution of the soil signal (Kogan, 2000). Here, we study the relationship 

between LST and NDVI using the Vegetation Health Index (VHI, Eqn. (8)) developed by Kogan (1995) that 

combines the Vegetation Condition Index (VCI, Eqn. (6)) and Temperature Condition Index (TCI, Eqn. (7)). VCI 

is a normalized NDVI that allows to seek the variability of the signal, showing an increased VCI when NDVI 20 

increases. (Kogan, 1995; Kogan, 2000; Kogan and Guo, 2017). In contrast, the TCI formulates a reverse ratio 

compared to the VCI, decreasing when LST increases, assuming that higher land surface temperatures suggest a 

decreasing soil moisture causing stress of the vegetation canopy. 

Table 2. Drought classification indices.  

Drought index Acronym Equation   

Vegetation Condition Index  VCI (𝑁𝐷𝑉𝐼𝑖 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) / (𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) (6) 

Temperature Condition Index TCI (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑖) / (𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛) (7) 

Vegetation Health Index VHI 0.5  𝑉𝐶𝐼 + 0.5  𝑇𝐶𝐼 (8) 
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where NDVIi, NDVImax and NDVImin (LST, LSTmax and LSTtmin) are monthly NDVI (LST) and the month absolute 

maximum and minimum from September 1981 to August 2015, respectively. We took a mean of VCI and TCI assuming that 

they equally contribute to the VHI. 

The VCI, TCI, and VHI was defined for each month during the growing season (from September to April). We 

assumed the occurrence of drought event when the indices were lower than 40%. The classification of drought 5 

was established based on the severity of the event in which five classes were defined: extreme (≤10), severe, 

(≤20), moderate (≤30), mild (≤40), and no (>40) drought (Bhuiyan and Kogan, 2010). 

The drought events were further classified based on the occurrence of El Niño and La Niña events (Table 3). The 

classification ENSO was obtained from Null (2018). El Niño and La Niña events were identified from 5 

consecutive overlapping 3-month mean sea surface temperature for the Niño 3.4 region (in the tropical Pacific 10 

Ocean). A moderate El Niño (La Niña) was defined as 5 consecutive overlapping 3-month periods at or above the 

+1.0 o to + 1.4 oC anomaly (-1.0 o to -1.4 oC), strong El Niño (La Niña) event for a threshold between +1.5 o to 

+1.9 oC anomaly (-1.5 o to -1.9 oC anomaly), and a very strong El Niño event for a threshold equal or greater than 

+2 oC anomaly (https://ggweather.com/enso/oni.htm). For this study, a neutral or weak phase was defined as a 

threshold between -0.9 o to +0.9 oC anomaly.  15 

Table 3. El Niño and La Niña phases. (from Null (2018)). 

El Niño La Niña 

Moderate Strong Very Strong Moderate Strong 

1986-87 1987-88 1982-83 1995-96 1988-89 

1994-95 1991-92 1997-98 2011-12 1998-99 

2002-03  2015-16  1999-00 

2009-10    2007-08 

    2010-11 

2.3 Crop yield simulation based on NDVI data 

As indicated above, quinoa and potato are the main crops in the Bolivian Altiplano and they are still gaining 

importance. The quinoa growing season is from September to April and for potato it is from October to March. 

Yield data from 1981 to 2015 for quinoa and potato were obtained from the Bolivian National Institute of Statistics 20 

(INE, https://www.ine.gob.bo) for the administrative regions La Paz, Oruro, and Potosi (Fig. 2). The annual crop 

yield datasets represent production (t) in relation to area (ha) at regional level. No historical crop yield data on 

local scales are available yet which is a major limitation for any risk-based approach and needs to be addressed in 
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the future. Nevertheless, we suggest that the coarse distribution of the crop yield data can be improved using the 

NDVI. Besides improving the crop yield resolution, the NDVI also allows to analyse the variability of vegetation 

at a monthly time scale. This makes it possible analyse the phenology of the studied crops through to the growth 

phases. NDVI estimates the vegetation vigour (Ji and Peters, 2003) and crop phenology (Beck et al., 2006). NDVI 

was assembled from the Advanced Very High Resolution Radiometer (AVHRR) sensors by the Global Inventory 5 

Monitoring and Modelling System (GIMMS) at semi-monthly (15 days) time steps with a spatial resolution of 

0.08ᵒ. NDVI 3g.v1 (third generation GIMMS NDVI from AVHRR sensors) and the data set spans from September 

1981 to August 2015. Note, the NDVI is an index that presents a range of values from 0 to 1, bare soil values are 

closer to 0, while dense vegetation has values close to 1 (Holben, 1986). NDVI 3g.v1 GIMMS provides 

information to differentiate valid values from possible errors due to snow, cloud, and interpolation errors. These 10 

errors were eliminated from the dataset and replaced with the nearest neighbour value. 

Relationships between crop yield and NDVI for agricultural land area of the Altiplano were developed using 

Spearman’s rank correlation, based on a similar approach by Huang et al. (2014). The maximum semi-monthly 

NDVI of March and April for every year was identified. Only March and April were considered because this 

period represents the maximum phenological development of quinoa and potato crops. The maximum NDVI of 15 

each grid was compared to the annual crop yield at La Paz, Oruro, and Potosi. The NDVI grids and crop yield 

correlations equal or larger than 0.6 (Spearman correlation, p = 0.05) were considered as adequate for crop yield 

estimation, and only these grids were considered for further use. As will be discussed further below, a regression 

approach was applied for selected NDVI grids and corresponding climate variables (precipitation and 

temperature). In doing so, the agricultural land in the Bolivian Altiplano was delimited based on the land use map 20 

for Bolivia developed by Raul Lara Rico from the Ministry of Rural Development and Land of Bolivia in 2010 

(geo.gob.bo) using Landsat imagery and ground information at a scale 1:1,000,000.  

2.4 Regression of vegetation and climate variables 

Only the NDVI grids that properly simulated the crop yield were related to climate variables. Thus, theA stepwise 

regression approach was used to quantify the dependency between vegetation and satellite- based climate variables 25 

(precipitation and temperature; Eqn. 110) further to be used for hotspot selection. In more detail,. T the final 

results presented here are a combination of forward and backward selection techniques to increase the robustness 

of the results (in terms of explanatory power, i.e., variability explained, as well as variable selection, i.e., same 

variable selected across a range of possible models). The independent variable considered was the NDVI, and the 
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dependent variables were selected to include precipitation and air temperature accumulated precipitation and 

accumulated degree days (ADD) (for the same spatial location across the study region). We assumed that NDVI 

represents the crop phenological stages of the growing season that is from September to April (Fig. 1). 

Precipitation was selected as predictor due to its relevance for water availability for vegetation growth. 

Precipitation is the main source of water in the Altiplano because only 9% of the Bolivian cropped surface area 5 

are irrigated (INE, 2015). Air temperature is a relevant variable due to photosynthetic and respiration processes 

(Karnieli et al., 2010). Firstly, the NDVI was related to CHIRPS rainfall datasets. Secondly, the ADDair 

temperature was included in the analysis. For this, only the NDVI grids for agricultural land were selected. that 

better simulated the crop yield of quinoa and potato were used (see section 2.3). 

.Since, agricultural production data are scarce in the region, we suggest that crop yield data can be improved using 10 

the NDVI. Besides improving the crop yield resolution, the NDVI also allows to analyse the variability of 

vegetation at a monthly time scale. This makes it possible to analyse the phenology of the studied crops through 

to the growth phases. NDVI estimates the vegetation vigour (Ji and Peters, 2003) and crop phenology (Beck et 

al., 2006). The final regression model therefore is 

𝑁𝐷𝑉𝐼 = 𝛽0 + 𝛽1 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (10) 

𝑁𝐷𝑉𝐼 = 𝛽0 + 𝛽1𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦𝑠 (1) 15 

Both precipitation and temperature were represented as accumulated values (for temperature using the GDD). The 

mean monthly temperature was multiplied by the number of days of each month to obtain daily values. GDD was 

computed only considering the months of the growing season for each year. To calculate the ADD, the 

accumulated value of the Growing Degree Day (GDD) multiplied by the number of days of each month was 

computed. The GDD is defined as the difference between mean and base temperature. The mean temperature is 20 

the arithmetic average between maximum and minimum temperature, and 𝑇𝑏  is the minimum threshold or base 

temperature. Base temperature of potato was 4°C and 3°C for quinoa (Jacobsen and Bach, 1998). If Tb is greater 

than Tmean, then GDD is equal to 0. For the ADD calculation we considered crop phenology, September to April 

were used to calculate the ADD for quinoa, and from October to April for potato.  

For the forward selection, the variables were entered into the model one at a time in an order determined by the 25 

strength of their correlation with the criterion variable (only including variables if they presentare  a 

significantconfidence level ofon the 95% percent level). The effect of adding each variable was assessed during 

its entering stage, and variables that did not significantly added to the fit of the model were excluded (Kutner et 
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al., 2004). For backward selection, all predictor variables were entered into the model first. The weakest predictor 

variable was then removed and the regression fit re-calculated. If this significantly weakened the model then the 

predictor variable was re-entered, otherwise it was deleted. This procedure was repeated until only useful predictor 

variables (in a statistical sense, e.g., significant as well as model fit) remained in the model (Rencher, 1995). The 

results were compared with other results from the literature regarding to check for suitability of results with 5 

phenology and weather- related characteristics dimensions of plantscrops.  

It should be noted that the cumulative precipitation was calculated for a period of 12 months from September to 

August of the following year for all locations. The precipitation in the Altiplano shows a marked rainy season 

from November to March. The highest peak of precipitation is in December and January (Fig. 1a). And, NDVI 

displays athe highest peak in March and April (Fig. 1b). The lag between the max precipitation and max NDVI is 10 

reasonable since vegetation requires time to grow (e.g., Shinoda, 1995; Cui and Shi, 2010; Chuai et al., 2013). 

Considering this lag-time, The the accumulated precipitation and 3-month time series of NDVI was regressed 

with the 3-month time series of the climate variables (satellite-based data products of precipitation and air 

temperature) during the growing periodwith a lag of two, three, and four month lag was developed for the 

agricultural agricultural landarea. First, the NDVI and the climate variables were related considering the 15 

overlapped 3-month time series, and afterwards a relation was developed considering a lag from 1 to 4 months 

between NDVI and climate variables, resulting 22 regressions per NDVI grid. The regressions were developed 

for each NDVI grid separately, associated with the nearest precipitation and air temperature dataset. Previous to 

the stepwise regression analysis, the 3-month time series of NDVI, satellite precipitation and satellite air 

temperature data were standardized.  20 

2.5 Crop yield relationship with ENSO  

The Oceanic Niño Index (ONI) is usually used to identify El Niño (warm) and La Niña (cool) years 

(http://www.cpc.ncep.noaa.gov/). ONI is the 3-month running mean of Extended Reconstructed Sea Surface 

Temperature (ERSST v5) anomalies in the El Niño 3.4 region. The El Niño 3.4 anomalies represent the average 

equatorial SSTs in the equatorial Pacific Ocean (5oN to 5oS latitude, and 120o to 170oW longitude).  Five 25 

consecutive overlapping three month periods at or above +0.5°C anomaly represent warm events (El Niño), and 

at or below the -0.5 anomaly cold (La Niña) events.  This threshold was further broken down into weak (with a 

0.5 to 0.9 SST anomaly), moderate (1.0 to 1.4), and strong (≥ 1.5) events (http://ggweather.com/enso/oni.htm). In 

our study we considered the categories neutral/moderate (with a 0 to 1.4 SST), strong El Niño (≥ 1.5) and strong 
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La Niña (≤ -1.5) years (Appendix Table A2). The classification considered three consecutive overlapping 3-month 

periods at or above the +1.5oC anomaly for warm (El Niño) events and at or below the -1.5oC anomaly for cold 

(La Niña) events. The ENSO year in this study starts in September-October-November and ends in August-

September-October for each year from 1981 to 2015. Subsequently, the crop yield of quinoa and potato was 

compared with strong El Niño years. This relationship was analysed using parametric two sample t-test as well as 5 

the non-parametric Wilcoxon rank sum test. In more detail, the two sample t-test and Wilcoxon rank sum compare 

two independent data samples, with the difference that the first compares samples that assume a normal 

distribution, and the second is a non-parametric test which is based on the ranking of empirical values (Wilks, 

2006). The null hypothesis of the two sample t-test was that crop yields during El Niño and neutral/moderate years 

have equal means. The null hypothesis of the Wilcoxon rank sum test was the crop yield during El Niño and 10 

neutral/moderate years are samples from continuous distributions with equal medians. Both tests compute two-

sided p-value. When the hypothesis is equal to 1, the null hypothesis is rejected at 5% significance level. And the 

null hypothesis is accepted when it is equal to zero. 

3. Results and Discussion  

3.1 Validation of satellite imagery using gauged data  15 

Validation of the satellite rain data using empirical precipitation data from the weather stations was done for the 

23 12 locations where gauge precipitation data were available (see Fig. 2 and Table A1). Interestingly, the 

spearman rank correlation between ground observed precipitation and satellite rain product datasets was 

significant (P<0.001) for all locations. The qualitative methods discussed in section 2.2 for the CHIRPS rainfall 

estimates show differences between summer (from December to March) and winter season (from June to August). 20 

CHIRPS data show better accuracy during summer. The precipitation during the austral summer is highly relevant 

because it concentrates the 70% of the annual rainfall (Garreaud et al., 2003) and it occurs during the growing 

season. During May, CHIRPS data show lower accuracy compared to the other months. The precipitation from 

May to August is almost null in the study area (Fig. 1) and it will be further described as the dry season. This 

season presents stable atmospheric conditions with few precipitation events (Garreaud et al., 2003). 25 

Interestingly, the spearman rank correlation between monthly gauged precipitation and satellite rain product 

datasets was significant (p-value <0.05) for all locations. The correlation coefficients (r) vary from 0.5 to 0.8 

(mean = 0.7). The ME and bias disclose an underestimation of precipitation estimation during October, November, 
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and April, and an overestimation during the summer season (mean = 5 mm and 7%, respectively) with a peak in 

February. For the MAE coefficient, CHIRPS estimations are more accurate during the rainy season (mean = 31%). 

In contrast, CHIRPS data indicate poor accuracy during the dry season (mean MAE = 92%). From June to August, 

CHIRPS data present an underestimation of the gauged precipitation (mean bias = -39%). Summarizing these 

observations, we conclude that the CHIRPS-rainfall dataset is more accurate during the rainy season, and it 5 

represents an adequate alternative in case of lack of gauged data or in case of poor data quality. However, it should 

be noted that such data still must be used with caution considering the uncertainties due to the under or 

overestimation of precipitation along the heterogeneous topography of the Altiplano (see Paredes-Trejo et al., 

2016; Paredes-Trejo et al., 2017; Rivera et al., 2018). 

 10 

Fig. 3. Monthly accuracy measures of CHIRPS-rainfall data product. Mean monthly values are represented by black circles, 

and bars represent the standard error of the mean. 

The correlation coefficients were higher than 0.7, except for Colcha K [6] (brackets indicate the position of the 

station detailed in Table A1), that presented a significant (P<0.001) correlation of 0.66. Hence, the findings 

suggest that CHIRPS shows a significant positive relationship with empirical data. However, still the satellite 15 

datasets should be used with caution and its applicability for hydrological analysis applications tested. In addition, 

El Alto Aeropuerto [10], Oruro Aeropuerto [13], and Viacha [23] present the highest correlation coefficient with 

values higher than 0.9 (P<0.001). The datasets from the airports in Bolivia have higher data quality (e.g. Hunziker 

et al., 2018) and CHIRPS gives the best fits with the El Alto Aeropuerto [10] and Oruro Aeropuerto [13] for the 



17 

 

statistical performance evaluation as described above, including the categorical tests mentioned. In summary, our 

results suggest a high degree of confidence in the CHIRPS performance compared to empirical data using the 

Spearman correlation coefficient as a performance measure. The ME (bias) between satellite and gauged data 

showed a range from -15 to 15% for most of the stations (Fig. 3a), representing a very good fit (Moriasi et al., 

2007; Shrestha et al., 2017). However, the bias for Berenguela [4], Santiago de Machaca [20], and Viacha [23] 5 

was about 25%. Furthermore, the bias for Colcha K [6], Conchamarca [8], Hichucota [12], and San Juan 

Huancollo [17] was about -18%. The dataset for San Pablo de Lipez [18] had a bias of -29%. Previous studies 

indicate a bias from -25 to 25% representing a satisfactory fit (see Moriasi et al., 2007). Other studies have 

included a bias from -30 to 30% as satisfactory fit (see Shrestha et al., 2017). In conclusion, all datasets had 

acceptable bias. 10 
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Fig. 3. (a) The relative mean error or bias (%) and (b) the Nash–Sutcliffe efficiency coefficient of the CHIRPS rain data 

compared with the gauged precipitation from September 1981 to August 2015. 

The Nash–Sutcliffe efficiency coefficients (E) were larger than 0.5 for all stations except Berenguela [4] with a 

coefficient of 0.43 (Fig. 3b). As a consequence, the E coefficients showed that the mean square error is lower than 

the variance of the gauged data for all stations, including Berenguela. The E coefficients were larger than 0.75 for 

Achiri [1], Colcha K [6], El Alto Aeropuerto [10], Oruro Aeropuerto [13], Patacamaya [14], and Salla [15]. These 

datasets presented a very good fit between the CHIRPS and gauged precipitation, and the others also showed good 5 

fits, except for Berenguela [4] (see Moriasi et al., 2007). 

The categorical statistics were used for a precipitation event (larger than 0 mm/month). The results of the 

Probability of Detection (POD) measure showed a range from 0.92 to 1, indicating that the satellite rain product 

correctly estimates above 0.92 for the fraction of gauged precipitation events. Additionally, the False Alarm Ratio 

(FAR) showed values from 0 to 0.3 for most stations, except Colcha K [6] and Uyuni [22] that had a FAR of about 10 

0.5. Both stations are located in the southern Bolivian Altiplano, close to the Uyuni salt flat. CHIRPS generally 

overestimated rainfall with about 5 to 10 mm/month for both regions during the dry season (from April to 

October). Therefore, using a threshold of precipitation events larger than 10 mm/month resulted in a decrease of 

FAR to 0.2 and 0.3 for Colcha K [6] and Uyuni [22], respectively. Hence, in general the CHIRPS estimations 

presented a reasonably good fit compared to gauged data. The best fit was for the gauged datasets at the airports 15 

(El Alto Aeropuerto [10] and Oruro Aeropuerto [13]) that have better data quality, and consequently the validation 

showed better performance there. The datasets with a unsatisfactory fit included Colcha K [6] (with a correlation 

lower than 0.7) and Berenguela [4] (with an E lower than 0.5). The bias for San Pablo de Lipez [18] can be seen 

as acceptable depending of the ranking used. For the categorical analysis, all stations presented a good POD and 

FAR, except for Colcha K [6] and Uyuni [22] that tended to overestimate the precipitation during the dry season. 20 

In general, CHIRPS rainfall product properly estimated the actual conditions in the study area. However, for 

developing other hydrological studies we suggest to compare with the available gauged data before applying the 

CHIRPS datasets, in order to identify possible errors, and datasets with larger uncertainty or confidence.  

Moving from rainfall to temperature, the inter-annual temperature at the 811 locations varied considerably 

between summer (DJFMfrom December to March) and winter (JJAfrom June to AugustS), including a larger 25 

variance for the minimum temperature (Fig. 1a). Regions close to the Lake Titicaca present lower inter-annual 

variability (Copacabana [9]). In contrast, Uyuni [22] showed larger inter-annual oscillations.  The mean monthly 

air temperature from satellite data was compared with mean temperature of gauged data. The LST satellite air 



19 

 

temperature underestimated the mean gauged temperature, and this error could be due to the high elevation and 

cloud coverage. The spearman correlation at the 11 8 stations displayed coefficients from 0.8 1 to 0.9 7(p=001). 

From November to April, air temperature satellite-based estimations  show significant correlations (p-value 

<0.05). Large correlations are shown during summer season (mean = 0.7), while the other months show rather 

weak correlations values. ME and bias show a slight underestimation from October to April (mean = -0.5 and -5 

4% respectively), and an overestimation from May to August (mean = 0.3 and 12% respectively). Finally, MAE 

is about 10% from September to April, higher values developn during winter season (mean = 32%). In conclusion, 

the satellite air temperature data product performs better from November to April. Similar to the precipitation 

data, the application of satellite air temperature data must take into account the potential errors due to the 

estimation uncertainties, mainly during winter season. This permitted to correct the LST with linear regression. 10 

The regression results presented a range of coefficient of determination from 0.7 to 0.9 for all stations, meaning 

that the variability of gauged temperature is reasonably well explained by the LST. The results of linear regression 

approaches were applied to define the adjusted LST, that is the raw LST times 0.88 plus 5.7 degrees Celsius. The 

adjusted LST and the mean gauged temperature data showed acceptable relative bias (±25%) and E (≥0.5) 

coefficients for all stations. The same linear equation regression approach was used to correct the datasets of LST 15 

for all the studied area.  

 
Fig. 4. Same as Fig. 3 but for accuracy measures of satellite-based air temperature data product. 
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As discussed above, the VCI, TCI, and VHI were calculated during the growing season. The sowing period 

depends on the initial soil moisture content, therefore the beginning of the growing season oscillates from 

September to November (Garcia et al., 2015). For this reason, the drought severity was classified considering the 

mean of VCI, TCI, and VHI for the agricultural land during November-April. Figure A1 shows mean monthly 

VCI from November 1981 to April 2015. The major drought events (severe or extreme) are visible in 1982-83, 5 

1983-84, and 2009-10. Followed by moderate drought events during 1987-88, and 1993-94, and several mild 

events. Figure A2 shows the mean monthly TCI, where the major drought events (severe or extreme) occurred in 

1982-83, 1987-88, 1997-98, 2004-05, and 2009-10. Followed by moderate drought events during 1981-82, 1983-

84, 1994-95, 2006-07, and 2008-09, and several mild events as well. Finally, Fig. A3 shows the VHI results, in 

which the major drought events occurred during 1982-83, 2004-05, and 2009-10. 10 

Further, we related drought indices with the ENSO phases (Table 4). Extreme, and severe droughts were generally 

found during El Niño phase. The extreme drought of 1982-83, coincided with a very strong El Niño phase. For 

this event, the largest economic losses caused by droughts during the study period were reported (Table 5). 

Followed by the very strong El Niño phase of 1997-98, which reported the second largest economic losses. Besides 

these two main drought events, the strong El Nino 1987-88 coincided with an extreme/moderate drought 15 

(TCI≤10%, VCI≤30%) classification. During this period, large economic losses were reported as well (Table 5). 

In contrast, the strong El Niño 1991-92 showed low severity (mild drought VCI≤40%), and no economic losses 

were reported. This indicates that despite El Niño phenomenon is generally associated with drought in the 

Altiplano, there are several other mechanisms that drive a drought occurrence and determine its severity. For 

instance, dry (wet) and warm (cool) conditions during El Niño (La Niña) phases are generally shown in the tropics 20 

(Garreaud et al., 2003). However, an anomalous location and intensity of zonal wind anomalies could cause 

disturbances of the warming and cooling air patterns causing rainfall anomalies on the Altiplano (Garreaud and 

Aceituno, 2001). This is the case of the dry La Niña 1988-89 that showed a mild drought classification (TCI≤40%). 

Table 4. Drought indices classification during ENSO phases. 

ENSO Drought  VCI TCI VHI 

El Niño 

Extreme  1982-83, 1987-88, 1997-98  

Severe  1982-83, 2009-10 2009-10  1982-83, 2009-10 

Moderate 1987-88 1994-95  

Mild 1986-87, 1991-92 1986-87 1994-95, 1997-98 

La Niña Mild 1995-96, 2007-08, 2010-11 1988-89  

Neutral/ Extreme  2004-05  
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weak Severe  1983-84   

Moderate 1993-94 
1981-82, 1983-84, 2006-07, 

2008-09 
2004-05 

Mild 
1981-82, 1996-97,  

2003-04, 2008-09 

1984-85 1990-91  

1993-94 2014-15 

1981-82, 1983-84, 1990-91, 

1993-94, 2005-06, 2008-09 

 

One severe (1983-84) and one extreme (2004-05) event occurred during a neutral/weak ENSO. The severe drought 

(VCI ≤ 20%) occurred during a neutral phase of 1983-84. This coincides with the findings of Vicente-Serrano et 

al. (2015), that analyzed the standardized precipitation/evaporation index in Bolivia, which is an alternative 

technique to characterize a meteorological drought. The extreme drought (TCI ≤ 10%) of 2004-05 occurred in 5 

November and December. From January to April of 2004-05 the VCI and VHI were above 40%, and there were 

no claims of drought losses in the Altiplano for this particular year (Table 5). Besides these two events, moderate 

and mild droughts also occurred during non El Niño phases. 

Table 5 shows that five drought events were reported during a neutral ENSO phase. In 2012-13, the largest impact 

occurred, affecting about 80 000 people in the Altiplano (Desinventar, 2020). Despite that the mean of the drought 10 

indices indicates no drought during this period (VCI, TCI, and VHI >40%), some spatial locations in the study 

region indicated the occurrence of a drought event in November and December (21% and 29% of the total studied 

grids showed mild and moderate droughts for the TCI and VCI respectively). 

Table 5. Drought impact in Bolivia (from (EM-DAT, 2020), BID (2016), and CAF (2000)). 

Year ENSO phase Affected people Total damage ('000 US$) 

1982-83 El Niño 3 083 049 917 200 

1987-88 El Niño  48 400 

1989-90 Neutral 283 160  

1997-98 El Niño  279 310 

1993-94 Neutral 50 000  

1999-00 La Niña 20 000  

2003-04 Neutral 55 000  

2007-08 La Niña 27 500  

2009-10 El Niño 62 500 100 000 

2012-13 Neutral 340 355  

2013-14 Neutral 51 180  

 15 
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3.2 Regression of NDVI and climate variables  

Regarding the relationship between vegetation and climate variables, we note that Tthe precipitation season is 

occurs mainly during the austral summer months (from DJFMDecember to March), and the vegetation 

development shows a lag with a maximum development around of about March and April (Fig. 1). The NDVI 

(Fig. 1b) shows a similar growing pattern as the crop phenology in the region, which starts in September and ends 5 

in April. Also, the mMaximum and minimum temperature variesy during the year. The latter shows even larger 

variability, with hHigher temperatures during the austral summer . And this could leads to higher 

evapotranspiration that might and a decrease the of water retained in the root zone. With this presumption,  we 

analysed the relationship between NDVI and climate variables. In a first step, the relationship between the 

maximum NDVI during the major phenological development months (i.e. March-April) and the corresponding 10 

annual crop yield between 1981 and 2015 was defined. A total of 26 and 76 NDVI grids estimated properly the 

quinoa and potato yield, respectively (Fig. 4). These are locations were NDVI showed a good correspondence 

with quinoa and potato yield, a correlation equal or larger than 0.6 (spearman correlation, p = 0.05) was used as a 

threshold for acceptable performance. 

In a next step, stepwise linear regression models were tested using 3-month time series of -sthe NDVI as dependent 15 

variable and grids3-month time series of satellite-based data product of precipitation and air temperature as 

independent variables (Eqn. (10)). The stepwise regression was defined considering the overlapped 3-month time 

series, and the 3-month time series with a lag from 1 to 4 months and accumulated CHIRPS rainfall datasets at 

the same spatial location over the agricultural land.  

The results of the stepwise regression show larger coefficient of determination (R2) in the northern and central 20 

Bolivian Altiplano, starting from the southern Lake Titicaca and moving southwards to the Lake Poopó, and close 

to the rivers paths. Lower R2 is shown along the southwestern Bolivian Altiplano, that could be explained through 

the large variance of the NDVI, which may depend to on other factors besides precipitation and temperature, 

including crop management. with a lag of two, three, and four months and which were found statistically 

significant at the 0.01 level. The coefficient of determination (R2) oscillated from 0.4 to 0.7 in both cases. 25 

AdditionallyN, stepwise linear regression for NDVI as independent variable, and the accumulated precipitation 

and ADD as dependant variables was performed (Eqn. (1)). Figure 5 shows the R2 of the best fit regression in the 

Bolivian Altiplano for the three-month period of NDVI and the climate variables (precipitation and temperature) 

during the beginning and end of the growing season. It can be seen that the NDVI depends largely on the studied 

climate variables. This may be due to the crop´s sensitivity for water stress during specific stages of the growing 30 
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season., For instance theand the most sensitive stages of the quinoa crop are the emergence, flowering, and grain 

development (see Geerts et al., 2008a; Geerts et al., 2009), and the near absence of irrigation practices in most of 

these regions.  

 

Fig. 5. Coefficient of determination (R2) of NDVI for the 3-month time series for a) SON, b) OND, c) MAM and d) MAM 5 

and the climate variables (satellite precipitation and air temperature products) for SON, SON, FMA, and MAM respectively. 

The significant regression coefficients for precipitation (air temperature) cover: a) 45% (98%), b) 64% (91%), c) 95% (96%), 

and d) 23% (98%) of the total studied grids that represent the agricultural land.  

In more detail, the stepwise regression results for the overlapping 3-month time series of NDVI and climate 

variables for SON (September, October, and November) show statistically significant coefficients for precipitation 10 

and air temperature at 45% and 98% the agricultural area in the Bolivian Altiplano with a median of 0.2 and 0.7, 

respectively (Fig. 5a). This indicates that the NDVI increases with more rain and higher air temperature. 

Interestingly, the significant regression coefficients of NDVI for OND (October, November, and December) 

associated with precipitation and air temperature for SON cover 64% and 91% of the agricultural area, and have 

a positive median of 0.3 and 0.4, respectively (Fig. 5b). A time-lag of one month shows larger spatial coverage of 15 

response of vegetation to precipitation anomalies. Here, the largest coefficient of determination are shown in areas 

surrounding the Lake Titicaca. Moreover, the response of the NDVI for MAM (March, April, and May) to the 
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studied climate anomalies for FMA (February, March and April) covers 95% and 96% of the agricultural land for 

precipitation and air temperature, respectively (Fig. 5c). This mostly shows coefficients of determination ranging 

from 0.4 to 0.8, and positive regression coefficients for precipitation and air temperature have a median of 0.5 and 

0.4, respectively. The hours of sun required for crop development could be the explanation for the time-lag 

between vegetation and the climate variables. In addition, the lag differences between vegetation and precipitation 5 

can be explained by topography, land cover, ground-water, and soil properties (Yarleque et al., 2016). Finally, the 

regression for NDVI and climate variables for the overlapped 3-month time series of MAM shows significant 

coefficients at 23% and 98% of the agricultural land, with a median of 0.4 and 0.6 for precipitation and air 

temperature, respectively (Fig. 5d). Hence, the vegetation response to precipitation is limited for the last 

overlapped 3-month time series of the growing season. However, it should be noted that air temperature remains 10 

an important variable. 

To summarize, while acknowledging some important limitations, we found the CHIRPS dataset adequate to be 

used for drought risk assessment in case of severe data scarcity for the Bolivian Altiplano. Furthermore, we found 

that the vegetation variance can be explained by precipitation and air temperature. More specifically, we point out 

the relevance of precipitation as the main water source for vegetation development and air temperature as a driver 15 

of photosynthetic processes. Precipitation is particularly important at the early and late phenological stages, in 

which crops are more sensitive to water shortage. This is the case for the main crops in region, i.e., quinoa and 

potato. For the quinoa crop, the most sensitive phases to water stress are the emergence, flowering, and grain 

development (see Geerts et al., 2008a; Geerts et al., 2009). The most sensitive phases of the potato crop to water 

stress is the tuber initiation and bulking (van Loon, 1981; Alva et al., 2012). On the other hand, air temperature is 20 

relevant for vegetation productivity, and overall, we found a positive relation between vegetation and air 

temperature. However, in prolonged dry periods, high air temperature could increase the evapotranspiration rates, 

and in consequence, decrease the soil moisture (Huang et al., 2019). This scenario could impact negatively the 

vegetation, as this is the case of the drought events of 1982-83 and 1997-98, where large production losses were 

reported (Santos, 2006). The results also showed statistical significance for all locations included in the study. 25 

The R2 oscillated from 0.5 to 0.8. It should be noted that the R2 is generally larger in the northern and central 

Bolivian Altiplano, where the total precipitation is also larger. These are strong indications that precipitation and 

temperature explains the variability of the crop yield, and the influence is more notable in the northern and central 

Bolivian Altiplano. Figure 4 shows the coefficient of determination resulting from stepwise regression between 

NDVI, and precipitation, and temperature with a four-month lag. 30 
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Fig. 4. The circles show the spatial location where NDVI properly estimates the (a) quinoa and (b) potato yield. And the 

graduated colours show the coefficient of determination (R2) of the stepwise regression between NDVI as the predictand, and 

precipitation and temperature as the predictors with a lag of 4 months.  

 

The regression models with only precipitation as dependent variable showed a larger coefficient of determination 

for three and four-month lag. In northern and central Bolivian Altiplano (16 to19 ᵒLS) larger R2 was found with 

a three-month lag and in the southern Bolivian Altiplano (20 to 22ᵒ LS) with a fourth-month lag. The results are 5 

related to different sowing time and starting period of the rainy season in the areas. In the northern Bolivian 

Altiplano the rainy season extends longer in time than in the southern Altiplano, where the rainy season is mainly 

concentrated to the austral summer months (DJF, Fig A1). Regression with precipitation and temperature as 
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dependent variables showed larger coefficients of determination for a four-month lag. The hours of sun required 

for crop development could be the explanation for these results. 

3.3 Relationship between ENSO and crop yield  

After a reasonable relationship between NDVI and the satellite based climate datasets the next question to be 

tackled is relation to ENSO phases (as well as possible strategies to mitigate effects of these). As indicated, the 5 

relationship between ENSO and crop yield was analysed using two sample t-test and Wilcoxon Rank-Sum Tests 

for La Paz, Oruro, and Potosi (see Fig. 2c). To test the relationship, crop yield during neutral/moderate years was 

compared with crop yield during El Niño years (warm ENSO phase) (see Table A2). The results showed that 

quinoa yield during warm ENSO phase and neutral/moderate years presents a significant difference at 95% 

confidence level except for Oruro (Table A3). The yield during neutral/moderate years is higher with about 0.2 10 

t/ha compared to El Niño years. The quinoa yield production during El Niño years is lower than the mean yield 

for neutral/moderate years, except for Oruro during 1982-1983 (Fig. 5). This finding contradicts previous studies 

that reported large agricultural losses during 1982-1983 and 1997-1998 (Santos, 2006). On the other hand, the 

quinoa yield has constantly increased during the last years, mainly in Oruro. This could be explained by 

employment of advanced crop management strategies (e.g., selected crop varieties and application of agricultural 15 

innovations), as this region is one of the largest producer in Bolivia and the world (Ormachea and Ramirez, 2013). 
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Fig 5. The boxplot of the (a) quinoa and (b) potato yield for normal and moderate years (Normal-M) for La Paz, Oruro, and 

Potosi. And the crop yield during strong El Nino years (markers). The mean of the crop yield during the normal and moderate 

years (dashed line). 

Despite the quinoa’s high tolerance to environmental stress including droughts (Jacobsen et al., 2003; Jacobsen et 

al., 2005), it generally showed larger losses during El Niño events than potato (Fig. 2). The risk for crop yield 5 

reduction could be reduced here with irrigation during the sensitive phases of the quinoa crop development. A 

strategy like deficit irrigation could be employed (Geerts et al., 2008b; Talebnejad and Sepaskhah, 2015). Another 

strategy to mitigate the crop yield reduction is implementation of crop varieties more resistant to water stress (e.g. 

Sun et al., 2014). 

The t-test and Rank-Sum test results showed that potato yield during neutral/moderate and El Niño years is 10 

significantly different at 95% confidence level except for La Paz (Table A3). The results showed that production 

during neutral/moderate years is higher in Oruro and Potosi. All regions showed lowest potato yield during strong 

El Niño for 1982-1983, with a yield reduction of 40, 80, and 30%, as compared to mean yield during 

normal/moderate years in La Paz Oruro and Potosi, respectively. The yield reduction during other El Niño events 

seems to have a larger effect in Oruro. Besides El Niño events during 1982-1983, potato yield in La Paz showed 15 

lower vulnerability to this phenomenon. This could be explained by closeness to the Lake Titicaca and other water 

bodies that might be used as a water source during precipitation deficit. Similar strategies for drought mitigation 
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(e.g., irrigation and resistant crop varieties) could be implemented in order to avoid large crop losses. However, 

knowing that a very strong El Niño could lead to large agricultural losses, insurance policy could be assigned to 

farmers in order to manage the risk before the occurrence of a drought event. For the implementation of any 

drought mitigation strategy, identification, evaluation, and monitoring of drought risk are crucial. What is 

important is our findings that ENSO must be taken explicitly into account in such considerations. 5 

4. Summary and conclusions Discussion and Conclusion 

We employed a satellite dataset product and tested its empirical accuracy as well as performance to similar (but 

with coarser resolution) datasets available for the Bolivian Altiplano region. Afterwards spatio-temporal patterns 

of satellite precipitation and air temperature anomalies were explored based on monthly time series during the 

period of September 1981 to August 2015. Drought severity was evaluated based on a drought classification 10 

scheme using NDVI and LST. Finally, association between the spatial distribution of NDVI with precipitation 

and air temperature was examined. Using these datasets, it was shown that drought risk (measured through various 

drought indices) increases substantially during El Niño years (Table 4 and 5), and as a consequence the socio-

economic vulnerability of farmers will likely increase during such periods. ENSO forecasts as well as drought 

severity (through drought indices) can help to determine possible hotspots of crop deficits during the growing 15 

season. Through empirical relationship with climate variables on the local scale our approach can enable a pro-

active approach to disaster risk management against droughts. As it was shown here, ENSO warm phase related 

characteristics are especially important in the context of extreme drought events and could therefore be 

incorporated within early warning systems as standard practice. Despite these challenges for development of 

drought early warning systems (see FAO, 2016, 2017), applications have been successful in the past (e.g., Global 20 

Information and Early Warning System (GIEWS) of FAO, and Famine Early Warning System (FEWS) of 

USAID). Monitoring and predicting ENSO can therefore significantly contribute to reduce the risk of disasters. 

This study is a first attempt to provide an assessment of drought impact on agriculture in relation to the ENSO 

phenomenon for the Bolivian Altiplano. We focused on where vegetation is more affected by droughts over 

agricultural land and how this can be clarified using satellite imagery. It is important to note that the variance of 25 

drought indices (as well as NDVI) to a large extend is explained by precipitation and air temperature anomalies 

in the studied region. The agriculture in this semi-arid region is ecologically fragile and the main water source is 

precipitation, and thus crop production is considerably affected by precipitation anomalies. However, while an 

overall response of vegetation variance to precipitation and air temperature is evident, it is important to consider 
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other variables, such as evapotranspiration and soil moisture to improve risk-based models. Another important 

issue is the time-lag of the response of vegetation to precipitation and air temperature anomalies, which shows a 

hysteresis of 1-2 months. These findings provide information for future drought risk management and early 

warning system applications. In addition, with such information agricultural models can be set up and risk 

management plans with better accuracy determined. 5 

We employed a satellite dataset product and tested it for accuracy as well as performance to similar (but with 

coarser resolution) datasets available for our region. Using these datasets, it was shown that during El Niño years 

the crop yield reduces considerably (Fig.ure  5 Table A3), and as a consequence the socio-economic vulnerability 

of farmers, will likely increase during such periods. Furthermore, it was found that NDVI can be related to crop 

yield and therefore, NDVI canould  be used to target specific hot spots depending on NDVIs availability at a local 10 

scale. As a consequence, ENSO forecasts as well as possible magnitudes of crop deficits canould be established 

that which may be beneficial for emergency authorities, including identification of possible hotspots of crop 

deficits during the growing season. Our approach can help to determine the magnitude of assistance needed for 

farmers at the local level but can also enable a pro-active approach to disaster risk management against droughts. 

This may include not only economic related instruments such as insurance but also risk reduction instruments 15 

such as irrigation and resistant crop varieties as discussed above. In fact, risk management based financing is 

gaining increasing attraction in real-world settings as it has several advantages. However, it should be 

acknowledged that large challenges still remain (see French and Mechler, 2017).  

The drought severity could be measured via time shifts from normal conditions of climatic parameters such as 

precipitation. As in our case, we not only elucidated shifts but also the difference in risk for El Niño and 20 

neutral/moderate years. However, one of the main challenges of drought risk analysis is data-scarcity, e.g., low 

density or unevenly distributed stations for hydro-meteorological data networks, poor data quality due to missing 

data, and restricted use of data between government agencies or other institutions. As it was shown here, ENSO 

warm phase related characteristics are especially important in the context of extreme drought events and should 

therefore be incorporated within early warning systems as standard practice. Despite these challenges for 25 

development of drought risk assessment, applications have been successful in the past. There are numerous cases 

in many countries and as in our case, particularly in the mid-latitudes where weather patterns are strongly 

influenced by ENSO. Monitoring and predicting ENSO can therefore significantly contribute to reduce the risk 

of disasters.  
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This study is a first attempt to provide an agricultural drought risk assessment in relation to the ENSO phenomenon 

for the Bolivian Altiplano. Our study provided valuable information for drought risk reduction, primarily by 

finding information of hotspots where crop yield is more affected by droughts and how this can be clarified using 

satellite imagery. However, while an overall good fit between climate, ENSO, and crop yield variables was found, 

it is important to consider other variables, such as evapotranspiration and soil moisture to improve risk-based 5 

models. With such information also agricultural models canould be set up and risk management plans with better 

accuracy determined. 
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APPENDIX 

Table A1. Spatial location of the studied weather stations where gauged precipitation data is are available, the stations that 

also present temperature maximum and minimum data indicate T on the column of temperature.  

No Station name Latitude Longitude Altitude Temperature 

[1] Ayo Ayo -17.1 -68.0 3888  

[2] Calacoto -17.3 -68.6 3830 T 

[3] Collana -16.9 -68.3 3911 T 

[4] El Alto Aeropuerto -16.5 -68.2 4034 T 

[5] El Belen -16.0 -68.7 3833 T 

[6] Oruro Aeropuerto -18.0 -67.1 3701 T 

[7] Patacamaya -17.2 -67.9 3793  

[8] Salla -17.2 -67.6 3500  

[9] San Juan Huancollo -16.6 -68.9 3829  

[10] Santiago de Huata -16.1 -68.8 3845 T 

[11] Tiahuanacu -16.6 -68.7 3863 T 

[12] Viacha -16.7 -68.3 3850 T 

 

 5 

No Station name Region  Latitude Longitude Altitude Temperature 

[1] Achiri La Paz -17.21 -69.00 3880 T 

[2] Ancoraimes La Paz -15.90 -68.90 3882  

[3] Ayo Ayo La Paz -17.09 -68.01 3888 T 

[4] Berenguela La Paz -17.29 -69.21 4145  

[5] Calacoto La Paz -17.28 -68.64 3830 T 

[6] Colcha K Potosí -20.74 -67.66 3780  

[7] Collana La Paz -16.90 -68.28 3911 T 

[8] Conchamarca La Paz -17.38 -67.46 3965  

[9] Copacabana La Paz -16.17 -69.09 3870  

[10] El Alto Aeropuerto La Paz -16.51 -68.20 4034 T 

[11] El Belen La Paz -16.02 -68.70 3833  

[12] Hichucota La Paz -16.18 -68.38 4460  

[13] Oruro Aeropuerto Oruro -17.95 -67.08 3701 T 

[14] Patacamaya La Paz -17.24 -67.92 3793 T 

[15] Salla La Paz -17.19 -67.62 3500  

[16] San Jose Alto La Paz -17.70 -67.78 3746 T 

[17] San Juan Huancollo La Paz -16.58 -68.96 3829  

[18] San Pablo de Lipez Potosí -21.68 -66.61 4256  

[19] Santiago de Huata La Paz -16.05 -68.81 3845  

[20] Santiago de Machaca La Paz -17.07 -69.20 3883  

[21] Tiahuanacu La Paz -16.57 -68.68 3863 T 

[22] Uyuni Potosí -20.47 -66.83 3680 T 

[23] Viacha La Paz -16.66 -68.28 3850 T 
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Table A2. The classification of strong El Niño (≥ 1.5 deg C), strong La Niña (≤ -1.5 dec C) and neutral/moderate (-1.4 to 1.4 

dec C) years for the period 1981 to 2015. 

Strong El Niño Neutral and moderate Strong La Niña 

1982-83 1981 1988-89 

1986-87 1984-1985 1998-99 

1987-88 1989-1990 2007-08 

1991-92 1992-1996 2010-11 

1997-98 2000-2006 
 

 2008-2009 
 

 2011-2014 
 

 

Table A3. T-test and Wilcoxon rank sum test for quinoa and potato yield during El Niño years and neutral/moderate years.  If 5 
the hypothesis is equal to 1 it means that we rejected the null hypothesis at a confidence level of 95%. 

   T test 2 sample  Wilcoxon rank sum test 

   Hypothesis P value t-stat  Hypothesis P value z-stat 

 

Quinoa 

La Paz  1 ~0 4.2  1 0.01 3.0 

Oruro  0 0.13 1.6  1 0.05 2.0 

Potosi  1 ~0 3.4  1 0.04 2.5 

 

Potato 

La Paz  0 0.10 1.7  0 0.54 0.61 

Oruro  1 ~0 3.4  1 0.02 2.4 

Potosi  1 0.02 2.6  1 0.05 2.0 
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Figure A1. Boxplot of the total monthly precipitation in the Bolivian Altiplano at the northern Altiplano: (a) Copacabana [9], 

(b) El Alto Aeropuerto [10], central Altiplano: (c) Oruro Aeropuerto [13], (d) Patacamaya [14], and southern Altiplano (e) 

Colcha K [6], and (f) Uyuni [22].   
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Fig. A1. Monthly mean VCI (%) from November 1981 to April 2015. Values below 40% (dashed line) represent 

a drought event. 

 

 5 
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Fig. A2. Same as Fig. A1 but for the TCI. 

 

Fig. A3. Same as Fig. A1 but for the VHI. 
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