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Abstract 6 

An increasing awareness of the cost of landslides on the global economy and of the associated loss 7 

of human life, has led to the development of various global landslide databases. However, these 8 

databases typically report landslide events instead of individual landslides, i.e. a group of landslides 9 

with a common trigger and reported by media, citizens and/or government officials as a single unit. 10 

The latter results in significant cataloging and reporting biases. To counteract this biases, this study 11 

aims to identify clusters of landslide events that were triggered by the same rainfall event. An 12 

algorithm is developed that finds a series of landslide events that a) is continuous with no more 13 

than two days between individual events, and b) precipitation at the location of an individual event 14 

correlates with precipitation of at least one other event. The developed algorithm is applied to the 15 

Global Landslide Catalog (GLC) maintained by NASA. The results show that more than 40 % of 16 

all landslide events are connected to at least one other event, and that 14 % of all studied landslide 17 

events are actually part of a landslide cluster consisting of at least 10 events and up to 108 events 18 

in one day. Duration of the detected clusters also varies greatly from 1 to 24 days. Our study intends 19 

to enhance our understanding of landslide clustering and thus will assist in the development of 20 

improved, internationally streamlined mitigation strategies for rainfall related landslide clusters.  21 



2 

Keywords: Landslide events; Database; Extreme weather; Rainfall induced; Early warning 22 

systems;  23 

1. Introduction 24 

The fatal and catastrophic nature of landslides has led to the development and maintenance of 25 

various global databases, such as the NASA Global Landslide Catalogue (GLC; e.g. Kirschbaum 26 

et al. 2015) and recently the Global Fatal Landslide Database (GFLD) by Froude & Petley (2018). 27 

Typically, these databases have a distinct focus. For example, the Global Landslide Catalogue 28 

(GLC) operated by NASA focuses on rainfall triggered landslides (Kirschbaum et al., 2010, 2015), 29 

whereas the Global Fatal Landslide Database records fatal landslides (Froude and Petley, 2018; 30 

Petley, 2012). Through these databases we are able to provide first estimates on the number of 31 

recorded fatalities, which were more than 55,000 between 2004 and 2016 (Froude and Petley, 2018) 32 

and map near real-time risk for landslides almost on a global scale (Kirschbaum and Stanley, 2018). 33 

Still, while they play a key role in understanding the effects of landslides on our society, it is 34 

important to note that they are primarily based on news and government reports. These databases 35 

therefore do not count landslides, but landslide events, which contain either a single or a multitude 36 

of landslides within an area that are assumed to be triggered by the same event (Malamud et al., 37 

2004). The exact number of slope failures in each event is often unknown and depends on the 38 

quality of the reporting. For some databases this number is included in a parameter of intensity or 39 

size of each event. Typically, for large databases however, this is merely qualitative and describes 40 

not only the number of individual landslides, but also an impact such as economic or human losses. 41 

This classification is commonly based on press releases and is therefore heavily biased on the news 42 

outlet reporting each event (e.g. Carrara et al., 2003).  43 
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Landslides triggered by catastrophic events, such as earthquakes or major storms, are often counted 44 

as one event containing thousands of individual landslides (Kirschbaum et al., 2015). In contrast, 45 

landslides caused by non-catastrophic events such as reasonable rainfall, are commonly counted as 46 

individual events, disregarding their shared trigger. Consequently, the overall extent of clustering 47 

in landslides is often unknown. But only if we better understand the extent of clustering between 48 

individual landslide events, will we be able to understand the patterns they occur in and have the 49 

chance to utilize these patterns to improve our forecast models (e.g. Martelloni et al., 2012).  50 

Until now, few studies have focused on rainfall triggered landslide clusters and rather on temporal 51 

clusters over a long time period within a confined region (e.g. Samia et al., 2017; Witt et al., 2010). 52 

Biasutti et al. (2016) investigated the spatiotemporal clustering due to rainfall events for three 53 

selected urban areas of the US West Coast: Seattle, San Francisco and Los Angeles. Over the nine 54 

year study period, they found approximately 20 days within each city with multiple (up to eight) 55 

landslide events. Additionally, they could identify close to 40 landslide events that were followed 56 

by another event within the next week. However, with a focus on only selected study areas, they 57 

did not show the overall extend of these clusters.  58 

The objective of this study is therefore to develop an algorithm, which is able to identify such 59 

clusters on a global scale. By applying the algorithm to the Global Landslide Catalog (GLC) the 60 

overall degree of clustering in the database is shown, and spatial patterns of clusters with at least 61 

10 landslide events are described. Additionally, landslide events and rainfall patterns of the most 62 

intense and longest clusters are comprehensively discussed. In contrast to previous studies, such as 63 

by Biasutti et al. (2016), clusters here are not constricted by a maximum spatial extent, instead they 64 

are grouped by analyzing and comparing rainfall prior to the event at the event locations.  65 
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2. Material and Method 66 

2.1 Landslide Data 67 

All landslide events within this study are part of the Global Landslide Catalog (GLC) operated by 68 

NASA and introduced in Kirschbaum et al. (2010, 2015). Data within the catalogue is based on 69 

online news articles that are found through search engine options such as Google Alerts. In the 70 

presented study, only events with a location accuracy ≤ 25 km are considered. As the rainfall data 71 

used is only available within ± 50° Latitude, landslide events outside of this range are not 72 

considered. Overall, a total of 9279 landslide events, ranging from 1988 to 2018 are analyzed (Fig. 73 

1). However, only 45 of these events occurred before 2007, when the GLC was established.  74 

 75 

Figure 1. Heat map of all landslide events analyzed in this study and their size and apparent trigger. Overall a total of 76 

9279 events were tested for clustering.  77 

For each event, the GLC provides a landslide type, e.g. land- or mudslide, and a landslide trigger, 78 

e.g. rainfall, downpour, earthquakes or construction work. Detailed descriptions on these 79 

classifications can be found in Kirschbaum et al. (2010, 2015). Furthermore, within the GLC the 80 

intensity, impact, and number of landslides per event is expressed in a variable called “size”. While 81 
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events classified as small in the database are only a single landslide, medium or larger landslide 82 

events may consist of multiple landslides within an unspecified range. About 64 % of the studied 83 

events are classified as medium or larger in size. However, a precise count of the number of 84 

landslides contained within these events does not exist in this database nor in any other of the global 85 

scale databases currently available. Within the GLC most of the small events that contain only a 86 

single landslide, are located within the United States (Fig. 1).  87 

2.2 Rainfall Data 88 

For the rainfall analysis, the Climate Hazards Group InfraRed Precipitation with Station data 89 

(CHIRPS) (Climate Hazards Group, 2015) is used, which has a resolution of 0.05° × 0.05° and 90 

daily time steps. For each landslide event location, precipitation data were downloaded for 10 years 91 

preceding the event and up to two days after the event using Google Earth Engine (Gorelick et al., 92 

2017).  93 

2.3 Detection of Landslide Clusters 94 

The main objective of this study is to identify clusters of landslide events that occurred during, and 95 

are likely triggered by the same rainfall event. To determine if two events, A and B, occurred during 96 

the same rainfall event, two conditions have to be fulfilled: (I) A and B occurred within three days 97 

of each other, and (II) spearman correlation between daily precipitation at A and at B is greater 0.7 98 

and has a p-value less than 0.05 for the 30 days preceding the later of the two events. Other landslide 99 

events that fulfill these conditions with either A or B, are considered to be part of the cluster. A 100 

schematic drawing of this algorithm is provided  in Fig. 2, and a more detailed flowchart in Fig. S1 101 

in the supplementary material. The threshold value of three days maximum between two events 102 

was used following Biasutti et al. (2016), who found it unlikely that landslide events occurring 103 

more than three days apart, occurred during the same rainfall event. However, it is important to 104 
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note that their study was set in three metropolitan areas on the West Coast of the USA and might 105 

not be applicable everywhere.  106 

The threshold value of the spearman correlation coefficient was determined by testing the 107 

robustness of the identified clusters for different threshold values between zero and one (Fig. S2). 108 

Our results indicate that mean duration, area and number of landslide per cluster are comparably 109 

robust to changes of the spearman correlation coefficient. In contrast maximum duration, area, and 110 

number of landslides per cluster change drastically for different threshold values. From a 111 

correlation coefficient threshold of 0.35 to 0.7, maximum number of landslide events per cluster 112 

decreases from close to 500 to slightly above 100, maximum duration decreases from more than 113 

80 days to approximately 25, and area decreases from 60,000,000 km² (approximately 1/3 of the 114 

planet’s surface area) to 200,000 km².  For threshold values greater 0.7, minor changes are observed. 115 

Hence, the latter was set as the correlation threshold value for this study (Fig. S2). 116 

Additionally, we tested the robustness of the method to the time period of precipitation for which 117 

the correlation coefficient was determined (Fig. S3). It appears that the number of days is much 118 

less influential than the set correlation coefficient threshold (Fig. S2). Again, maximum number of 119 

landslides, area, and duration are impacted most, however remain stable for time period longer than 120 

30 days prior to the second event. 121 

It is important to note that the introduced method does not limit the spatial extent of the found 122 

landslide clusters. While this ensures that previously undetected, large-scale connections between 123 

individual landslide events are found, it is also susceptible to link landslides occurring in different 124 

parts of the world, where rainfall coincidentally correlates. Hence, when applying the method to 125 

another dataset, the robustness of the threshold values for correlation coefficient and time analyzed 126 

needs to be rechecked. 127 



7 

The introduced algorithm is independent of subsoil topography and relief parameters. While these 128 

impact the precipitation intensity-duration threshold that is commonly expected to trigger 129 

landslides, locations with different thresholds might still experience landslides triggered by the 130 

same rainfall event.   131 

 132 

Figure 2. Schematic drawing of the algorithm used to identify, if two landslide events within the Global Landslide 133 

Catalog (GLC) occurred during the same rainfall event and hence belong to the same cluster. For condition II only 134 

events occurring within three days of each other are compared. 135 

2.4 Rainfall Analysis 136 

In order to compare rainfall during a landslide event to overall rainfall at the location, the 95th 137 

percentile of precipitation excluding non-rainy days was determined for 10 years prior to the event. 138 

This comparison was also previously used by Kirschbaum et al (2015) to identify rainfall triggered 139 

landslide events. However, in their case, rainfall data from the Tropical Rainfall Measuring Mission 140 

(TRMM) was used for the time period 2000–2013 independent of the date of the landslide event. 141 

Due to its higher spatial resolution CHIRPS data was used here instead.  142 
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In addition to the 95th percentile of rainfall, the global rainfall threshold by Guzzetti et al. (2008) 143 

was also utilized to determine the likelihood of the individual landslide events being triggered by 144 

rainfall. In their study 2626 rainfall events that have resulted in shallow landslides and debris flows 145 

were analyzed in order to determine the following global rainfall intensity–duration threshold 146 

[http://rainfallthresholds.irpi.cnr.it]: 147 

 𝐼 = 2.2 ⋅ 𝐷−0.44 (1) 

Here the threshold intensity (I) was determined for each 24 hours starting with a duration (D) of 148 

12 hours. This results in an average precipitation of 0.73 mm/h for D = 12 h, 0.45 mm/h for D = 149 

36 h, and 0.35 mm/h for D = 60 h. The rainfall threshold was then compared to the cumulative 150 

mean precipitation of the rainfall event preceding each landslide event. 151 

3. Results and Discussion 152 

3.1 Clustering Characteristics 153 

The presented algorithm divided the 9279 landslide events of the Global Landslide Catalog (GLC) 154 

into 6474 clusters of events connected through precipitation. However, 85 % of these clusters 155 

consist of only a single landslide event, containing in total 59 % of all recorded landslide events. 156 

This implies that a large number of landslide events are in fact isolated events with no association 157 

to other events. Nevertheless, 67 % of these ‘single landslide event’-clusters are categorized as 158 

medium or larger and might contain more than one landslide (in comparison 58 % of the landslide 159 

events in clusters ≥ one landslide event are categorized as medium or larger). Hence, the number 160 

of isolated landslides is likely to be significantly smaller than the number of isolated landslide 161 

events.  162 
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In the Global Landslide Catalog (GLC) only 3 % of the analyzed landslide events are linked to 163 

triggers unrelated to rainfall such as construction, volcanos or earthquakes. This number is reduced 164 

to 1.5 % for landslides in a cluster of more than one event. Due to the low number of events in this 165 

category, future research is necessary to test and thoroughly validate these findings as well as to 166 

assess possible reasons and implications of this phenomenon. For now, we assume that this is 167 

mainly caused by biased reporting and cataloging of landslide events, where events linked to larger 168 

disasters such as earthquakes, might be reported as one large landslide event, whereas landslides 169 

linked to rainfall, might be individually reported. Similar observations were previously made by 170 

Kirschbaum et al. (2015) for events in the GLC that are linked to major storms. An example of this 171 

is the catastrophic magnitude 7.8 Gorkha earthquake in Nepal in 2015. While more than 25,000 172 

landslides occurred during the earthquake and its aftershock sequence (e.g. Roback et al., 2018), 173 

they are only reported as 13 landslide events in the excerpt from the GLC analyzed here. In it, they 174 

are described as ranging in size from small to large and their trigger is given as “unknown”, 175 

“earthquake” and in one case “snowmelt”. Our algorithm sorts these events into eight clusters of 176 

up to three events.  177 
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 178 

Figure 3. Histogram of the number of events per cluster, duration of clusters and area of the convex hull of each cluster. 179 

Clusters with only a single landslide event were appointed an area of zero. Within this study, all clusters with at least 180 

10 landslide events were analyzed more closely. 181 

Figure 3 provides histograms of the landslide events per cluster, duration of clusters and area 182 

covered by clusters (convex hull) in a logarithmic scale. As expected, for all three aspects frequency 183 

reduces drastically for larger numbers. In the following section all 50 clusters with at least 10 events 184 

(marked in red in Figure 3) are evaluated more closely. 185 
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 186 

Figure 4. Location of all landslide events within clusters ≥ 10 events (different colors indicate different clusters). 187 

Overall, clusters in five distinct regions could be identified in the GLC (see Table S1 for more detail). Size and trigger 188 

(GLC categorization) of the associated landslide events are also shown (also see Tables S2 and S3). 189 

3.2 Clusters with more than ten Landslide Events 190 

3.2.1 Global Analysis 191 

Table S1 in the supplementary material gives more detail of the 50 clusters with at least 10 events. 192 

In total 13 % of all landslide events are associated with one of these clusters (Table 1). As the 193 

database is most likely incomplete, the true number is expected to be higher. Overall the algorithm 194 

detects clusters in five distinct regions: (1) West Coast of North America, (2) Central and Eastern 195 

USA, (3) Central and Southern America, (4) Himalaya Region and (5) South-East Asia (Fig. 4). 196 

However, close to three quarters of all clusters ≥ 10 events are found within the USA mostly due 197 
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to a bias in the GLC database (Kirschbaum et al., 2015) (Fig. 1). This is also shown in the size of 198 

recorded landslide events (Fig. 4 and Table S2).  199 

In North America events are often classified as small in size, while clusters in the other regions 200 

contain mainly medium events. This might be due to English speaking media, on which the GLC 201 

is based, only picking up on large international events that consist of multiple landslides within an 202 

area and smaller ones are under or not reported at all.  203 

The median clusters with at least 10 events last six days, consist of 15 events, and span over an 204 

area of 15,000 km² (Fig. 5). As expected, there is a positive correlation between cluster duration 205 

and area (spearman correlation coefficient of 0.70, p-value: 0.001). However, this cannot be 206 

observed for cluster duration and number of landslide events within the cluster (spearman 207 

correlation coefficient of 0.44, p-value: 0.001). When comparing the different regions, clusters 208 

located on the West Coast of North America are on average the longest and cover the largest area. 209 

In contrast, events in South America are shortest and smallest, nevertheless they have the highest 210 

number of events and clusters per day (Table 1). 211 

On a global scale, no significant trend over time can be observed and clusters with ≥ 10 events 212 

occur around the year (Fig. S4). Similarly, the total number of reported landslide shows no 213 

significant increase in the GLC (Kirschbaum et al., 2015) as well as in other global databases such 214 

as the Global Fatal Landslide Database (Froude and Petley, 2018). More regional observations 215 

show seasonal variation and are described more closely in the following chapters. However, for 216 

three out of the five regions, there are only five clusters or even less.  217 
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 218 

Figure 5. Link between the duration of the individual clusters ≥ 10 events and a) the covered area and b) the number 219 

of landslide events per cluster. The color of the scatter plots indicates the region, in which each cluster occurred.  220 

Table 1. Regional statistics for all landslide clusters (LC) with at least ten landslide events (LE). 221 

Region # LC # LE LE per LC 

Average 

duration 

of LCs 

LEs per 

day 

Average area 

of LCs [km2] 

Percentage of LE 

in a LC ≥ 10 LE 

Global 50 1,209 24.2 7 3.5 35,441 13 

West Coast,  

North America 
29 829 28.6 9 3.3 52,970 31 

Central and 

Eastern USA 
8 107 13.4 6 2.4 23,357 12 

South and 

Central America 
5 168 33.6 3 11.2 1,320 18 

Himalaya 4 48 12.0 5 2.3 5,476 3 

South-East Asia 4 57 14.3 5 3.2 5,143 4 

 222 

3.2.2 West Coast, North America 223 

Landslides in the west of North America have been intensively investigated, mainly in the form of 224 

case studies that discuss landslides along the Pacific coast in the states of California (Collins and 225 

Sitar, 2008; Wieczorek, 1988), Oregon (Benda, 1990; Miller and Burnett, 2008) and Washington 226 
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(LaHusen et al., 2016; Perkins et al., 2017). This region is also one of the few, where the clustering 227 

of rainfall triggered landslide events was previously investigated, showing qualitatively that there 228 

are many instances in which landslides occur on consecutive days (Biasutti et al., 2016).  229 

About 31 % of all landslide events recorded in this area belong to a cluster of at least ten events. 230 

This is the highest number compared to the other regions of the world (Table 1). However, this 231 

effect might be amplified by the high number of reported landslides. The large number of events 232 

and clusters is mainly due to geologic, topographic, climatic conditions and construction practices. 233 

For example in Oregon, steep slopes and heavy rainfalls are as well as poor construction practices 234 

result in high economic losses (Wang et al., 2002). Burns et al. (2017) estimated an average annual 235 

loss of $15.4 million due to landslides in Oregon alone. In years with heavy storms such as 1996, 236 

this can accumulate to more than $100 million (Wang et al., 2002). 237 

The observed clusters in this area are among the longest and have the largest areas of all regions 238 

(Table 1). While the size of landslide events (as given by the GLC) in the west of North America 239 

are small compared to most other regions, there is also a considerable amount of events, where the 240 

size is unknown (43 %, Fig. 4, Table S2). While about half of the landslide events within clusters 241 

≥ 10 events are classified as “trigger unknown” (47 %), landslide events with a known cause are 242 

mainly triggered by downpour (27 %) or rain (19 %) (Fig. 4, Table S3). However, when looking at 243 

satellite based rainfall data preceding the clusters, rainfall cannot always be identified as a trigger 244 

(Fig. S5). While it generally exceeds the global rainfall threshold (Guzzetti et al., 2008), the 95th 245 

percentile of precipitation on rainy days is not reached for the majority of the clusters. Although, 246 

several studies linked landslides within California to earthquakes (e.g. Harp and Jibson, 1996; 247 

Keefer, 2000), they occurred before 2007 and are not registered in the GLC. 248 

While there appears to be no significant change in the number of clusters over time (Fig. S4 249 
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), most clusters occur during the rainy season (November to March), when most landslide events 250 

occur. Within the west of North America this time period is therefore often referred to as the 251 

“landslide season” (e.g. Mirus et al., 2018). Only one cluster in this region appears in June (Cluster 252 

ID 21, Table S1). However, the center of this cluster is located more inland (in San Miguel County, 253 

Colorado) and is also the shortest cluster (only one day) within the region as well as the most local 254 

of all clusters in this study, covering only 1 km2. While this cluster is triggered by downpour 255 

according to the GLC, this is not apparent from satellite derived precipitation (Fig. S5). The small 256 

size of the cluster might be the reason, why low-resolution satellite derived precipitation does not 257 

record any anomalies here.  258 

3.2.3 Central and Eastern USA 259 

While most of the clusters with ≥ 10 landslides events of this region, are located in the Appalachian 260 

Plateau (Ohio, West Virginia and Kentucky), one cluster can be found in Minnesota (ID 34 in Table 261 

S1 and Fig. S6). While it is considerably smaller (580 km2 compared to more than 9,000 km2), it 262 

is comparable to the Appalachians cluster in its number of landslide events and duration. The 263 

Appalachian Plateau is well known for its landslides and the annual direct cost in Kentucky exceeds 264 

$10 million (Crawford and Bryson, 2017).  265 

Like the landslide clusters observed in the west of North America, clusters here consist mainly of 266 

small landslides, which is most likely linked to the news alerts on which the GLC is based. 267 

Checking sources in the GLC, they are mainly reported within smaller, more local news outlets 268 

compared to landslide events outside of the US. To our knowledge the individual events grouped 269 

by our algorithm into clusters have never been linked before. Clusters in this region occur 270 

predominantly in spring (February to June), when rainfall is highest, slightly later than events on 271 

the West Coast (Fig. S4). According to GLC they are predominantly triggered by downpours (64 %, 272 
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Fig. 4, Table S3). However, extreme rainfall is not always visible in satellite derived precipitation 273 

(Fig. S6). For most clusters, it is below the 95th percentile, but above the global threshold. It is 274 

worth noting than one cluster located in West Virginia (Cluster ID 35) shows no rainfall on the 275 

satellite before day three of the cluster. Following the GLC, early landslide events within this 276 

cluster are linked to snowmelt.  277 

3.2.4 Central and South America 278 

In contrast to the clusters in North America, more than 95 % of landslide events within clusters of 279 

this region are medium in size or larger and might consists of several landslides themselves (Fig. 280 

4). Thus, the number of landslides per cluster and per day is likely to be significantly higher than 281 

the number of events per cluster and per day. Still, clusters in this area are on average only two and 282 

a half days long, covering an area of slightly over 1,500 km² and they are the smallest and shortest 283 

of all regions (Fig. 5, Table 1). It is important to note that this region covers the largest area reaching 284 

from Rio de Janeiro in Brazil to Guatemala in Central America. From the few clusters we could 285 

identify, it appears that there are dissimilarities between the clusters in Central America and South 286 

America. The two clusters in Nicaragua (ID 42) and Guatemala (ID 39) are triggered by continuous 287 

rain and a tropical cyclone, respectively. In contrast, all events located in South America (IDs 38, 288 

40, and 41) are all triggered by downpour (Table S1 and Fig. S7). 289 

3.2.5 Himalaya 290 

Like in South America, most landslide events (94 %) associated with clusters with ≥ 10 events in 291 

the Himalaya region are categorized as medium and larger. Thus, the number of landslides per 292 

cluster is again expected to be significantly higher than the number of landslide events per cluster. 293 

However, there may be differences between regions. Event ID 44, located in India and Pakistan 294 

around Jammu and Kashmir, is classified as medium to small, much longer (10 days) and covers 295 
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an area more than 10 times larger than the other clusters. All of them are classified as medium or 296 

large and are located in the East of India with some events in Nepal (Table S1). In both regions, 297 

clusters are triggered by continuous rain or downpour. For all clusters satellite based rainfall data 298 

exceeds the global threshold, and in most cases the 95th percentile of rainfall on rainy days (Fig. 299 

S8). It is important to note that while earthquake triggered landslides are common in the region 300 

(e.g. Parkash, 2013; Roback et al., 2018), the presented algorithm is by design only able to pick up 301 

clusters that are linked by rainfall. 302 

3.2.6 South-East Asia 303 

As only four clusters are identified in this region, a detailed analysis is impossible. Again, 96 % of 304 

the events associated are categorized as medium or larger and the main triggers are tropical 305 

cyclones (Cluster IDs 47 and 48), downpour (Cluster ID 49), and rain (ID 50) (Table S1). Here, 306 

satellite based rainfall data before clusters is both above the global rainfall threshold and in most 307 

cases above the 95th percentile (Fig. S9). While only one of the four clusters (ID 50) is recorded 308 

outside of the Philippines (in Indonesia), there is no apparent difference between both countries 309 

(Table 1).  310 

3.3 Most Intense Cluster 311 

The cluster with the most events in one day, i.e. most intense cluster, happened in Rio de Janeiro, 312 

Brazil, as well as neighboring cities Niteroi and Sao Goncalo in 2010. In an area of approximately 313 

2,800 km2, 111 landslide events were recorded within only three days, however predominantly on 314 

6th April 2010 (Table S1, ID 38). This is almost four times as many landslide events in a single day 315 

than the second most intense clusters (IDs 1 and 3) located in Washington and Oregon, USA. Both 316 

recorded 29 events in one day.  317 
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 318 

Figure 6. Daily precipitation for 30 days preceding the last landslide event of the cluster with the size of the associated 319 

landslide events and their trigger according to the GLC. Shown is the median precipitation for all landslide locations 320 

with the inner quartiles as an error bar. The 95th percentile of daily rainfall (rainy days only) in the ten years preceding 321 

the event is given in blue, in red the global rainfall threshold ID (Guzzetti et al., 2008) and in orange the cumulative 322 

mean for the rainfall event preceding the cluster. a) Cluster with the most events per day (ID 43), and b) longest running 323 

cluster (ID 22). 324 

Most of the 111 events associated with the cluster in Rio de Janeiro were recorded as medium in 325 

size, all of which were triggered by downpour (Fig. 6a). This is confirmed by satellite derived 326 

precipitation. Heavy rainfalls (Figs. 6a, 7) occurred on the 4th and 5th of April of up to 210 mm per 327 

day. In comparison, the 95th percentile in the 10 years preceding this cluster is on average only 62 328 

mm per day (rainfall for each individual location shown in Fig. S10). While the rainfall covered a 329 

large area, landslide events were primarily reported for steep slopes just outside the densely 330 

populated city center. Due to its location close to, and inside the urban area of Rio de Janeiro, the 331 

cluster caused approximately 200 fatalities according to CNN news reports 332 

(http://www.cnn.com/2010/WORLD/americas/04/12/brazil.flooding.mudslides/).  333 
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The location in the city might also be the reason for the large number of events being reported, as 334 

we can expect more individual landslides being reported here compared to the countryside. 335 

While studies not based on English speaking news alerts report a large number of landslides within 336 

and around Rio de Janeiro (Calvello et al., 2015; Sandholz et al., 2018), only nine additional 337 

landslide events inside the area of this cluster were reported in the GLC between 2009 and 2018. 338 

Additionally, just northwest of the cluster another cluster occurred in January 2011 (ID 41 in Table 339 

S1, Fig. S7). Although, this cluster only counts 20 individual landslide events within the GLC, it 340 

is being reported as thousands individual landslides (Coelho Netto et al., 2013).  341 

 342 

Figure 7. Location of the events in the cluster with the most events per day located in Rio de Janeiro, Brazil. Also 343 

shown are daily precipitation and elevation. Elevation data is taken from the US Geological Survey (GTOPO30).  344 

3.4 Longest Cluster 345 

The longest running cluster identified in this study occurred in Oregon and Washington, USA from 346 

4th to 27th December 2015 for a total of 24 days with 132 landslide events (Cluster ID 18, Table 347 

S1). The second longest cluster lasted 17 days over January and February in 2012 and was also 348 
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located in Oregon and Washington, USA (Cluster ID 7). Overall, most events within the longest 349 

cluster are unknown in size (69 %) and trigger (74 %) (Fig. 6b). However, inspecting satellite based 350 

rainfall data, continuous rainfall appears to be the main trigger (Fig. 6b, Fig. 8 and Fig. S11 for 351 

rainfall at the individual event locations). While daily rainfall is mainly below the 95th percentile, 352 

cumulative mean rainfall is continuously above the global rainfall threshold. Although, heavy 353 

rainfall is common in this area during winter times, for this cluster it lasted longer than usual and 354 

was followed by shorter rain events in short successions (Fig. 8). Thus, the series of landslides did 355 

not halt resulting in the longest cluster in the GLC. Following the information on sources within 356 

the GLC, it appears that local media reported about the individual landslide events, but did not 357 

detect on the extreme length of the continuous series of landslide events at this point in time (e.g. 358 

https://kval.com/news/local/landslide-blocks-i-5-in-sw-washington; 359 

https://q13fox.com/2015/12/09/landslide-above-puget-sound-damages-several-homes-at-least-360 

one-vehicle/). As landslide events are such a common occurrence in this region, and due to the 361 

large area covered by this cluster, there is currently little to no emphasis on the longevity of this 362 

specific series of landslide events in media and scientific studies.  363 

https://kval.com/news/local/landslide-blocks-i-5-in-sw-washington
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 364 

Figure 8. Location and time series of the longest cluster, located mainly in Oregon, USA. Also shown are daily rainfall 365 

and elevation. Elevation data is available from the US Geological Survey (GTOPO30). 366 

4. Conclusion  367 

In this study an algorithm is presented that detects clusters of landslide events that occur during, 368 

and are likely triggered by the same rainfall events. Here this algorithm is applied to the Global 369 
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Landslide Catalog (GLC), where it detects that more than 40 % of all recorded events can be linked 370 

to at least one other event. The global analysis shows that 14 % of all landslide events are part of a 371 

cluster ≥ 10 events. However, this percentage varies dramatically by the region, ranging from 30 % 372 

on the West Coast of North America to 3 % in the Himalayas. Part of this is caused by sampling 373 

and reporting bias. As the GLC is based on English speaking media, events in the USA are reported 374 

and cataloged in much greater detail than events abroad. Nevertheless, within the GLC we could 375 

detect clusters ≥ 10 landslide events in five distinct regions: (1) West Coast of North America, (2) 376 

Central and Eastern USA, (3) Central and Southern America, (4) Himalaya Region, and (5) South-377 

East Asia. In South America, the studied clusters are the shortest, but contain the most events per 378 

day. However, this is mainly due to a cluster in Rio de Janeiro, where 108 of events were recorded 379 

on 6th April 2010. As most of these events are classified as medium or larger, the absolute number 380 

of landslides is expected to be significantly higher. In contrast, the longest and largest clusters are 381 

observed on the West Coast of North America. On average clusters here last nine days and cover 382 

an area of more than 50,000 km2. The steep slopes and continuous rainfalls present in the area 383 

combined with the above average reporting of landslide events, makes a more detailed analysis of 384 

rainfall related landslide clusters possible. The longest of all detected clusters ≥ 10 landslide events 385 

is also located in this region: In December 2015, 132 landslide events were recorded over a time 386 

period of 24 days spanning more than 120 thousand km2, which were all triggered by the same 387 

rainfall event. Detection of large scale clusters such as this one can not only help to improve our 388 

understanding of the link between individual events, but also be used in our mitigation strategies. 389 

Only once we improve our understanding of the relation between individual landslide events, we 390 

will be able to predict their behavior and forecast their economic losses and fatalities. While our 391 

study does not replace case specific and small scale studies, as well as the identification of threshold 392 

values, it can provide an improved understanding for managing landslide mitigations on a larger 393 
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scale. Within the area covered by individual clusters the same mitigation strategies, including early 394 

warning systems (EWS) based on weather forecast simulations, can be developed and validated. 395 

For future research we recommend to use the presented algorithm not only for the correlation with 396 

precipitation data, but also to include the geometry of atmospheric rivers during cluster detection. 397 

Finally, the algorithm could be applied to more regional and other global landslide databases 398 

thereby improving our understanding on the spatial and temporal occurrence of landslide clusters.  399 
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