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Abstract. Regional climate model simulations have routinely been applied to assess changes in precipitation extremes at daily1

time steps. However, shorter sub-daily extremes have not received as much attention. This is likely because of the limited2

availability of high temporal resolution data, both for observations and for model outputs. Here, summertime depth duration3

frequencies of a sub-set of the EURO-CORDEX 0.11◦ ensemble is evaluated with observations for several European countries4

for durations of one to 12 h. Most of the model simulations strongly underestimate 10-year depths for durations up to a few5

hours, but perform better at longer durations. The spatial patterns over Germany are reproduced at least partly at 12 h duration,6

but all models fail at shorter durations. Projected changes are assessed by relating relative depth changes to mean temperature7

changes. A strong relationship with temperature is found across different sub-regions of Europe, emission scenarios and future8

time periods. However, the scaling varies considerably between different combinations of global and regional climate models,9

with a spread in scaling of around 1–10%/K at 12 h duration, and generally higher values at shorter durations.10

1 Introduction11

Short duration precipitation extremes are the result of enormous quantities of atmospheric water vapour being concentrated12

to a relatively small area. The natural and societal landscape has large problems to cope with the huge amounts of water,13

with resulting issues of local flooding, damages to infrastructure, landslides, erosion, etc. Theory predicts an intensification14

of cloudbursts with a warming climate (Trenberth et al., 2003), which makes modelling of future projections important to15

aid planning of robust infrastructure as well as methods to cope with diversion or delays of water in especially urban settings.16

Global climate models (GCMs) are generally of too coarse spatio-temporal resolution to allow detailed analysis, but some state-17

of-the-art regional climate model (RCM) ensemble members provide precipitation output at sufficient resolution for analysis18

of sub-daily extreme precipitation statistics.19

Short duration extremes are often studied from an urban planning perspective, where the consequences of insufficient infras-20

tructure to deal with, e.g., cloudbursts can be catastrophic (Willems et al., 2012). A common analysis approach is to investigate21

mean intensities, or depths, as a function of duration and to perform extreme value analysis to determine depth-duration-22
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frequency (DDF) functions. Mid-latitude cloudburst have a typical dimension of 10–100 km and a duration of one to several1

hours, which sets the scale of any record for studying these type of events. For example, the highest recorded cloudburst in2

Sweden (in gauge observations between 1996 and 2017) lasted in total for 3 h, but with extreme intensities of about 17 and3

40 mm/15min for only two consecutive measurements. Still, the event holds the record for durations up to a few hours.4

The EURO-CORDEX ensemble of high resolution, 0.11◦ (about 12 km), simulations provide the first larger ensemble with5

sufficient spatial resolution for studying short duration precipitation extremes (Kotlarski et al., 2014). However, RCMs and6

GCMs have shown severe problems with their sub-grid scale parametrisations of convective processes, which affect their7

ability to reproduce, e.g., the diurnal cycle of rainfall intensity (Trenberth et al., 2003; Fosser et al., 2015; Prein et al., 2015;8

Beranová et al., 2018), the peak storm intensities (Kendon et al., 2014), and extreme hourly intensities (Hanel and Buishand,9

2010). It is therefore questionable to which extent such RCMs are capable of describing short duration extremes in present as10

well as in future climate.11

Olsson et al. (2015) presented increasing agreement of modelled and observed hourly precipitation with higher spatial reso-12

lution, and found that 6 km resolution of a parametrised RCM (RCA3) is in approximate agreement with gauge observations13

in Sweden. Similar results were obtained for Denmark, where also future projections were found to show larger increases in14

extreme precipitation for higher spatial resolution and shorter temporal aggregations (Sunyer et al., 2016). Similarly for the15

Mediterranean, simulated hourly rainfall has shown stronger increases in future projections than daily or multi-day rainfall16

Kyselỳ et al. (2012). Convection permitting regional models at less than about 5 km resolution, have been shown to better17

simulate the peak structure of extreme events (Kendon et al., 2014), better agreement with observations regarding the diurnal18

cycle of precipitation intensity (Fosser et al., 2015; Prein et al., 2015), as well as improved performance of extreme hourly19

events (Ban et al., 2018; Coppola et al., 2018). Mediterranean heavy precipitation has been shown to be better represented20

in convection permitting models, but the same models overestimate moderate to intense hourly precipitation in other regions21

(Berthou et al., 2018).22

The fate of sub-daily precipitation extremes in a warming climate is tied to the availability of atmospheric water vapour. A23

warmer atmosphere can hold more water, following the Clausius-Clapeyron (CC) equation. At average mid-latitude conditions,24

the moisture holding capacity of the atmosphere increases at a rate of about 7%/K (CC-rate), and e.g. Trenberth et al. (2003)25

argue that extreme convective precipitation and can be expected to intensify at or even beyond the CC-rate in a warming26

climate. Studies of the scaling of sub-daily precipitation extremes with temperature from present-day day-to-day variability27

have shown increases beyond the CC-rate (e.g. Lenderink and van Meijgaard, 2008; Berg et al., 2013; Westra et al., 2014).28

How such studies relate to changes in climate is debated (Bao et al., 2017; Barbero et al., 2018), and also trend analysis of29

cloudbursts suffer from short and non-homogeneous records leaving any potential trends unclear or non-significant (Willems30

et al., 2012). There are, however, some studies of precipitation extremes that present observational support for the super CC-31

rate derived from long term trends in a warming climate (Guerreiro et al., 2018; Westra et al., 2013). Further, data from GCM32

and RCM data are generally of too coarse spatio-temporal resolution for detailed evaluation of their performance and analysis33

of their future projections. The scaling of hourly precipitation with increasing temperature in future projections has generally34

been shown to be constrained to the CC-rate. Some convection permitting models show stronger (Kendon et al., 2014; Fosser35
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Table 1. The RCM-GCM simulations with hourly precipitation output that are included in the analysis. The experiment code (“rip-

nomenclature”) from CMIP5 indicates the realization (r), the initialization (i) and the physics set-up (p) used. Here, the code is listed

due to differences in the realizations of the EC-Earth model.

Name RCM GCM Experiment Institute

RCA4-EC-Earthr12 RCA4 EC-Earth r12i1p1 SMHI

RCA4-CNRM-CM5 RCA4 CNRM-CM5 r1i1p1 SMHI

RCA4-MPI-ESM-LR RCA4 MPI-ESM-LR r1i1p1 SMHI

RCA4-IPSL-CM5A-MR RCA4 IPSL-CM5A-MR r1i1p1 SMHI

RCA4-HadGEM2-ES RCA4 HadGEM2-ES r1i1p1 SMHI

RACMO22E-HadGEM2-ES RACMO22E∗ HadGEM2-ES r1i1p1 KNMI

RACMO22E-EC-Earthr01 RACMO22E EC-Earth r1i1p1 KNMI

HIRHAM5-EC-Earthr03 HIRHAM5 EC-Earth r3i1p1 DMI

REMO2009-MPI-ESM-LR REMO2009 MPI-ESM-LR r1i1p1 GERICS

∗ Version 2 (v2) of the simulation as submitted to the Earth System Grid Federation (ESGF).

et al., 2017; Ban et al., 2015) and some show weaker scaling compared to coarser parametrised models (Ban et al., 2018).1

While these high resolution simulations show increased performance, their availability is still limited outside the research2

community. Therefore, the current state-of-the-art regional climate model ensemble that is being applied for climate services3

and local assessments for adaptation is the EURO-CORDEX 0.11◦ ensemble, which we explore here.4

In this study, we evaluate the performance of four state-of-the-art regional climate models with hourly output frequency, in5

their ability to reproduce observed DDF statistics across Europe for the summer half-year. Future projections under the RCP4.56

and RCP8.5 emission scenarios are then investigated, and the scaling of extreme precipitation statistics with temperature is7

explored. The paper starts with a presentation of the data sources (Section 2), followed by the applied methodology (Section 3),8

results of the evaluation and future projections (Section 4), and ends with a discussion (Section 5) and the main conclusions9

(Section 6).10

2 Data11

2.1 The EURO-CORDEX ensemble12

EURO-CORDEX at 0.11◦ spatial resolution is the current state-of-the-art regional climate model ensemble over Europe. The13

ensemble is the result of the cooperation between many European institutions, and further ensemble members are still being14

added. Here, we are limited to a sub-set of the ensemble with members for which we have received precipitation data at one15

hour temporal resolution, see Table 1. This sub-set is not including the common reanalysis downscaling simulations, and the16

analysis is therefore of GCM-RCM combinations which introduces some additional uncertainties (Déqué et al., 2012).17
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Kotlarski et al. (2014) give an overview of the details of the models and applied parametrisations, such as the different1

convective parametrisations used by the models. In the paper, they also present the performance of the RCMs in reanalysis2

driven simulations, mainly discussing average quantities of precipitation and temperature. Focusing on their results for the3

summer season, the RCMs in the sub-ensemble used here follow the general pattern of a warm summer bias in REMO2009 in4

continental Europe, whereas RACMO22E has a general cold bias, and RCA4 and HIRHAM5 are too warm in the south and5

too cold in the north. Bias in precipitation is more scattered, but follows a similar structure as the temperature bias for each6

of the models, indicating a strong dependency of cold and wet conditions, as can be expected for mean quantities. Prein et al.7

(2016) show that model bias in the EURO-CORDEX 0.11◦ simulations are reduced compared to the earlier 0.44◦ simulations,8

for both mean and extreme daily and 3-hourly precipitation, especially in local areas. Rajczak and Schär (2017) analysed heavy9

and extreme daily precipitation intensity and found good performance in RCMs, mostly independent of the driving GCM.10

Jacob et al. (2014) investigated end-of-century climate change for the EURO-CORDEX 0.11◦ simulations, with significant11

changes in both mean precipitation and temperature across Europe for RCP4.5 and 8.5. Whereas mean precipitation generally12

increases in northern Europe and decreases in southern Europe, heavy precipitation shows robust changes across the ensemble,13

with significant increases in north-eastern Europe in summer, and pan-European increases in winter under RCP8.5. Kjellström14

et al. (2018) investigated climate change patterns as a function of global mean temperature increases of 1.5 and 2.0◦C, with sim-15

ilar results for mean precipitation and temperature as in Jacob et al. (2014). Projected precipitation extremes were investigated16

by Dosio (2015), and showed general increases in the annual top daily extremes and in the 95th percentile of the precipitation17

distribution.18

The presented analysis makes use of a historical period from 1971–2000, as well as future scenario periods 2011–2040,19

2041–2070, and 2071-2100. The analysis is restricted to summer-half years (April–September), which constitutes the main20

convective seasons for large parts of Europe (Berg et al., 2009). Unfortunately, as pointed out in the review process of the21

current paper, this interferes with the main convective season during autumn in southern France (Berthou et al., 2018), and22

parts of the Mediterranean. The results for those regions must therefore be handled with caution, especially in a future climate23

where the seasonality might shift to even later in the year (Marelle et al., 2018). Representative concentration pathways (RCP)24

4.5 and 8.5 are investigated for all models.25

2.2 National DDF data26

The model simulations are evaluated against gauge based DDF curves as obtained from countries across Europe, namely27

Austria, Germany, Sweden, the Netherlands, and France. Much of the information about how the DDFs were calculated is only28

available in local language, and the exact procedures are sometimes not clearly or sufficiently explained. Below, we provide a29

brief introduction to each data set, but refer to references for details.30

2.2.1 Sweden31

The Swedish DDFs statistics were recently updated by Olsson et al. (2018a), and are available as regional tables. The statistics32

are based on about 125 gauge observations, with a fixed 15-min measurement interval, and with data for the period 1996–33

4



2017. Durations of 15 min to 12 h were studied, using the block rainfall method, and corrected for underestimations due to1

the fix 15 min interval by multiplication by 1.18, 1.08, 1.041, 1.036, and 1.029 for durations 15 min, 30 min, 45 min, 1 h,2

and 2 h, respectively. No correction was deemed necessary for longer durations. The coefficients were derived by comparison3

with additional tipping-bucket gauges, and agrees approximately with earlier studies (Malitz and Ertel, 2015). Sweden was4

divided in four sub-regions, and for each region, all stations were added to one long time series. From this time series, the POT5

(Peak Over Threshold) method was applied, and set up such that on average one event were selected per station and year. At6

least 3 h separation was required between events for duration less than 3 h, and a separation equal to the duration for longer7

durations. Then return levels were derived for several return periods, using the generalized Pareto (GP) distribution fitted using8

the maximum-likelihood method.9

2.2.2 Germany10

The German DDF statistics are described in (Malitz and Ertel, 2015), and are available in the form of high resolution spatial11

maps. The statistics were derived from gauge observations throughout Germany in the period May to September 1951–2010.12

A block rainfall method was applied based on the 5-min base resolution, with adjustments to instantaneous events by multi-13

plication by: 5min - 1.14, 10 min - 1.07, 15 min - 1.04, 20 min - 1.03, and 1.0 for longer durations. A precipitation free time14

period of at least 4 h between events was required for durations below 4 h, and a time period equal to the duration for longer15

durations. POT was applied for sub-daily values, with a threshold dependent on the length of time series such that the threshold16

is restricted from including more data than the number of years times 2.718. An exponential distribution was then fitted to17

the data, and the resulting depths were gridded across Germany for each given return period. The method is described in the18

KOSTRA 2010 report (Malitz and Ertel, 2015).19

2.2.3 Austria20

The Austrian data set (Kainz et al., 2007) comes from the Ö-KOSTRA programme, which has many similarities with the21

KOSTRA programme from Germany. However, due to a lower number of gauges, the data set is also making use of a convective22

precipitation model as support to the gauge analysis. The base resolution is 5-min gauge observations with at least 10–20-year23

long records, and the results is a weighted mean of the gauge and model analyses. A POT approach was applied, and more24

details can be found in Kainz et al. (2006).25

2.2.4 The Netherlands26

The DDF statistics from the Netherlands are described in (Beersma et al., 2018), and are available as a country wide table.27

The statistics are based on 31 gauge observations with a 10-min resolution and records of approximately 14 years in the period28

2003–2016. All data were pooled and used as one long time series (436) of annual maxima. The block rainfall approach was29

used to find annual maxima for different durations. To accommodate the underestimation introduced when using fixed 10-min30

intervals rather than instantaneous measurements, a given duration of t min was also considering the t+10 min duration. The31
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generalized logistic (GLO) distribution, as an alternative to GEV (Generalized Extreme Value) but with a ”fatter“ tail, was then1

fitted to the interval of the data with durations t min and t+10 min. Here, we are using results from Table 2 in STOWA 2018.2

Since this table lists durations of (1, 2, 4, 8, 12) h and we require also the 3 h and 6 h durations, we derive these by a linear3

interpolation between 2 h and 4 h, and 4 h and 8 h, respectively.4

2.2.5 France5

The DDF statistics for France were calculated by applying the method SHYPRE (Simulated Hydrographs for flood Probability6

Estimation; Arnaud and Lavabre, 2002) to produce rainfall statistics across France (Arnaud et al., 2008), and are available as7

spatial maps. The SHYPRE method generates data for hourly extremes at a square kilometre scale, from which DDF statistics8

were derived. This data set is therefore treated a bit differently regarding the reduction factors, as only the spatial reduction9

factor is applicable, see Section 3.3. A complicating factor for the current study, is the main convective season occurring in late10

Autumn in Mediterranean France, which is included in the SHYPRE all-year statistics but not in the analysed RCMs.11

3 Method12

3.1 Durations13

The DDF statistics are derived in a conventional way by employing a running window with a given duration to arrive at the peak14

intensity over that window; a so-called “block rain”, which does not reflect the actual event durations. We are here confined to15

a base resolution of one hour, which means that the one hourly duration is simply taking one hour steps, and no running mean16

is possible. This gives an inherent underestimation of the true hourly DDF statistics. For durations above one hour (2, 3, 6, and17

12 h are studied), the running window is progressing at one hour steps, giving a steadily more accurate estimate of the peak18

intensity.19

3.2 Extreme value theory approach20

Extreme value theory is applied to study precipitation extremes at various durations. Within extreme value theory, there are two21

main paths normally taken when it comes to precipitation analyses: annual maxima (AM) or POT (also called partial duration22

series (PDS)) (Coles et al., 2001). With the AM approach (often called block maxima) a single event is selected within a block23

of data, typically within one year for geophysical time series, and with the POT approach a number of events with values greater24

than a given threshold are selected. The latter allows multiple events in a given year to be selected, and additional choices must25

be made to assure that the samples are independent and identically distributed (iid). To achieve iid samples, a minimum time26
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separation, ts, is prescribed such that two events cannot occur too close in time. The time separation varies with the duration,1

d in hours, such that2

ts(d) =

3 for d < 3

d for d≥ 3
(1)3

A total time range of (d+2ts(d)) h is thereby excluded from further analysis. The selected separation time is set higher than4

in many studies based on higher temporal resolution data (e.g. Dunkerley, 2008). Further, it is also set conservatively compared5

with studies based on actual event durations, i.e. defined as periods of hours from increase above a set threshold until below that6

threshold (Medina-Cobo et al., 2016), in contrast to to the block rain approach used here. Other studies using climate model7

data have used even more conservative de-clustering times of one or two days (Ban et al., 2018; Chan et al., 2014a). Here, the8

POT approach is used, mainly because of the 30-year time-slices used for the analysis, for which POT allows a more robust9

sample. Pickands-Balkema-de Haan’s theorem (Pickands III, 1975) states that if the samples above the POT threshold are iid,10

they will follow a GP distribution:11

F(ξ,σ)(x) =

1− (1+ ξx
σ )−

1
ξ for ξ 6= 0

1− e− x
σ for ξ = 0

, (2)12

where x > 0, ξ is the shape and σ is the scale parameters. We use Maximum-likelihood for fitting parameters, and return13

values are calculated with the inverse cumulative distribution function of a GP distribution with distribution parameters and14

probability of exceedance, p:15

p=

(
1− 1

T

)N
n

(3)16

where N is the number of records, n is the number of exceedances over the selected threshold, and T is the return period.17

There is no well defined method for setting the threshold for POT, but Coles et al. (2001) outlines a method of incrementally18

lowering the threshold, i.e. increasing the sample size, and investigating the impact on the parameter fits. Comparing with a19

smaller sample, here one event per year on average, the parameters of a larger sample must not deviate beyond the uncertainty20

bounds of the smaller sample. We follow Coles et al. (2001) approach as implemented in the R library “extRemes” (Gilleland21

and Katz, 2016), and investigate the appropriate threshold for the different durations of one member of the historical period22

for each RCM, and in all sub-regions. To determine the threshold at a 95% confidence level, we go through all grid points of23

each sub-domain and find the average number of events per year that is rejected by at most 5% of the grid points. The results24

are similar over all models, domains and durations, and a threshold of on average three events per year was finally adapted to25

all grid points. This means that a sample size of 90 events is used for each extreme value fit, independent of the time slice and26

RCP. This amounts to thresholds across all land points ranging from about 1–30 mm/h for 1 h duration, and 0.5–10 mm/h for27

12 h duration in the historical period. Comparisons using the Gumbel distribution calculated from annual maxima gave very28
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Table 2. Relative differences in annual maxima averaged over four years at different temporal and/or spatial resolutions.

Data1 Data2 1h 2h 3h 6h 12h

Gauge(point; instant) Gauge(point; 15 min) 1.04 1.03 1.02 1.00 1.00

HIPRAD(2 km;15 min) HIPRAD(0.11◦;60 min) 1.16 1.06 1.04 1.02 1.01

HIPRAD(2 km; 60 min) HIPRAD(0.11◦;60 min) 1.03 1.02 1.02 1.01 1.00

Final Reduction factors 1.21 1.09 1.06 1.02 1.01

similar results for the ten year return values, although with more spatial variability (noise), which is most likely due mainly to1

the smaller sample size.2

3.3 Comparison across spatio-temporal scales3

To evaluate the model simulations, DDF statistics were collected from different national authorities across Europe. Most of4

these data sets are based on gauge data at minute scale temporal resolution, which is inherently different from the about 12 km5

and one hourly data of the models (e.g. Eggert et al., 2015; Haerter et al., 2015). A direct comparison would reveal a biased6

comparison where gauge based data have significantly higher return values due to their better sampling of the peak of a given7

duration window, as well as the peak within a precipitation area.8

To alleviate this bias, we first derive area and time reduction factors that can be applied to each local data set. We make use9

of the Swedish radar and gauge based data set HIPRAD (Berg et al., 2016) as well as 15 min resolution gauge records for the10

same domain, to derive time and areal reduction factors based on annual maxima for the years 2011–2014, see Table 2. Some11

grid points, primarily in northern mountainous regions of Sweden, were masked out from the analysis due to unrealistic data. In12

Olsson et al. (2018b), the intensity reduction for hourly aggregations between near instantaneous and 15 min gauge resolution13

data was studied with Swedish records and found to be about 4% at the one hourly durations and negligible at 6 h duration.14

HIPRAD is originally available at a 2 km grid and 15 min resolution, and was used to compare the reduction factors when15

both time and space coarsening is considered. When coarsening the time and space resolutions from 2 km and 15 min data to16

0.11◦ and 60 min data, the reduction is about 16% at hourly duration and falling to only about 1% at 12 h duration. The final17

conversion factor to go from a near instantaneous point source rain gauge measurement to the 1 h and 0.11◦ resolution model18

data becomes the product of the time reduction factor of the gauge data and the space and time reduction factor of HIPRAD,19

as shown in the last line of Table 2. These factors compare well to previously applied area reduction factors (Sunyer et al.,20

2016), e.g. (Wilson, 1990) presented a factor 1.279 for hourly precipitation, although at 24 h duration the factor only decreased21

to 1.066 indicating a slightly too small factor in our current study. Such differences can be explained by differences in local22

precipitation climate, and is regarded as an inherent uncertainty in this analysis. The factors are applied to the gauge based23

local data sets, and for the French SHYPRE data set, only the space reduction factor for 60 min duration is applied.24
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4 Results1

4.1 Evaluation2

Due to the different methodologies applied in the different national data sets, the evaluation is mainly considering the 10-year3

depths, as this is well within the sample coverage of the data series and is therefore not so sensitive to the choice of method for4

extreme value calculations, e.g. considering the use of AM or POT, or the extreme value distribution applied. The evaluation is5

therefore qualitative, and we focus only on the main patterns and deviations between the data sets. A general overview of the6

parameter fits of the extreme value distribution shows minor influence of the driving GCM, but there are differences between7

the RCMs. At 12 h duration all RCMs have similar parameter values across Europe (see Fig. S1 and Fig. S2), but at 1 h duration8

there are more regional differences, and especially RACMO22E differs with a lower scale parameter (see Fig. S3 and Fig. S4).9

The differences in the GP parameters indicate differences in the mean and variance of the events in the different RCMs, which10

might be due to, e.g., grid point storms at short durations as pointed out by Chan et al. (2014b).11

When evaluating the DDF statistics, the reduction factors of Table 2 were applied to all national data sets, except for France12

where the scale gap in time is inherently bridged and only the space scale is adjusted, see Section 3. Figure 1 presents the eval-13

uation results for each of the domains with local data. Since only GCM driven simulations have been analysed, the evaluation14

is not purely of the RCMs, as would be approximated in reanalysis driven simulations, but of a mixture between the driving15

GCM and the RCM response to that forcing. Still, RCM dependent impacts can be seen in the results. For all domains and16

most models there is a clear pattern of large dry bias for 1 h duration, with a clear decrease in bias with longer durations. The17

main exception from this is the REMO2009 model which agrees better with observations across all durations. Also HIRHAM518

is performing better than the RCA4 and RACMO models, however with a wetter bias for longer durations. The RACMO22E19

model produces strong underestimations of extreme intensities, mostly between about -25 and -50%.20

Observation based data sets over Germany and France are available as maps, making a visual evaluation possible. Figure 221

and Fig. 3 show the 10-year depths for one and 12 h durations over Germany, respectively. For both presented durations, the22

observations show two main high intensity regions in Germany: one in the pre-Alpine area close to the south-eastern border23

to Austria, and one in the Black forest region oriented in north-south direction in the south-west. Intensities tend also to24

decrease towards the north. For the hourly duration, all but HIRHAM5 and REMO2009 severely underestimate the intensity,25

as seen also in Fig. 1. Here, we see that they also fail in reproducing the spatial pattern, especially for RCA4 which fails to26

reproduce both the orographic regions in the south, and also a reversed north-south gradient. Further, the maps for HIRHAM527

and REMO2009 clearly show that although these two simulations perform better in the median intensities in Germany they28

also fail in reproducing the spatial pattern. The spatial analysis shows that the better performance derived from Fig. 1 is due to29

generally higher precipitation intensities of the REMO2009 and HIRHAM5 RCMs, but not in the right locations. Only when30

increasing the duration to 12 h do the models start to reproduce the observed spatial patterns, see Fig. 3.31

Figure 4 and Fig. 5 show similar maps for France and the observation based data set SHYPRE. SHYPRE shows the highest32

intensities along the Mediterranean coastline and over the island of Corsica, and intensities decrease gradually towards the33

north-west. A cautionary note is in place for the comparison of the model analysed summer half year period to the all-year34
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Figure 1. Evaluation of model ensemble for selected regions and for the 10-year depths. Gauge based observations have been adjusted for

spatial resolution and time sampling to approximate the statistics of the model resolution and sampling as explained in the main text. Both

colours and numbers indicate the bias.

Figure 2. Intensity for 10-year return period for 1 h duration of KOSTRA and all models in the RCM ensemble for Germany.
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Figure 3. Intensity for 10-year return period for 12 h duration of KOSTRA and all models in the RCM ensemble for Germany.

statistics behind SHYPRE, which can affect conclusions for Mediterranean France with a late autumn convective season. As1

for Germany, all models but HIRHAM5 and REMO2009 generally underestimate one hourly intensities, and the peak intensity2

region is poorly reproduced in RCA4, and only somewhat better in the RACMO22E simulations. Within the ensemble of each3

individual RCM, there are variations that are likely due to the driving GCM, however, these variations are small compared4

to the inter-RCM spread. HIRHAM5 and REMO2009 have clear intensity maxima in the south of France that resembles5

that of SHYPRE. Twelve hourly durations are better simulated by all models, with at least the general pattern similar to6

SHYPRE. However, RCA4 and RACMO22E are still underestimating intensities, whereas HIRHAM5 and REMO2009 show7

better agreement regarding intensities.8

To complement the evaluation with a pan-European view of modelled extreme intensities, Fig. 6 and Fig. 7 show the 10-year9

depths for one and 12 h durations, respectively. At 1 h duration, all models share a similar structure of higher intensities over10

the ocean west of France and the Iberian Peninsula, and along the northern Mediterranean coastline; although the magnitude11

differs between the models. The different RCA4 simulations show that the driving GCM has some impact on the pattern12

across Europe. For example, HadGEM2-ES produces less intense rainfall in southern France, where the MPI-ESM-LR driven13

simulation has generally more intense rainfall. However, the driving GCM seems to have less influence than the RCM. At14

12 h duration, the general patterns across Europe converge across all GCM-RCM combinations, although with differences in15

overall intensities, see Fig. 7. However, it is unclear from this study whether the pattern is correct or not, since observations16

11



Figure 4. Intensity for 10-year return period for 1 h duration of SHYPRE and all models in the RCM ensemble for France.

are lacking. Earlier studies have indicated that the peak of the events is underestimated by the parametrised 0.11◦ simulations1

(Kendon et al., 2014), but the large bias in the 1 h durations might also indicate that small concentrated events are missing from2

the parametrised simulations.3

The general conclusion is that depths for hourly durations are underestimated in the models, which is a likely consequence4

of model resolution and deficiencies in convective parametrisations. Longer duration events which also tend to have a larger5

spatial extent are better captured by the grid resolved component of the model simulations, where also orographic effects6

become more clear in the spatial patterns, in agreement with observations.7

4.2 Future projections8

The performance of the RCMs in reproducing observed patterns for 12 h durations is promising enough to promote further9

analysis of future projections. We include also shorter durations in the analysis, despite their poor evaluation performance.10

Here, we investigate the response of extreme precipitation as a function of the local summer half-year (April–September)11

temperature change in three future time slices: 2011–2040, 2041–2070, and 2071–2100. The use of a fixed number of events12

rather than setting a threshold for the POT-analysis, means that the effective threshold changes between the time slices. The13

thresholds are generally increasing by 15 to 50% for all durations when comparing the end of the century of RCP8.5 with the14

historical period. The analysis is performed at land-points for the so-called PRUDENCE regions (BI=British Isles, IP=Iberian15

Peninsula, FR=France, ME=Mid-Europe, SC=Scandinavia, AL=Alps, MD=Mediterranean, EA=Eastern Europe; Christensen16

12



Figure 5. Intensity for 10-year return period for 12 h duration of SHYPRE and all models in the RCM ensemble for France.

Figure 6. Intensity for 10-year return period for 1 h duration of all models in the RCM ensemble.
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Figure 7. Intensity for 10-year return period for 12 h duration of all models in the RCM ensemble.

and Christensen, 2007), and the depths are related to the change in mean temperature for each sub-region, between the future1

time slices and the historical reference period 1971–2000.2

Figure 8 shows scatter plots of the changes in 10-year depths for precipitation of 12 h duration, with the change in local3

summertime temperature for each ensemble member. The relative change in precipitation was calculated by first performing4

a domain average, and then calculating the change between time periods. First, it is clear that the scatter plots have strong5

linear trends even when considering different sub-regions, different time slices and different emission scenarios. This indicates6

a strong connection between the change in precipitation extremes and the seasonal temperature. Second, the individual RCMs7

show large differences in their response depending on the driving GCM, but also different RCMs respond differently to the8

same GCM. Results for 1 h duration show larger spread, but still good linear fits, and stronger scaling (see Fig. S5).9

To further investigate the connection between extreme precipitation and seasonal temperature, we perform linear fits for10

each RCM-GCM combination, see Fig. 8. The results are summarized for all durations and return periods in Fig. 9, with colour11

coding such that increases beyond the CC-rate are in shades of blue, and below the CC-rate are in shades of red. All model12

combinations show a positive relationship, i.e. increasing slopes, but the slopes vary between about 1 to over 10%/K. Most13

model combinations show stronger scaling for shorter durations (towards the left in each panel) and an increase in the scaling14

with increasing return period (panels toward the right in Fig. 9). The exceptions are the models RCA4-MPI-ESM-LR and15

RCA4-IPSL-CM5A-MR which remain fairly constantly around 3%/K scaling for all durations and return periods. Comparing16

14



Figure 8. Scatterplot of the relative change in 10-year 12 h depths against summertime mean temperature change between future and

historical time periods, for different sub-regions, emission scenarios, and time periods according to the legend. Each panel show the result

for different RCM-GCM combinations. Linear fits to all data are presented in each panel, along with slope and intercept coefficients as well

as the R-square value of the fit. CC-rate changes of 7%/K are shown as grey lines in the plots.

15



Figure 9. Summary of the relative change in precipitation extremes (5, 10, 50, 100 year depths), at various return periods, against summertime

temperature change between future and historical time periods for all PRUDENCE regions and RCPs and time-slices together. The displayed

changes are calculated as the slope coefficient of linear fits as in Fig. 8. The colour scale is set relative the Clausius-Clapeyron prediction of

about 7%/K, with red (blue) colour showing scaling below (above) that rate. The numbers in each box presents the R-square value for the

individual fits as a measure of the goodness-of-fit.

the influence of the RCM, it is interesting to see that RCA4 driven with EC-Earth scales stronger than with HadGEM2-ES,1

whereas the opposite is the case for RACMO22E, although the realisation of EC-Earth is different, which might have an2

influence that we cannot quantify in this study. REMO2009-MPI-ESM-LR has slightly stronger scaling than RCA4-MPI-3

ESM-LR, and HIRHAM5-EC-Earth scales much stronger than the RACMO22E and RCA4 simulations with the same GCM.4

Fig. 10 shows a grand ensemble median statistic over all models, time slices and RCPs for each grid point. The weaker than5

CC temperature scaling in the Mediterranean and Iberian Peninsula land regions is clear, and is likely connected to low moisture6

availability in summer in this region. However, a shift of the main convective season to later in autumn might influence these7

statistics due to the September cut-off of the investigated summer season. Stronger than CC scaling is seen mainly over water8

bodies, but also in Ireland, northern UK and Sweden, which are countries with sufficient atmospheric moisture sources also in9

a future climate. However, stronger than CC scaling is also seen in eastern Europe. This feature is prominent in the HIRHAM510

and REMO2009 models, but also appears in some other GCM-RCM combinations, such as RACMOE22-HadGEM2-ES and11

RCA4-CNRM-CM5 (not shown). The regional differences in the scaling seen in Fig. 10 is also apparent on closer inspection12

of the individual points in Fig. 8.13

5 Discussion14

Sub-daily Precipitation measurements are performed throughout Europe; partly organized country wide by the meteorological15

offices, but also frequently by local counties. Access to these data are mostly restricted, or simply impractical at larger scales,16
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Figure 10. Grand ensemble median of scaling factors (%/K) for 10-year 12 h depths from all models, time slices and RCPs, calculated

separately for each grid point.

although initiatives such as the INTENSE project has come a long way in collecting such data (Blenkinsop et al., 2018).1

National DDF statistics are often available in some form, and a detailed inventory of these data sets would be a valuable first2

step in collecting a Europe wide data set for evaluating model simulations. A first step was taken in this study, but a closer3

involvement of the data providers would be necessary to assess details of the sometimes cryptically explained data processing4

methods, and to start an effort of homogenizing statistical methods across country borders. A further complication is that most5

national data sets are described only in the native language.6

The national DDF data sets were here employed as qualitative indicators for the performance of RCM simulations. Some7

challenges with comparing DDF statistics are due to how they were derived: using different methodologies, gauge resolution8

and record lengths, mixes of observations and model data, etc. The evaluation was therefore restricted to the 10-year return9

period, which is shorter than the gauge record lengths in all data sets and therefore less dependent on the employed extreme10

value estimation method. More in-depth analysis would require a larger undertaking in comparing the implications of every11

choice made in the different data sets and how they affect the final result. A spatial evaluation of the RCMs was performed for12

the German and French data sets, and also here, only the main patterns connected to known physical processes are discussed13

due to large uncertainties.14

The four RCMs in the investigated model ensemble show significant differences in the simulations of extreme sub-daily15

precipitation. This is in spite of the similarities of several of the models. For example, the convective parametrisation is similar16

17



for HIRHAM5, REMO2009 and RACMO22E, which are all based on Tiedtke (1989), however, with differences in their1

settings and in additions to the parametrisations. Further, HIRHAM5, RACMO22E and RCA4 share similar dynamical cores2

(originating from the HIRLAM NWP model). Still their responses are quite different when it comes to extreme precipitation3

and their response to future emission scenarios. This emphasizes the importance of the complete set of parametrisations and4

parameter sets in the models.5

Differences in settings within the convection schemes, such as the mass flux closure used, can have significant impact. Also6

other parametrisations such as turbulence scheme, surface roughness settings or smoothing of the orography can significantly7

affect the mixing in the lower boundary and thereby affect the sensitivity of convective triggering. The effects of the parametri-8

sations can feedback with the dynamics of the model, and produce highly non-linear responses. Thus, reducing the fully three9

dimensional processes into simplified one or two dimensional parametrisations is indeed challenging. The separation of the pre-10

cipitation process into resolved and un-resolved (parametrised) components is especially problematic for cloud bursts, where11

large scale moisture convergence is present and can lead to positive feedback through latent heat release (Lenderink et al.,12

2017; Nie et al., 2018).13

An important result is the apparently good performance of the RCMs HIRHAM5 and REMO2009 on domain average14

statistics, whilst a closer look at spatial patterns reveals an actually poor performance. More data of DDF statistics across15

geographical domains is essential for model evaluation, and we call out for more national institutes to open up their records16

and share their statistics. For example, domain average DDF statistics over the Alps region presented in Ban et al. (2018) show17

fairly equal performance at 12 km and 2 km resolution. However, domain averaging might hide important differences between18

model simulations, which could inform about the different models’ actual performance.19

Scaling of precipitation extremes with future projections are here studied by comparing relative changes in precipitation20

intensities as a function of surface temperature increase. Recently, Ban et al. (2018) performed a similar study relating seasonal21

mean temperature and precipitation changes, with the result that both the 0.11◦ and 2 km simulations agree on a close to 7%/K22

scaling. When set into context of the current study, we see that this result might be influenced by both the choice of RCM and23

GCM, stressing the importance of ensembles also for kilometre scale studies.24

6 Conclusions25

Extreme precipitation at sub-daily time scales in the summer half-year are investigated with a EURO-CORDEX ensemble at26

0.11◦ resolution. The extremes are estimated using a POT approach with a GP distribution, and the results are evaluated against27

national information for several countries across Europe. From the evaluations, we conclude that:28

– All models perform poorly at hourly duration, with increasing performance for longer durations.29

– Spatial patterns are reasonably well represented only at 12 h duration, indicating a disconnect between orography and30

extreme events at shorter durations.31

18



– Both the GCM and RCM affect both magnitudes and spatial patterns across Europe, but the RCM is most prominent in1

shaping the spatial structure at short durations.2

Future projections are investigated through a connection with summer half-year mean temperature and precipitation change3

for the time-slice periods 2011–2040, 2041–2070 and 2071–2100. The results are presented as %/K changes, and we conclude4

that:5

– The %/K-scaling works well across sub-regions, time-slices and RCP scenarios, such that all aligns practically linearly.6

– The scaling display a large spread between models, with about equal impact of the GCM and the RCM.7

– Scaling of extreme precipitation with temperature is positive across the model ensemble, resulting in an ensemble mean8

slightly below the CC-rate, but ranges from about half to about two times the CC-rate for different ensemble members.9

The concept of relating extreme precipitation changes to temperature seems to be a valid and useful approach to predict10

changes in extreme precipitation. However, this conclusion might be a bit rash since the performance of the models is poor for11

short durations and do not inspire trust in their application for future projections. The next generation of convection permitting12

models might perform better, but their improved performance in reproducing the spatial pattern of extreme precipitation across13

domains should be investigated. For this, we urge national authorities to openly and transparently share assessments of DDF14

statistics from their high resolution observations.15
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