

1 **Water-level attenuation in global-scale assessments of exposure to coastal flooding: a
2 sensitivity analysis**

3 Athanasios T. Vafeidis¹, Mark Schuerch², Claudia Wolff¹, Tom Spencer³, Jan L. Merkens¹, Jochen Hinkel⁴,
4 Daniel Lincke⁴, Sally Brown^{5,6}, Robert J. Nicholls⁵

5

6 *¹Coastal Risks and Sea-Level Rise Research Group, Department of Geography, Christian-Albrechts
7 University Kiel, Ludewig-Meyn-Str. 14, 24098 Kiel, Germany*

8 *²Lincoln Centre for Water and Planetary Health, School of Geography, University of Lincoln, Think
9 Tank, Lincoln, LN6 7FL, UK*

10 *³Cambridge Coastal Research Unit, Department of Geography, University of Cambridge, Downing
11 Place, Cambridge CB2 3EN, UK*

12 *⁴Global Climate Forum e.V. (GCF), Neue Promenade 6, 10178 Berlin, Germany*

13 *⁵Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton
14 SO17 1BJ, UK*

15 *⁶Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth
16 University, Fern Barrow, Poole, Dorset, BH12 5BB, UK*

17

18 **Abstract**

19 This study explores the uncertainty introduced in global assessments of coastal flood exposure and risk
20 when not accounting for water level attenuation due to land-surface characteristics. We implement a
21 range of plausible water-level attenuation values for characteristic land-cover classes in the flood
22 module of the Dynamic and Integrated Vulnerability Assessment (DIVA) modelling framework and
23 assess the sensitivity of flood exposure and flood risk indicators to differences in attenuation rates.
24 Results show a reduction of up to 44% in area exposure and even larger reductions in population
25 exposure and expected flood damages when considering water level attenuation. The reductions vary
26 by country, reflecting the differences in the physical characteristics of the floodplain as well as in the
27 spatial distribution of people and assets in coastal regions. We find that uncertainties related to not
28 accounting for water attenuation in global assessments of flood risk are of similar magnitude to the
29 uncertainties related to the amount of SLR expected over the 21st century. Despite using simplified
30 assumptions to account for the process of water level attenuation, which depends on numerous
31 factors and their complex interactions, our results strongly suggest that an improved understanding
32 and representation of the temporal and spatial variation of water levels across floodplains is essential
33 for future impact modelling.

34

35 **1. Introduction**

36

37 Increased flooding due to sea-level rise (SLR) is a major natural hazard that coastal regions will face in
38 the 21st century, with potentially high socio-economic impacts (Kron, 2013; Wong et al., 2014). Broad-
39 scale (i.e. continental to global) assessments of coastal flood exposure and risk are therefore required

40 to inform mitigation targets and adaptation decisions (Ward et al., 2013a), related financial needs and
41 loss and damage estimates. Towards these ends, a number of recent studies have assessed the
42 exposure of area, population and assets to coastal flooding at national to global scales (Nicholls, 2004;
43 Brown et al. 2013; Jongman et al., 2012a; Ward et al., 2013b; Arkema et al., 2013; Muis et al., 2017) as
44 well as flood risk (Hinkel et al. 2014; Vousdoukas et al., 2018a).

45 Although methods for broad-scale coastal-flood exposure and risk assessment vary between studies,
46 flood extent and water depth have commonly been assessed based on spatial analysis, assuming that
47 all areas with an elevation below a certain water level that are hydrologically connected to the sea are
48 flooded (the “bathtub” method) (Poulter and Halpin, 2008; Lichter et al., 2010). Notable exceptions
49 are the studies of Dasgupta et al. (2009), who used a simple approach to account for wave height
50 attenuation with distance from the coast, and Vousdoukas et al. (2018b) who, for the Iberian
51 Peninsula, adopted a modified version of the bathtub approach that also considers water volume. The
52 use of simplified methods for assessing flooding is primarily related to difficulties of using
53 hydrodynamic methods at broad scale, namely the limited availability and large volume of the
54 necessary high-resolution input data; and the prohibitive computational costs, which render
55 hydrodynamic modelling applications impractical at global scales (Ramirez et al., 2016). Therefore,
56 global applications have utilised elevation data with a spatial resolution of 1 km and a vertical
57 resolution of 1m (Mondal and Tatem, 2012; Jongman et al., 2012b; Ward et al., 2014), with only a few
58 recent studies employing higher spatial resolution (90m) datasets (e.g. Hinkel et al., 2014; Vousdoukas
59 et al., 2018a; see also de Moel et al., 2015).

60 Hydrodynamic models are normally used only for local-scale applications. This is because they require
61 detailed data on parameters such as coastal topography/bathymetry and land use in order to
62 represent local-scale processes and to account for hydraulic properties. A range of simpler inundation
63 models that partly account for hydraulic processes at intermediate scales using medium resolution
64 elevation data (<100m²) have also been applied at subnational scales (e.g. Bates et al., 2010; Wadey
65 et al., 2012; Lewis et al. 2015; Ramirez et al., 2016), and these models are beginning to inform analysis
66 at broader scales (e.g. Vousdoukas et al., 2016; 2018a). There is also a developing literature on
67 hydrodynamic modelling of water level attenuation over coastal wetlands at the landscape scale (<1
68 km) for saltmarshes (Loder et al., 2009; Wamsley et al., 2009, 2010; Barbier et al., 2013; Smith et al.,
69 2016) and mangrove forests (McIvor et al., 2012; Zhang et al., 2012; Liu et al., 2013). However, the
70 incorporation of the above processes in global models is still very limited.

71 Not accounting for hydrodynamic processes in global models can, however, lead to overestimation of
72 flood extent and water depth. Hydrodynamic models capture processes that are not included in global
73 models, such as the effects of surface roughness (both natural and anthropogenic) and channel

74 network density and connectivity (and its effect on landscape continuity) on the timing, duration and
75 routing of floodwaters. For example, inundation extent has been shown in some cases to significantly
76 decrease in urban and residential areas when the built environment is represented in numerical
77 simulations (e.g. tsunami inundation: Kaiser et al., 2011; storm surge inundation: Brown et al., 2007;
78 Orton et al., 2015).

79 To our knowledge, there is no study that has explored the uncertainty introduced into global models
80 by not accounting for water level attenuation due to hydrodynamic processes related to surface
81 roughness. This paper aims to address this gap. We derive a range of plausible water-level attenuation
82 values from existing literature and implement them in the flood module of the Dynamic Interactive
83 Vulnerability Assessment (DIVA) modelling framework (Hinkel et al., 2014). Next, we assess the
84 sensitivity of flood exposure and flood risk indicators to plausible changes in water-level attenuation
85 values under a range of different SLR scenarios. Finally, we compare the uncertainty due to water level
86 attenuation rates with the uncertainty range associated with expected SLR during the 21st Century.

87

88 **2. Methods and Data**

89

90 **2.1 The Dynamic Interactive Vulnerability Assessment (DIVA) modelling framework**

91 DIVA is an integrated, global modelling framework for assessing the biophysical and socio-economic
92 consequences of SLR, and associated extreme water levels, under different physical and socio-
93 economic scenarios and considering various adaptation strategies (Hinkel and Klein, 2009). DIVA has
94 been widely used for global and continental scale assessments of SLR impacts, vulnerability and
95 adaptation (e.g., McLeod et al., 2010; Hinkel et al. 2010; Brown et al. 2013; Hinkel et al., 2013; Hinkel
96 et al., 2014; Spencer et al., 2016; Schuerch et al., 2018). It is underpinned by a global coastal database
97 which divides the world's coastline (excluding Antarctica) into 12,148 coastal segments (Vafeidis et al.,
98 2008). Each segment contains approximately 100 elements of data concerning the physical, ecological
99 and socio-economic characteristics of the coast. Here we focus on the impacts of increased exposure
100 to coastal flooding and potential damages of extreme sea level events (due to the combination of
101 storm surges and astronomical high tides). We used the flood module of DIVA (for details see Hinkel
102 et al., 2014) to estimate potential coastal flood damage, SLR impacts and associated costs.

103 We specifically considered the following five indicators, which progressively include additional
104 components of flood risk:

105 1. Area below the 1-in-100 year flood event (km^2), an estimate based on elevation data and
106 information on water levels for a single hazard event (i.e. the height of the 1-in-100 year sea
107 flood);

108 2. People living in the 1-in-100 year floodplain, a calculation based on spatial data on elevation
109 and population as well as on information for a single hazard event (i.e. the height of the 1-in-
110 100 year sea flood);

111 3. Assets in the 1-in-100 year floodplain (US \$), a calculation that uses data on elevation,
112 population, Gross Domestic Product (GDP) and information for a single hazard event (i.e. the
113 height of the 1-in-100 year sea flood);

114 4. Expected value of the number of people flooded per year (hereafter, people flooded), a
115 calculation based on elevation and population data and the probability distribution of the
116 hazard (i.e. sea flood heights and their probability of occurrence); and

117 5. Expected value of annual damages to assets (hereafter, flood damage) (US \$), a calculation
118 based on elevation, population and GDP data and the probability distribution of the hazard
119 (i.e. sea flood heights and their probability of occurrence).

120 For each coastline segment, a cumulative exposure function for area and population that gives the
121 areal extent (hydrologically connected to the sea) and number of people below a given elevation was
122 constructed. Damages to assets were assessed using a depth-damage function with a declining slope,
123 with 50% of the assets being destroyed at a water depth of one metre (Messner et al., 2007).

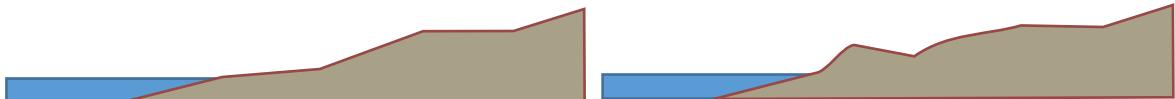
124

125 **2.2 Coastal Elevation and Rate of Water level Attenuation**

126 To simulate the effect of different values of attenuation at the broad scale, we implemented a stylised
127 elevation profile to represent the process of water level attenuation. We assumed that water levels
128 decrease at a constant slope (α) with increasing distance from the coastline. Location-specific coastal
129 profiles for every coastline segment were based on floodplain areas contained within the DIVA
130 database. The database reports total land area within different elevation increments (<1.5m, 1.5-2.5m,
131 2.5-3.5m, 3.5-4.5m, 4.5-5.5m, 5.5-8.5m, 8.5-12.5m, 12.5-16.5m) for each coastal segment. The
132 elevation dataset that was used for estimating floodplain areas and developing the segment elevation
133 profiles is the commonly used Shuttle Radar Terrain Mission (SRTM) Digital Elevation Database (Jarvis
134 et al., 2008) which has a vertical resolution of 1m and a spatial resolution of 3 arc seconds (~90m at
135 the equator).

136 We approximated the average coastal profile for every segment by assuming that elevation
137 continuously increases with distance from the shore. Starting with the lowest elevation increment, the
138 floodplain areas of all elevation increments were cumulatively summed to retrieve the total area below
139 a certain elevation. The total areas were then divided by the segment length to derive the inundation
140 length of the respective floodplain (dx_i). To evaluate the representativeness of the assumption of
141 continuously increasing elevation with increasing distance from the shore, we used the original SRTM

142 dataset and calculated the Euclidian distance of each cell to the nearest coastline for every pixel. Mean
143 distances from the coast were calculated for each of the floodplain areas of each segment.
144 Subsequently, we compared these mean distances with the respective average floodplain elevation
145 for each DIVA coastline segment to analyse the validity of the “continuous-increase” assumption. This
146 comparison revealed that 55% of the DIVA coastline segments show either a continuous increase or
147 no change in the mean distance along the elevation profile (Figure 1a), suggesting that elevation does
148 not decrease with distance from the coast. Comparing all elevation increments of all segments (i.e.
149 pairwise comparison of the mean distances of consecutive elevation increments in a segment), there
150 was an increase, or no change, in the mean distance from the coastline in 88% of cases. Only 12% of
151 cases showed a decrease (Figure 1b). This result indicates that the stylised continuous profile (Figure
152 1a) can be regarded as representative of global coastal topography (see also Schuerch et al., 2018).


153

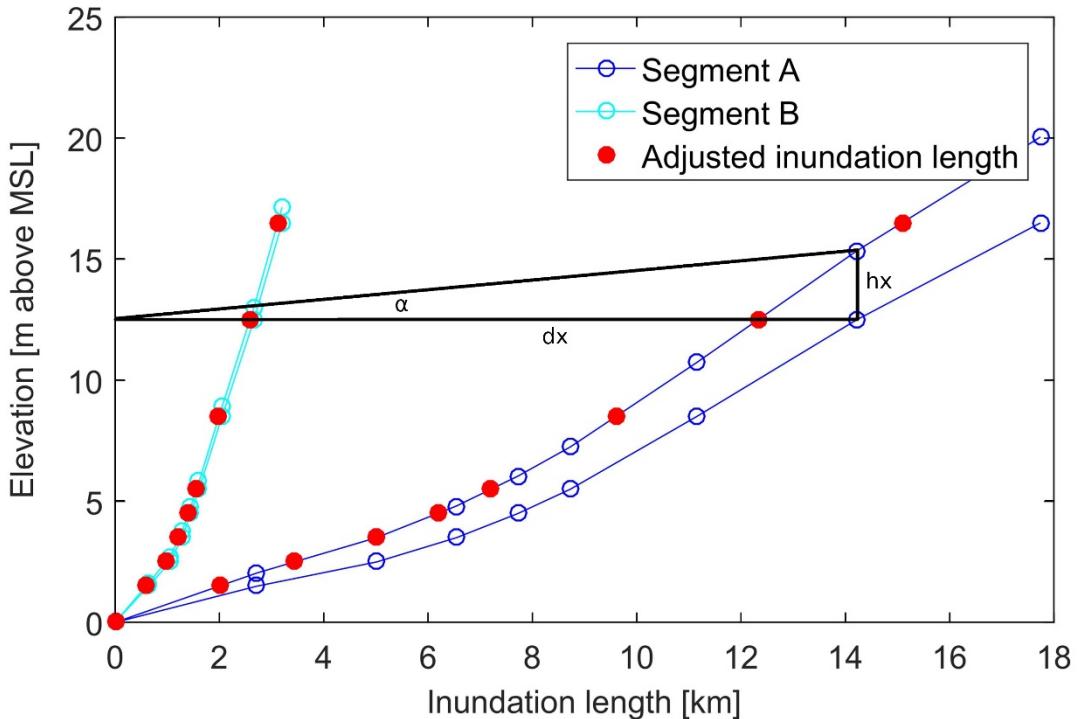
154

155

(a)

(b)

156


157 **Figure 1:** Stylised coastal profile with (a) continuous and (b) discontinuous increase in elevation with distance
158 from the shore.

160 We then adjusted the coastal profile using a range of possible attenuation rates that represent
161 different water surface slopes. Depending on the applied value for water level attenuation, the slope
162 (α) of the inundating water surface was employed to modify (incline) the coastal profile. Based on this
163 slope, the coastal profile is thereby elevated by the amount of the water level reduction (hx_i) computed
164 at a distance dx_i (Fig. 1):

$$hx_i = \tan(\alpha) * dx_i \quad (\text{equation 1})$$

165 In this way the original floodplain areas and inundation depths are reduced in order to account for the
166 reduced (i) inundation length (dx) and (ii) inundation depth (hx) (see Fig. 2).

168

169

170 **Figure 2:** The stylised coastal profile, based on the floodplain areas in the DIVA database (lower line), for two
 171 characteristic coastline segments (A with a flat and B with a steep profile). Water level attenuation is accounted
 172 for by inclining the coastal profile according to equation 1 (upper line). Red dots on the adjusted coastal profile
 173 indicate the inundation length in the case of a water level with a constant slope of α , which represents the
 174 attenuation rate and for an incident water level equal to the corresponding increment height.

175

176 For the sensitivity analysis we used a range of attenuation rates that embraces the values reported in
 177 the literature (Table 1), where water level under storm conditions has been shown to decrease with
 178 distance from the coast. For reviewing the literature we employed the ISI Web of Knowledge and based
 179 our search on the keywords “surge”, “attenuation”, “water-level”. We selected studies that directly
 180 reported values of water level reduction with distance and did not include studies focussing on wave
 181 attenuation. We must note that the aim was not to conduct a systematic literature review but rather
 182 to identify a characteristic range of values that could support the sensitivity analysis. The identified
 183 studies all relate to coastal wetland environments. Although there are published studies of localised
 184 water level dynamics from flow-form interactions in urban and other settings, we have not come
 185 across similar landscape-scale assessments for other land use types. Therefore we broadened this
 186 review, where reported attenuation values were up to 70cm/km, by directly contacting scientists and
 187 data analysts with experience in field or modelling studies. Following their expert judgement, we
 188 extended our analysis to include attenuation rates of up to 100 cm/km as an upper limit.

189

Event type	Landcover type	Location	Rate of water-level reduction	Method	Source
Storm surge	Bare land and Marsh	Modelled platform +0.5 m above sea level	10 cm / km (no vegetation, no channels) 26 cm / km (100% vegetation cover, no channels) 8 cm / km (100% vegetation cover, channel network)	Numerical modelling	Temmerman et al., 2012
Hurricane Isaac (2012)	Marsh	Louisiana	Up to 70cm/km water level reduction in presence of vegetation; 37 % reduction of total inundation volume	Numerical modelling	Hu et al., 2015
Hurricanes	Marsh	Multiple	1 m per 14.5 km 6.9 cm/km (range from 1m per 5km to 1m per 60km 20 - 1.7 cm/km)	Field Study	Corps of Engineers (1963) – In Wamsley et al., 2010
Hurricane Andrew (1992)	Marsh	Louisiana	1m per 20km-23.5km 5 - 4.3 cm/km	Field Study	Lovelace 1994
Hurricane Rita (2005)		Louisiana	1m per 4km to 1m per 25km 25 – 4 cm/km	Field Study	McGee et al. 2006 in Wamsley et al., 2010
Hurricanes Wilma (2005) and Charley (2004)	Mangroves Marsh	Florida	9.4 - 4.2 -cm/km	Field Study	Krauss et al., 2009
Hurricanes	Mangroves	Louisiana	23.3 – 1.7 cm/km	Field Studies	McIvor et al., 2012 (from various studies)
Hurricane Wilma (2005)	Mangroves	South Florida	Up to 50 cm/km (6-10 cm per km in the absence of mangroves)	Field study & modelling	Zhang et al., 2012
Hurricanes	Mangroves	South Florida	7.7 - 5.0 cm/km	Modelling	Liu et al., 2013

190 **Table 1:** Water level reduction rates, for different types of landcover, as reported in the literature.

191

192 We further constrained the sensitivity analysis by adjusting the range of water attenuation rates for
 193 each segment based on the predominant land use type covering the area of every elevation increment.
 194 For estimating the predominant land use we employed the GlobCover Land Cover V2.3 dataset, a
 195 global land cover dataset with a resolution of 10 arc second (~300 meter at the equator). It is based on
 196 the ENVISAT satellite mission's MERIS sensor (Medium Resolution Image Spectrometer) covering the
 197 period between January and December 2009 and includes 22 land cover classes. As the available
 198 information on water attenuation rates by land use type is limited, we reclassified the data to seven

199 classes (forest, urban, cropland, grassland, mangroves, saltmarshes and Unknown) and assigned
200 maximum attenuation rates to each class (Table 2). For the model runs we used the five attenuation
201 categories (no, low, medium, high and maximum attenuation) corresponding to 0, 25%, 50%, 75% and
202 100% of the maximum values found in the literature / from expert judgement, for each class. These
203 rates were then used to incline the water surface in order to represent a constant water level
204 attenuation and the associated reduction in water levels (α) across the floodplain for each coastline
205 segment.

206

Land Use Class	Maximum Attenuation (cm/km)
FOREST (1)	50
URBAN (2)	100
CROPLAND (3)	40
GRASSLAND (4)	25
MANGROVES (5)	50
SALTMARSHES (6)	25
UNKNOWN (0)	25

207 Table 2: Maximum attenuation rates per land use class used in the sensitivity analysis

208 **2.4 Sea-Level Rise and Socio-Economic Scenarios**

209 For global SLR in 2100 from a 1985 – 2005 baseline we used three scenarios: the 5% quantile of the
210 low Representative Concentration Pathway (RCP) 2.6; the median of the medium scenario RCP 4.5;
211 and the 95% quantile of the high scenario RCP 8.5. These scenarios are represented by regionalised
212 SLR projections, with a global mean rise of 29, 50 and 110 cm (by 2100 with respect to 1986-2005),
213 respectively and were developed in the Inter Sectoral Model Intercomparison Project Fast Track (for
214 full details see Hinkel et al., 2014). Following Menendez and Woodworth (2010), once mean sea level
215 had been determined, future extreme water levels were obtained by displacing upwards extreme
216 water levels for different return periods (as included in the DIVA database) with the rising sea level.

217 We used a single shared socio-economic pathway (SSP), namely SSP2, to represent changes in coastal
218 population and assets. SSP2 reflects a world with medium assumptions between the other four SSPs,
219 in terms of resource intensity and fuel dependency as well as GDP and population development (O’Neil
220 et al., 2014). Finally, we ran the DIVA model using a no-dike scenario, where no defence measures for
221 preventing coastal flooding are present. This was done to better characterise water attenuation and
222 to reduce complexity as dike heights in DIVA are modelled since no consistent global data on coastal
223 protection exist (Schuerch et al., 2018).

224

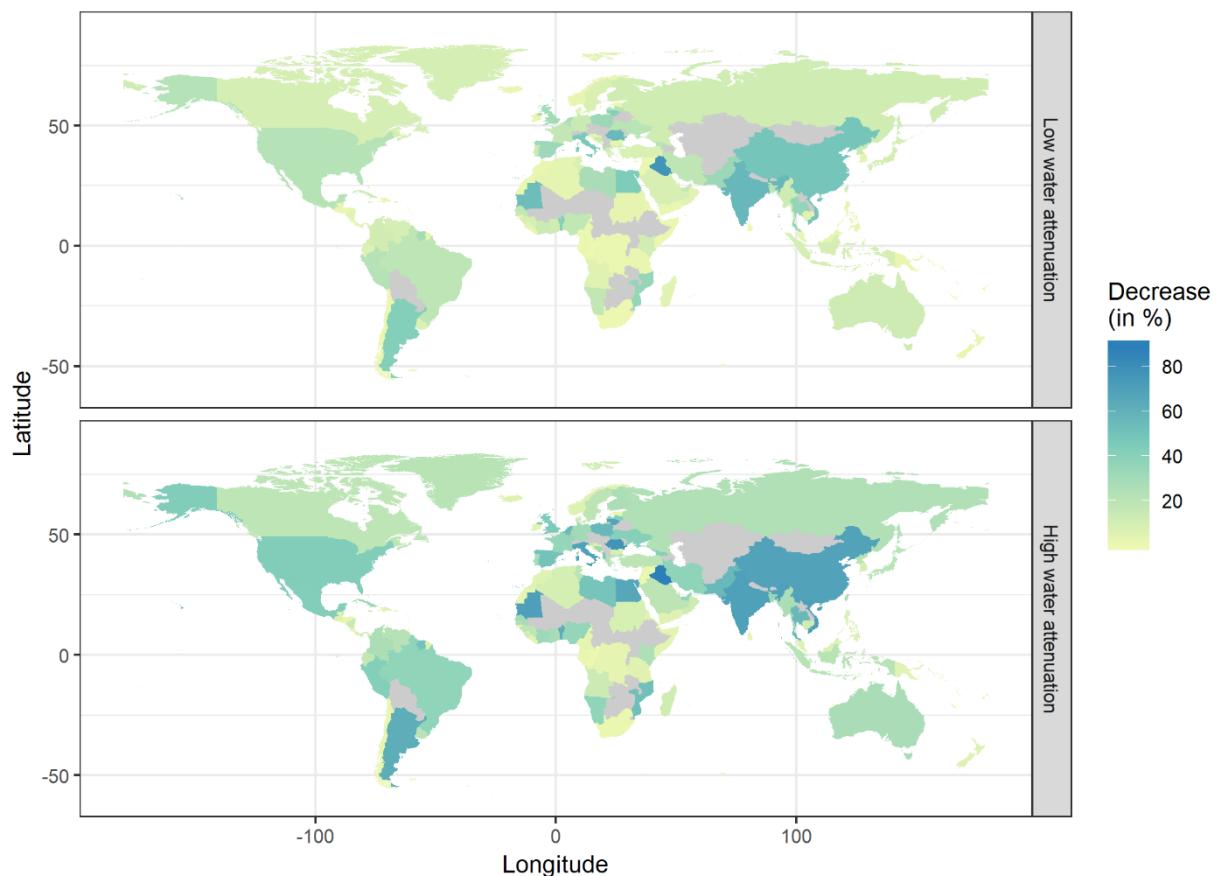
225 **3. Results**

226 We present results for the different classes of attenuation rates, across the five indicators that
 227 progressively include additional components of flood risk:

228

229 **3.1 Reduction of current flood exposure and risk**

230 Table 3 shows the results from the five categories of attenuation rates and both the absolute and
 231 percentage reductions in the values of the five indicators against this baseline.


Water Level Attenuation Category					
	NO	LOW	MEDIUM	HIGH	FULL
		(% decrease)	(% decrease)	(% decrease)	(% decrease)
Area below the 1-in-100 year flood [km²]	727,714	556,677 (23%)	488,183 (33%)	444,100 (39%)	410,873 (44%)
Number of people below the 1-in-100 year flood [million]	174	113 (35%)	96 (45%)	87 (50%)	81 (53%)
Assets below the 1-in-100 year flood [billion US\$]	10,073	6,646 (34%)	5,541 (45%)	4,956 (51%)	4,566 (55%)
Number of people flooded [million/yr]	2.74	1.72 (37%)	1.49 (46%)	1.32 (52%)	1.22 (55%)
Flood damages to assets for the 1-in-100 year flood [billion US\$/yr]	434	304 (30%)	237 (45%)	233 (46%)	211 (51%)

232 **Table 3:** Reduction, relative to the bathtub method, of five indicators of global exposure and risk for different
 233 water-level attenuation rates. Values are for a medium SLR scenario, in 2015.

234

235 Our results show that accounting for water-level attenuation in the assessment of flooding results in
 236 large differences in the values of the five indicators. For example, the area exposed to the 1 in 100-
 237 year flood in 2015 decreases by up to 44% with the application of attenuation rates. The low
 238 attenuation category results in an area reduction of 23% while the use of medium attenuation rates
 239 results in a reduction of 33% (see Table 3). Interestingly, the number of people in the 1 in 100-year
 240 floodplain reduces to 87 million when considering high attenuation. This is a reduction of 50%, which
 241 is similar to the respective reduction in assets (51%) but higher than the reduction in area (44%)
 242 exposure. This result reflects the high population density near the coast that has been reported in
 243 previous studies (e.g. Neumann et al., 2015). Flood damages from the 1-in-100 year event are reduced
 244 in similar proportion, totalling a reduction of more than 220 billion US\$ (54%) globally, when
 245 considering maximum attenuation rates.

246 The reduction in impacts is not uniform across the globe and varies considerably between different
247 countries. Some examples are given in Figure 3 and Table 4. Figure 3 shows the spatial variability of
248 the effects of accounting for water attenuation: low water attenuation can lead to reductions in area
249 exposure of more than 50% and high attenuation can reduce area exposure by more than 80%. Table
250 4 shows results for three countries, namely China, Bangladesh and U.S.A., where accounting for water
251 level attenuation reduces area exposure by up to 73% in China, 39% in Bangladesh and 49% in the USA.
252 At the same time, the reduction in annual flood costs follows a different trend, with exposed assets
253 reducing by up to 75% in China, 41% in Bangladesh and 36% in the USA, reflecting differences in the
254 elevation distribution and landcover characteristics of the floodplains; as well as in the spatial
255 distribution of people and assets in the coastal regions of these countries.

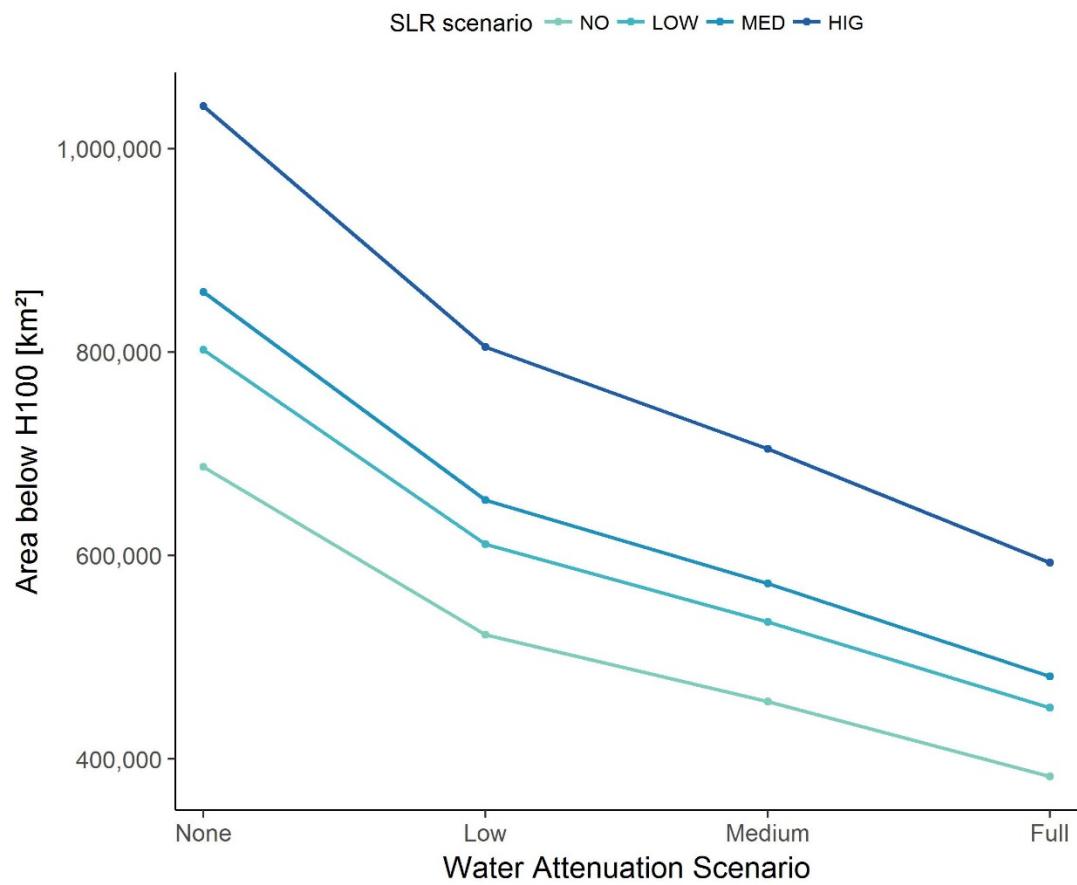
256
257 **Figure 3:** Relative reduction in area exposure to 1 in 100 year coastal floods for low (25%) and high (75%)
258 attenuation categories for 2020.

259

260

Water Level Attenuation	NO	LOW (% decrease)	MEDIUM (% decrease)	HIGH (% decrease)	FULL (% decrease)
Area below 1-in-100 year flood					
(km ²)					
Bangladesh	5733	4590	4163	3825	3493
		(20%)	(27%)	(33%)	(39%)
China	84908	43280	32230	26725	23168
		(49%)	(62%)	(69%)	(73%)
USA	69255	53718	44868	38945	35018
		(22%)	(35%)	(44%)	(49%)
Assets below 1-in-100 year flood					
(billion \$US)					
Bangladesh	48.5	39.8	35.5	31.7	28.7
		(18%)	(27%)	(35%)	(41%)
China	3757.3	1703.0	1266.7	1052.8	925.4
		(55%)	(66%)	(72%)	(75%)
USA	474.6	383.2	344.8	320.4	303.7
		(19%)	(27%)	(32%)	(36%)

Table 4: Absolute and relative reduction of the 1-in-100-year floodplain area and associated exposed assets when applying different water-level attenuation rates for Bangladesh, China and USA in 2015. Values assume a medium SLR scenario.

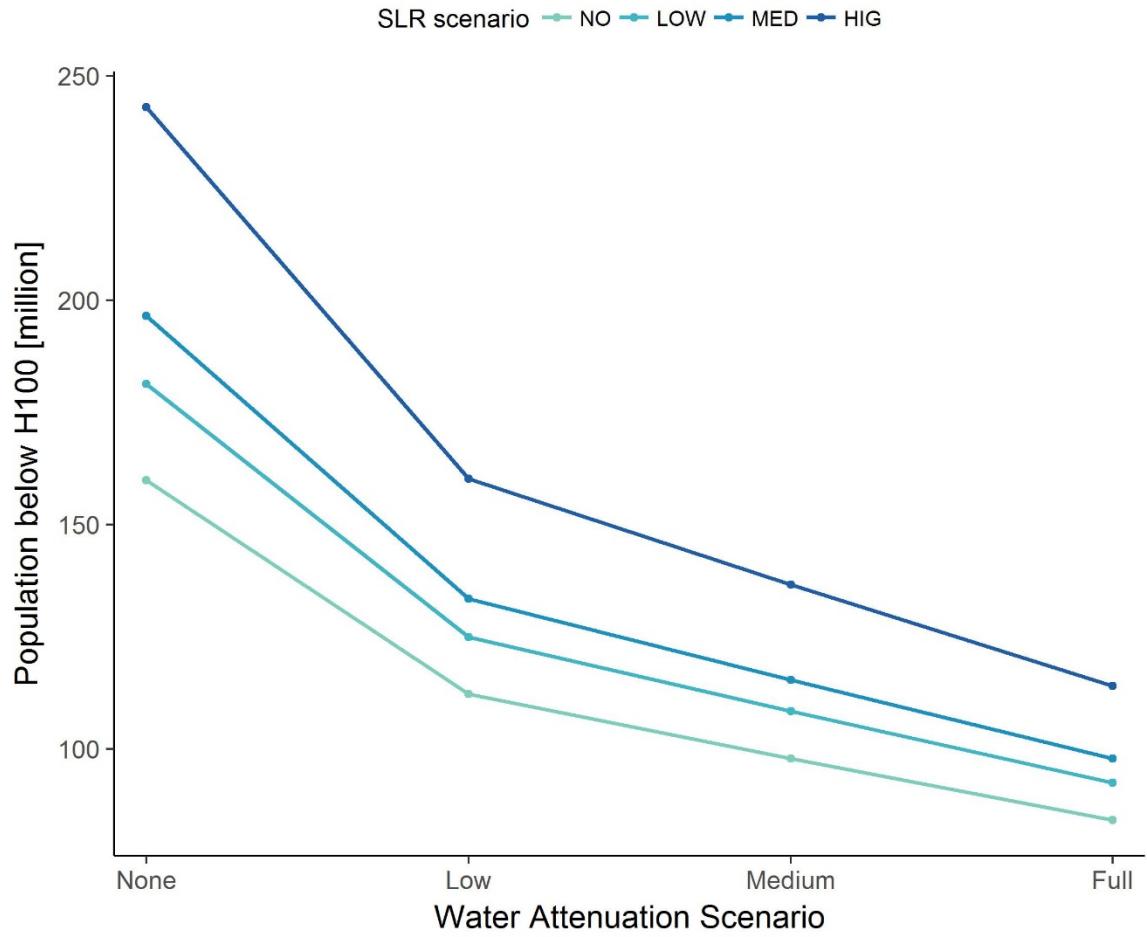

264

265 **3.2 Comparison of attenuation rate uncertainty with sea-level rise uncertainty**

266

267 Figure 4 illustrates the area of land located below the 1-in-100 year storm surge level (H100), plotted
 268 against the different attenuation rates for water level change. The inclusion of water-level attenuation
 269 in the assessment of flooding results in large reduction in the extent of the 100-year floodplain in 2100
 270 (Figure 4) under all SLR scenarios. Even the use of low attenuation of water levels results in a reduction
 271 of 230,000 km² of area exposed to the 1-in-100-year flood under the no-SLR scenario. This increases
 272 to 350,000 km² under the high SLR scenario. For the medium SLR scenario (median of the medium
 273 scenario RCP 4.5; 50 cm by 2100), this reduction amounts to 31% and 40% of the total exposed area
 274 at medium and full water level attenuation respectively. The relative reduction is larger (up to 60%)
 275 for the high SLR scenario compared to the medium-, low- and no-SLR scenarios. Importantly, the
 276 overall difference in the extent of the area of the 100-year floodplain between the no- and high-SLR
 277 scenarios is of a similar order of magnitude to the difference in area extent between the no and low
 278 water level attenuation rates, under any scenario. This indicates that when assessing area exposure

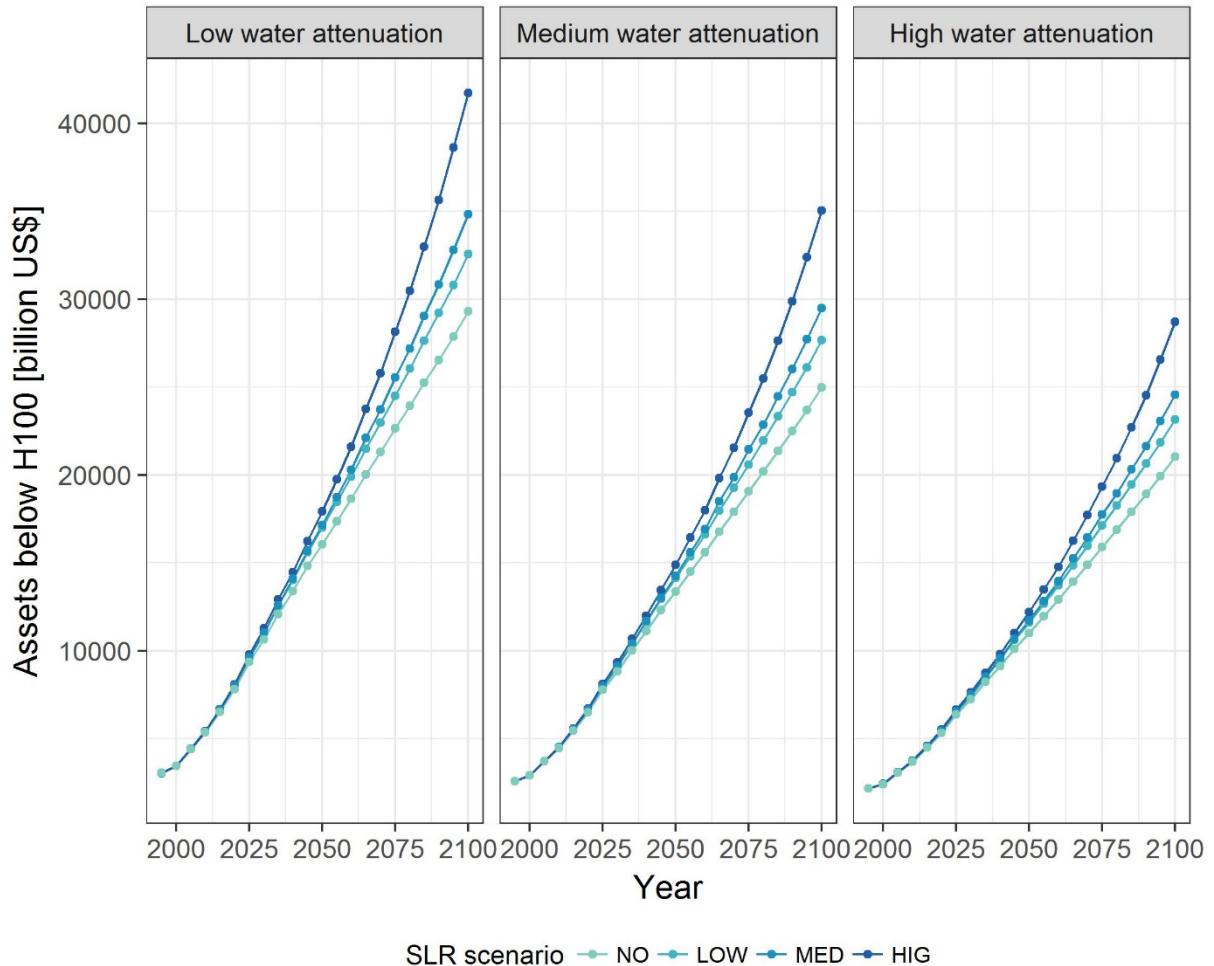
279 accounting for even relatively moderate rates of water level attenuation can be of similar importance
280 to the differences that result from different scenarios of SLR. This analysis, therefore, strongly suggests
281 that uncertainties related to the omission of this factor in global assessments of flood risk are of similar
282 magnitude to the uncertainties related to the magnitude of SLR expected over the 21st century.



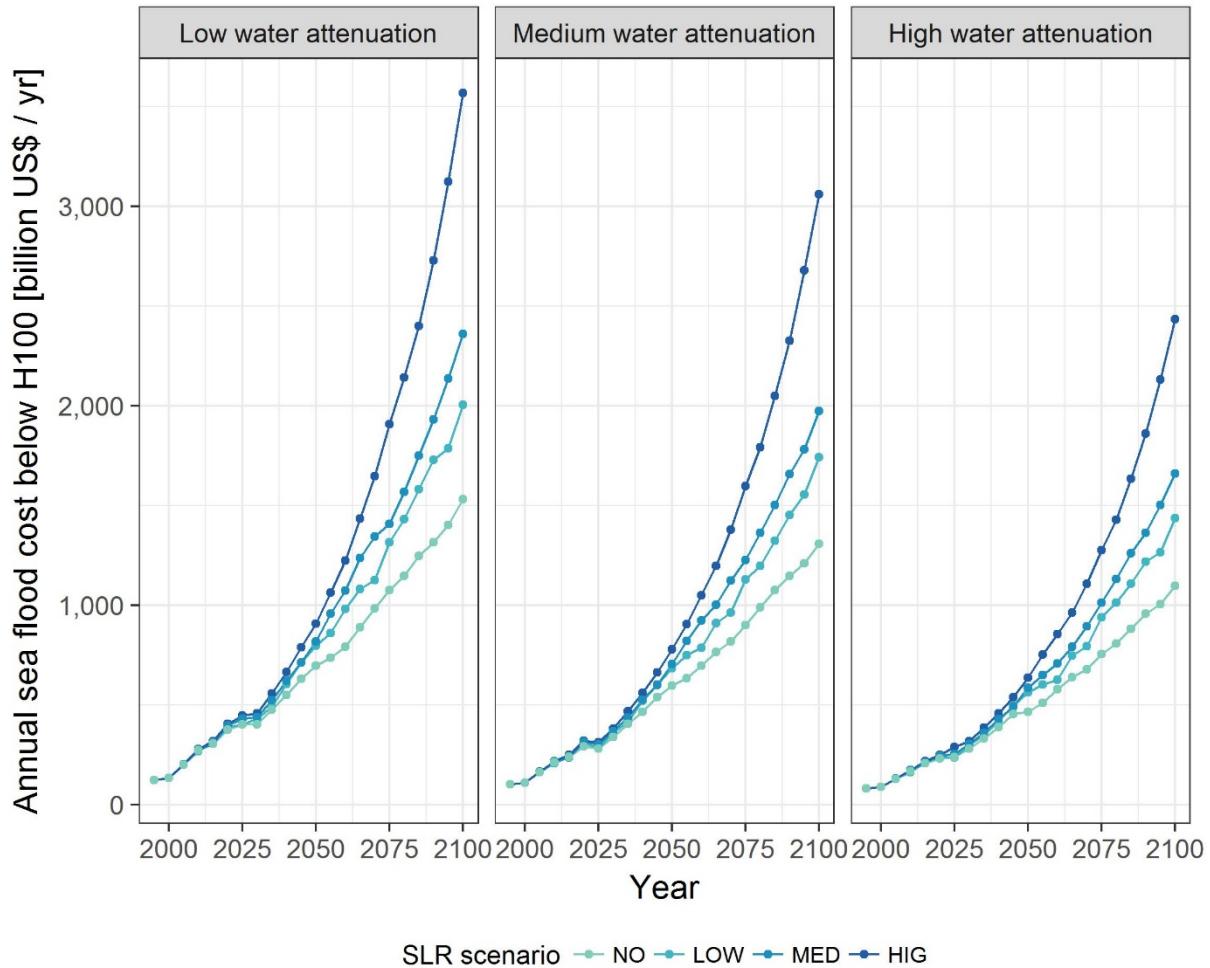
283

284 **Figure 4:** Global total extent of the 100-year floodplain, for different water level attenuation rates and SLR
285 scenarios.

286


287 Similar patterns can be observed for the exposure of population to the 1-in-100-year flood (Figure 5).
288 Low attenuation (Table 1), leads to a reduction of more than 30% in the exposure of population in
289 2100, under the high SLR scenario, bringing the number of people at risk in the 100-year floodplain
290 down by approximately 75 million. Moreover, medium attenuation leads to a reduction in flood
291 exposure by 100 million people, making population exposure lower than the exposure under no SLR
292 when attenuation is not considered. Again, this result suggests that accounting for water level
293 attenuation may be equally important to accounting for SLR uncertainty when assessing the exposure
294 of people to coastal flooding due to SLR.

295


296 **Figure 5:** Global estimates of population in the 100-year floodplain for different water-level reduction rates
 297 (Table 1) and SLR scenarios.

298 The value of assets exposed to the 1-in-100-year flood is also substantially reduced, under all scenarios,
 299 when accounting for water level attenuation (Figure 6). Considering low attenuation rates results in a
 300 decrease in the exposure of assets of approximately 34% in 2100, for a medium SLR scenario. A
 301 reduction of 50% in assets' exposure occur when high attenuation is used. Furthermore, our results
 302 suggest that the use of a relatively moderate attenuation rate has an interesting temporal dimension
 303 as it shifts the extent of assets' exposure by approximately 30 years, under all SLR scenarios (Figure 6).

304
305 **Figure 6:** Temporal evolution of the amount of assets that are located in the 100-year floodplain for different
306 water-level reduction rates (Table 1) and SLR scenarios.

307
308 Damages also reduce considerably with the introduction of water level attenuation rates (Figure 7).
309 For example, the use of a low attenuation rate results in a 34% reduction in damages to assets in 2100
310 from the 1-in-100 year flood. The larger decrease in damages due to water level attenuation compared
311 to population and area exposure is due to the fact that, besides the decrease of the flood area extent,
312 water level attenuation leads to an additional reduction of flood depth with distance from the coast.
313 As water depth is an important parameter for calculating damages to assets (Thieken et al., 2005;
314 Penning-Rowsell et al., 2013), depth reduction further reduces the potential damages of assets due to
315 flooding and results in a temporal shift of damages of more than 25 years.

316

317 **Figure 7:** Comparison of the temporal evolution of sea-flood damage estimates for low medium and high
 318 attenuation rates for different SLR scenarios.

319

320 **4. Discussion and Conclusions**

321 This study highlights the importance of accounting for the effects of hydrodynamic processes when
 322 assessing the impacts of coastal flooding at national to global scales. In particular, water level
 323 attenuation from the interaction of extreme inundation events with vegetated surfaces can lead to
 324 considerably lower estimates of exposure of land area and population to coastal flooding.
 325 Furthermore, this effect can lead to large reductions in potential damages, as lower water depths
 326 combined with smaller flood extents give significantly lower flood-damage costs. The reduction in
 327 exposure and risk is very pronounced, even when considering low water level attenuation rates.

328 Accounting for water level attenuation appears to be as important in assessing impacts as accounting
 329 for uncertainties related to the total magnitude of SLR. In many of the cases explored, the difference
 330 in impacts between no- and high-SLR scenarios is similar to the difference in impacts between no- and

331 low attenuation rates of up to 12.5 cm/km (excluding urban land use). This finding is of particular
332 relevance in environments where the floodplain substantially extends inland, such as in many of the
333 world's deltas and coastal plains.

334 It is widely acknowledged that the use of simplified methods, such as the bathtub method, can provide
335 useful first-order estimates of global impacts of SLR and associated flooding (Lichter et al., 2010; Hinkel
336 et al., 2014), although an overestimation of flood extent and depth with the use of the bathtub method
337 should be generally anticipated (Voudoukas et al., 2016). Further, we must note that the reduction
338 that we observe with the use of water level attenuation rates does not necessarily reflect actual
339 impacts. These are likely to depend on additional factors, which are usually not considered in global
340 assessments. For example, damage to assets in our analysis is based solely on water depth; factors
341 such as high local flow velocities from channelized flow, storm wave impacts, inundation by saline
342 water and sedimentation from flood waters are not taken into account. Such contributory factors can
343 lead to an increased cost of damages and thus counteract the lower impacts predicted from the use of
344 a water level attenuation term alone. Furthermore, the analysis reported here is predicated on the
345 assumption of a continuous increase in elevation with increasing distance from the shore. This study
346 shows that whilst this assumption is valid for the majority of coastal segments, there are segments
347 where this assumption does not hold true. In these cases model outputs may poorly describe flood
348 areas, flooded population numbers and asset damages and incorrectly predict the effect of changes in
349 the rate of water level attenuation. New improved versions of the SRTM elevation model (Yamazaki et
350 al., 2017) may help to partly address this limitation, while the lack of open access elevation data of
351 higher accuracy and resolution still constitutes a significant limitation for global studies (Schumann
352 and Bates, 2018). Nevertheless, and despite these caveats, our results emphasise the importance of
353 accounting for uncertainties in impact assessments stemming from the lack of consideration of water
354 level attenuation over coastal plains.

355 Our approach means to provide an illustration of the potential effects of water level attenuation, as
356 this process is not constant throughout the floodplain and depends on numerous parameters beyond
357 the type of the surface cover. These factors include storm duration, wind direction, water depth and
358 vegetation traits (Resio and Westerink, 2008; Smith et al., 2016; Stark et al., 2016). Furthermore,
359 applying a constant slope to account for water level attenuation is a strong simplification, since this
360 will vary between different storm events, but also under the influence of SLR. Nevertheless, given the
361 very high sensitivity of the outputs to even small changes in water level reduction rates; and the
362 obvious lack of sufficient data on the actual effect of different types of surface on attenuating water
363 levels during surges, we suggest that future work needs to focus on quantifying the water level
364 attenuation terms for different land uses. Thus, for example, both Brown et al. (2007), in the case of

365 modelled flooding following storm surge-induced sea defence failure; and Kaiser et al. (2011), in the
366 case of modelled tsunami wave impacts, have shown that disregarding buildings and associated
367 infrastructure (roads, gardens, ditches) when assessing inundation can lead to a large overestimation
368 of the extent of flooding. Furthermore, given the large range of uncertainty with respect to the actual
369 values of water level reduction associated with just one surface cover, wetland habitat (Table 1), future
370 impact modelling needs to focus on a better understanding of the temporal and spatial variation of
371 water levels across floodplains that show a wide variety of land use types and human occupancy,
372 including densely urbanised regions (e.g. Lewis et al., 2013; Blumberg et al., 2015).

373 Given that coastal wetlands can efficiently attenuate surge water levels, the results of this study give
374 a first estimate of how much of an impact reduction may result from the implementation of large-
375 scale, ecosystem-based flood risk reduction management schemes (e.g. Temmerman et al., 2013). In
376 addition, achieving lower water levels through the establishment of coastal wetlands not only reduces
377 impacts but may also affect the timing of potential adaptation tipping points by extending the
378 anticipated lifetime of adaptation measures. This would allow the development of alternative
379 adaptation pathways, a sequential series of linked adaptation options triggered by changes in external
380 conditions (Barbier, 2015), for coastal regions.

381

382 **Author Contributions**

383 ATV and MS designed the research, with support from TS. MS extended the code for the simulations.
384 MS, CW, JLM prepared the data and conducted the simulations, with support from DL. CW, JLM and
385 ATV analysed the results. ATV prepared the manuscript with contributions from TS, MS, CW, JLM, JH,
386 DL, SB and RJN. All authors discussed, reviewed and edited the different versions of the manuscript.

387

388 **Acknowledgments**

389 ATV, JLM, JH, DL, SB and RJN received funding from the European Union's Seventh Framework
390 Programme for Research, Technological Development and Demonstration under grant agreement no
391 603396 (RISES-AM project). This work is a contribution (TS) to "Physical and biological dynamic coastal
392 processes and their role in coastal recovery" (BLUECoast), UKRI NERC (NE/N015878/1).

393

394

395

396 **References**

397

398 Arkema, K. K., Guannel, G., Verutes, G., Wood, S. A., Guerry, A., Ruckelshaus, M., Kareiva, P., Lacayo,
399 M., and Silver, J. M.: Coastal habitats shield people and property from sea-level rise and storms, *Nature*
400 *Climate Change*, 3, 913-918, 10.1038/nclimate1944, 2013.

401 Barbier, E. B.: Valuing the storm protection service of estuarine and coastal ecosystems, *Ecosystem*
402 *Services*, 11, 32-38, 10.1016/j.ecoser.2014.06.010, 2015.

403 Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water
404 equations for efficient two-dimensional flood inundation modelling, *Journal of Hydrology*, 387, 33-45,
405 10.1016/j.jhydrol.2010.03.027, 2010.

406 Blumberg, A. F., Georgas, N., Yin, L., Herrington, T. O., and Orton, P. M.: Street-Scale Modeling of Storm
407 Surge Inundation along the New Jersey Hudson River Waterfront, *Journal of Atmospheric and Oceanic*
408 *Technology*, 32, 1486-1497, 10.1175/jtech-d-14-00213.1, 2015.

409 Brown, J. D., Spencer, T., and Moeller, I.: Modeling storm surge flooding of an urban area with
410 particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom, *Water*
411 *Resources Research*, 43, 10.1029/2005wr004597, 2007.

412 Brown, S., Nicholls, R. J., Lowe, J. A., and Hinkel, J.: Spatial variations of sea-level rise and impacts: An
413 application of DIVA, *Climatic Change*, 134, 403-416, 10.1007/s10584-013-0925-y, 2016.

414 Dasgupta, S., Laplante, B., Murray, S., and Wheeler, D.: Exposure of developing countries to sea-level
415 rise and storm surges, *Climatic Change*, 106, 567-579, 10.1007/s10584-010-9959-6, 2011.

416 de Moel, H., Jongman, B., Kreibich, H., Merz, B., Penning-Rowsell, E., and Ward, P. J.: Flood risk
417 assessments at different spatial scales, *Mitigation and Adaptation Strategies for Global Change*, 20,
418 865-890, 10.1007/s11027-015-9654-z, 2015.

419 Hallegatte, S., Green, C., Nicholls, R. J., and Corfee-Morlot, J.: Future flood losses in major coastal cities,
420 *Nature Climate Change*, 3, 802-806, 10.1038/nclimate1979, 2013.

421 Hinkel, J., and Klein, R. J. T.: Integrating knowledge to assess coastal vulnerability to sea-level rise: The
422 development of the DIVA tool, *Global Environmental Change-Human and Policy Dimensions*, 19, 384-
423 395, 10.1016/j.gloenvcha.2009.03.002, 2009.

424 Hinkel, J., Nicholls, R. J., Vafeidis, A. T., Tol, R. S. J., and Avagianou, T.: Assessing risk of and adaptation
425 to sea-level rise in the European Union: an application of DIVA, *Mitigation and Adaptation Strategies*
426 *for Global Change*, 15, 703-719, 10.1007/s11027-010-9237-y, 2010.

427 Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B., Hamilton, J. M., Boot, G., Vafeidis, A. T., McFadden,
428 L., Ganopolski, A., and Klein, R. J. T.: A global analysis of erosion of sandy beaches and sea-level rise:
429 An application of DIVA, *Global and Planetary Change*, 111, 150-158, 10.1016/j.gloplacha.2013.09.002,
430 2013.

431 Hinkel, J., Lincke, D., Vafeidis, A. T., Perrette, M., Nicholls, R. J., Tol, R. S. J., Marzeion, B., Fettweis, X.,
432 Ionescu, C., and Levermann, A.: Coastal flood damage and adaptation costs under 21st century sea-
433 level rise, *Proceedings of the National Academy of Sciences of the United States of America*, 111, 3292-
434 3297, 10.1073/pnas.1222469111, 2014.

435 Hu, K. L., Chen, Q., and Wang, H. Q.: A numerical study of vegetation impact on reducing storm surge
436 by wetlands in a semi-enclosed estuary, *Coastal Engineering*, 95, 66-76,
437 10.1016/j.coastaleng.2014.09.008, 2015.

438 Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., Neal, J., Aerts, J.,
439 and Ward, P. J.: Comparative flood damage model assessment: towards a European approach, *Natural*

440 Hazards and Earth System Sciences, 12, 3733-3752, 10.5194/nhess-12-3733-2012, 2012.

441 Jongman, B., Ward, P. J., and Aerts, J.: Global exposure to river and coastal flooding: Long term trends
442 and changes, Global Environmental Change-Human and Policy Dimensions, 22, 823-835,
443 10.1016/j.gloenvcha.2012.07.004, 2012.

444 Kaiser, G., Scheele, L., Kortenhaus, A., Lovholt, F., Romer, H., and Leschka, S.: The influence of land
445 cover roughness on the results of high resolution tsunami inundation modeling, Natural Hazards and
446 Earth System Sciences, 11, 2521-2540, 10.5194/nhess-11-2521-2011, 2011.

447 Krauss, K. W., Doyle, T. W., Doyle, T. J., Swarzenski, C. M., From, A. S., Day, R. H., and Conner, W. H.:
448 WATER LEVEL OBSERVATIONS IN MANGROVE SWAMPS DURING TWO HURRICANES IN FLORIDA,
449 Wetlands, 29, 142-149, 10.1672/07-232.1, 2009.

450 Kron, W.: Coasts: the high-risk areas of the world, Natural Hazards, 66, 1363-1382, 10.1007/s11069-
451 012-0215-4, 2013.

452 Lewis, M., Bates, P., Horsburgh, K., Neal, J., and Schumann, G.: A storm surge inundation model of the
453 northern Bay of Bengal using publicly available data, Quarterly Journal of the Royal Meteorological
454 Society, 139, 358-369, 10.1002/qj.2040, 2013.

455 Lichter, M., Vafeidis, A. T., Nicholls, R. J., and Kaiser, G.: Exploring Data-Related Uncertainties in
456 Analyses of Land Area and Population in the "Low-Elevation Coastal Zone" (LECZ), J Coastal Res, 27,
457 757-768, 10.2112/Jcoastres-D-10-00072.1, 2011.

458 Liu, H. Q., Zhang, K. Q., Li, Y. P., and Xie, L.: Numerical study of the sensitivity of mangroves in reducing
459 storm surge and flooding to hurricane characteristics in southern Florida, Continental Shelf Research,
460 64, 51-65, 10.1016/j.csr.2013.05.015, 2013.

461 McIvor, A. L., Spencer, T., Möller, I., and Spalding, M.: Storm surge reduction by mangroves, The Nature
462 Conservancy and Wetlands International 36, 2012.

463 McLeod, E., Poulter, B., Hinkel, J., Reyes, E., and Salm, R.: Sea-level rise impact models and
464 environmental conservation: A review of models and their applications, Ocean & Coastal Management,
465 53, 507-517, 10.1016/j.ocecoaman.2010.06.009, 2010.

466 Menendez, M., and Woodworth, P. L.: Changes in extreme high water levels based on a quasi-global
467 tide-gauge data set, Journal of Geophysical Research-Oceans, 115, 10.1029/2009jc005997, 2010.

468 Messner, F., Penning-Rowsell, E., Green, C., Meyer, V., Tunstall, S., Van der Veen, A., Tapsell, S., Wilson,
469 T., Krywkow, J., Logtmeijer, C., and Fernández-Bilbao, A.: Evaluating flood damages: guidance and
470 recommendations on principles and methods, 2007.

471 Mondal, P., and Tatem, A. J.: Uncertainties in Measuring Populations Potentially Impacted by Sea Level
472 Rise and Coastal Flooding, Plos One, 7, 10.1371/journal.pone.0048191, 2012.

473 Muis, S., Verlaan, M., Nicholls, R. J., Brown, S., Hinkel, J., Lincke, D., Vafeidis, A. T., Scussolini, P.,
474 Winsemius, H. C., and Ward, P. J.: A comparison of two global datasets of extreme sea levels and
475 resulting flood exposure, Earths Future, 5, 379-392, 10.1002/2016ef000430, 2017.

476 Nicholls, R. J.: Coastal flooding and wetland loss in the 21st century: changes under the SRES climate
477 and socio-economic scenarios, Global Environmental Change-Human and Policy Dimensions, 14, 69-
478 86, 10.1016/j.gloenvcha.2003.10.007, 2004.

479 O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., and van Vuuren, D.
480 P.: A new scenario framework for climate change research: the concept of shared socioeconomic
481 pathways, Climatic Change, 122, 387-400, 10.1007/s10584-013-0905-2, 2014.

482 Orton, P., Vinogradov, S., Georgas, N., Blumberg, A., Lin, N., Gornitz, V., Little, C., Jacob, K., and Horton,
483 R.: New York City Panel on Climate Change 2015 Report Chapter 4: Dynamic Coastal Flood Modeling,
484 in: Building the Knowledge Base for Climate Resiliency: New York City Panel on Climate Change 2015

485 Report, edited by: Rosenzweig, C., and Solecki, W., *Annals of the New York Academy of Sciences*, 56-
486 66, 2015.

487 Penning-Rowsell, E. C., Parker, D. J., Morris, J., Viavattene, C., Chatterton, J., and Owen, D.: *Flood and*
488 *coastal erosion risk management: a manual for economic appraisal*, Routledge, Taylor & Francis,
489 London, UK, 2013.

490 Poulter, B., and Halpin, P. N.: Raster modelling of coastal flooding from sea-level rise, *International*
491 *Journal of Geographical Information Science*, 22, 167-182, 10.1080/13658810701371858, 2008.

492 Ramirez, J. A., Licher, M., Coulthard, T. J., and Skinner, C.: Hyper-resolution mapping of regional storm
493 surge and tide flooding: comparison of static and dynamic models, *Natural Hazards*, 82, 571-590,
494 10.1007/s11069-016-2198-z, 2016.

495 Resio, D. T., and Westerink, J. J.: Modeling the physics of storm surges, *Physics Today*, 61, 33-38,
496 10.1063/1.2982120, 2008.

497 Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering,
498 M. D., Reef, R., Vafeidis, A. T., Hinkel, J., Nicholls, R. J., and Brown, S.: Future response of global coastal
499 wetlands to sea-level rise, *Nature*, 561, 231-234, 10.1038/s41586-018-0476-5, 2018.

500 Schumann, G. J. P., and Bates, P. D.: The Need for a High-Accuracy, Open-Access Global DEM, *Frontiers*
501 *in Earth Science*, 6, 10.3389/feart.2018.00225, 2018.

502 Smith, J. M., Bryant, M. A., and Wamsley, T. V.: Wetland buffers: numerical modeling of wave
503 dissipation by vegetation, *Earth Surface Processes and Landforms*, 41, 847-854, 10.1002/esp.3904,
504 2016.

505 Spencer, T., Schuerch, M., Nicholls, R. J., Hinkel, J., Lincke, D., Vafeidis, A. T., Reef, R., McFadden, L.,
506 and Brown, S.: Global coastal wetland change under sea-level rise and related stresses: The DIVA
507 Wetland Change Model, *Global and Planetary Change*, 139, 15-30, 10.1016/j.gloplacha.2015.12.018,
508 2016.

509 Stark, J., Plancke, Y., Ides, S., Meire, P., and Temmerman, S.: Coastal flood protection by a combined
510 nature-based and engineering approach: Modeling the effects of marsh geometry and surrounding
511 dikes, *Estuarine Coastal and Shelf Science*, 175, 34-45, 10.1016/j.ecss.2016.03.027, 2016.

512 Temmerman, S., De Vries, M. B., and Bouma, T. J.: Coastal marsh die-off and reduced attenuation of
513 coastal floods: A model analysis, *Global and Planetary Change*, 92-93, 267-274,
514 10.1016/j.gloplacha.2012.06.001, 2012.

515 Temmerman, S., Meire, P., Bouma, T. J., Herman, P. M. J., Ysebaert, T., and De Vriend, H. J.: Ecosystem-
516 based coastal defence in the face of global change, *Nature*, 504, 79-83, 10.1038/nature12859, 2013.

517 Thieken, A. H., Muller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: New
518 insights from the August 2002 flood in Germany, *Water Resources Research*, 41,
519 10.1029/2005wr004177, 2005.

520 Vafeidis, A. T., Nicholls, R. J., McFadden, L., Tol, R. S. J., Hinkel, J., Spencer, T., Grashoff, P. S., Boot, G.,
521 and Klein, R. J. T.: A new global coastal database for impact and vulnerability analysis to sea-level rise,
522 *J Coastal Res*, 24, 917-924, 10.2112/06-0725.1, 2008.

523 Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen, L.: Projections of extreme
524 storm surge levels along Europe, *Climate Dynamics*, 47, 3171-3190, 10.1007/s00382-016-3019-5,
525 2016.

526 Vousdoukas, M. I., Bouziotas, D., Giardino, A., Bouwer, L. M., Mentaschi, L., Voukouvalas, E., and Feyen,
527 L.: Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and
528 future climates, *Natural Hazards and Earth System Sciences*, 18, 2127-2142, 10.5194/nhess-18-2127-
529 2018, 2018.

530 Voudoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F., and Feyen, L.: Climatic and
531 socioeconomic controls of future coastal flood risk in Europe, *Nature Climate Change*, 8, 776-+,
532 10.1038/s41558-018-0260-4, 2018.

533 Wadey, M. P., Nicholls, R. J., and Hutton, C.: Coastal Flooding in the Solent: An Integrated Analysis of
534 Defences and Inundation, *Water*, 4, 430-459, 10.3390/w4020430, 2012.

535 Wamsley, T. V., Cialone, M. A., Smith, J. M., Ebersole, B. A., and Grzegorzewski, A. S.: Influence of
536 landscape restoration and degradation on storm surge and waves in southern Louisiana, *Natural
537 Hazards*, 51, 207-224, 10.1007/s11069-009-9378-z, 2009.

538 Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H., and Rosati, J. D.: The potential of wetlands
539 in reducing storm surge, *Ocean Engineering*, 37, 59-68, 10.1016/j.oceaneng.2009.07.018, 2010.

540 Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., van Beek, R., Bierkens, M. F. P., Ligtvoet, W., and
541 Winsemius, H. C.: Assessing flood risk at the global scale: model setup, results, and sensitivity,
542 *Environmental Research Letters*, 8, 10.1088/1748-9326/8/4/044019, 2013.

543 Ward, P. J., Pauw, W. P., van Buuren, M. W., and Marfai, M. A.: Governance of flood risk management
544 in a time of climate change: the cases of Jakarta and Rotterdam, *Environmental Politics*, 22, 518-536,
545 10.1080/09644016.2012.683155, 2013.

546 Ward, P. J., Jongman, B., Kummu, M., Dettinger, M. D., Weiland, F. C. S., and Winsemius, H. C.: Strong
547 influence of El Nino Southern Oscillation on flood risk around the world, *Proceedings of the National
548 Academy of Sciences of the United States of America*, 111, 15659-15664, 10.1073/pnas.1409822111,
549 2014.

550 Wong, P. P., Losada, I. J., Gattuso, J. P., Hinkel, J., Khattabi, A., McInnes, K. L., Saito, Y., Sallenger, A.,
551 Cheong, S. M., Dow, K., Duarte, C. M., Ebi, K. L., Faulkner, L., Isobe, M., Middelburg, J., Moser, S., Pelling,
552 M., Penning-Rowsell, E., Seitzinger, S., Stive, M., Tol, R. S. J., and Vafeidis, A.: Coastal Systems and Low-
553 Lying Areas, *Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pt a: Global and Sectoral
554 Aspects: Working Group Ii Contribution to the Fifth Assessment Report of the Intergovernmental Panel
555 on Climate Change*, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D.,
556 Bilir, T. B., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N.,
557 MacCracken, S., Mastrandrea, P. R., and White, L. L., 361-409 pp., 2014.

558 Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F., Neal, J. C., Sampson, C. C., Kanae,
559 S., and Bates, P. D.: A high-accuracy map of global terrain elevations, *Geophysical Research Letters*, 44,
560 5844-5853, 10.1002/2017gl072874, 2017.

561 Zhang, K. Q., Liu, H. Q., Li, Y. P., Xu, H. Z., Shen, J., Rhome, J., and Smith, T. J.: The role of mangroves in
562 attenuating storm surges, *Estuarine Coastal and Shelf Science*, 102, 11-23, 10.1016/j.ecss.2012.02.021,
563 2012.