
Referee #1 

This manuscript aims to assess the sensitivity of vegetation types to drought across Spain, 
using a high-resolution (1.1 km) spatial dataset of the Normalized Difference Vegetation 
Index (NDVI) and the Standardized Precipitation Evapotranspiration Index (SPEI) for Spain 
for the period from 1981 to 2015. In particular, an analysis of the drought time scales at 
which vegetation activity aims to show the highest response to drought severity at different 
moments of the year. The study is exhaustive, taking advantage of the two high resolution 
datasets computed by the authors, the methods are adequate and the results are in 
accordance with previous works and are discussed in a detailed way. The overall context of 
the subject is very important in Mediterranean and Iberian context, taking in account the 
importance of drought subject for the region within the context of warming tendency. 
Therefore, the work seems to be appropriate for this journal. However, some aspects could 
be improved in order to increase the intelligibility and readability of the paper.  

We strongly appreciate the positive comment on the manuscript by the reviewer#1. Really 
she/he has appreciated that this study contains a considerable amount of work, including the 
use of high resolution datasets and different spatial-temporal analysis. 

MAJOR As I said the subject and results of this manuscript are of great interest for a wide 
range of readers. However, the reading of the paper is very tiring, the number of figures in 
the manuscript and supplementary information is ‘astronomic’, the figures are really small, 
the axis information and titles are unreadable and the results and discussion is really hard to 
follow. Nevertheless, I recognize that present these results is a very hard task. Therefore, my 
next comments are suggestion that may increase the readability and increase the number or 
interested readers that should be attracted to the important results of the manuscript.  

We have reduced some parts of the results section and removed around ½ of the 
supplementary figures that were not very informative. 

The semi-monthly analysis is interesting and aimed to take advantage of the higher temporal 
resolution of the datasets. However, the temporal changes in correlation are slow and I do 
not see the add-value of presenting 24 graphs instead of 12. As a matter of fact, the graphs 
for each month are very similar and if you increase the size of the figures (taking in account 
that you may present only one figure for each month, e.g., 2nd January, 2nd Feb,. . .) the 
analysis will be much more easy.  

We understand this comment but given the high temporal resolution of both climate and NDVI 
datasets, it would be a pity to reduce the temporal resolution of the data. Usually these 
analysis are done at monthly resolution, but really the motivation of this choice is usually the 
availability of the data, which is usually available at the monthly resolution. Nevertheless, here 
we had access to a high temporal resolution data, which allows identifying very interesting 
patterns, difficult to be observed with data at the monthly resolution. An excellent example is 
the seasonal transitions in the relationships between the spatial patterns of aridity (and 
temperature) and the correlations between the SPEI and the sNDVI. These plots clearly show 
that the changes in the role of drought on the vegetation activity show a seasonal transition, 
which is clearly appreciated using a detailed temporal resolution (semi-monthly). For this 



reason we prefer to maintain the analysis at the original temporal resolution better than 
focusing on specific semi-monthly periods.        

Another issue related with the 12 new bigger figures is the possibility ´ of presenting all the 
land cover inside each graph, maybe with different colours. This allows a better comparison 
between land covers and reduce drastically the number of figures in supplementary 
information.  

Really we understand that we are including a high amount of figures in our ms. But we are 
mostly making use of supplementary information. Of course, in the main manuscript we do not 
describe in depth these figures but we provide the main results. Moreover, we do not think 
possible to include in a single figure the information corresponding to the different land cover 
scatter plots since they are already containing different colors. In any case, we have reduced 
the number of supplementary figures in ½.  

The result section is very exhaustive and ´ hard to follow. Please consider to resume.  

We have removed some sections of the text but also some figures from the supplementary 
information that were not very informative. 

The discussion and conclusions section ´ is very long and also hard to follow, although with a 
huge amount of very interesting points. I would suggest to separate discussion from 
conclusion and introduce sub sections in discussion in order to organized the main findings.  

We appreciate this comment. We have including different sub-headings in the discussion 
section but also developed a new section that states the main conclusions of the manuscript. 

I also would suggest to add in conclusion section some paragraphs highlighting the new 
insights of this work in comparison with previous ones and the usefulness and need of this 
type of analysis.  

We have included an independent conclusions section in which the different main findings 
obtained in the manuscript are clearly stated. 

Furthermore, some methodological issues are not very clear. 1) (Lines 189-193) The authors 
said “computed the atmospheric evaporative demand (AED), reference evapotranspiration 
(ETo), and the Standardized Precipitation Evapotranspiration Index (SPEI).” Please explain 
the advantage of using AED AND ET0. Which is used to computed SPEI? SPEI in Vicente-
Serrano eta al., 2010 is computed using PET. What is the difference between AED and ET0? 
Which method is used to compute AED? Maybe the readers of the journal are not very 
familiarized with these differences and should understand the biophysical add value of using 
AED. Please clarify the innovation of this new approach and the need of this innovation. 
Additionally, in several figures (e.g. Figure 8) the author mentioned AED in figure caption and 
ET0 is written in axis. Please try make it more consistent.  

The ETo is one of the forms in which we can express the AED. The potential evaporation is a 
form of the AED. The pan evaporation is also a form of the AED (which can be estimated using 
the PenPan model or measured by means of evaporation pans). But the ETo is also a form of 



the AED since it includes a constant surface resistance. The ETo can be compared spatially and 
temporally and it only depends of meteorological factors. To avoid any possible misleading by 
the readers we have clarified this issue in the revised manuscript: 

“Based on this gridded dataset, we computed the atmospheric evaporative demand (AED) and 
the Standardized Precipitation Evapotranspiration Index (SPEI). We used the reference 
evapotranspiration (ETo) as the most realibale way of estimating the AED. ETo was calculated 
using the physically based FAO-56 Penman-Monteith equation (Allen et al., 1998).”

In addition, we have removed the term AED in different parts of the manuscript and replaced by 
ETo. 

2) (Lines 170-172): Please clarify which variable is really used for the correlation assessment: 
is it the standardized NDVI (sNDVI) or NDVI magnitude with residuals? Figure captions 
mentioned sNDVI. I am confused with these definitions. Please clarify and justify those 
options with more clarity and detail.  

This has been justified in the revised manuscript: 

“Correlations with the drought dataset were based on the sNDVI.”

3) (Lines 220-223): Why CLC2000 and not the most recent version? The land cover is not 
static, are always changing. The classification of 2000 does not represent the average state 
of land cover during the period, Please, justify this choice taking in account this changeable 
character of land cover. As the authors have removed the pixels that they say are 
corresponding to land cover change, I would suggest to use the versions of CLC for 1990, 
2000, 2006 and 2012 and considered only the pixels that are corresponding to unchangeable 
land covers, as coded using CLC.  

As we justified in the manuscript, we have chosen the CLC2000 because it is the most 
representative over the entire study period. The suggestion by the reviewer of using different 
land cover maps do not solve the problem of having a baseline for the beginning of the study 
period (1981). Moreover the selection of the pixels that have not showed a land cover change 
would strongly reduce the analysed surface area since in a period of 30 years the land cover 
change processes that are recorded in Mediterranean areas may affect large regions (see e.g. 
Lasanta and Vicente-Serrano, 2012).  

There are several land cover changes processes which are not characterized by an abrupt 
change in the land cover type. Of course, we are aware that possible abrupt modifications of 
the land cover type could affect the relationship between the SPEI and the sNDVI. For this 
reason we removed those pixels characterized by abrupt changes (quantified by means of the 
selection of a high value in the magnitude of change of the sNDVI, e.g. non-irrigated arable 
lands transformed to irrigated lands, urbanization, etc.) ,but we maintained those that showed 
more gradual changes. In any case this did not affect the quality of our analysis since before 
the temporal correlations were calculated for each time series we removed the trend of the 
series (both for SPEI and sNDVI).   



4) (Lines 159- 166): What means strong changes in NDVI? The author said “the annual NDVI 
higher than 0.05 units or an increase higher than 0.15 units between 1981 and 2015”, but 
what does it means in terms of variability (in terms of std). Why do you choose this value? 
Please fundament the choice.  

This was explained in more depth in the manuscript. As indicated, these thresholds were 
defined after an exploratory analysis and in areas in which we have strong knowledge in 
relation to the occurrence of abrupt changes in the land cover, such as the creation of new 
irrigated lands: 

“In order to limit the possible impact of changes in land cover on the dependency 
between drought and vegetation cover, we assumed that strong changes in NDVI can be 
seen as an indicator of changes in land cover. As such, those pixels with strong changes 
in NDVI during the study period were excluded from the analysis. These pixels were 
defined after an exploratory analysis in which we tested different thresholds. In specific, 
we excluded those pixels, which exhibited a decrease in the annual NDVI higher than 
0.05 units or an increase higher than 0.15 units between 1981 and 2015. The spatial 
distribution of these pixels (not shown here) concurs well with the areas identified in 
earlier studies over Spain in which it was an abrupt modification of the land cover type 
(e.g. creation of new irrigated lands) (Lasanta and Vicente-Serrano, 2012; Vicente-
Serrano et al., 2018).”

5) Please clarify what means the time-scales between 1- and 48-semi-months? Did you 
compute SPEI with a bi-monthly accumulation? In line 202 you said that "the SPEI was 
calculated for the common 1- to 24-month time scales". please explain the difference 
between both computation approaches and the advantage of the last one (bi-monthly 
accumulation). What is the advantage of doing this instead of computing the monthly mean 
of NDVI? I do not see the add value of this approach  

In the revised manuscript we have clarified that the 1- to 24-month time scales correspond to 
1- to 48- semi-monthly periods: 

“In this work, the SPEI was calculated for the common 1- to 24-month time scales but here 
given the semi-monthly availability of the data, we calculated the corresponding 1- to 48- semi-
monthly time-scales.”

6) Figures: For the majority of the figures in the manuscript and supplementary information 
is not possible to read the axis of the figures. The axis number, the axis titles and the titles of 
figures are not readable at all. Please increase the font size (probably only for the bottom 
and left figures in order to save space). Supp Figure 5: provide a title for each graph Figure 
12: the tile of previous figures should be like the ones in this figure (e.g., 1st Jan, 2nd Jan,...). 
This will increase significantly the readability of figures.  

We have increased the size of the fonts for the different figures and added axis labels in all of 
the cases. 

7) (Lines 454-458): Difficult to follow. Please consider to rephrase.  



The sentences have been rephrased. 

8) (Lines 505-507): Difficult to follow. Please consider to rephrase.  

Rephrased. 

9) (Lines 555): When? in spring and autumn. Please consider to rephrase, clarifying and 
detailing.  

We have detailed that the comments refer to the cold season. 

10) (Lines 585-589): Very good point!  

Thanks a lot for your comment. 

11) (Lines 607-609): Another important finding of this work!  

Thanks again. 

MINOR 1) (Line 22): rephrase ‘a another newly developed. . .’ 

Rephrased 

2) (Line 57): move the data of access to the reference list  

Data access moved to references. 

3) (Line 157): rephrase ‘In out attemp’ 

Replaced: “in order to…”

4) (Line 158): NDVI or sNDVI  

NDVI is correct in this case. 

5) (Line 353): make the sentence consistent with the figure caption. Is it P-AED or P-ET0  

AED has been replaced by ETo throughout the manuscript. 

6) (Line 359): “July to August” or July to September??? 

Replaced 

7) (Line 388): “March to April” or March to May???

Replaced. 



Reviewer 2 

The authors present a very detailed, innovative analysis (fine-scale spatial resolution) of the 
relationships between SPEI and NDVI measurements in the Iberian Peninsula. A large 
number of interesting figures, tables and supplementary figures are presented. I think that 
this data paper is very informative and the methods are robust. I would suggest to the 
authors to address the following points, if possible and easily achievable:  

We would like to appreciate the positive assessment of our manuscript by the reviewer#2. We 
have followed most of his/her recommendations in order to improve our manuscript.  

Major comments - The manuscript is very interesting but lacks a clear focus.  

We do not exactly agree with this comment since we think our manuscript has a clear focus, 
which was detailed in the objectives stated in the introduction: 

“The overriding objectives of this study are: i) to determine the possible differences in the 
response of vegetation activity to drought over Spain, as a function of the different land cover 
types and climatic conditions; and ii) to explore the drought time scales at which vegetation 
activity highly responds to drought severity. An innovate aspect of this study is that it provides 
–for the first time– a comprehensive assessment of the response of vegetation activity to 
drought using a multidecadal (1981-2015) high spatial resolution (1.1 km) NDVI dataset over 
the study region.”

A very large number of results, hypotheses and figures are described and commented. 
Please consider somehow reducing the number of main figures and tables in the main 
manuscript, providing more focus, and shortening the manuscript. Please focus on the more 
interesting results and move some of the non central figures and the associated text to the 
supplementary materials.  

According to the comments by the reviewers 1 and 2, we have reduced the number of figures 
but also the length of the manuscript. 

- Please clearify in all the figures which SPEI temporal scale/s are considered. for example, in 
Fig 8 it not clear to me which SPEI time scale are considered. –

The reviewer is right. This was not detailed in the original manuscript and it can be a source of 
confusion for the readers. We have clarified this point in the methods section: 

“Given that it is not possible to know a priori the best cumulative period to explain the response 
of the vegetation activity to drought variability, we retained for further analysis the maximum 
correlation, independently of the time scale at which this is obtained.”

Pleae define sNDVI on line 217. –

This was described previously in line 150, in which it is indicated that the sNDVI corresponds to 
the standardized NDVI: 

“Herein, it is noteworthy indicating that the data from the Sp_1Km_NDVI dataset was 
standardized (sNDVI),”



Please clarify this sentence. Line 163. "The spatial distribution (not shown here) of these 
pixels concurs well with the areas identified in earlier studies over Spain (e.g. Lasanta and 
Vicente-Serrano, 2012; Vicente-Serrano et al., 2018)."  

This has been rewritten and detailed in the revised manuscript: 

“The spatial distribution of these pixels (not shown here) concurs well with the areas identified 
in earlier studies over Spain in which it was an abrupt modification of the land cover type (e.g. 
creation of new irrigated lands) (Lasanta and Vicente-Serrano, 2012; Vicente-Serrano et al., 
2018).”

Minor comments: - Figure 10. if easily achievable, using a unique name for the response 
variable would clarify the figure (increasing at the same time the font size). This may apply 
to many other figures in the suppl. mat and the main manuscript. –

We have improved the figures of the manuscript including Figure caption in the cases in which 
this was not available and increasing the font size of some of the figures. 

Figure 10. There is a typographic error in the legend. Please check this detail. –

Corrected in the revised manuscript. 

Please simplify/clarify the following sentence: On line 290: "This pattern is mostly recorded 
in the period between May and July (Supplementary Figure 5), in which the sNDVI variability 
is more sensitive to drought. Nevertheless, there are no general spatial patterns in the 
response of the NDVI to SPEI, indicating that there is a dominance of the maximum 
correlations associated with a certain SPEI time scale (Supplementary Figure 6). Interestingly, 
this , this pattern is not driven by the presence of different land cover types, given that the 
correlation coefficients between the sNDVI and SPEI are quite similar, irrespective of the 
land cover type (Supplementary Figures 7 to 17)"  

This section has been removed from the revised manuscript in order to improve readability. 

Line- 204. please correct the following typographic error. "... to drought It is well recognized 
that natural systems can show different responses to the time scales of drought (Vicente-
Serrano et al., 2011, 2013)."  

Corrected. 

Line 295. Please correct the following typographic error: "Interestingly, this , this pattern is 
not driven by the presence of different land cover types,"  

This paragraph has been removed in the revised manuscript. 

Line 61. Check the following sentence. "Several space-based products allow for quantifying 
vegetation conditions, given that both health and dry vegetation biomass respond 
dissimilarly to the electromagnetic radiation received in the visible and near-infrared parts 
of the vegetation spectrum (Knipling, 1970)" 

Rephrased. 
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Abstract: Drought is a major driver of vegetation activity in Spain, with significant 17

impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the 18

sensitivity of vegetation to drought conditions differs largely amongst vegetation types 19

and climates. We used a high-resolution (1.1 km) spatial dataset of the Normalized 20

Difference Vegetation Index (NDVI) for the whole Spain spanning the period from 21

1981 to 2015, combined with a another newly developed dataset of the Standardized 22

Precipitation Evapotranspiration Index (SPEI) to assess the sensitivity of vegetation 23

types to drought across Spain. In specific, this study explores the drought time scales at 24

which vegetation activity shows its highest response to drought severity at different 25

moments of the year. Results demonstrate that –over large areas of Spain– vegetation 26

activity is controlled largely by the interannual variability of drought. More than 90% of 27

the land areas exhibited statistically significant positive correlations between the NDVI 28

and the SPEI during dry summers (JJA). Nevertheless, there are some considerable 29

spatio-temporal variations, which can be linked to differences in land cover and aridity 30

conditions. In comparison to other climatic regions across Spain, results indicate that 31
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vegetation types located in arid regions showed the strongest response to drought. 32

Importantly, this study stresses that the time scale at which drought is assessed is a 33

dominant factor in understanding the different responses of vegetation activity to 34

drought.35

Key-words: Drought, NDVI, Vegetation activity, Climatic change, Spain. 36

37

1. Introduction 38

Drought is one of the major hydroclimatic hazards impacting land surface fluxes 39

(Baldocchi et al., 2004; Fischer et al., 2007; Hirschi et al., 2011), vegetation respiration 40

(Ciais et al., 2005), net primary production (Reichstein et al., 2007; Zhao and Running, 41

2010), primary and secondary forest growth (Allen et al., 2015), and crop yield (Lobell 42

et al., 2015; Asseng et al., 2015). Recently, numerous studies suggested an accelerated 43

impact of drought on vegetation activity and forest mortality under different 44

environmental conditions (Allen et al., 2010, 2015; Breshears et al., 2005) with a 45

reduction in vegetation activity and higher rates of tree decay (e.g. Carnicer et al., 2011; 46

Restaino et al., 2016). Nevertheless, a comprehensive assessment of the impacts of 47

drought on vegetation activity is a challenging task. This is particularly because data on 48

forest conditions and growth are partial, spatially sparse, and restricted to a small 49

number of sampled forests (Grissino-Mayer and Fritts, 1997). Furthermore, the 50

temporal resolution of forest data is insufficient to provide deep insights into the 51

impacts of drought on vegetation activity [e.g. the official forest inventories (Jenkins et 52

al., 2003)]. In addition to these challenges, the spatial and temporal data on crops are 53

often limited, as they are mostly aggregated to administrative levels and provided at the 54

annual scale, with minor information on vegetation activity across the different periods 55

of the year (e.g. http://faostat.fao.org; https://quickstats.nass.usda.gov/#AF9A0104-56

19EF-3BFE-90D2-C67700892F3E; last access on 1st October 2018).(FAO, 2018). To 57
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handle these limitations, numerous studies have alternatively employed the available 58

remotely sensed data to assess the impacts of drought on vegetation activity (e.g. Ji and 59

Peters, 2003; Wan et al., 2004; Rhee et al., 2010; Zhao et al., 2017). 60

Several space-based products allow for quantifying vegetation conditions, given that 61

both health and dryactive vegetation biomass respond dissimilarly to the62

electromagnetic radiation received in the visible and near-infrared parts of the 63

vegetation spectrum (Knipling, 1970). As such, with the available spectral information 64

recorded by sensors on board of satellite platforms, it is possible to calculate vegetation 65

indices and accordingly assess vegetation activity (Tucker, 1979). In this context, 66

several studies have already employed vegetation indices not only to develop drought-67

related metrics (e.g. Kogan, 1997; Mu et al., 2013), but to determine the impacts of 68

drought on vegetation conditions as well (García et al., 2010; Vicente-Serrano et al., 69

2013; Zhang et al., 2017). An inspection of these studies reveals that drought impacts 70

can be characterized using vegetation indices, albeit with a different response of 71

vegetation dynamics as a function of a wide-range of factors, including –among others–72

vegetation type, bioclimatic conditions, and drought severity (Bhuiyan et al., 2006; 73

Vicente-Serrano, 2007; Quiring and Ganesh, 2010; Ivits et al., 2014). 74

Given high interannual variability of precipitation, combined with the prevailing semi-75

arid conditions across vast areas of the territory, Spain has suffered from frequent, 76

intense and severe drought episodes during the past decades (Vicente-Serrano, 2006). 77

Nonetheless, in the era of temperature rise, the observed increase in atmospheric 78

evaporative demand (AED) during the last decades has accelerated the severity of 79

droughts (Vicente-Serrano et al., 2014c), in comparison to the severity caused only by 80

precipitation deficits (Vicente-Serrano et al., 2014a; González-Hidalgo et al., 2018). 81

Over Spain, the hydrological and socioeconomic impacts of droughts are well-82
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documented. Hydrologically, droughts are often associated with a decrease in 83

streamflow and reservoir storages (Lorenzo-Lacruz et al., 2010; Lorenzo-Lacruz et al., 84

2013). The impacts of drought can extend further to crops, leading to crop failure due to 85

deficit in irrigation water (Iglesias et al., 2003), and even in arable non-irrigated lands 86

(Austin et al., 1998; Páscoa et al., 2017). Over Spain, numerous investigations also 87

highlighted the adverse impacts of drought on forest growth (e.g. Camarero et al., 2015; 88

Gazol et al., 2018; Peña-Gallardo et al., 2018) and forest fires (Hill et al., 2008; Lasanta 89

et al., 2017; Pausas, 2004; Pausas and Fernández-Muñoz, 2012).90

Albeit with these adverse drought-driven impacts, there is a lack of comprehensive 91

studies that assess the impacts of drought on vegetation activity over the entire Spanish 92

territory, with a satisfactorily temporal coverage. While numerous studies employed 93

remotely sensed imagery and vegetation indices to analyze spatial and temporal 94

variability and trends in vegetation activity over Spain (e.g. del Barrio et al., 2010; 95

Julien et al., 2011; Stellmes et al., 2013), few attempts have been made to link the 96

temporal dynamics of satellite-derived vegetation activity with climate variability and 97

drought evolution (e.g. Vicente-Serrano et al., 2006; Udelhoven et al., 2009; Gouveia et 98

al., 2012; Mühlbauer et al., 2016). An example is González-Alonso and Casanova 99

(1997) who analyzed the spatial distribution of droughts in 1994 and 1995 over Spain, 100

concluding that the most affected areas are semiarid regions. In their comparison of the 101

MODIS Normalized Difference Vegetation Index (NDVI) data and the Standardized 102

Precipitation Index (SPI) over Spain, García-Haro et al. (2014) indicated that the 103

response of vegetation dynamics to climate variability is highly variable, according to 104

the regional climate conditions, vegetation community, and growth stages. A similar 105

finding was also confirmed by Vicente-Serrano (2007) and Contreras and Hunink 106

(2015) in their assessment of the response of NDVI to drought in semiarid regions of 107
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northeast and southeast Spain, respectively. Albeit with these comprehensive efforts, a108

detailed spatial assessment of the links between droughts and vegetation activity, which 109

covers a long time period (decades), is highly desired for Spain to explore the 110

differences in the response of vegetation activity to drought under different 111

environments with various land cover and vegetation types.112

The overriding objectives of this study are: i) to determine the possible differences in 113

the response of vegetation activity to drought over Spain, as a function of the different 114

land cover types and climatic conditions; and ii) to explore the drought time scales at 115

which vegetation activity highly responds to drought severity. An innovate aspect of 116

this study is that it provides –for the first time– a comprehensive assessment of the117

response of vegetation activity to drought using a multidecadal (1981-2015) high spatial 118

resolution (1.1 km) NDVI dataset over the study region.119

120

2. Data and methods 121

2.1. Datasets 122

2.1.1. NDVI data 123

Globally, there are several NDVI datasets, which have been widely used to analyze 124

NDVI variability and trends (e.g. Slayback et al., 2003; Herrmann et al., 2005; 125

Anyamba and Tucker, 2005) and to assess the links between NDVI and climate 126

variability and drought (e.g. Dardel et al., 2014; Vicente-Serrano et al., 2015; Gouveia 127

et al., 2016). Amongst these global datasets, the most widely used are those derived 128

from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board of the 129

NOAA satellites and those retrieved from the Moderate Resolution Imaging 130

Spectroradiometer (MODIS) data. Both products have been widely employed to 131

evaluate the possible influence of drought on vegetation dynamics in different regions 132
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worldwide (e.g. Tucker et al., 2005; Gu et al., 2007; Sona et al., 2012; Pinzon and 133

Tucker, 2014; Ma et al., 2015). While the Global Inventory Modeling and Mapping 134

Studies (GIMMS) dataset from NOAA-AVHRR is available at a semi-monthly 135

temporal resolution for the period from 1981 onwards (Tucker et al., 2005; Pinzon and 136

Tucker, 2014), its spatial resolution is quite low (64 km2), which makes it difficult to 137

capture the high spatial variability of vegetation cover over Spain. On the other hand, 138

the NDVI dataset derived from MODIS dates back only to 2001 (Huete et al., 2002), 139

which is insufficient to give insights into the long-term response of vegetation activity 140

to drought. To overcome these spatial and temporal limitations, our decision was made 141

to employ a recently developed high-resolution spatial NDVI dataset (Sp_1Km_NDVI), 142

which is available at grid interval of 1.1 km, spanning the period from 1981 onwards. In 143

accordance with GIMMS dataset, Sp_1Km_NDVI is available at a semi-monthly 144

temporal resolution. This dataset has already been validated (Vicente-Serrano et al., 145

2018), showing high performance in comparison to other available NDVI datasets. As 146

such, it can be used -with confidence- to provide a multidecadal assessment of NDVI 147

variability at high-spatial resolution, especially in areas of highly variable vegetation. 148

Herein, it is noteworthy indicating that the data from the Sp_1Km_NDVI dataset was 149

standardized (sNDVI), so that each series has an average equal to zero and a standard 150

deviation equal to one. This procedure is motivated by the strong seasonality and spatial 151

differences of vegetation activity over Spain. Following this procedure, the magnitudes 152

of all NDVI time series are comparable over space and time. To accomplish this task, 153

the data were fitted to a log-logistic distribution, which shows better skill in 154

standardizing environmental variables, in comparison to other statistical distributions 155

(Vicente-Serrano and Beguería, 2016). 156
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In out attemptorder to limit the possible impact of changes in land cover on the 157

dependency between drought and vegetation cover, we assumed that strong changes in 158

NDVI can be seen as an indicator of changes in land cover. As such, those pixels with 159

strong changes in NDVI during the study period were excluded from the analysis. These 160

pixels were defined after an exploratory analysis in which we tested different 161

thresholds. In specific, we excluded those pixels, which exhibited a decrease in the 162

annual NDVI higher than 0.05 units or an increase higher than 0.15 units between 1981 163

and 2015. The spatial distribution of these pixels (not shown here) of these pixels 164

concurs well with the areas identified in earlier studies over Spain in which it was an 165

abrupt modification of the land cover type (e.g. creation of new irrigated lands) (Lasanta 166

and Vicente-Serrano, 2012; Vicente-Serrano et al., 2018Vicente-Serrano et al., 2018). 167

Furthermore, to avoid the possible influence of spatial autocorrelation, which can occur 168

in areas with dominant positive changes in NDVI due to excessive rural exodus and 169

natural revegetation processes (Hill et al., 2008; Vicente-Serrano et al., 2018Vicente-170

Serrano et al., 2018), we detrended the standardized NDVI series by means of a linear 171

model. We then add the residuals of the linear trend to the average of NDVI magnitude 172

over the study period. A similar approach has been adopted in several environmental 173

studies (Olsen et al., 2013; Xulu et al., 2018; Zhang et al., 2016). Correlations with the 174

drought dataset were based on the sNDVI.175

176

2.1.2. Drought dataset 177

Due to its complicated physiological strategies to cope with water stress, vegetation can 178

show specific and even individual resistance and vulnerability to drought (Chaves et al., 179

2003; Gazol et al., 2017; Gazol et al., 2018). As such, it is quite difficult to directly 180

assess the impacts of drought on vegetation activity and forest growth. Alternatively, 181
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drought indices can be an appropriate tool to make this assessment, particularly with 182

their calculation at multiple time scales. These time scales summarize the accumulated 183

climatic conditions over different periods, which make drought indices closely related 184

to impact studies. Overall, to calculate drought indices, we employed data for a set of 185

meteorological variables (i.e. precipitation, maximum and minimum air temperature, 186

relative humidity, sunshine duration, and wind speed) from a recently developed 187

gridded climatic dataset (Vicente-Serrano et al., 2017). This gridded dataset was 188

developed using a dense network of quality-controlled and homogenized meteorological 189

records. Data are available for the whole Spanish territory at a spatial resolution of 1.1 190

km, which is consistent with the resolution of the NDVI dataset (section 2.1.1). Based 191

on this gridded dataset, we computed the atmospheric evaporative demand (AED), 192

reference evapotranspiration (ETo),) and the Standardized Precipitation 193

Evapotranspiration Index (SPEI). We used the reference evapotranspiration (ETo) as the 194

most realibale way of estimating the AED. ETo was calculated using the physically 195

based FAO-56 Penman-Monteith equation (Allen et al., 1998). On the other hand, the 196

SPEI was computed using precipitation and AEDETO data (Vicente-Serrano et al., 197

2010). The SPEI is one of the most widely used drought indices and has thus been 198

employed to quantify drought in a number of agricultural (e.g. Peña-Gallardo et al., 199

2018b), environmental (e.g. Vicente-Serrano et al., 2012; Bachmair et al., 2018), and 200

socioeconomic applications (e.g. Bachmair et al., 2015; Stagge et al., 2015). The SPEI 201

is advantageous compared to the Palmer Drought Severity Index (PDSI), as it is 202

calculated at different time scales. In comparison to the Standardized Precipitation 203

Index (SPI) (McKee et al., 1993), the SPEI does not account only for precipitation, but 204

it also considers the contribution of AEDETO in drought evolution. 205
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In this work, the SPEI was calculated for the common 1- to 24-month time scales. but 206

here given the semi-monthly availability of the data, we calculated the corresponding 1-207

to 48- semi-monthly time-scales. The preference to use various time scales is motivated208

by our intention to characterize the response of different hydrological and 209

environmental systems to drought. It is well-recognized that natural systems can show 210

different responses to the time scales of drought (Vicente-Serrano et al., 2011, 2013). 211

The time scale refers to the period in which antecedent climate conditions are 212

accumulated and it allows to adaptadapting the drought index to the drought impacts 213

since different hydrological and environmental systems show different responses 214

sensitivities to the time scales of climate variability. This has been shown for 215

hydrological systems (López-Moreno et al., 2013; Barker et al., 2016), but also 216

ecological and agricultural systems show strong differences in the response to different 217

time scales of climatic droughts (Pasho et al., 2011; Peña-Gallardo et al., 2018b) given218

different biophysical conditions, but also the different strategies of vegetation types to 219

cope with water stress (Chaves et al., 2003; McDowell et al., 2008), which are strongly 220

variable in complex Mediterranean ecosystems. For instance, drought indices can be 221

calculated on flexible time scales since it is not known a priori the most suitable period 222

at which the NDVI is responding. Herein, we also detrended and standardized the semi-223

monthly SPEI data to be comparable with the de-trended sNDVI. 224

Finally, we used the CORINE Land Cover for 2000 (https://land.copernicus.eu/pan-225

european/corine-land-cover) to determine how land cover can impact the response of 226

NDVI to drought severity. This map is representative of the main classes of land cover 227

in the study domain over the period of investigation. 228

229

2.2. Statistical analysis 230

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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We used the Pearson’s r correlation coefficient to assess the relationship between the 231

interannual variability of the sNDVI and SPEI. This association was evaluated232

independently for each semi-monthly period of the year. In specific, we calculated the 233

correlation between the sNDVI for each semi-monthly period and SPEI recorded in the 234

same period, at time-scales between 1- and 48-semi-months. Significant correlations 235

were set at p < 0.05. Importantly, as the data of the sNDVI and SPEI were de-trended, 236

the possible impact of serial correlation on the correlation between sNDVI and SPEI is 237

minimized, with no spurious correlation effects that can be expected from the co-238

occurrence of the trends. Similarly, as the data were analyzed for each semi-monthly239

period independently, our results are free from any seasonality effect. Given that it is 240

not possible to know a priori the best cumulative period to explain the response of the 241

vegetation activity to drought variability, we retained for further analysis the maximum 242

correlation, independently of the time scale at which this is obtained.243

Based on the correlation coefficients between the sNDVI and SPEI in the study domain, 244

we determined the semi-monthly period of the year and the SPEI time scale at which the 245

maximum correlation is found. This information was then used to determine the spatial 246

and seasonal variations according to the different land cover categories. Finally, the 247

average climate conditions over the study domain, including aridity (precipitation minus 248

AEDETO) and average temperature, were related to the time-scales at which the 249

maximum correlation between the sNDVI and SPEI was found. 250

251

3. Results 252

3.1. General influence of drought on the sNDVI 253

Figure 1 shows an example of the spatial distribution of the Pearson’s r correlation254

coefficients calculated between the sNDVI and the SPEI at the time-scales of 1-, 3-, 6-255
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and 12-months (2-, 6-, 12- and 24-semi-monthly periods). Results are shown only for 256

the second semi-monthly period of each month between April and July. The differential 257

response of the NDVI to the different time scales of the SPEI is illustrated. As depicted, 258

the 6-month time scale was more relevant to vegetation activity in large areas of 259

Southwestern and Southeastern Spain during the second half of April. On the other 260

hand, vegetation activity was more determined by the 12-month SPEI across the Ebro 261

basin in northeastern Spain. This stresses the need of considering different drought time 262

scales to know the climate cumulative period that mostly affects vegetation activity. The 263

6-month and 12-month SPEI produced similar results during the second period of May,264

while the 12-month time scale is more related to vegetation activity in June and July.265

The density plots (supplementary Figures 1 to 4) summarize the magnitude of 266

correlations between the SPEI and sNDVI for Spain, as a function of the semi-monthly 267

period as well as the SPEI time scale. It can be seen that correlations tend to be higher 268

during the warm season (May to August), and at time scales between 6 and 24 months.269

Figure 2 summarizes the maximum correlation between the sNDVI and the SPEI, 270

providing insights into the differential response of the NDVI to drought. It can be noted 271

that there are clear seasonal and spatial differences in the response of sNDVI to the 272

SPEI. The sNDVI is more related to the SPEI during the warm season (MJJA). In 273

contrast, the response of the sNDVI to drought is less pronounced from September to 274

April, albeit with some exceptions. One example is the response of vegetation to 275

drought alongside the southeastern Mediterranean coastland, where the correlation 276

between sNDVI and SPEI is almost high all the year around. Table 1 summarizes the 277

percentage of the total area exhibiting significant or non-significant correlations over 278

Spain during the different semi-monthly periods. Positive (lower sNDVI with drought)279

and statistically significant correlations are dominant across the entire territory, but with 280
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a seasonal component. In particular, a higher percentage of the territory shows positive 281

and significant correlations during the warm season (MJJA). From mid of May to mid 282

of September, more than 80% of the study domain show positive and significant 283

correlations between the sNDVI and the SPEI. A similar finding is also found between 284

the mid of June and the beginning of August. Figure 3 summarizes the average 285

correlations between the SPEI and sNDVI. As illustrated, there is a gradual increase in 286

the response of the sNDVI to the SPEI from the beginning of May to the end of July, 287

when the maximum average correlation is recorded. In contrast, the correlations 288

between the SPEI and sNDVI decrease progressively from August to December. 289

The response of the sNDVI to different times scales of the SPEI and seasons is quite 290

complex. Figure 4 shows the spatial distribution of the SPEI time scale at which the 291

maximum correlation was found for each one of the 24 semi-monthly periods of the 292

year. It can be noted that there are considerable seasonal and spatial differences. 293

Nonetheless, these differences are masked with the estimated average values of the 294

SPEI time scale recorded for the semi-monthly periods (Figure 5) which are less 295

variable (oscillating between 18 and 22 semi-monthly periods -9 to 11 months-) 296

throughout the year. In general, the areas and periods with higher correlations are 297

recorded at the time scales between 7 and 24 semi-months (3-12 months). This pattern 298

is mostly recorded in the period between May and July (Supplementary Figure 5), in 299

which the sNDVI variability is more sensitive to drought. Nevertheless, there are no 300

general spatial patterns in the response of the NDVI to SPEI, indicating that there is a301

dominance of the maximum correlations associated with a certain SPEI time scale302

(Supplementary Figure 6). Interestingly, this , this pattern is not driven by the presence 303

of different land cover types, given that the correlation coefficients between the sNDVI 304
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and SPEI are quite similar, irrespective of the land cover type (Supplementary Figures 7 305

to 17). 306

307

3.2. Land cover differences  308

There are differences in the magnitude and seasonality of the Pearson’s r correlation 309

coefficients among all land cover types. Figure 6 shows the average and standard error 310

of the mean of the maximum Pearson’s r coefficients between the sNDVI and SPEI for 311

the different land cover types and the 24 semi-monthly periods. The magnitudes of 312

correlation vary considerably, as a function of land cover type, as well as the period of 313

the year in which the highest correlations are recorded. The non-irrigated arable lands 314

show a peak of significant correlation between April and June. However, this 315

correlation decreases towards the end of the year. The majority of the surface dominated 316

by this land cover shows positive and significant correlations between May and 317

September (Supplementary Table 1), with percentages almost close to 100%. On the 318

contrary, irrigated lands do not show such a strong response to drought during the warm 319

season. Even with the presence of a seasonal pattern, it is less pronounced than the one 320

observed for non-irrigated arable lands. Overall, irrigated areas are characterized by 321

positive and significant correlations between sNDVI and SPEI during summertime322

(Supplementary Table 2). Similarly, vineyards show a clear seasonal pattern, albeit with 323

a peak of maximum correlations during the late summer (July-August) and early 324

autumn (September-October) (Supplementary Table 3). On the other hand, olive groves 325

show of the highest correlation between the sNDVI and SPEI during the second half of 326

May and in October, suggesting a quasi bi-modal response of the NDVI to drought. 327

This pattern is also revealed in the percentage of the surface area with significant328

correlations (Supplementary Table 4). In the same context, the areas of natural 329
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vegetation exhibit their maximum correlation between the sNDVI and SPEI during 330

summer months. The highest correlations are found in July and August for the forest 331

types, compared to earlier June for the natural grasslands and the areas of sclerophillous 332

vegetation. On the other hand, the mixed forests tend to show lower correlations than 333

broad-leaved and coniferous forests. A quick inspection of all these types of land cover 334

indicates that the correlations between the sNDVI and SPEI are generally positive and 335

significant during summer months (Supplementary Tables 5 to 11).336

Large differences across vegetation types were found for the SPEI time scales at which 337

maximum correlations between sNDVI and the SPEI are found (Figure 7). For example, 338

for non-irrigated arable lands, the maximum correlation between SPEI and sNDVI is 339

found for time scales between 11 and 21 semi-monthly periods. This indicates that 340

crops in May-June (the period in which higher correlations are recorded) respond 341

mostly to the climate conditions recorded between June and December of the preceding 342

year. Irrigated lands show a clear seasonal pattern, as maximum correlations are 343

recorded at time scales between 12 and 18 semi-monthly periods (i.e. 6 to 9 months), 344

mainly between November and May. On the other hand, the maximum correlations 345

between sNDVI and SPEI during summer are found for time scales between 25 and 28 346

semi-monthly periods. Similar to irrigated lands, vineyards show a strong seasonality, 347

responding to longer time-scales at the end of summertime. In contrast, natural 348

vegetation areas show less seasonality to SPEI time scales, which mostly impact the 349

interannual variability of sNDVI. The SPEI time scales, at which the maximum 350

correlation is found between sNDVI and SPEI, vary from 20 semi-monthly periods 351

during the warm season (MJJAS) to 30 semi-monthly periods during the cold season352

(ONDJFMA). This finding is evident for all forest types and areas of sclerophillous 353

vegetation and mixed wood-scrub. The only exception corresponds to natural 354
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grasslands, which show a response to shorter SPEI time scales (i.e. 20 semi-monthly 355

periods in winter and 15 in spring and early summer).356

357

3.3. Influence of average climatic conditions         358

In addition to the impact of the time scale at which drought is quantified, the response 359

of vegetation activity to drought can also be closely related to the prevailing climatic 360

conditions. Figure 8 summarizes the spatial correlation between aridity (P-AEDETo) 361

and the maximum correlation between the sNDVI and SPEI. For most of the semi-362

monthly periods of the year aridity is negatively correlated with the maximum 363

correlation between sNDVI and SPEI, indicating that vegetation activity in arid sites is 364

more responsive to drought variability. This correlation is more pronounced for the 365

period between December and June. In contrast, this negative association becomes 366

weaker and statistically non-significant during warmer months (e.g. July andto August). 367

Figure 9 illustrates the spatial correlation between mean air temperature and the 368

maximum correlation between the sNDVI and SPEI. Results demonstrate similar results 369

to those found for aridity, with a general positive and significant correlation from March 370

to June, followed by a non-significant and weak correlation during summer months.371

Nonetheless, these general patterns vary largely as a function of land cover type 372

(Supplementary Figures 181 to 2811). For example, in non-irrigated arable lands, there 373

is strong negative correlation between aridity and the sNDVI/SPEI maximum 374

correlation from March to May: a period that witnesses the peak of vegetation activity 375

in this land cover type. This also coincides with the period of the highest average 376

correlations between the sNDVI and SPEI. Taken together, this demonstrates that non-377

irrigated arable lands located in the most arid areas are more sensitive to drought 378

variability than those located in humid regions. As opposed to non-irrigated arable 379
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lands, the correlations with aridity are found statistically non-significant in all periods of 380

the year for irrigated lands, vineyards and olive groves. Nevertheless, for the different 381

natural vegetation categories, the correlations are negative and statistically significant 382

during large periods. The mixed agricultural/natural vegetation areas show a significant 383

correlation between October and July, with stronger association at the beginning of 384

summer season. Broadleaved and coniferous forests, scrubs, and pasture lands also 385

show a negative relationship between the spatial patterns of the sNDVI/SPEI 386

correlations and aridity. 387

As depicted in Figure 9, the relationship between the sNDVI/SPEI correlation and air 388

temperature shows that the response of vegetation activity to drought is modulated by 389

air temperature during springtime. This implies that warmer areas are those in which the 390

sNDVI is more controlled by drought. A contradictory pattern is found during warmer 391

months, in which the role of air temperature in modulating the impact of drought on 392

vegetation activity is minimized. The relationships between air temperature and the 393

NDVI-SPEI correlation vary among the different land cover types (Supplementary 394

Figures 2912 to 3922). For example, in non-irrigated arable lands, the positive and 395

statistically significant correlation is found in the period from March to AprilMay,396

indicating that the response of the sNDVI to SPEI tends to coincide spatially with areas 397

of warmer conditions. As observed for aridity, the relationship between the sNDVI and 398

SPEI in irrigated lands is less associated with the spatial patterns of air temperature. A 399

similar pattern is recorded for vineyards and olive groves. Nevertheless, the areas of 400

natural vegetation show a clear relationship between air temperature and the 401

sNDVI/SPEI correlations. In the mixed agriculture and natural vegetation areas, we 402

found a statistically significant positive association between the sNDVI and SPEI from 403

October to May. On the contrary, this association is less evident during summer months. 404
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This general association during springtime, combined with the lack of association 405

during summertime, can also be seen for other natural vegetation types such as broad-406

leaved and coniferous forests, natural grasslands, sclerophillous vegetation and mixed 407

wood-scrubs.408

We also analyzed the dependency between climatic conditions (i.e. aridity and air 409

temperature) and the SPEI time scale(s) at which the maximum correlation between the 410

sNDVI and SPEI is recorded. Figure 10 shows the values of aridity corresponding to 411

SPEI time scales at which the maximum correlation between the sNDVI and SPEI is 412

found for each semi-monthly period. The different box-plots indicate complex patterns, 413

which are quite difficult to interpret. Overall, less arid areas show stronger correlations 414

at longer time-scales (25-42 semi-monthly periods) during springtime. In the same 415

context, the regions with maximum correlations at short time scales (1-6 months) tend 416

to be located in less arid regions that record their maximum correlations at time scales 417

between 7 and 24 semi-monthly periods. This suggests that the most arid areas mostly 418

respond to the SPEI time scales between 6 and 12 months, compared to short (1-3 419

months) or long (> 12 months) SPEI time-scales in more humid regions. In contrast, 420

during summer season, the interannual variability of the sNDVI in the arid areas is 421

mostly determined by the SPEI recorded at time scales higher than 6 months (12 semi-422

monthly periods), while responding to short SPEI time scales (< 3 months) over the 423

most humid regions. 424

Again, this general pattern is highly dependent on the land cover type (Supplementary 425

Figures 40 to 50). In the non-irrigated arable lands, there are no noticeable differences 426

in aridity in response to the SPEI time scale that recorded the maximum correlation with 427

the sNDVI. A similar finding is also found irrespective of the considered semi-monthly 428

period. In the vineyards, we noted that the sNDVI responds to short SPEI time scales in 429
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areas characterized by lower aridity conditions during summer months. This pattern is 430

less evident for olive groves. In contrast, we observed clear patterns for natural 431

vegetation. In particular, those areas characterized by mixed agriculture and vegetation 432

show high complexity during winter and spring, with no specific patterns in relation to 433

the SPEI time-scales with maximum correlations with the sNDVI. In contrast, we found 434

a clear pattern during warmer months (June to September), with stronger correlations at 435

shorter time scales in the most humid areas and at longer SPEI time-scales (> 12 436

months) over the most arid regions. The pattern is less pronounced in broad-leaved 437

forests, although the response to short SPEI time scales seems to be more frequent in 438

the less arid broad-leaved forests. On the other hand, in coniferous forests, 439

sclerophylous vegetation, and the transition wood-scrub, we noted a relationship 440

between the aridity and the SPEI time-scales with maximum correlation with the 441

sNDVI during summer months. Natural grassland areas show clear seasonal differences. 442

In spring, the grasslands located in the most arid sites show higher correlation at short 443

SPEI time scales, while they exhibit similar patterns (i.e. maximum correlations at short 444

SPEI time scales under less arid conditions) to those of other natural vegetation areas445

during summer. 446

Also, we found links between the spatial distribution of air temperature and the SPEI 447

time scales at which maximum correlation between the sNDVI and SPEI is recorded 448

(Figure 11). In early spring, short SPEI time scales dominate in warmer areas, compared 449

to long SPEI time scales in colder regions. A contradictory pattern is observed from 450

June to September, with a dominance of shorter SPEI time scales in colder areas and 451

longer SPEI time scales in warmer regions. In terms of vegetation types, natural 452

vegetation areas tend generally to reproduce similar pattern in comparison to cultivation 453

types (Supplementary Figures 51 to 61).454
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The spatial distribution of all land cover types, after excluding irrigated lands in which 455

the anthropogenic factors dominate, is illustrated in Figure 12. Mixed forests are located 456

in the most humid areas, while vineyards, olive groves, non-irrigated arable lands and 457

the sclerophyllous natural vegetation are distributed in the most arid sites. Nevertheless,458

there is a gradient of these land cover types in terms of their response to drought, as 459

those types located under more arid conditions show a stronger response of vegetation 460

activity to drought than those located in humid environments. For example, the mixed 461

forests show lower correlations than crop types and other vegetation areas. This may 462

suggest that there is a linear relationship between climate aridity corresponding to each463

land cover and how vegetation activity will respond to drought. This pattern is more 464

evident during the different semi-monthly periods of the year, albeit with more 465

differences during spring and autumn. In summer, these differences are much smaller 466

between land cover categories, irrespective of aridity conditions.467

There are also differences in the average SPEI time scale at which the maximum 468

sNDVI/SPEI correlation is obtained (Figure 13). However, these differences are 469

complex, with noticeable seasonal differences in terms of the relationship between 470

climate aridity and land cover types. In spring and late autumn, land cover types located 471

in more arid conditions tend to respond to shorter SPEI time scales than those located in 472

more humid areas. This pattern can be seen in late summer and early autumn, in which 473

the most arid land cover types (e.g. vineyards and olive groves) tend to respond at 474

longer SPEI time scales, compared to forest types (mostly the mixed forests), which are475

usually located under more humid conditions.476

477

4. Discussion and conclusions478
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This study assesses the response of vegetation activity to drought in Spain using a high-479

resolution (1.1 km) spatial NDVI dataset that dates back to 1981 (Vicente-Serrano et al., 480

2018)(Vicente-Serrano et al., 2018). Based on another high-resolution semi-monthly 481

gridded climatic dataset, drought was quantified using the Standardized Precipitation 482

Evapotranspiration Index (SPEI) at different time scales (Vicente-Serrano et al., 2017).483

Results demonstrate that vegetation activity over large parts of Spain is closely related 484

to the interannual variability of drought. In summer more than 90% of the study domain 485

showshows statistically significant positive correlations between the NDVI and SPEI. A 486

similar response of the NDVI to drought is confirmed in earlier studies in different 487

semi-arid and sub-humid regions worldwide, including Northeastern Brazil (e.g. 488

Barbosa et al., 2006), the Sahel (e.g. Herrmann et al., 2005), Central Asia (e.g. Gessner 489

et al., 2013), Australia (e.g. De Keersmaecker et al., 2017) and California (e.g. Okin et 490

al., 2018). Albeit with this generalized response, our results also show noticeable spatial 491

and seasonal differences in this response. These differences can be linked to the time 492

scale at which the drought is quantified, besides the impact of other dominant climatic 493

conditions (e.g. air temperature and aridity). 494

495

4.1. The response of vegetation activity to drought variability 496

This study stresses that the response of vegetation activity to drought is more 497

pronounced during the warm season (MJJAS), in which vast areas of the Spanish 498

territory show statistically significant positive correlation between the sNDVI and SPEI.499

This seasonal pattern can be attributed to the phenology of vegetation under different 500

land cover types. In the cold season, some areas, such as pastures and non-permanent 501

broad leaf forests, do not have any vegetation activity. Other areas, with coniferous 502

forests, shrubs and cereal crops, show a low vegetation activity. As such, irrespective of 503
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the recorded drought conditions, the response of vegetation to drought would be low 504

during wintertime. This behaviour is also enhanced by the atmospheric evaporative 505

demand (AED), which is generally low in winter in Spain (Vicente-Serrano et al., 506

2014d), with a lower water demand of vegetation and accordingly low sensitivity to soil 507

water availability. Austin et al. (1998) indicated that soil water recharge occurs mostly 508

during winter months, given the low water consumption by vegetation. However, in 509

spring, vegetation becomes more sensitive to drought due to temperature rise. 510

Accordingly, the photosynthetic activity, which determines NDVI, is highly controlled511

by soil water availability (Myneni et al., 1995). In this study, the positive spatial 512

relationship found between air temperature and the sNDVI/SPEI correlation reinforces 513

this explanation. In spring, we found low correlations between the NDVI and SPEI, 514

even in cold areas. In contrast, warmer airsummer warm temperatures during summer 515

months reinforce vegetation activity, but with some exceptions such as cereal 516

cultivations, dry pastures and shrubs, which record their maximum vegetation activity 517

during spring.. This would explain why the response of vegetation activity to the SPEI518

is stronger during summer in vast areas of Spain. 519

Also, this study suggests clear seasonal differences in the response of the NDVI to 520

drought, and in the magnitude of the correlation between the NDVI and the SPEI, as a 521

function of the dominant land cover. These differences are confirmed at different spatial 522

scales, ranging from regional and local (e.g. Ivits et al., 2014; Zhao et al., 2015; 523

Gouveia et al., 2017; Yang et al., 2018) to global (e.g. Vicente-Serrano et al., 2013), 524

Over Spain, the non-irrigated arable lands, natural grasslands and sclerophyllous 525

vegetation show an earlier response to drought, mainly in late spring and early summer. 526

This response is mainly linked to the vegetation phenology dominating in these land 527

covers, which usually reach their maximum activity in late spring to avoid dryness and 528
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temperature rise during summer months. The root systems of herbaceous species are not 529

very deep, so they depend on the water storage in the most superficial soil layers 530

(Milich and Weiss, 1997), and they could not survive during the long and dry summer 531

in which the surface soil layers are mostly depleted (Martínez-Fernández and Ceballos, 532

2003). This would explain an earlier and stronger sensitivity to drought also showed in 533

other world semiarid regions (Liu et al., 2017; Yang et al., 2018; Bailing et al., 2018). 534

On the contrary, maximum correlations between the NDVI and the SPEI are recorded 535

during summer months in the forests but also in wood cultivations like vineyards and 536

olive groves. In this case, the maximum sensitivity to drought coincides with the537

maximum air temperature and atmospheric evaporative demand (Vicente-Serrano et al., 538

2014d). This pattern would be indicative of a different adaptation strategy of trees in 539

comparison to herbaceous vegetation, since whilst herbaceous cover would adapt to the 540

summer dryness generating the seed bank before the summer (Peco et al., 1998; Russi et 541

al., 1992), the trees and shrubs would base their adaptation on deeper root systems, 542

translating the drought sensitivity to the period of highest water demand and water 543

limitation.544

In addition to the seasonal differences among land cover types, we have shown that in 545

Spain herbaceous crops show a higher correlation between the NDVI and the SPEI than 546

most of natural vegetation types (with the exception of the sclerophyllous vegetation). 547

This behaviour could be explained by three different factors: i) a higher adaptation of 548

natural vegetation to the characteristic climate of the region where drought is a frequent 549

phenomenon (Vicente-Serrano, 2006); ii) the deeper root systems that allow shrubs and 550

trees to obtain water from the deep soil; and iii) cultivated lands tend to be typically 551

located in drier areas than natural vegetation. Different studies showed that the 552

vegetation of dry environments tends to have a more intense response to drought than 553
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sub-humid and humid vegetation (Schultz and Halpert, 1995; Abrams et al., 1990; 554

Nicholson et al., 1990; Herrmann et al., 2016). Vicente-Serrano et al. (2013) analysed 555

the sensitivity of the NDVI in the different biomes at a global scale and found a spatial 556

gradient in the sensitivity to drought, which was more important in arid and semiarid 557

regions.558

559

4.2. Response to the average climatology 560

In this study we have shown a control in the response of the NDVI to drought severity 561

by the climatic aridity. Thus, there is a significant correlation between the spatial 562

distribution of the climatic aridity and the sensitivity of the NDVI to drought, mostly in 563

spring and autumn. This could be explained because in more humid environments the 564

main limitation to vegetation growth is temperature and radiation rather than water, so 565

not all the water available would be used by vegetation reflected in a water surplus as 566

surface runoff. This characteristic would make the vegetation less sensitive to drought.567

in the cold season. Drought indices are relative metrics in comparison to the long term 568

climate with the purpose of making drought severity conditions comparable between 569

areas of very different climate characteristics (Mukherjee et al., 2018). This means that 570

in humid areas the corresponding absolute precipitation can be sufficient to cover the 571

vegetation water needs although drought indices inform on below-of-the-average 572

conditions. On the contrary, in arid regions a low value of a drought index is always573

representative of limited water availability, which would explain the closer relationship 574

between the NDVI and the SPEI. 575

Here we also explored if the general pattern observed in humid and semi-arid regions is 576

also affected by the land cover, and found that the behaviour in the non-irrigated arable 577

lands is the main reason to explain the global pattern. Herbaceous crops show that 578
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aridity levels have a clear control of the response of the NDVI to drought during the 579

period of vegetation activity. Nevertheless, after the common harvest period (June) this 580

control by aridity mostly disappears. This is also observed in the grasslands and in the 581

sclerophyllous vegetation, and it could be explained by the low vegetation activity of 582

the herbaceous and shrub species during the summer, given the phenological strategies 583

to cope with water stress with the formation of the seeds before the period of dryness584

(Chaves et al., 2003). The limiting aridity conditions that characterises the regions in 585

which these vegetation types grow would also contribute to explain this phenomenon.586

On the contrary, the forests, both broad-leaved and coniferous, also show a control by 587

aridity in the relationship between the NDVI and the SPEI during the summer months588

since these land cover types show the peak of the vegetation activity during this season.589

In any case, it is also remarkable that the spatial pattern of the NDVI sensitivity to 590

drought in forests is less controlled by aridity during the summer season, curiously the 591

season in which there are more limiting conditions. This could be explained by the 592

NDVI saturation under high levels of leaf area index (Carlson and Ripley, 1997), since 593

once the tree tops are completely foliated the electromagnetic signal is not sensitive to 594

additional leaf growth. This could explain the less sensitive response of the forests to595

drought in comparison to land cover types characterised by lower leaf area (e.g. shrubs 596

or grasslands). Nevertheless, we do not think that this phenomenon can explain totally 597

the decreased sensitivity to drought with aridity in summer since the dominant 598

coniferous and broad-leaved forests in Spain are usually not characterised by a 100% 599

leaf coverage (Castro-Díez et al., 1997; Molina and del Campo, 2012), so large signal 600

saturation problems are not expected. On the other hand, the ecophysiological strategies 601

of forests to cope with drought may help explain the observed lower relationship 602

between aridity during the summer months. Experimental studies suggested that the 603
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interannual variability of the secondary growth could be more sensitive to drought than 604

the sensitivity observed by the photosyntetic activity and the leaf area (Newberry, 605

2010). This could be a strategy to optimize the storage of carbohydrates, suggesting that 606

forests in dry years would prioritize the development of an adequate foliar area in 607

relation to the wood formation in order to maintain respiration and photosynthetic 608

processes. Recent studies by Gazol et al. (2018) and Peña-Gallardo et al. (2018b)609

confirmed that, irrespective of forest species, there is a higher sensitivity of tree-ring 610

growth to drought, as compared to the sensitivity of the NDVI. The different spatial and 611

seasonal responses of vegetation activity to drought in our study domain can also be 612

linked to the dominant forest species and species richness, which has been evident in 613

numerous studies (e.g. Lloret et al., 2007). Moreover, this might also be attributed to the 614

ecosystem physiological processes, given that vegetation tends to maintain the same 615

water use efficiency under water stress conditions, regardless of vegetation types and 616

environmental conditions (Huxman et al., 2004). This would explain that -617

independently of the aridity conditions- the response of the NDVI to drought would be 618

similar. Here, we demonstrated that the response of the NDVI to drought is similar 619

during summer months, even with the different land cover types and environmental 620

conditions. 621

622

4.3. The importance of drought time scales 623

A relevant finding of this study is that the response of the NDVI is highly dependent on 624

the time scale at which drought is quantified. Numerous studies indicated that the 625

accumulation of precipitation deficits during different time periods is essential to 626

determine the influence of drought on the NDVI (e.g. Malo and Nicholson, 1990; Liu 627

and Kogan, 1996; Lotsch et al., 2003; Ji and Peters, 2003; Wang et al., 2003). This is 628
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simply because soil moisture is impacted largely by precipitation and the atmospheric 629

evaporative demand over previous cumulative periods (Scaini et al., 2015). Moreover, 630

the different morphological, physiological and phenological strategies would also 631

explain the varying response of vegetation types to different drought time scales. This 632

finding is confirmed in previous works using NDVI and different time scales of a 633

drought index (e.g. Ji and Peters, 2003; Vicente-Serrano, 2007), but also using other 634

variables like tree-ring growth (e.g. Pasho et al., 2011; Arzac et al., 2016; Vicente-635

Serrano et al., 2014a). This study confirms this finding, given that there is a high spatial 636

diversity in the SPEI time scale at which vegetation has its maximum correlation with 637

the NDVI. These spatial variations, combined with strong seasonal differences, are 638

mainly controlled by the dominant land cover types and aridity conditions. In their 639

global assessment, Vicente-Serrano et al. (2013) found gradients in the response of the 640

world biomes to drought, which are driven mainly by the time scale at which the biome 641

responds to drought in a gradient of aridity. Again, the response to these different time 642

scales implies not only different vulnerabilities of vegetation to water deficits, but also643

various strategies from plants to cope with drought. In Spain, we showed that the NDVI 644

responds mostly to the SPEI at time scales around 20 semi-monthly periods (10 645

months), but with some few seasonal differences (i.e. shorter time scales in spring and 646

early autumn than in late summer and autumn). Herein, it is also noteworthy indicating 647

that there are differences in this response, as a function of land cover types. Overall,648

during the periods of highest vegetation activity, the herbaceous land covers (e.g. non-649

irrigated arable lands and grasslands) respond to shorter SPEI time-scales than other650

forest types. This pattern can be seen in the context that herbaceous covers are more 651

dependent on the weather conditions recorded during short periods. These vegetation 652

types could not reach deep soil levels, which are driven by climatic conditions during 653
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longer periods (Changnon and Easterling, 1989; Berg et al., 2017). In contrast, the tree 654

root systems would access to these deeper levels, having the capacity of buffering the655

effect of short term droughts, albeit with more vulnerability to long droughts that 656

ultimately would affect deep soil moisture levels. This pattern has been recently 657

observed in southeastern Spain when comparing herbaceous crops and vineyards 658

(Contreras and Hunink, 2015). Recently, Okin et al. (2018) linked the different 659

responses to drought time scales between scrubs and chaparral herbaceous vegetation in 660

California to soil water depletion at different levels.661

Albeit with these general patterns, we also found some relevant seasonal patterns. For 662

example, irrigated lands responded to long SPEI time scales (> 15 months) during 663

summer months, whilst they responded to shorter time scales (<7 months) during spring 664

and autumn. This behaviour can be linked to water management in these areas. In 665

specific, during spring months, these areas do not receive irrigation and accordingly 666

vegetation activity is determined by water stored in the soil. On the contrary, summer 667

irrigation depends on the water stored in the dense net of reservoirs existing in Spain;668

some of them have a multiannual capacity. Water availability in the reservoirs usually 669

depends on the climate conditions recorded during long periods (one or two years) 670

(López-Moreno et al., 2004; Lorenzo-Lacruz et al., 2010), which determine water 671

availability for irrigation. This explains why vegetation activity in irrigated lands 672

depends on long time scales of drought. Similarly, vineyards and olive groves respond673

to long SPEI time-scales during summer. These cultivations are highly resistant to 674

drought stress (Quiroga and Iglesias, 2009). However, these adapted cultivations can be 675

sensitive to severe droughts under extreme summer dryness. In comparison to other 676

natural vegetation, mixed forests show response to shorter SPEI time scales. This could 677

be explained by the low resistance of these forest species to water deficits [e.g. the 678
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different fir species located in humid mountain areas, (Camarero et al., 2011; Camarero 679

et al., 2018)]. 680

Here, we also showed that climate aridity can partially explain the response of the 681

NDVI to the different SPEI time scales. In Spain, the range of the mean aridity recorded 682

by the mean land cover types is much lower than that observed at the global scale for 683

the world biomes (Vicente-Serrano et al., 2013). This might explain why there are no 684

clear patterns in the response of the land cover types to the aridity gradients and the 685

SPEI time scales at which the maximum correlation between the NDVI and SPEI is 686

found. Nevertheless, we found some seasonal differences between the cold and warm 687

seasons. In summer, the NDVI responds to longer SPEI time scales, as opposed to the 688

most humid forests that respond to shorter time scales. This stresses that – in addition to 689

aridity- the degree of vulnerability to different duration water deficits, which are well-690

quantified using the drought time scales, may contribute to explaining the spatial 691

distribution of the main land cover types across Spain given different biophysical 692

conditions, but also the different strategies of vegetation types to cope with water stress 693

(Chaves et al., 2003; McDowell et al., 2008), which are strongly variable in complex 694

Mediterranean ecosystems.695

696

5. Conclusions 697

The main conclusions of this study are: 698

 Vegetation activity over large parts of Spain is closely related to the interannual 699
variability of drought.700

 The response of vegetation activity to drought is more pronounced during the 701
warm season, which is attributed to the phenology of vegetation under different 702
land cover types.703

 There are clear seasonal differences in the response of the NDVI to drought. 704
 Natural grasslands and sclerophyllous vegetation show an earlier response to 705

drought.706
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 There is a control in the response of the NDVI to drought severity by the 707
climatic aridity, which is partially controlled by the land cover.708

 The response of the NDVI is highly dependent on the time scale at which 709
drought is quantified although there are differences in this response, as a 710
function of land cover types.711
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1185

Figure 1: Spatial distribution of the Pearson’s r correlation coefficient calculated between the sNDVI and different SPEI time scales for different 1186
semi-monthly periods.1187
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1190

Figure 2: Spatial distribution of the maximum correlation between the sNDVI and the SPEI during the different semi-monthly periods. 1191

1192
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Table 1: Percentage of the total surface area according to the different significance 1193
categories of Pearson’s r correlations between the sNDVI and SPEI.1194

Negative
(p < 0.05)

Negative
(p > 0.05)

Positive
(p > 0.05)

Positive
(p < 0.05)

1st Jan 0.3 9.8 41.3 48.6
2nd Jan 0.4 8.7 40.2 50.7
1st Feb 0.3 7.5 39.9 52.3
2nd Feb 0.1 7.5 39.0 53.4
1st Mar 0.2 8.9 41.6 49.4
2nd Mar 0.2 11.3 38.2 50.3
1st Apr 0.0 7.6 34.9 57.5
2nd Apr 0.0 3.4 27.0 69.7
1st May 0.0 1.6 19.0 79.4
2nd May 0.0 0.9 14.2 84.9
1st Jun 0.0 1.2 10.8 88.0
2nd Jun 0.0 0.5 7.4 92.0
1st Jul 0.0 0.3 5.3 94.4
2nd Jul 0.0 0.1 4.5 95.4
1st Aug 0.0 0.1 5.9 94.1
2nd Aug 0.0 0.2 10.6 89.2
1st Sep 0.0 0.6 14.0 85.4
2nd Sep 0.0 0.4 16.9 82.6
1st Oct 0.0 1.5 24.5 74.0
2nd Oct 0.0 1.9 31.1 67.0
1st Nov 0.0 4.5 35.6 59.8
2nd Nov 0.0 4.8 41.8 53.4
1st Dec 0.0 4.4 38.9 56.7
2nd Dec 0.2 5.9 43.1 50.8

1195

1196
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1197

Figure 3: Spatial Average and standard error of the Pearson’s r correlation coefficient 1198
between the sNDVI and SPEI time series. 1199
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Figure 4: Spatial distribution of the SPEI time scales at which the maximum correlation between the sNDVI and SPEI is found for each one of 1203
the semi-monthly periods.1204

1205
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1206

Figure 5: Average and standard error of the SPEI time scale at which the maximum 1207
Pearson’s r correlation coefficient between the sNDVI and SPEI is found.1208
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Figure 6: Average and standard error of the Pearson’s r correlation coefficient between 1213
the sNDVI and SPEI for the different land cover types.1214
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1217
1218

Figure 7: Average and standard error of the SPEI time scale at which the maximum 1219
Pearson’s r correlation coefficient was found between the sNDVI and SPEI for the 1220

different land cover types.1221
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Figure 8. Scatterplots showing the relationships between the maximum correlation obtained between the sNDVI and the SPEI and the climate 
aridity (Precipitation minus Atmospheric Evaporative Demand).ETo). Given the high number of data, the signification of the correlation was 

obtained by a bootstrap method. 1000 random samples were extracted of 30 data points each, from which correlations and p-values were 
obtained. The final signification was assessed by means of the average of the obtained correlation coefficients and p-values, which are indicated 

in the figure. 
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Figure 9. Scatterplots showing the relationships between the maximum correlation obtained between the sNDVI and the SPEI and the average air 
temperature. Given the high number of points the signification of correlation was obtained by means of 1000 random samples of 30 cases from 

which correlations and p-values were obtained. The final signification was assessed by means of the average of the obtained p-values. 



58 

Figure 10: Box plots showing the climate aridity values , as a function of the SPEI time 
scales at which the maximum correlation between the sNDVI and SPEI is recorded 
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Figure 11: Box plots showing air temperature values, as a function of the SPEI time 
scales at which the maximum correlation between the sNDVI and SPEI is recorded.  
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Figure 12: Scatterplots showing the relationship between the mean annual aridity and 
the maximum correlation found between the sNDVI and the SPEI in the different land 
cover types analysed in this study. Vertical and horizontal bars represent ¼ of standard 

deviation around the mean values.  
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Figure 13: Scatterplots showing the relationship between the mean annual aridity and 
the SPEI time scale at which the maximum correlation is found between the sNDVI and 

SPEI for the different land cover types. Vertical and horizontal bars represent ¼ of 
standard deviation around the mean values.  


