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Abstract. The consideration of uncertainties in flood risk assessment has received increasing attention over the last two 

decades. However, the assessment is not reported in practice due to the lack of best practices and too wide uncertainty bounds. 

We present a method to constrain the model roughness based on measured water levels and reduce the uncertainty bounds of 

a two-dimensional hydrodynamic model. Results show that the maximum uncertainty in roughness generated an uncertainty 10 

bound in the water level of 1.26 m (90% confidence interval) and by constraining roughness, the bounds can be reduced as 

much as 0.92 m. 

1 Introduction 

Uncertainties in flood risk assessment have received increasing attention from researchers over the last two decades. In 

Germany, flood risk management plans rely on hydrodynamic (HD) models to determine the impact of flooding for areas of 15 

potential flood risk (Thieken et al., 2016). Two-dimensional (2D) HD models are widely used to simulate flood hazards in the 

form of water depth, inundation extent and flow velocity (Disse et al., 2018). The hazard maps depict inundated areas for 

floods above certain exceedance levels, which leads to an improvement in flood risk assessment through increased spatial 

planning and urban development (Hagemeier-Klose, 2007). 

Even though HD models are physically deterministic, they contain numerous uncertainties in model outputs (Bates et. al., 20 

2014; Beven et al., 2018). Information about the type and magnitude of these uncertainties is crucial for decision making and 

to increase confidence in model predictions (Oubennaceur et al., 2018). Despite uncertainties, decision making in practice is 

based on first-hand data, expert judgement and/or a calibrated model output (Henonin et al., 2013; Uusitalo et al., 2015). 

Uncertainties associated with exceedance level scenarios are usually not quantified for at least five reasons: 1) most of the 

sources of uncertainty are not recognized (Bales and Wagner, 2009); 2) the data required to quantify uncertainty are seldom 25 

available (Werner et al., 2005a); 3) high computational resources are required to perform an extensive uncertainty assessment; 

4) the wide uncertainty bounds cannot be incorporated into the decision making process (Pappenberger and Beven, 2006); and 

5) the uncertainty analysis is complex and is not considered for the final decision (Merwade et al., 2008). 



2 

 

The major sources of uncertainty in HD models can be categorized as model structure, model input, model parameters and the 

modeller (Matott et al., 2009; Schumann et al., 2011). The model structure, essentially either 1D, 2D or hybrid 1D-2D HD 

code, is generally selected based on the purpose and scale of the modelling (Musall et al., 2011; Bach et al., 2014). In addition, 

there is no general agreement on the best approach to consider model structure uncertainty; hence, it is often neglected 

(Oubennaceur et al., 2018). In the case of hindcasting a flood event based on measured discharges or water levels as the input 5 

boundary conditions and a fine-resolution elevation, roughness remains the main source of uncertainty in HD models; hence 

we focus this study on roughness uncertainty. 

The precise meaning of roughness changes based on a model’s physical properties, such as grid resolution and time step (Bates 

et. al., 2014), and the term is denoted as Manning’s roughness coefficient or simply Manning’s n in most of HD models. 

Various studies point out that HD models can be very sensitive to Manning’s n, which implies a higher degree of uncertainty 10 

(Aronica et al., 1998; Pappenberger et al., 2005; Werner et al., 2005a). The coefficient is either derived from measurements in 

the field or estimated from the relevant literature on the basis of land use types, but it has proven very difficult to demonstrate 

that such models can provide accurate predictions using only measured or estimated parameters (Hunter et al., 2007). In 

addition, Manning’s n is not only related to bottom friction but also includes incorrect representation of turbulence losses, 3D 

effects and incorrect geometry (profiles); therefore, it cannot be measured exactly. The spatial distribution of the Manning’s n 15 

in floodplains is challenging and depend on many factors, such as vegetation type, soil surface and imperviousness (Sellin et 

al., 2013). Traditionally, this coefficient can be best estimated based on lookup tables of land use types (Werner et al., 2005b). 

In order to understand views on uncertainty analysis, it is important to look at the different modeller types. According to 

Pappenberger and Beven (2006), there are different modeller types: physically based modellers who believe that their models 

are physically accurate and that the roughness must not be adjusted under any circumstances; the second modeller type believes 20 

that the roughness should be calibrated within a strictly known range (Wagener and Gupta, 2005); and the third modeller type 

uses effective roughness beyond the accepted range (Pappenberger et al., 2005). The first modeller type would reject any 

calibration or uncertainty analysis; however, HD models make simplifying assumptions and do not consider all known 

processes that occur during a flood event (Romanowicz and Beven, 2003). Hence, models are subjected to a degree of structural 

errors that are typically compensated for by calibrating Manning’s n (Bates et. al., 2014). However, effective roughness 25 

identified for one flood event might not hold true for another (Romanowicz and Beven, 2003), and a range of parameters 

should be defined where equifinality can be observed. Beven (2006) argued that the prior selected for the range of parameters 

should potentially cover all the accepted or behavioural models (modeller types 2 or 3). In HD models, selecting such a prior 

distribution for model parameter introduces the issue of too wide bounds.  

Significant work has been done thus far in the quantification of HD model uncertainties and an overview of selected 30 

publications, including model roughness, is presented in Table 1. The major issue of wide uncertainty bounds raised by 

researchers and practitioners reflects in the table. It shows the maximum bounds reported in each publication and in some 

cases, these bounds are more than 50% of the available water depth (Aronica et al., 1998; Hall et al., 2005; Werner et al., 

2005a; Jung and Merwade, 2012). This is indeed an issue but not a reason to ignore uncertainties in predicting hazards. 
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Moreover, decision makers must be made aware of potential risks associated with the possible outcomes of predictions, such 

as water levels and inundation extent (Pappenberger and Beven, 2006; Uusitalo et al., 2015). 

The associated uncertainties can be constrained on measured data, if available, using a suitable goodness-of-fit or with the help 

of a sophisticated framework for assessment (Werner et al., 2005a). Few researchers have used frameworks, such as 

Generalized Likelihood Uncertainty Estimation (GLUE), the Point Estimate Method and Global Sensitivity Analysis, to reduce 5 

the bounds. These methods, although widely used in research, are not employed in operational practice, and a straightforward 

approach is needed to reduce the bounds. Furthermore, there is a need to ensure efficiency in searching model parameter spaces 

for behavioural models (Beven, 2006). 

This study investigates the use of measured water levels to reduce uncertainties bounds of HD model outputs. We begin with 

the approach of the third modeller type and select extreme ranges of model roughness in literature and gradually shift to the 10 

approach of the second modeller type by reducing the uncertainty bounds based on the measured data. The main focus of this 

paper is to constrain literature-based ranges of roughness using measured water levels and to assess uncertainties in water 

levels. Uncertainty is quantified for the flood event of January 2011 in the city of Kulmbach, Germany. 

2 Methods 

To investigate the effect of measured data on constraining parameters, an ensemble of parameter sets was sampled using a 15 

prior distribution. In the HD model, distributed roughness values were used based on land use and a single value was used for 

each land use class. The model domain was spatially discretized based on the classification of land use and parameter sets 

were sampled using a prior. The choice of the distribution influences the outcome hence, it should be selected carefully. The 

2D HD model was then run with each parameter set. The acceptance of each simulation was assessed by comparing the model 

outputs and measured data. The measured data can be static or time-series water level measurements in the model domain 20 

and/or inundation extent gathered by field survey or post-event satellite images. 

The performance of the simulations can be accessed using a suitable goodness-of-fit, such as Nash Sutcliffe efficiency, the 

coefficient of determination, absolute error etc., based on the purpose of application and measured data available. A behaviour 

threshold was applied to divide simulations with acceptable performances from those with unacceptable performances. 

Parameter sets that perform below the threshold were then selected at each location and an intersection at all the locations 25 

resulted in the final number of accepted simulations (r) using equation 1 

r = ⋂ Pi(GoF ≤  e)
n

i=1
  (1) 

Where n is the total number of observations, GoF is the goodness-of-fit used, e is the threshold and P is the array of models 

that satisfy the criteria of GoF below the threshold. 
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3 Materials 

3.1 Study area and land use 

The city of Kulmbach is located in the North-East of the federal state of Bavaria in Southern Germany. The city is categorized 

as a great district city inhabiting around 26,000 people and a population density of 280 inhabitants per km2 in an area of 92.8 

km². The city is crossed by the river White Main and Mühl canal, which is a diversion canal for flood protection. Schorgast 5 

and Red Main are two main tributaries that meet the White Main upstream and downstream of the city respectively. In the 

north, the small tributary Dobrach meets the White Main and from the south side, two stormwater canals join the Mühl canal 

(see Fig. 1a). Main gauging stations upstream of the city are Ködnitz at White Main and Kauerndorf located at the river 

Schorgast. 

The land use is shown in Fig. 1a and it generally consists of agricultural land (62%) that includes floodplains and grassland. 10 

The water bodies make up 7% of the total model area and include rivers, canals and lakes. The urban area covers around 26% 

of the land and includes industrial and residential areas as well as transport infrastructures like roads and railway tracks, 

whereas forests form barely 5% of the total area. Fig. 2 shows images of the main channel and flood plain of the river White 

Main near site 1. 

3.2 Measured discharges and water levels 15 

Hydrological measurement data for the winter flood event of January 2011was collected by the Bavarian Hydrological 

Services. Fig. 3 shows the discharge at the main two gauges upstream of the city, Ködnitz and Kaurndorf. Intense rainfall and 

snow melting in the Fichtel mountains caused floods in several rivers of Upper Franconia. On 14th January, the maximum 

discharge of 92.5 m³/s was recorded at gauge Kauerndorf and 75.3 m³/s at gauge Ködnitz. It was one of the biggest in terms 

of its magnitude and corresponded to a discharge of the 100-year return period at gauge Kauerndorf and the 10-year return 20 

period at gauge Ködnitz. Agricultural land and traffic routes were flooded, but no serious damage was reported. In Kulmbach, 

a dyke in the region of Burghaig was about to collapse due to the large volume of water. The Water Management Authority 

opened the weir in Kulmbach which saved potential damages (Hof, 2011). 

Water levels at eight sites during the winter flood of January 2011 were collected by the Water Management Authority in Hof, 

Germany in Kulmbach (see Fig. 1a). The water levels were measured using a levelling instrument Ni 2 (Faig & Kahmen 2012). 25 

Based on the locations, the sites are categorized in four groups: sites 1, 2, and 3 at the river White Main; site 4 at Dobrach 

canal in the north; site 5 at a side canal; and sites 6, 7, and 8 at Mühl canal. 

3.3 2D HD model 

HEC-RAS 2D was used as the 2D hydrodynamic model to quantify uncertainties in the inundation. The model uses an implicit 

finite difference solution algorithm to discretise time derivatives and hybrid approximations, combining finite differences and 30 
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finite volumes to discretise spatial derivatives (Brunner, 2010). Table 2 shows the model properties and information of the cell 

size. We have used the unsteady diffusive wave model presented in previous work in Bhola et al. (2018a and 2018b).  

Measured discharge hydrographs described in the previous section were used as the upstream boundary condition at river 

gauges Ködnitz and Kauerndorf, and an energy slope value of 0.0096, based on the river slope, at the downstream boundary 

where the water flows out of the model domain. Along with the major rivers, canals were also represented as discharge 5 

hydrograph type. 

Digital elevation model for this study was provided by the Water Management Authority, Hof and presented in Fig. 1b. In the 

provided elevation model, the terrain is determined by airborne laser scanning and airborne photogrammetry with a high-

resolution of 1 meter, whereas the river bed was mostly recorded by the terrestrial survey. The combined elevation data were 

used to generate a triangulated irregular network (TIN) of the topography, which was then resampled to an irregular mesh of 10 

the 2D HD model. Special attention was given in resampling in order to preserve important features, such as rivers, dykes, 

buildings and roads. 

4 Results and discussion 

For the study, we have performed 1000 simulations based on uniformly distributed parameter sets for five land use classes. 

The sample size does contain enough samples of different behavioural models and the estimate was based on the 15 

recommendation in the literature (Aronica et al., 1998; Romanowicz and Beven, 2003) as well as the computational resources 

available. The HD models were simulated starting at 13.01.2011 00:00 to 14.01.2011 18:00, which requires approximately 

five hours to simulate an event of 42 hours on an eight-core, Intel® Core™ 2 Duo CPU T7700 @ 2.40 cloud computer with 64 

GB RAM. Eight cloud computers using the LRZ Compute Cloud, provided by the Leibniz Supercomputing Centre of the 

Bavarian Academy of Sciences and Humanities, were used to complete 1000 simulation in two weeks. Measured water levels 20 

at eight sites (see section 3.2) were used for the analysis of the model output. The absolute error between the simulated and 

measured water level is used as the goodness-of-fit to reach the objective.  

4.1 Roughness range and distribution 

The model parameter consists of roughness coefficient Manning’s n for five land use classes. A simple model structure, such 

as diffusive wave approximation, does not represent the accurate values of roughness as this parameter is scale-dependent 25 

effective values that compensate for varying conceptual errors in the model (Néelz et al., 2009). Hence, it is recommended to 

use extreme feasible upper and lower ranges for the parameters in the literature (Aronica et al., 1998; Bhola et al., 2018b). In 

this study, ranges of Manning’s n were set as: 0.015 – 0.15 for water bodies, which covers a range from very weedy reaches 

to rough asphalt; 0.025 – 0.110 for agriculture, short grass to medium-dense brush; 0.110 – 0.200 for forests, dense trees 

(Chow, 1959); 0.012 – 0.020 for transportation, firm soil to concrete; and 0.040 – 0.080, parks to gravels in urban areas 30 



6 

 

(Arcement and Schneider, 1989). Latin hypercube sampling was used to generate 1000 parameter sets using the upper and 

lower ranges of Manning’s n set as prior and HEC-RAS 2D model was simulated for each set. 

4.2 Error tolerance 

For the analyses, the absolute error between the simulated and the measured water levels was calculated at eight sites. The 

simulations that produced an absolute error below a threshold at all the sites were selected. Fig. 4 shows that as we increase 5 

the threshold, the number of accepted simulations increases. To find one calibrated parameter set, the least value of tolerance 

can be set at 0.20 m that gives two simulations that result in the least error at all site. Having said that, the calibrated roughness 

set will probably hold true only for the January 2011 event as discussed in the study (Romanowicz and Beven, 2003). In order 

to generalize the results to other events and collect enough samples to produce uncertainty bounds, the tolerance needs to be 

increased. In this study, we have used 1.5 m, 0.70 and 0.50 m as the tolerance at sites to evaluate the roughness sensitivity, 10 

which results in 1000, 339 and 143 selected simulations, respectively. Nevertheless, tolerance can be changed depending on 

the requirements of the user. To summarize, three thresholds are used to evaluate the performance of the method in order to 

reduce the uncertainty bounds and are termed as follows  

• Case I: Absolute error of 1.5 m resulting in 1000 simulations 

• Case II: Absolute error of 0.7 m resulting in 339 simulations 15 

• Case III: Absolute error of 0.5 m resulting in 143 simulations 

4.3 Roughness sensitivity 

The sensitivity of the model roughness was investigated, and it was observed that the sites were only sensitive to land use of 

water bodies and agriculture and no sensitivity was observed with respect to urban, transportation and forest. Table 3 presents 

the coefficient of determination (R2) between Manning’s n for all the land uses and absolute error for case I. Site-specific 20 

dependency in Manning’s n and sites was observed for the cases in which the value of R2 are found to be above 0.18 (in italic). 

The main reason for the lack of sensitivity can be explained by the location of the sites since they were mainly located next to 

bridges upstream from water bodies or agriculture land uses. Nonetheless, there are other influencing factors, such as the 

inundation area, velocity, and topography that could also play a role (Werner et al., 2005b). Fig. 5 shows the maximum flood 

inundation map for the January 2011 flood event simulated using the optimal model parameters, which were obtained by the 25 

least absolute error of 0.20 m. The inundation upstream to the sites is mainly constrained in the water bodies and agricultural 

land uses, which explains the impact on sensitivity of water levels to these two land uses. 

The sensitivity to the land uses is apparent in the scatter plots between the absolute error and Manning’s n shown in Fig. 6. In 

the figure, it can be observed that the cases II and III (with 339 and 143 accepted simulations) result in an absolute error of 

less than 0.70 m and 0.50 m at the sites respectively. The selected simulations were further used in refining the uncertainty 30 

bounds. Sites 1, 2 and 3 (White Main) show a pattern with agriculture (flood plain): as Manning’s n increases, the error reduces 

until an optimal roughness is obtained and further increase in the roughness value results in an increased error. Sites 6, 7 and 
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8, located at Mühl canal, show similar sensitivity towards water bodies. In the case of sites 4 and 5, sensitivity is observed for 

both land use types. The sensitivity found here is also reflected in other studies, such as sensitivity to flood plains (agriculture) 

(Aronica et al., 1998) and main channel (water bodies) (Hall et al., 2005), and insensitivity to other land uses for flood events 

(Horritt and Bates, 2002; Werner et al., 2005a). 

4.4 Uncertainty of water levels 5 

Table 4 shows 90% confidence interval of the absolute error bounds of the simulated and measured water levels for three cases 

along with the measured available water depth. The impact of reducing the uncertainty is clear in the simulated flood inundation 

for the city of Kulmbach; the average uncertainty bound was 0.87 m and after constraining with the measured data, it was 

reduced to 0.55 m for case II and further reduced to 0.38 in case III. The maximum bound of 1.26 m was observed at site 1, 

which was reduced to 0.59 and 0.34 m in case II and III respectively. Sites 7 and 8, located on Mühl canal, showed the least 10 

effect of 0.12 and 0.11 m reduction in the bounds respectively (case III). Fig. 7 presents a box plot of the difference in the 

simulated and measured water levels. The pre-selected literature values of Manning’s n tend to over-predict the water levels 

as the mean water level is well above zero at sites in case I. After constraining Manning’s n, the mean drops considerably and 

is still above zero for all sites except 7 and 8 in both cases II and III. The figures also suggest that the simulations can both 

under- and over-predict the inundation, which might not be desired in some applications, such as early warning and evacuation 15 

planning. Furthermore, in situations where few sites are more sensitive/important than others, a weighted goodness-of-fit can 

also be realized. However, in this study, we have focused on the overall uncertainties, both positive and negative, for a 

comprehensive assessment. 

4.5 Constrained parameter set 

The main objective of this study was to reduce the uncertainty bounds of the model output by constraining the prior set for the 20 

roughness. In this section, it is shown that the literature-based prior used for Manning’s n can be reduced using measured water 

levels. Fig. 8 presents the box plot of water bodies and agriculture roughness for three cases (1000, 339 and 143 accepted 

simulations). As stated in the previous section, no sensitivity was observed between the sites and other three land use types. 

Hence, the uncertainty bounds for other land use classes remain the same after the analysis. 

In the case of water bodies, Manning’s n gradually concentrated in the range of 0.029 – 0.055 (25 – 75%, case III). The physical 25 

interpretation of the constrained coefficient ranges in main channels with stones to sluggish reaches (Chow, 1959). However, 

for agriculture, the mean dropped considerably from case I to case II and remains consistent in case III. The 25 – 75% bounds 

of the coefficient were 0.032 – 0.047 (case III) and can be interpreted as high grass to medium brush in the flood plains (Chow, 

1959). This compares well to the results of Horritt and Bates (2002) in which they achieved an optimum in the range 0.03 – 

0.05 for the main channel and 0.02 – 0.10 for the flood plain roughness of the 2D HD models. 30 

Both the main channel and flood plains are homogenous in the model area and the presence of stones and high grass is observed 

in the field (see Fig. 2). It was discussed previously in the Introduction, that the second modeller type believes that Manning’s 
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n should be varied in a strictly known range based on field experiments. But these ranges can also be defined using a data-

driven approach with the method presented. However, a detailed field experiment in the study area will be required to make a 

conclusive remark for a comparison between the field and evaluated coefficients. Furthermore, these ranges may vary for 

summer and winter events and various HD models can be build up depending on the season. 

5 Conclusions 5 

We have quantified the uncertainty associated with the model parameter for the flood event of January 2011 in the city of 

Kulmbach, Germany. Moreover, the study provides a comprehensive review of HD model uncertainty and explores the issue 

of high uncertainty bounds, which hinder users to analyse uncertainties. We have provided a straightforward approach to 

practitioners for searching model parameter spaces for behavioural models and subsequently reduce the flood inundation 

uncertainty bounds. Extreme ranges of model roughness in the literature were selected and 1000 uniformly distributed models 10 

were run, which resulted in wide uncertainty bounds of up to 1.26 m (90% confidence interval). To reduce the bounds, 

measured water levels at eight sites were used and three cases were selected on the basis of absolute error threshold values of 

1.5, 0.7 and 0.5 m, which resulted in 1000, 343 and 143 accepted simulations respectively. By constraining the roughness, the 

bounds were reduced to a maximum of 0.34 m. In addition, the model roughness was constrained, and the physical 

interpretation of the constrained roughness was discussed. The model roughness was spatially distributed based on five land 15 

uses and the model was sensitive only to water bodies and agriculture. 

The method is easy to incorporate into other study areas, provided that there are measured water levels available. The 

uncertainty analysis presented in this study allows a better understanding of the model roughness variability in HD models. 

The ranges researched for Manning’s n in this study can represent a good starting point (prior distribution) for other studies. 

Our study has shown that there are significant uncertainties in HD model roughness and should be considered in decision-20 

making. In addition, the study highlights the importance of field surveys for reducing the uncertainty in flood inundation 

outputs. 

On an urban scale, the uncertainty assessment presented would substantially improve emergency responses by assessing the 

potential consequences of flood events (Molinari et al., 2014), and disaster relief organisations, such as the Federal Agency 

for Technical Relief (THW), the German Red Cross, and the Bavarian Water Authorities, would indeed benefit from 25 

prioritising and coordinating evacuation planning. For advanced users such as decision-makers in water management 

authorities, the uncertainty assessment should further serve as a tool for enhanced risk assessment. In addition, by visualising 

inundation scenarios, improved flood mitigation and flood forecast planning strategies can be developed using a multi-model 

ensemble (Bhola et al., 2018d) and potential damage can be estimated for various quantiles. 

Under-prediction of a simulated inundation is not desired in most case studies; therefore, the goodness-of-fit used in this study 30 

could be a critical issue. Future work should include other evaluation measures to constrain the parameter ranges. As the high-

computational resources hinder a comprehensive uncertainty assessment of a full dynamic HD model, it is worth exploring 
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transferability of the evaluated uncertainty bounds of Manning’s n of the simple model structure (diffusive wave) to a complex 

model structure. Furthermore, other sources of uncertainty, such as model input (hydrological model in Disse et al., 2018), 

discharge measurement error, or flood frequency estimations; and digital elevation map) and measured water level, which is 

assumed to have no error, should also be incorporated for a comprehensive assessment. The parameter ranges were constrained 

based on a single event in this study; however, the values can be further validated using another flood event of higher 5 

magnitude. Land use in this study is divided into five classes; in future, further reclassification of land use, especially in urban 

areas, will help further reduce the bounds (Bhola et al., 2018c).  

The inundation model should be extended to simulate urban pluvial flooding in future by including a 1D-2D sewer/overland 

flow coupled-model structure (Leandro et al., 2011). This will bring other sources of uncertainties as there are numerous 

uncertain parameters associated with this model structure (Djordjević et al., 2014). With an ever-increasing computational 10 

performance and the introduction of cloud computing, the integration of more complex models will become feasible. 
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Tables 

Table 1. A summary of selected publications including the maximum uncertainty bound reported. GLUE, PEM, GSA and SD stands 

for Generalized Likelihood Uncertainty Estimation, Point Estimate Method, Global Sensitivity Analyses, and standard deviation 

respectively. 

Model 

dimension 
HD Model 

Identified 

sources 
Method 

Sample 

size 
Max bound Literature 

1D HEC-RAS Manning’s n GLUE 10000 ~ 
Pappenberger et al. 

(2005) 

1D HEC-RAS 

Flow 

Topography 

Manning’s n 

GLUE 5000 ~2.5 m (95%) in 8 m 
Jung and Merwade 

(2012) 

1D-2D SOBEK 
Topography 

Manning’s n 
GLUE  

1.64 m (90%) in 1.51 

m 
Werner et al. (2005a) 

2D  Manning’s n GLUE 1000 ~7m (90%) in 10.5 m Aronica et al. (1998) 

2D H2D2 

Flow 

Topography 

Manning’s n 

PEM 108 0.27 m SD in 12.06 m 
Oubennaceur et al. 

(2018) 

2D 
Lisflood-

FP 

Flow 

Topography 

Manning’s n 

Channel width 

GSA 1792 6 m SD in 11 m Hall et al. (2005) 

 5 

Table 2. 2D hydrodynamic model properties. 

Data Value 

Model area 11.5 km2 

Total number of cells 430,485 

Δt 20 s 

Flood event duration 42 hours 

Model run-time 5 hours 

Minimum cell area 6.8 m2 

Maximum cell area 59.8 m2 

Average cell area 24.8 m2 
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Table 3. Coefficient of determination (R2) between Manning’s n and absolute error for case I.  

Site 
Coefficient of determination [-] 

Water bodies Agriculture Forest Transportation Urban 

1 0.04 0.89 0.00 0.00 0.00 

2 0.05 0.85 0.00 0.00 0.00 

3 0.18 0.69 0.00 0.00 0.00 

4 0.34 0.54 0.00 0.00 0.01 

5 0.45 0.37 0.00 0.00 0.00 

6 0.97 0.00 0.00 0.00 0.00 

7 0.23 0.18 0.00 0.00 0.00 

8 0.19 0.22 0.00 0.00 0.00 

 

Table 4. 90% confidence interval absolute error bounds (in m) for three cases along with measured water depth (in m) at eight sites 

for the January 2011 event.  

Site 
Measured 

water depth1 

90% absolute error 

bounds 

Case I Case II Case III 

1 2.78 1.26 0.59 0.34 

2 2.90 1.04 0.55 0.34 

3 2.93 1.01 0.59 0.36 

4 1.43 0.97 0.64 0.46 

5 1.75 0.78 0.46 0.32 

6 0.89 0.85 0.65 0.43 

7 2.31 0.52 0.46 0.40 

8 2.36 0.51 0.46 0.40 

 5 
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Figures

 

(a) Land use 
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(b) Digital elevation model 

Figure 1: Land use and the digital elevation model of the city of Kulmbach. Data source: Water Management Authority Hof. 

 

  
Figure 2: Main channel and flood plain of the river White Main near site 1 (image taken on 23.07.2015). 
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Figure 3: Discharge hydrographs at gauging stations upstream of the city, Ködnitz and Kauerndorf. RP stands for return period. 

Data source: Bavarian Hydrological Service (www.gkd.bayern.de). 

 
Figure 4: Accepted number of simulations vs. absolute error. 
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Figure 5: Inundation map for the flood event of January 2011 using the optimal model parameters, obtained using a least absolute 

error of 0.20 m. 

 

 

(a) Site 1: Water bodies 

 

(b) Site 1: Agriculture 
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(c) Site 2: Water bodies 

 

(d) Site 2: Agriculture 

 

(e) Site 3: Water bodies 

 

(f) Site 3: Agriculture 

 

(g) Site 4: Water bodies 

 

(h) Site 4: Agriculture 
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(i) Site 5: Water bodies 

 

(j) Site 5: Agriculture 

 

(k) Site 6: Water bodies 

 

(l) Site 6: Agriculture 

 

(m) Site 7: Water bodies 

 

(n) Site 7: Agriculture 
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(o) Site 8: Water bodies 

 

(p) Site 8: Agriculture 

Figure 6: Scatter plot of the absolute error of 1000 simulation in relation to water bodies and agriculture. Three cases I, II and III 

shows accepted simulations based on threshold values of 1.5, 0.7 and 0.5 m respectively. 

 

(a) Case I 

 

(b) Case II 

 

(c) Case III 

Figure 7: Error in simulated vs. measured water levels for a) Case I, b) Case II, and c) Case III. 

 

Figure 8: Box plot of Manning's n of water bodies and agriculture for three cases. 
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