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Dear Dr. Tarolli, 

 

 

This letter accompanies the submission of the REVISED manuscript NHESS-2018-347 entitled, 

“What’s streamflow got to do with it? A probabilistic simulation of the competing oceanographic 

and fluvial processes driving extreme along-river water levels.” We have thoroughly considered and 

addressed the comments of the reviewers, and feel that this enabled us to better explain and clarify 

the overall framework and the importance of our results, strengthening the overall manuscript. 

 

Please find reviewer comments given in verbatim and our replies in italics. References to locations 

in the article are made by section (e.g., S3.5) or line number corresponding to the updated 

manuscript. The re-revised manuscript, which includes 14 figures, a supplemental information 

section, and this letter, has been uploaded. 

 

Thank you for your consideration. Please contact me at kserafin@stanford.edu with any questions. 

 

 

 

 

 

Sincerely, 

 

 

 
 

 

Katherine A. Serafin (lead and corresponding author) 

Postdoctoral Research Fellow 

Stanford University 
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Anonymous Referee #1 Received and published: 4 March 2019  

 

General comments  

 

Serafin et al present a new framework for examining the joint influence of several coastal and riverine 

processes on water levels in estuarine environments, and show very clearly that the 100-yr ocean or 100-yr 

streamflow event does not always produce the 100-yr along-river water level. It is a novel piece of work 

using a clever methodological framework, resulting in an analysis that can assesses non-stationary water 

levels from a multivariate joint distribution and truly decompose coastal water levels. As such, I believe that 

the research forms an important contribution to the increasingly important field of compound flood risk 

assessment. The manuscript is well written in terms of language, but parts of it feel to long or could be helped 

by restructuring. There are also some specific methodological issues that require further explanation, as 

described in the following review. Nevertheless, if these can be sufficiently responded to, I believe that this 

paper would provide a very valuable addition to the literature.  

 

Thank you! 

 

 

Main comments  

 

The introduction is generally well written and reviews most of the relevant literature. However, some 

important concepts for the paper are not fully introduced or defined. For example, a formal definition of 

compound flooding is missing. On page 2, line 20 (and also later at page 25, line 15) the authors imply that 

probabilistic simulations of water levels have not yet been done considering ocean and onland processes, and 

that this has only been done for specific events. However, Bevacqua et al (2017) van den Hurk et al. (2015), 

and Couasnon et al. (2018) have used probabilistic simulations. The current paper certainly adds value to the 

research carried out in those studies, but it would be prudent to mention them and how the current study 

advances.  

 

We thank the reviewer for pointing out this oversight. We have added a formal definition of a compound event 

in the first line of the introduction, Page 1, Lines 16-17, “Coincident or compound events are a combination 

of physical processes in which the individual variables may or may not be extreme, however the result is an 

extreme event with a significant impact (Zscheischler et al., 2018, Bevacqua et al., 2017, Wahl et al., 2015, 

Leonard et al., 2014).” We have also added a brief description to the abstract, Page 1, Lines 1 -2, “Extreme 

water levels generating flooding in estuarine and coastal environments are often driven by compound events, 

where many individual processes such as waves, storm surge, streamflow, and tides coincide.” 

 

We thank the reviewer for noting that our writing seemed to imply that we were the first to produce 

probabilistic simulations of discharge and coastal water level events. Our intent was to highlight the novelty 

of the hybrid methodology merging physical and statistical models for return level analysis – which at the 

time the manuscript was completed and submitted was a novel application. However, after submission, 

Couasnon et al., 2018 and Moftakhari et al., 2019 published complementary frameworks. We thank the 

reviewer for suggesting the additional references, and have included the following text in our introduction to 

highlight the variety of previous studies, Page 2, Lines 22 – 28, “On the other hand, statistical models allow 
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for the investigation of compound water levels through the simulation of combinations of dependent events 

which may not have been physically realized in observational records (Bevacqua et al., 2017, van den Herk et 

al., 2015). In addition, researchers have recently begun to generate hybrid models that link statistical and 

physical modeling approaches for understanding compound flood events (Moftakhari et al., 2019, Couasnon 

et al., 2018). Similar to the results solely from hydrodynamic and hydraulic models, statistical and hybrid 

modeling strategies show that simplifications of the dependence between multiple forcings may lead to an 

underestimation of flood risk.” 

 

In terms of the overall structure, the methods section (section 3, but also parts of section 4) are sometimes 

difficult to follow. The really interesting part here is the new overall framework. However, this overall 

framework sometimes gets lost in the details of the various specific models used, which can be rather lengthy 

(e.g. the part on HEC-RAS). It would be beneficial to the reader to highlight the overall methodological 

framework more clearly at the start of the methods section, for example with a flowchart. This would 

highlight more clearly the major novelty of this paper. It is of course also necessary to give details of the 

various components used for each part of the framework, such as HEC-RAS. But by emphasizing more the 

framework, it would be clear that one could also use the overall assessment framework with other 

hydrodynamic models, if one wished to do so. 

 

Following on, it may help to move some of the details to Supplementary Information. General background 

information about setting up HEC-RAS can be shortened, and the essential parts for this study could be 

moved to supplementary information. This would improve overall readability of this section. 

 

Related to the previous comments on structure, the part on HEC-RAS model validation (3.2.1) seems out of 

place in the methods section. It could be moved to the section on validation or in my opinion better to still to 

supplementary information. 

 

We thank the author for the suggestions on how to better emphasize our framework. We have added a 

flowchart schematic that we hope better explains our hybrid modeling technique in the revised manuscript 

(Figure 3 in the manuscript, below as Figure 1). We agree that the amount of detail presented in the original 

manuscript may have added unnecessary length and detracted from the main value of the paper. In the 

revised manuscript, we have moved the sections describing the HEC-RAS model domain setup, validation and 

calibration to the Supplemental Information. We also have moved the section describing the tide gauge 

merging and removal of the river-influenced water levels to the Supplemental Information. We streamlined 

many of the sections and believe we have improved the overall readability of the manuscript. 
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Figure 1: Schematic of hybrid statistical-physical modeling technique. Models are portrayed as squares, 

while circles portray model outputs. 

 

 

My main methodological concern relates to the use of steady flow simulations. As the authors state 

themselves in the discussion, the steep catchment of the mountainous environment means a short response 

time for rainfall. It also calls into question the validity of using steady-state flow for the analysis. I would like 

the authors to explain this choice and explain what it means for the overall results? Has there been any 

sensitivity assessment of the results compared to an unsteady state simulation, for example?  
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When originally considering merging the statistical and physical model, we started with steady flow 

scenarios in order to keep our simulations as simple as possible. With millions of combinations of boundary 

conditions, admitting discharge as a function of time would add another level of complexity to the modeling 

framework. However, as the reviewer mentions and as we state in the manuscript, the response time can be 

short, with the river rising to peak flow over 1-2 days.  We completed a sensitivity assessment of steady versus 

unsteady simulations for a variety of hydrographs and stationary downstream boundary conditions. Figures 

below compare water surface elevations from the steady flow simulation of the peak discharge condition in 

each hydrograph to water surface elevations during the peak discharge condition from an unsteady flow 

simulation. Below we present results from a low, average, and extreme flow scenario (Figures 2, 4, 6, 

respectively).  

 

Our results show that for many along-river locations, the steady flow approximation is reasonable. Average 

(standard deviation) differences between water surface elevations are 5 cm (20 cm), 7 cm (11 cm), and 40 cm 

(76 cm) (Figures 3, 5, 7). Large percent differences between steady and unsteady simulations are due to 

differences between very small numbers (e.g., Figure 7). These results show that at specific locations, 

unsteadiness is indeed an area of improvement, but it is currently outside the scope of what has been done. 

On page 22 and 23, Lines 9-10 and 1-2, we have included the following, “Thus, with co-occurring daily 

maximum SWL and discharge, our model may miss certain dynamics important for flooding over unsteady 

conditions. Furthermore, interactions between storm surge and river discharge may increase the overall 

elevation of the residual (Maskell et al., 2013). While beyond the scope of our present study, these unsteady 

characteristics are important to consider in future research.” 

 

Our methodology at this point is not intended to model any specific event perfectly, but instead to understand 

locations where compounding SWL and Q are statistically likely to occur together and potentially generate 

flooding events. This technique can also provide useful information for choosing appropriate boundary 

conditions for the modeling of unsteady flow scenarios. Finally, as mentioned in the manuscript, the existence 

of a longitudinal profile of the water surface elevation, which we were able to recreate using steady flow 

simulations, provided some confidence in our selection of steady flow simulations.  
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Scenario 1, Low discharge 

20% increase in flow, peak flow = 25cms, SWL = -1m 

 
Figure 2: Hydrograph for the low discharge unsteady simulation 1. Scenario 1, Low discharge 

20% increase in flow, peak flow = 25cms, SWL = -1m 

 

 
Figure 3: Comparison of the water surface elevation of the maximum discharge in a steady flow run with the 

water surface elevation during the maximum discharge in an unsteady flow run. Large percent change occur 

when dividing by small numbers. 
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Scenario 2, Average discharge 

20% increase in flow, peak flow = 120cms, SWL = -1m 

 
Figure 4: Hydrograph for the average discharge unsteady simulation 2. 

 
Figure 5: Comparison of the water surface elevation of the maximum discharge in a steady flow run with the 

water surface elevation during the maximum discharge in an unsteady flow run. Large percent change occur 

when dividing by small numbers 
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Scenario 3, Extreme discharge 

2000% increase in flow, peak flow = 884cms, SWL = -1m 

 
Figure 6: Hydrograph for the extreme discharge unsteady simulation 3. 

 
Figure 7: Comparison of the water surface profile of the maximum discharge in a steady flow run with the 

water surface profile during the maximum discharge in an unsteady flow run. The bottom panel is scaled to 

easily view values; values off the chart are up to 300% different, but for locations where the elevation goes 

from negative to positive.  
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It is not clear what Manning’s coefficients are used on the floodplains. It is stated that they are estimated 

using 2011 Land Cover data from the Western Washington Land Cover Change Analysis project (NOAA, 

2012) and visual inspection of aerial imagery. But what values were selected for different land use classes? 

Moreover, on page 8, line 20 the Manning coefficient of “0.005” is very low and not really representative of 

natural river states. Is there a specific reason for this? 

 

The Manning’s coefficients used over the floodplain ranged from 0.04 (cleared land with tree stumps) - 0.1 

(heavy stands of timber/medium to dense brush). These values were extracted from Table 3-1 in Brunner, 

2016. For the channel, Manning’s coefficients were calibrated on a transect by transect basis to determine 

the best-fitting longitudinal water surface profile compared to the measured data. This technique of 

optimizing the Manning’s coefficient is widely used in the literature when observational water surface 

profiles exist (e.g., Wasantha Lal, 1995 and Drisya, and Sathish Kumar, 2018). That said, due to this 

calibration, some of our transects are lower than what would be expected for some portions of river. 

However, the average of all transects is 0.025 and the majority of the transects fall between 0.02 – 0.1. We 

will also note that there is considerable uncertainty in the geometry of the channel. The river bathymetry was 

last surveyed in 2010, and in this application, merged into a DEM based on Lidar data from 2014. There are 

therefore other levels of uncertainty likely being absorbed into our calibration of the Manning’s coefficient. 

To clarify this information, we have added the following text to the revised manuscript’s supplemental 

information, Page 1, Lines 20-25 “In-channel Manning's coefficients are tuned to calibrate the model's 

resulting water surface elevations with that of the observed water surface data.  Manning's coefficients for 

the rest of the computational domain (e.g., anything overbank) are estimated using 2011 Land Cover data 

from the Western Washington Land Cover Change Analysis project (NOAA, 2012), and visual inspection of 

aerial imagery and range from 0.04 (cleared land with tree stumps) - 0.1 (heavy stands of timber/medium to 

dense brush). These values are extracted from the HEC-RAS Hydraulic Reference Manual, Table 3-1 

(Brunner, 2016)” and Page 2, Lines 15-17, “Manning's coefficients within the main channel of the Quillayute 

River are calibrated to best represent the water surface elevation on the day of the USGS longitudinal survey. 

Final Manning's coefficients range from to 0.005 to 0.1, and are on average 0.025.” 

 

 

How are the high water level events constructed? The possible presence of autocorrelation in the data is not 

mentioned – it would be good to test for this or report the results of such a test if it has been done already.  

 

As we are not 100% clear on what the reviewer is referring to here our response will focus on how we 

construct high still water level events.  

 

Still water levels (SWLs) at the downstream boundary are constructed using methods from Serafin and 

Ruggiero, 2014 and Serafin et al., 2017 but are also described in detail below. The motivation behind our 

simulations are to generate distributions of many combinations of extreme and non-extreme variables. Based 

on the modeling techniques used, some signals are simulated with autocorrelation, but most are not. Our 

focus is on representing the nonstationarities and dependencies in our bulk distributions of the simulated 

variables (SWLs and all its components, wave height, wave period, wave direction, climate indices, 

discharge) and determining how combinations of these variables may alter flooding. 

 

 SWLs from the tide gauge are first decomposed into mean sea level, tide, and non-tidal residual components. 

Mean sea level is determined by a linear regression applied to monthly means of the SWL record. Non-tidal 

residual is comprised of all water level signals not related to the astronomical tide, and is includes the intra-
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annual seasonal signal, monthly mean sea level anomalies (inter-annual variability), and a high-frequency 

residual related to storm surge due to atmospheric pressure anomalies and wind setup. The seasonal signal is 

produced by a regression model that includes annual and/or semiannual harmonics, fit to the SWL time series 

with mean sea level removed. Monthly mean sea level anomalies are   computed once the seasonal signal is 

removed from the water level signal by averaging each month on record. To extract storm surge after mean 

sea level, seasonality and monthly mean sea level anomalies have been removed, two year blocks of the water 

level time series are transformed into the frequency domain and, following the spectral methods of Bromirski 

et al., [2003], tide bands are removed and replaced with amplitude and phase estimates consistent with the 

concurrent nontide continuum. The result is a storm surge time series that excludes tidal and other low 

frequency energy. The tide was extracted from NOAA's tidal predictions and the annual (Sa) and semiannual 

(Ssa) harmonic constituents were removed. A SWL time series is then constructed by adding the above 

decomposed time series back together. 

 

To statistically simulate daily time series of the above components 

 

1) Storm surge is split into extreme (using a peak over threshold approach) and non-extreme components. 

Extreme storm surge are fit to non-stationary Generalized Pareto Distributions which include seasonality and 

climate indices as covariates.  Non-extreme storm surge are fit to monthly logistic distributions. Storm surge 

is then statistically simulated using a bivariate logistic model dependent on wave height.  

 

2) Monthly mean sea level anomalies are simulated based on a best-fit, multiple linear regression model to 

the Multivariate ENSO Index (MEI). Climate indices (e.g., the MEI or the Pacific/North American 

teleconnection pattern (PNA) which is associated with fluctuations in the jet stream) are simulated using 

Markov Chains to incorporate auto-correlation into the simulated signal. 

 

3) Daily astronomical tide is simulated from a repeated deterministic tide time series such that we are 

simulating “modern day” extremes and not including longer term tide cycles in our analysis. The daily 

maximum tide is selected every day from the repeated time series. The daily maximum TWL occurs during the 

daily maximum tide approximately 70% of the time, therefore, for 30% of the daily data, a random estimate 

sampled from an exponential fit to the differences between the daily maximum TWL and the maximum daily 

tide. 

 

 

Other suggestions  

 

Figure 13: the grey dashed lines presumably belong to the 4 different return periods shown – it would be 

easier for the reader to use the same colours (but dashed) instead of grey. 

 

Excellent suggestion, this figure has been modified. 

 

Caption of figure 13: “the pink shaded area represents a transition zone, where neither event drives the water 

level”. The last part is not clearly phrased. Do you mean the zone where the water level is not driven by either 

the coastal or river drivers alone? 

 

Thanks for catching – the text has been changed to, “The grey shaded area represents a transition zone, 

where the water level is driven by a combination of SWL and Q events.” 
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Page 26, lines 14-15: “At low tide, a high river discharge may promote drainage of the floodwater into the 

ocean (Kumbier et al., 2018), increasing water levels for days at a time and prolonging exposure to flooding”. 

Why would a low tide that promotes drainage to the ocean lead to increased water levels? Would the opposite 

not lead to backwater effects? 

 

Thanks for catching this, this statement has been removed from the text and changed to the following Page 21 

- 22, Lines 11-12 and 1-2, “The outletting to the ocean as the tide recedes would artificially inflate SWLs at 

the tide gauge, increasing water levels for days at a time and prolonging exposure to flooding. When 

subtracting a tide time series from this signal, storm surge would appear to be elevated at low tide.” 

 

In the abstract it is stated that “Understanding the relative forcing of extreme water levels along an ocean-to-

river gradient will better prepare communities within inlets and estuaries for the compounding impacts of 

various environmental forcing”. A similar statement can be found in the conclusions. I feel that this requires 

more nuance. There are many steps that would be needed to make these (important) scientific insights usable 

by a local community for preparing themselves.  

 

We have made this sentence less specific by writing, “Understanding the relative forcing driving extreme 

water levels along an ocean-to-river gradient will help communities within inlets better understand their risk 

to the compounding impacts of various environmental forcing, important for increasing their resilience to 

future flooding events.” 

 

Page 17-line 14-15: “ADCIRC simulations confirm this phenomenon, as the river discharge peak is modeled 

exactly at low tide (Figure 5)”. I find it hard to see that when looking at Figure 5. Maybe help the reader a bit 

more? For me it seems more to be at high tide but maybe there is something I am missing.  

Figure 5 (in the original manuscript) displayed only the storm surge, so lacked tide, mean sea level, 

seasonality, and monthly sea level anomalies. We have created a second panel within the figure (Figure 7 in 

the revised manuscript) which also includes tidal level from the ADCIRC simulations to help guide the reader 

to this conclusion.  

 

Textual changes  

 

Page 3, line 30. Change “. . .experiencing relative sea level rates of. . .” to “. . .experiencing relative sea level 

change rates of. . .” (similar comment in line 31). 

 

This has been corrected. 

  

Page 8, lines 10-11: add “in most cases”. 

 

This has been corrected. 

 

Page 8, line 30 (and the rest of the text): where is Toke Point tide gauge on Figure 1? 

 

These labels were accidently left off our original Figure. Figure 1 in the revised manuscript now includes 

labels for all tide gauges, as well as a legend that reflects all mapped features. 
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Page 11, line 12. Change “periosd” to “period”  

 

This has been corrected. 

 

Page 14, line 13. Change “subsituting" to “substituting” 

 

This has been corrected. 

 

Page 23, line 19: suggest to remove “regardless of the likelihood” (it is already in the return level events?) 

 

This has been corrected. 

 

Page 23-line 5 and 8: add “a” and “b” to Figure 13 to help the reader. References not mentioned in 

manuscript  

 

This has been corrected. 

 

Bevacqua E, Maraun D, Haff I H,WidmannM and Vrac M 2017 Multivariate statistical modelling of 

compound events via pair-copula constructions: analysis of floods in Ravenna (Italy) Hydrol. Earth Syst. Sci. 

21 2701-2723.  

Couasnon A, Sebastian A and Morales-Nápoles O 2018 A Copula-based bayesian network for modeling 

compound flood hazard from riverine and coastal interactions at the catchment scale: An application to the 

houston ship channel, Texas. Water, 10, 9, 1190 

 Van den Hurk B, van Meijgaard E, de Valk P, van Heeringen J and Gooijer ´ J 2015 Analysis of a 

compounding surge and precipitaiton event in the Netherlands Environ. Res. Lett. 10, 035001 

 

 

Above suggested references have been included in the text. 

 

 

Anonymous Referee #2 Received and published: 5 March 2019  

 

The paper overall presents a good contribution, however, it needs some work Some concepts are not clear, 

and the reader is left ‘guessing’ about their meaning. for example, in the introduction, a reader is not aware of 

what ‘bivariate or multivariate processes’ are, thus they can’t understand the challenge in trying to identify 

them or study them.  

 

We thank the reviewer for pointing out the lack of contextual information in the initial submission. Bivariate 

and multivariate processes are processes that occur from two or multiple variables, respectively. In coastal 

environments, multiple processes like waves, tides, storm surge, and river discharge, may combine to drive an 

extreme flood event. We have improved the clarity of our descriptions of multivariate and bivariate processes 

by removing the sentence driving confusion (Page 1, Line 21-22 original manuscript) while introducing a 

formal definition of a compound event in the first line of the introduction, Page 1, Lines 16-21, “Coincident 



Department of Geophysics 

397 Panama Mall, Mitchell Earth Sciences Building, Stanford, CA 94305  T 650.497.6509 

or compound events are a combination of physical processes in which the individual variables may or may 

not be extreme, however the result is an extreme event with a significant impact (Zscheischler et al., 2018, 

Bevacqua et al., 2017, Wahl et al., 2015, Leonard et al., 2014). Flooding is often caused by compound events, 

where multiple factors impact both open coast and estuarine environments. Storm events, for example, often 

generate concurrently large waves, heavy precipitation driving increased streamflow, and high storm surges, 

making the relative contribution of the actual drivers of extreme water levels difficult to interpret.” We have 

also added a brief description to the abstract, Page 1, Lines 1 -2, “Extreme water levels generating flooding 

in estuarine and coastal environments are often driven by compound events, where many individual processes 

such as waves, storm surge, streamflow, and tides coincide.” We hope that this revision will help readers to 

understand the types of events we are focused on understanding. 

 

My major concerns are related to the method section, that currently needs much improvement. In its present 

state, it is much too long in some parts, and not enough clear on the overall framework, which is the added 

value of this work. There is far too much description of known elements, such as HEC-Ras, for example, and 

not enough clarity on the proposed approach. Also, it is not too clear if chapter 4 is a method or a discussion 

of results. As a consequence, it is very hard to understand the discussion of the results. 

 

We agree that the amount of detail presented in the original manuscript may have added unnecessary length 

and detracted from the main value of the paper and point out that Reviewer 1 had a very similar comment. 

Therefore, in the revised manuscript, we have moved the sections describing the HEC-RAS model domain 

setup, validation and calibration to the Supplemental Information. We also have moved the section describing 

the tide gauge merging and removal of the river-influenced water levels to the Supplemental Information. 

Section 4 in the original manuscript was difficult to interpret, so we merged the text from this section in with 

methods, results, and discussion sections in the revised manuscript in a fluid way. We have also added a 

schematic of the hybrid-modeling framework (Figure 3, revised manuscript and below), to help to clarify and 

emphasize the overall framework for readers. 
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Figure 3: Schematic of hybrid physical-statistical modeling technique. Models are portrayed as squares, 

while circles portray model outputs. 

 

 

 

 

 

 

 

 

 

 

 

 



Department of Geophysics 

397 Panama Mall, Mitchell Earth Sciences Building, Stanford, CA 94305  T 650.497.6509 

References: 

 

Bevacqua, E., Maraun, D., Hobæk Haff, I., Widmann, M. and Vrac, M., 2017. Multivariate statistical 

modelling of compound events via pair-copula constructions: analysis of floods in Ravenna 

(Italy). Hydrology and Earth System Sciences, 21(6), pp.2701-2723.  

 

Bromirski, P.D., Flick, R.E. and Cayan, D.R., 2003. Storminess variability along the California coast: 1858–

2000. Journal of Climate, 16(6), pp.982-993. 

 

Couasnon, A., Sebastian, A. and Morales-Nápoles, O., 2018. A Copula-Based Bayesian Network for 

Modeling Compound Flood Hazard from Riverine and Coastal Interactions at the Catchment Scale: An 

Application to the Houston Ship Channel, Texas. Water, 10(9), p.1190. 

 

Drisya, J. and Sathish Kumar, D., 2018. Automated calibration of a two-dimensional overland flow model by 

estimating Manning's roughness coefficient using genetic algorithm. Journal of Hydroinformatics, 20(2), 

pp.440-456. 

 

Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., 

Jakob, D. and Stafford‐Smith, M., 2014. A compound event framework for understanding extreme 

impacts. Wiley Interdisciplinary Reviews: Climate Change, 5(1), pp.113-128. 

 

Moftakhari, H., Schubert, J.E., AghaKouchak, A., Matthew, R. and Sanders, B.F., 2019. Linking Statistical 

and Hydrodynamic Modeling for Compound Flood Hazard Assessment in Tidal Channels and 

Estuaries. Advances in Water Resources. 

 

Wahl, T., Jain, S., Bender, J., Meyers, S.D. and Luther, M.E., 2015. Increasing risk of compound flooding 

from storm surge and rainfall for major US cities. Nature Climate Change, 5(12), p.1093. 

 

Wasantha Lal, A. M. "Calibration of riverbed roughness." Journal of Hydraulic Engineering 121, no. 9 

(1995): 664-671. 

 

Zscheischler, J., Westra, S., Hurk, B.J., Seneviratne, S.I., Ward, P.J., Pitman, A., AghaKouchak, A., Bresch, 

D.N., Leonard, M., Wahl, T. and Zhang, X., 2018. Future climate risk from compound events. Nature Climate 

Change, p.1. 

 

List of Relevant Manuscript Changes: 

 

1. Provided formal definition of compound event 

2. Developed new figure for modeling framework 

3. Developed supplemental information section 
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7. Re-wrote sections with modeling framework for clarity 



Department of Geophysics 

397 Panama Mall, Mitchell Earth Sciences Building, Stanford, CA 94305  T 650.497.6509 

 

 

 

 



What’s streamflow got to do with it? A probabilistic simulation of
the competing oceanographic and fluvial processes driving extreme
along-river water levels
Katherine A. Serafin1,2, Peter Ruggiero1, Kai A. Parker3, and David F. Hill3

1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
2Department of Geophysics, Stanford University, Stanford, CA, USA
3College of Engineering, Oregon State University, Corvallis, OR, USA

Correspondence: Katherine A. Serafin (kserafin@stanford.edu)

Abstract. Extreme water levels driving
:::::::::
generating flooding in estuarine and coastal environments are often

::::::
driven

::
by compound

events, generated by
:::::
where many individual processes like

::::
such

::
as waves, storm surge, streamflow, and tides

:::::::
coincide. Despite

this, extreme water levels are typically modeled in isolated open coast or estuarine environments, potentially mischaracterizing

the true risk to
::
of

:
flooding facing coastal communities. We explore

:::
This

::::::::::
manuscript

:::::::
explores the variability of extreme water

levels near the tribal community of La Push, within the Quileute Indian Reservation on the Washington state coast where a5

river signal is apparent in tide gauge measurements during high discharge events. To estimate the influence of multivariate

forcing
::::::
multiple

::::::::
forcings on high water levels , we first develop a methodology for statistically simulating discharge and

river-influenced water levels in the tide gauge. Next, we merge
:
a
::::::
hybrid

::::::::
modeling

:::::::::
framework

::
is

:::::::::
developed,

:::::
where

:
probabilistic

simulations of joint still water level and discharge occurrences
::::
river

::::::::
discharge

::::::::::
occurrences

:::
are

:::::::
merged with a hydraulic model

that simulates along-river water levels. This methodology produces
:::::::::
along-river water levels from thousands of combinations10

of events not necessarily captured in the observational record
::::::
records. We show that the 100-yr ocean or

:::
still

:::::
water

:::::
level

::::
event

::::
and

:::
the 100-yr streamflow event does

:::::::
discharge

:::::
event

:::
do not always produce the 100-yr along-river water level. Along

::::::::::
Furthermore,

::::::
along specific sections of river, both still water level and streamflow

::::::::
discharge are necessary for producing the

100-yr
:::::::::
along-river

:
water level. Understanding the relative forcing of

::::::
driving

:
extreme water levels along an ocean-to-river

gradient will better prepare
:::
help

:
communities within inlets and estuaries for

:::::
better

:::::::::
understand

::::
their

::::
risk

::
to

:
the compounding15

impacts of various environmental forcing, especially when
::::::::
important

:::
for

:::::::::
increasing

::::
their

::::::::
resilience

::
to

:::::
future

:::::::
flooding

::::::
events.

:

1 Introduction

:::::::::
Coincident

::
or

:::::::::
compound

:::::
events

:::
are

:
a combination of extreme or non-extreme forcing can result in

::::::
physical

::::::::
processes

::
in
::::::
which

::
the

:::::::::
individual

::::::::
variables

::::
may

::
or

::::
may

:::
not

::
be

::::::::
extreme,

:::::::
however

:::
the

:::::
result

::
is an extreme event with significant impacts.

Storm events
:
a

:::::::::
significant

::::::
impact

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zscheischler et al., 2018; Bevacqua et al., 2017; Wahl et al., 2015; Leonard et al., 2014)

:
.20

:::::::
Flooding

::
is
:::::
often

::::::
caused

:::
by

:::::::::
compound

::::::
events,

::::::
where

:::::::
multiple

::::::
factors

:::::::
impact

::::
both

::::
open

:::::
coast

::::
and

::::::::
estuarine

::::::::::::
environments.

:::::
Storm

::::::
events,

:::
for

::::::::
example,

:
often generate concurrently large waves, heavy precipitation driving increased streamflow, and

1



high storm surges, making the relative contribution of the actual drivers of extreme water levels difficult to interpretfrom tide

gauge observations alone. Studies at the global (e.g., Ward et al. (2018)), national (e.g., Wahl et al. (2015); Svensson and Jones

(2002); Zheng et al. (2013)) and regional scale (e.g., Odigie and Warrick (2017); Moftakhari et al. (2017)) have evaluated

the likelihood for variables such as high river flow and precipitation to occur during high coastal water levels, demonstrating

that relationships
::::::::::
dependencies

:
often exist between these individual processes. Understanding the nature of the dependency5

between bivariate or multivariate processes is one of the first steps in piecing together the contributors to flooding events.

Around river mouths, the elevation of the water level measured by tide gauges, or the still water level (SWL), varies depend-

ing on the mean sea level, tidal stage
:
, and the non-tidal residual contributors which may include the following forcings; storm

surge, seasonally-induced thermal expansion (Tsimplis and Woodworth, 1994), the geostrophic effects of currents (Chelton

and Enfield, 1986), wave setup (Sweet et al., 2015; Vetter et al., 2010), and river discharge. Most commonly, estimates of non-10

tidal residuals are determined by subtracting predicted tides from the measured water levels. However, residuals computed in

this way often contain artifacts of the subtraction process from phase shifts in the tidal signal and/or timing errors (Horsburgh

and Wilson, 2007). Another approach to describing
:::
for

::::::::
extracting

:
the non-tidal residual is

::::::
through

:
the skew surge, which is

the absolute difference between the maximum observed water level and the predicted tidal high water (de Vries et al., 1995;

Williams et al., 2016; Mawdsley and Haigh, 2016). While this methodology removes the influence of tide-surge interaction15

from the non-tidal residual magnitude, it does not differentiate between the many factors contributing to the water level, an

important step for distinguishing when and why high water(,
:
and thus flooding)

:
, is likely to occur.

Hydrodynamic
:::
and

::::::::
hydraulic models have recently been used in attempts to quantify the relative importance of river and

ocean-forced water levels to flooding. The nonlinear coupling of wind and pressure driven storm surge, tides, wave-driven setup,

and riverine flows has been found to be a vital contributor to overall water level elevation (Bunya et al., 2010). Furthermore,20

river discharge is often found to interact nonlinearly with storm surge (Bilskie and Hagen, 2018), exacerbating the impacts of

coastal flooding (Olbert et al., 2017), which suggests that the extent or magnitude of flooding is often underpredicted when

both river and oceanic processes are not modeled (Bilskie and Hagen, 2018; Kumbier et al., 2018; Chen and Liu, 2014). The

computational demand of two and three-dimensional hydrodynamic models, however, typically precludes a large amount of

events to be examined. Therefore, while accurately modeling the physics of the combined forcings, researchers taking this25

approach are often limited to modeling only a few select cases.
:::::
select

::::::
number

:::
of

::::::::
boundary

::::::::::
conditions.

:::
On

:::
the

:::::
other

:::::
hand,

::::::::
statistical

::::::
models

:::::
allow

:::
for

:::
the

:::::::::::
investigation

::
of

:::::::::
compound

:::::
water

:::::
levels

:::::::
through

:::
the

:::::::::
simulation

::
of

::::::::::::
combinations

::
of

:::::::::
dependent

:::::
events

:::::
which

::::
may

:::
not

::::
have

:::::
been

::::::::
physically

:::::::
realized

::
in

:::::::::::
observational

::::::
records

:::::::::::::::::::::::::::::::::::::::::
(Bevacqua et al., 2017; van den Hurk et al., 2015)

:
.
::
In

:::::::
addition,

::::::::::
researchers

::::
have

:::::::
recently

:::::
begun

::
to

::::::::
generate

:::::
hybrid

::::::
models

::::
that

::::
link

::::::::
statistical

:::
and

:::::::
physical

::::::::
modeling

::::::::::
approaches

::
for

::::::::::::
understanding

:::::::::
compound

:::::
flood

::::::
events

:::::::::::::::::::::::::::::::::::::::
(Moftakhari et al., 2019; Couasnon et al., 2018).

:::::::
Similar

::
to

:::
the

::::::
results

:::::
solely

:::::
from30

::::::::::::
hydrodynamic

:::
and

::::::::
hydraulic

:::::::
models,

::::::::
statistical

::::
and

::::::
hybrid

::::::::
modeling

::::::::
strategies

:::::
show

::::
that

::::::::::::
simplifications

:::
of

:::
the

::::::::::
dependence

:::::::
between

:::::::
multiple

:::::::
forcings

::::
may

::::
lead

::
to

::
an

:::::::::::::
underestimation

:::
of

::::
flood

::::
risk.

:

This study explores the influence of oceanographic and fluvial processes driving
::::::
riverine

::::::::
processes

:::
on extreme water levels

along a coastal river where there is a substantial fluvial
::::
river signal recorded in the tide gauge. Our study site, the Quillayute

River, terminates in the Pacific Ocean at La Push, Washington, an incorporated tribal community within the Quileute Indian35
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Reservation. In order to better understand the river- and ocean-forced water levels at this location, a
::::::
hybrid methodology is

developed for defining and removing
:::::
linking

:::::::::
statistical

:::::::::
simulations

:::
of

:::::
ocean

:::
and

:::::
river

::::::::
boundary

:::::::::
conditions

::::
with

::
a

::::::::
hydraulic

:::::
model

::::
that

::::::::
simulates

:::::::::
along-river

:::::
water

::::::
levels.

:::::
First, river-influenced water levels from SWLs measured at tide gauges. Both

::
are

:::::::
defined

:::
and

::::::::
removed

::::
from

::::::
SWLs.

:::::
Then,

::::
both

:
river discharge and river-influenced water levels are then incorporated into a

non-stationary, probabilistic total water level model. This ,
::::::
which allows for multiple synthetic representations of joint ocean5

and fluvial
::::::
riverine

:
processes that may not have occurred in the relatively short observational records. Next, a 1-dimensional

hydraulic model is used to simulate water surface elevations along a 10 km stretch of river. Surrogate models are generated from

the hydraulic model simulations and used to extract along-river water levels for each probabilistic joint-occurrence of SWL

and river discharge . Finally,
::
in

:
a
::::::::::::
computational

:::::::
efficient

:::::::
manner.

::::::
Rather

::::
than

::::::::::
determining

:::
the

:::::::::
along-river

::::::
return

::::
level

::::
from

:::
an

::::::::
equivalent

::::::
return

::::
level

::::::
forcing

:::::
(e.g.,

:::
the

::::::
100-yr

::::::::
discharge

::::
event

::::::
drives

:::
the

::::::
100-yr

:::::
water

:::::
level),

:
spatially-varying extreme event10

:::::::::
along-river return levels are derived and discussed.

::::::::
extracted

:::
and

:::::::
matched

:::
to

:::
the

::::::
driving

::::::::
boundary

:::::::::
conditions.

::::
This

:::::::::
technique

:::::
allows

:::
for

:
a
::::::::
spatially

::::::
explicit

:::::::
analysis

::
of

:::
the

:::::
ocean

::::
and

::::
river

:::::::::
conditions

:::::::::
generating

:::::::
extreme

:::::
water

:::::
levels.

:

The following sections describe the study area, present the
:::::
hybrid

:
modeling framework linking oceanographic and fluvial

::::::
riverine

:
systems, and evaluate the compounding drivers of

:::::::::
along-river extreme water levelsalong this river system.

2 Study Area15

The Quillayute River is located in Washington state along the US West coast and drains approximately 1630 km2 of the north-

western Olympic Peninsula into the Pacific Ocean (Czuba et al., 2010). The Quillayute River is approximately 10 km long,

is formed by the confluence of the Bogachiel and Sol Duc Rivers (Figure 1), and enters the Pacific Ocean at La Push, Wash-

ington, home to the Quileute Tribe. The Quileute Indian Reservation is approximately 4 km2 and the majority of community

infrastructure sits at the river mouth, bordering the river and open coast. The Quileute Harbor Marina is also situated just inside20

the river mouth, and is the only port between Neah Bay and Westport, Washington. Rialto spit, which connects Rialto Beach

to Little James Island, contains a rocky revetment which protects the marina and the community from ocean and storm wave

impact.

The Quillayute River is a natural, unstablized river that is relatively straight at the confluence of the Bogachiel and Sol Duc

rivers and increases in sinuosity moving towards the river mouth. Channel-bed materials are coarse (gravel and cobble) in25

the free-flowing channels and dominated by sand in the small estuary (Czuba et al., 2010). Upstream of river km 3 there are

numerous point bars and bends in the river. Between river km 1.5 and 3, the Quillayute is braided with several side channels,

usually containing woody debris (Czuba et al., 2010). The channel is straight near the river mouth and is confined by the Rialto

spit revetment before draining into the Pacific Ocean.

The oceanic climate of the coastal Pacific Northwest (PNW) is cool and wet with a small range in temperature variation and30

the majority of rainfall between October and May. Four river basins, the Sol Duc, Bogachiel, Calawah, and Dickey rivers, feed

into the Quillayute River and comprise the majority of the watershed. Streamflow in the region is primarily from storm-derived

rainfall in the winter and snowmelt during the spring and summer (WRCC, 2017).
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Oceanographically-driven SWLs are generally comprised of non-tidal residuals, astronomical
:::::
mean

:::
sea

:::::
level,

:
tides, and

mean sea level
:::::::
non-tidal

::::::::
residuals,

::::::
which

::::::
include

::::::
storm

::::
surge. Regional variations in shelf bathymetry, shoreline orientation,

storm tracks (Graham and Diaz, 2001), seasonality (Komar et al., 2011), and winds drive differences in storm surge along

the US West coast. However, the
:::
US

::::
West

::::::
coast’s

:
narrow continental shelf, in relation to broad-shelved systems, controls the

magnitude of storm surge, and it
:::::
whcih is rarely larger than 1 m (Bromirski et al., 2017; Allan et al., 2011). The PNW is also5

influenced by a unique interannual climate variability due to the El Niño Southern Oscillation. During El Niño years, the PNW

experiences increased water levels for months at a time, along with changes in the frequency and intensity of storm systems

(Komar et al., 2011; Allan and Komar, 2002). In the PNW, tides are micro- and mesotidal, and at La Push the tidal range is

mixed, predominantly semidiurnal, with a mean range of 1.95 m and a great diurnal range of 2.58 m (https://tidesandcurrents.

noaa.gov/datums.html?id=9442396).10

Global rise in sea level and local changes in vertical land motions result in significant longshore variations of relative sea

level along the Washington coastline. The northern Washington coast is experiencing relative sea level rates of -1.85 ± 0.42

mm/yr due to a rising coastline, while relative sea level in Willapa Bay in southern Washington is 0.94 ± 2.14 mm/yr (Komar

et al., 2011). Tide gauge records at La Push are too short to calculate robust trends in sea level, however, sea level is likely

rising in this location, rather than falling, partly due to local land subsidence (Miller et al., 2018).15

Digital Elevation Model (DEM) used for the HEC-RAS simulations of the Quillayute River. HEC-RAS cross sections are

depicted as grey lines. Approximate river kilometer and the location of the tide gauge are depicted as diamonds and a square,

respectively.

3
::::
Data

4 Data and methods20

3.1 Modeling framework

Return level, or design, events are typically assessed via analyses of available observational datasets. However, observational

records rarely extend more than a few decades, suggesting that all combinations of jointly-occurring processes generating

extreme water levels may not have been physically realized. Therefore, in order to understand the oceanographic and fluvial

drivers of extreme water levels along the Quillayute River from a full range of possible forcing conditions, we develop a25

methodology to merge statistically simulated joint SWL and discharge records with a one-dimensional (1D) hydraulic river

flow model. This approach is designed to allow for an interpretation of extreme water levels as if different physically plausible

combinations of individual driving processes had been available to be sampled over the last thirty years.

First, a method is developed to define and model river-influence in the SWLs. Next, combinations of daily maximum SWL

and river discharge are statistically simulated to create many random realizations of joint SWL-discharge forcing using the30

Serafin and Ruggiero (2014) full simulation total water level model. Care is taken to appropriately model both the non-stationarity

of each signal, as well as the dependence between the signals. A range of SWL-discharge conditions are modeled using the US

5

https://tidesandcurrents.noaa.gov/datums.html?id=9442396
https://tidesandcurrents.noaa.gov/datums.html?id=9442396
https://tidesandcurrents.noaa.gov/datums.html?id=9442396


Army Corps of Engineers’ (USACE) Hydrologic Engineering Center’s River Analysis System (HEC-RAS; Brunner (2016)) to

produce surrogate models for generating along-river water levels. The surrogate models are then used to produce water levels

at a series of transects for each statistically simulated SWL-discharge event. The synthetic SWL-discharge simulations paired

with HEC-RAS water surface profiles allows for an analysis of the dominant drivers of extreme water levels along the river.

Descriptions of the hydrodynamic and statistical models, as well as the overall framework for modeling spatially-varying water5

levels are described in the following sections.

3.1 Hydraulic model domain and setup

HEC-RAS is a model that is used to estimate water surface elevations in rivers and streams in both steady and unsteady flow and

under subcritical, supercritical, and mixed flow regimes (Goodell, 2014). HEC-RAS has been previously used to model water

surfaces for a range of applications including, but not limited to, floodplain mapping (Yang et al., 2006), flood forecasting10

(Saleh et al., 2017), dam breaching (Butt et al., 2013), and flood inundation (Horritt and Bates, 2002). HEC-RAS computes

water levels by solving the 1D energy equation with an iterative procedure, termed the step method, from one cross-section to

the next (Brunner, 2016). For subcritical flows, the step procedure is carried out moving upstream; computations begin at the

downstream boundary of the river and the water surface elevation at an upstream cross-section is iteratively estimated until a

balanced water surface is obtained. Energy losses between cross-sections are comprised of a frictional loss via the Manning’s15

Equation and a contraction/expansion loss via a coefficient multiplied by the change in velocity head (see Brunner (2016) for

more details).

In this application, HEC-RAS is used to model 1D water levels under gradually varied, steady flow conditions at specified

transects along the Quillayute River. While a simplification of flood processes, this methodology is commonly used to create

flood hazard maps. HEC-RAS model runs require detailed terrain information for the river network, including bathymetry and20

topography for the floodplains of interest. Topography data is sourced from a 2014 U.S Army Corps of Engineers (USACE)

lidar survey (?). Bathymetry data is developed by blending two NOAA digital elevation models (DEM): National Geophysical

Data Center’s (NGDC) La Push, WA tsunami DEM (1/3 arc second; ?) and the coastal relief model (3 arc seconds; ?). These

datasets, however, do not accurately resolve the channel depths of the Quillayute River inland of the coast, so a 2010 US

Geological Survey (USGS)-conducted bathymetric survey of the river is also blended into the DEM (Czuba et al., 2010).25

In 2010, depths of along-river cross sections and an 11 km long longitudinal profile from the Bogachiel River (Figure 1) to

the mouth of the Quillayute River were surveyed (Czuba et al., 2010). The survey of the longitudinal river profile also recorded

the elevation of the water surface. Ideally, the collected bathymetry dataset would be merged directly into the existing DEM.

The Quillayute River, however, is uncontrolled and meanders over time, producing a variation in the location of the main

river channel between the DEM and the high-resolution USGS-collected bathymetric data. Therefore, the USGS bathymetric30

profiles are adjusted to match the location of the DEM channel. While a product of multiple datasets and processing steps, the

final DEM provides bathymetric/topographic data with the most up-to-date channel depths for the Quillayute River (Figure 6).
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A series of 58 transects are extracted from the DEM using HEC-GeoRas (?) and written into a geometric data file for input

into HEC-RAS (Figure 6). Each river transect extends across the floodplain to the 10 m contour, where applicable. Otherwise,

each transect terminates at the highest point landward of the river. Because HEC-RAS computes energy loss at each transect

via a frictional loss based on the Manning’s equation, Manning’s coefficients, an empirically derived coefficient representing

resistance of flow through roughness and river sinuosity, are selected for the river channel and the floodbanks. In-channel5

Manning’s coefficients are tuned to calibrate the model’s resulting water surface elevations with that of the observed water

surface data (see section 3.2.1). Manning’s coefficients for the rest of the computational domain (e.g., anything overbank)

are estimated using 2011 Land Cover data from the Western Washington Land Cover Change Analysis project (?) and visual

inspection of aerial imagery. Model domain boundary conditions are chosen as the water surface elevation at the tide gauge

(m; downstream boundary) and river discharge from a combination of records representing the Quillayute River watershed10

(m3s−1; upstream boundary).

3.0.1 HEC-RAS model validation

Observational records in the region are generally sparse; one tide gauge exists in the marina near the river mouth and hourly

discharge measurements are only located on
::::
only two of the four rivers which feed into the Quillayute watershed

::
are

:::::::
gauged

(Figure 1). The closest gauge is located 7 miles upriver from the Quillayute River on the Sol Duc River
:::::
gauge (WA Dept of15

Ecology 12A070) and measures approximately 9 years (2005-2014) of
::
is

::::::
located

::
7

:::::
miles

::::::
upriver

:::::
from

:::
the

:::::::::
Quillayute

:::::
River

:::
and

::::::::
measures

:
hourly discharge and stage observations

::::
from

:::::::::
2005-2014. The second

:::
river

:
gauge is located on the Calawah

River (USGS 12043000), which
::::::::::::
approximately

::
15

:::::
miles

:::::::
upriver

::::
from

::::
the

:::::::::
Quillayute

:::::
River.

::::
The

::::::::
Calawah

:::::
River

:
flows into

the Bogachiel River, and has hourly discharge and stage measurements from 1989 - 2016. While the Calawah River gauge is

located approximately 15 miles upriver from the Quillayute River, the steep catchment drives a short response time in rainfall20

and the record is highly correlated with the
:::
The

::::::
hourly

:::::
record

::
of
:
discharge measurements from the Sol Duc River gauge.

In order to determine the dominant inputs to Quillayute River discharge, combined estimates of the Sol Duc and Calawah

Rivers are compared to measurements taken on the Quillayute River in May 2010 (see Figure 1 for measurement location;

Czuba et al. (2010)). Combined discharge estimates from the Sol Duc and Calawah rivers underpredict streamflow in the

Quillayute River by approximately 33%
:
is

:::::
100%

::::::::
complete,

:::::
while

:::
the

::::::::
Calawah

:::::
River

::
is

::::
99%

::::::::
complete. An area scaling water-25

shed analysis (Gianfagna et al., 2015) is undertaken to rectify the discharge by the amount of ungauged watershed. The water-

shed delineation shows that the Bogachiel, Calawah, Sol Duc, and Dickey rivers account for 24%, 22%, 37%, and 17% of the

total Quillayute River watershed area
:
,
::::::::::
respectively. Noting the similar watershed characteristics and proportional area

::::::::
watershed

::::
areas, the contribution of the Bogachiel River is estimated by scaling the Calawah River discharge measurements by a factor

of 2.09. Combined discharge estimates from the Sol Duc River and Bogachiel River, computed using the above scaling factor30

, are also compared to the Quillayute discharge
::::
This

::::::
scaling

:::::
factor

:::
for

:::::::::
estimating

:::::::::
Bogachiel

:::::
River

::::::::
discharge

::
is
::::::::
validated

:::
by

:::::::::
comparing

::
to

:
8
::::::::
discharge

:::::
point

:
measurements taken during the 2010 survey.Using this methodology, the discharge estimates

of the Quillayute River fall within the uncertainty of the discrete USGS measurements (Table ??).
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Quillayute River discharge measurements from the USGS survey (Czuba et al., 2010) compared to the Quillayute River

discharge estimates computed by adding the Sol Duc USGS gauge measurements with the Bogachiel River discharge, estimated

via scaling of the Calawah River gauge measurements. The parenthesis in the last column is the standard deviation of USGS

survey measurements (m3s−1). Date of Survey Sol Duc (m3s−1) Calawah (m3s−1) Bogachiel (m3s−1) Quillayute (m3s−1)

Quillayute (m3s−1) (estimated)(estimated) (measured)4/20/2010 52 28 58 110 116 (7)4/21/2010a 48 25 53 101 108 a
:::::

U.S.5

:::::::::
Geological

::::::
Survey

:
(1) 4/21/2010b 48 25 52 100 103 (3) 4/21/2010c 46 24 50 96 107 (1) 5/4/2010a 73 69 144 217220 (5)

5/4/2010b 70 66 137 207 207 (4) 5/5/
::::::
USGS)

::::::
survey

::
in 2010 59 51 107 166 170 (3) 5/6/2010 50 40 84 134 136 (3)

a) Bathymetry and longitudinal profile from the Bogachiel River to the mouth of the Quillayute River surveyed by the

USGS in May of 2010 (black). The longitudinal water level for the calibrated HEC-RAS model is depicted in blue. b) Percent

difference between the measured (black) and HEC-RAS modeled (blue) water level. c) Actual difference between the measured10

(black) and HEC-RAS modeled (blue) water level.

The longitudinal measured water surface profile allows for the verification and calibration of HEC-RAS modeled water

surface elevations on the day of the survey (Figure ??). HEC-RAS is run using discharge of the watershed-scaled Bogachiel

River as the upstream boundary condition during the hour of the field survey and this discharge is combined with a lateral

inflow
::
see

:::::::::::
supplemental

::::::::::::
information).

::::::::
Discharge

:::
for

:::
the

:::::::::
Quillayute

:::::
River

::
is

::::::::
estimated

:::
by

::::::
adding

:::::::
together

::::::::
discharge

:
from the15

Sol Duc River around river km 8.5. Manning’s coefficients along the Quillayute are calibrated to best represent the water

surface elevation on the day of the survey. The final calibrated HEC-RAS model produces a water surface elevation with an

average bias less than 1% (less than 1 cm) and an average standard deviation of approximately 5% (7.5 cm). The maximum

difference between the two water surfaces is approximately 14 cm (20%). The percent difference between the depth of the

observed and modeled water surface is almost always less than 10% (Figure ??). Final Manning’s coefficients range from to20

0.005 to 0.1, and are on average 0.025.
::
and

::::::::::
Boagachiel

:::::
rivers.

:

3.1 Total water level simulation model

Hourly measured SWLs and predicted tide measurements at the La Push tide gauge (NOAA station 9442396,
:::::

2004
:
-
:::::

2016)

relative to Mean Lower Low Water (MLLW) are downloaded, transformed into NAVD88to match the DEM, and decomposed

into mean sea level (ηMSL), tide (ηA), and non-tidal residual (ηNTR). The ηNTR is further decomposed into monthly mean sea25

level anomalies (ηMMSLA), seasonality (ηSE), and storm surge (ηSS), using methods described in Serafin et al. (2017). A 6th

geophysical signal recorded by the tide gauge, the river-influenced water level (ηRi) , is also evaluated and removed from the

::::
Peak ηSS signal (see section 4.2 for description and methods)

:::::
events

::
at

::
La

:::::
Push

:::
are

:::::
found

::
to

::
be

:::
the

::::::
highest

:::
on

:::::
record

:::::::::
compared

::
to

::
all

:::
US

:::::
West

::::
coast

::::
tide

:::::
gauge

:::::::
stations

:::::::::::::::::
(Serafin et al., 2017).

:::::
Upon

::::::
further

:::::::::::
investigation

::
of

:::
the

::::
ηSS::::::

record,
::
a

::::
large

:::::::
portion

::
of

::::::
extreme

::::
ηSS::::::

events
:::::
occur

:::::
during

::::
low

::::
wave

::::::
events

::::::
(Figure

:::
2a)

::::
and

::::
high

::::
river

::::::::
discharge

::::::
events

::::::
(Figure

::::
2b).

::::
This

::
is

::::::::::
inconsistent30

::::
with

:::
ηSS::

in
:::::::::

Westport,
::::::::::
Washington

::::::
(Figure

:::
2a

:::
and

::::::
Figure

:::
2c),

::::
just

:::::
south

::
of

:::
La

:::::
Push,

:::
and

::::
with

:::::
other

:::
tide

:::::::
gauges

:::::
along

:::
the

:::
US

::::
West

:::::
coast

:::
(not

:::::::
shown).

::
It

::
is

:::::::
therefore

:::::::::::
hypothesized

::::
that

:::
the

:::::::::::
anomalously

::::
large

:::::
signal

::::
seen

::
in
:::
the

::::
ηSS::

is
:::::::::::
river-induced.

The continuous
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Figure 2.
::
a)

:::
The

::::
joint

:::::::::
relationship

::::::
between

:::::
storm

::::
surge

:::
and

::::
wave

:::::
height

:::
for

::
La

::::
Push,

:::::::::
Washington

::::::
(black)

:::
and

:::::::
Westport,

:::::::::
Washington

::::::
(pink).

::::::
Example

:::::
storm

::::
surge

:::
and

::::::::
discharge

:::::::::
relationship

:
at
::
b)

:::
La

::::
Push

:::
and

:
c)
::::::::

Westport,
:::::::::
Washington.

::
To

::::::
further

:::::::::
investigate

::::
the

:::::::::::
anomalously

::::
large

::::
ηSS::

at
:::
the

:
La Push tide gaugerecord begins in 2004, recording 12 years of

water levels . This record , however, does not capture the extreme water levels occurring during the 1982/83 and 1997/98

El Niños. Therefore,
:::
the

::::::::::::
hydrodynamic

::::::
model

:::::::::
ADvanced

:::::::::::
CIRCculation

::::::::::
(ADCIRC,

:::::::::::::::::::
Luettich Jr et al. (1992)

:
)
:::
and

::::::::::
Simulating

:::::
Waves

:::::::::
nearshore

:::::::
(SWAN,

:::::::::::::
Zijlema (2010))

::::::
model

::::::::::::
(ADCSWAN;

:::::::::::::::::
Dietrich et al. (2011)

:
)
::
is

::::
used

::
to

:::::::
simulate

:::::
water

::::::
levels

::
at

:::
the

:::
tide

:::::
gauge

::::::
during

:
a
:::::
storm

:::::
event

::::::::::::
corresponding

::::
with

:::
the

::::
peak

::::
river

::::::::
discharge

:::
on

:::::
record

:::::::::
occurring

::
on

:::::::
January

::
8,

:::::
2009.

::::::::
ADCIRC5

:
is
::::

run
::
in

:::
2D

::::::::::::::
depth-integrated

:::::::::
barotropic

:::::
mode

::::::
which

::::::::
performs

::::
well

:::
for

::::::::::
calculating

:::::
water

:::::::
surface

::::::::
elevations

::::::
during

::::::
storm

:::::
events

:::::::::::::::::::::::
(Weaver and Luettich, 2010)

:
.
::::::
SWAN

::
is

:::
run

::
in

::::::::::::
non-stationary

:::::
mode

:::
on

::
an

:::::::::::
unstructured

::::
grid,

:::::::
allowing

:::
for

::::
tight

::::::::
coupling

::
to

::::::::
ADCIRC.

::::
The

::::::
model

::
is
::::
run

::::
with

::::
two

::::::
forcing

:::::::::::::::
implementations:

::::
one

::::::::
including

::
a
:::
full

:::::::
forcing

::
of

::::::
waves,

::::::
wind,

::::::::
pressure,

:::::::::
streamflow,

:::
sea

:::::
level

:::::::::
anomalies,

::::::::::
seasonality,

:::
and

::::
tides

::::
and

:::
one

::::::::
including

::::
only

::::::::::
streamflow

:::
and

:::::
tides.

:::::
Once

:::
the

:::::::::::::
river-influenced

::::
water

:::::
level

::
is

::::::::
validated,

::
it
::
is
::::::::
removed

:::::
from

:::
the

::::
ηSS :::::

signal
::::
and

:::::
saved

::
as

::
a
:::
6th

::::::::::
geophysical

:::::::
variable

:::::
(ηRi,:::

see
::::::::::::

supplemental10

:::::::::
information

:::
for

:::::::
removal

::::::::::
technique).

:::::::
Because

::
of

:::
the

:::::
short

:::::
length

:::
of

:::
the

:::
La

::::
Push

::::
tide

:::::
gauge

:::::::
record,

::::::::::
decomposed

:
water levels from the La Push tide gauge are

merged with
::::::::::
decomposed water levels from the Toke Point tide gauge (beginning in 1980, NOAA station 9440910) to cre-

ate a combined water level record representing a larger range of extreme conditions. ηA and ηSE , water level components

deterministic to the La Push tide gauge, are extended to 1980. Water level components influenced by regional or local forcings15

like ηMMSLA and ηSS , are compared before combining. ηMMSLA between the Toke Point and La Push tide gauges are

9



similar, so Toke Point ηMMSLA are appended to the beginning of the La Push ηMMSLA. Toke Point, however, has slightly

higher magnitude ηSS than La Push and there is a noticeable offset in the highest ηSS peaks. A correction is thus applied to

the Toke Point ηSS before appending it to the beginning of the La Push ηSS . ηMSL is extended back to 1980 using relative

sea level rise trends for the region.
::::
with

::
a

:::::
length

::
of

:::
36

:::::
years.

::::::
Details

:::
of

:::
this

:::::::::::
methodology

:::
are

:::::::::
explained

::
in

:::
the

::::::::::::
corresponding

:::::::::::
supplemental

::::::::::
information,

::
as

::::
well

:::
as

::
in

::::::::::::::::
Serafin et al. (2019)

:
. Once the two tide gauges are merged, the combined hourly tide5

gauge record extends from 1980 - 2016 and is 97% complete. Discharge measurements sampled at 15 minute intervals for the

Calawah and Sol Duc rivers are interpolated to hourly increments to match the timing of the SWL measurements. At the hourly

scale, the Calawah River record is 99% complete, while the Sol Duc River record is 100% complete.

4
:::::::
Methods

:::::
Return

:::::
level

::::
flood

:::::::::::
magnitudes,

::::
such

::
as

:::
the

::::::
100-yr

:::::
event,

:::
are

:::::::
typically

::::::::
assumed

::
to

::
be

:::::
driven

:::
by

:
a
:::::::
specific

::::::
forcing

:::::
event,

:::::
such

::
as10

::
the

::::::
100-yr

:::::::
rainfall

::
or

:::::
storm

::::::
surge.

::::::::
However,

:::
for

:::::::::
processes

:::::
driven

:::
by

:::::::
multiple

:::::::::::
dimensions,

:::::::
different

:::::
sizes

:::
and

::::::::::::
combinations

::
of

::::::
forcing

:::::::::
conditions

::::::
could

:::::::::
potentially

::::::::
generate

:::::::
extreme

:::::
flood

::::::::::
magnitudes.

:::
To

:::::::
explore

:::
the

::::
role

:::
of

:::::::::::
compounding

::::::::
forcings

::
in

:::::::::
generating

:::::::
extreme

:::::
water

::::::
levels,

::
a
::::::
hybrid

::::::::
modeling

::::::::::
framework

::
is

:::::::::
developed

::
by

::::::::
merging

:
a
:::::::::

hydraulic
:::::
model

::::::::::
simulating

::::
river

::::
flow

::::
with

:::::::::::
probabilistic

::::::::::
simulations

:::
of

::::::
jointly

::::::::
occurring

:::::::::
boundary

::::::::::
conditions,

::
in

::::
this

::::
case

:::::
SWL

::::
and

::::
river

:::::::::
discharge

::::::
(Figure

:::
3).

::::::::
Statistical

::::::::::
simulations

:::::
allow

:::
for

:::::
long,

::::::::
synthetic

::::::
records

::
of

:::::
joint

:::::::
forcings

::::
that

::::
may

:::
not

::::
have

::::::::
occurred

::
in

:::
the

:::::
short15

:::::::::::
observational

::::::
records

:::
but

:::
are

::::::::
physically

:::::::
capable

::
of

:::::::::::
co-occurring.

::::::::
Modeling

:::
all

::
of

::
the

::::::::::
statistically

::::::::
simulated

::::::::
boundary

:::::::::
conditions

::
in

:
a
::::::::
hydraulic

::::::
model

::
to

:::::
output

::::::::::
along-river

:::::
water

:::::
levels

:::::
would

:::
be

::::::::::
prohibitively

:::::::::
expensive.

:::
As

::
an

:::::::::
alternative

::
to

::::
time

::::::::::
consuming

::::::::::
simulations,

::::::::
surrogate

::::::
models

:::::::::::::::::
(Razavi et al., 2012)

::
are

:::::::::
developed

::
to

:::::::::::
approximate

::
the

::::::::
response

::
of

:
a
::::::::
hydraulic

::::::
model

:::::::::
simulation

:
at
:::::
each

:::::::::
along-river

:::::::
location.

:::::
This

::::::::
technique

::::::
allows

::
for

:::
the

:::::::
analysis

:::
of

:::::::::
along-river

:::::
water

:::::
levels

:::::
driven

:::
by

:
a
::::::
variety

:::
of

::::::::
boundary

:::::::::
conditions.

:::::
Long

::::::::
synthetic

::::::
records

:::
on

:::
the

:::::
order

::
of

::::
500

:::::
years

:::::
allows

:::
for

:::
the

::::::
direct

::::::::
empirical

::::::::
extraction

:::
of

:::::
water

::::
level

::::::
return20

:::::
levels

:::::
rather

::::
than

:::
an

:::::::::::
extrapolation

:::::
from

:::::::
historic

::::::::::::
observational

::::::
forcing

::::::::::
conditions.

::
In

::::::::
addition,

::::
the

::::
large

:::::::
sample

:::::
space

:::
of

::::::::
simulated

::::::::
variables

::::::
permits

::
a
::::::::::
comparison

:::
of

::::::::::
event-based

:::::
return

::::::
levels,

::::::
where

:::
the

::::::
100-yr

:::::
water

:::::
level

::
is

::::::::::
determined

:::
by

:::
the

:::::
100-yr

:::::::
forcing,

:::
to

:::::::::::::
response-based

:::::
return

::::::
levels,

::::::
where

:::
the

::::::
100-yr

:::::
water

::::
level

:::
is

::::::
derived

::::
and

::::
then

:::::::
mapped

::
to

:::
its

:::::::::
respective

::::::
forcing

:::::::::
conditions.

:::::
This

:::::
novel

:::::::::
framework

::
is

:::::::
flexible

:::
for

:::::
input

::
of

::::
any

::::::::
statistical

::
or

::::::::
hydraulic

:::::::
model.

::
In

::::
this

::::::::::
application,

:::
we

:::
use

:::
the

::::::::::::::::::::::::
Serafin and Ruggiero (2014)

::
full

:::::::::
simulation

:::::
total

:::::
water

::::
level

::::::
model

:::
and

:::
the

:::
US

:::::
Army

::::::
Corps

::
of

:::::::::
Engineers’

:::::::::
(USACE)25

:::::::::
Hydrologic

:::::::::::
Engineering

:::::::
Center’s

:::::
River

::::::::
Analysis

::::::
System

:::::::::::
(HEC-RAS;

:::::::::::::
Brunner (2016)

:
),
::::::
which

:::
are

::::::::
described

:::
in

:::::
more

:::::
detail

:::::
below.

:

4.1
::::::::::
Probabilistic

:::::::::::
simulations

::
of

:::::::::
boundary

:::::::::
conditions

The non-stationary, probabilistic full simulation model of Serafin and Ruggiero (2014) (hereinafter , SR14) was developed

to produce synthetic time series of
::::
daily

:::::::::
maximum

:
total water levels (TWLs), the combination of waves, tides, and non-tidal30

residuals, on open-coast sandy beaches. SR14 simulates the individual components of the TWL in a Monte Carlo sense, while

appropriately accounting for any dependencies existing between the variables. This modeling technique is able to include

10



Figure 3.
::::::::
Schematic

::
of

:::::
hybrid

::::::::::::::
statistical-physical

:::::::
modeling

::::::::
technique.

:::::
Models

:::
are

:::::::
portrayed

::
as

:::::::
squares,

::::
while

:::::
circles

::::::
portray

:::::
model

::::::
outputs.
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non-stationary processes influencing extreme and non-extreme events, such as seasonality, climate variability, and trends in

wave heights and water levels. SR14 outputs a number of synthetic records of all variables driving TWLs that produce alter-

nate, but physically plausible, combinations of waves and water levels along an identified stretch of coastline(see SR14 and

Serafin et al. (2017) for more information). This technique is flexible to allow for both the simulation of the present-day cli-

mate for computing robust statistics on extreme TWL events, as well as the simulation of future climates and their impact on5

extreme TWLs.

Because SR14 was developed for use in open-coast environments, it does not include a procedure for simulating estimates of

river discharge, important to high water levels in estuarine environments, as well as
:::::
which

::
is
:
present in the local tide gauge at

the La Push study site. SR14 is therefore modified to produce synthetic time series of
::::
river discharge as well as a river-induced

water level. Specifics of these modifications are presented in section 4.3.10

4.2 Hybrid modeling of along-river water levels

The modified simulation technique of SR14 is used to produce 70 500 year long synthetic records representing present-day

climate for the time periosd of 1980-2016 of daily maximum SWL and discharge for both the Sol Duc and Bogachiel rivers.

Modeling all of the simulated conditions in HEC-RAS in order to output along-river water levels would be prohibitively

expensive. As an alternative to time consuming simulations, surrogate models (Razavi et al., 2012) are developed to approximate15

the response of a HEC-RAS simulation. A large number of combinations of SWL and river discharge at the Bogachiel and Sol

Duc rivers are run in HEC-RAS, outputting along-river water level at each HEC-RAS transect. The number of combinations

of SWL and river discharge used in the surrogate models are chosen to minimize interpolation errors during validation runs.

A surrogate model representing along-river water level is created for each modeled SWL condition using a scattered linear

interpolation of the 3D surface of boundary conditions.20

Along-river water levels are extracted from the surrogate model relating to each synthetic combination of SWL and river

discharge, providing a longitudinal water surface profile for each day of the 500 year long record in an efficient manner. The

large sample size of joint SWL-discharge events ensures a robust, probabilistic estimate of low probability water levels along

the Quillayute River. This allows for an exploration of the drivers of along-river water levels over the past 35 years.

a) The joint relationship between storm surge and wave height for La Push, Washington (black) and Westport, Washington25

(pink). Example storm surge and discharge relationship at b) La Push and c) Westport, Washington.

4.2 Extracting spatially variable return level events

The new methodology described in this paper allows for a statistically robust estimate of low probability, along-river water

levels not observed in the historical record. Typically, return levels are estimated by modeling the estimated 100-yr hydrologic

or meteorologic event, and the resulting water level is assumed to be statistically representative of this condition. However,30

processes driven by multiple variables means that different "sizes" of hydrologic conditions could potentially drive low

probability water levels. The 500 year long synthetic records simulated using the modified SR14 allows for the empirical

extraction of return level events rather than an estimation from historic records. Using the count-back method, SWL, river
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discharge, and water level return level events are selected from each record, where the largest, 5th largest, and 10th largest

events in each record correspond to the 500-yr
::::
High

::::::::
discharge

:::::
events

::
on

:::
the

::::
two

::::::
gauged

:::::
rivers

::
in

:::
the

:::::::::
watershed,

:::
the

:::
Sol

:::
Duc

::::
and

:::::::
Calawah

:::::
rivers, 100-yr, and 50-yr return levels, respectively, at each transect. This allows for an analysis of spatially-variable,

along-river extreme water levels, as well as the ability to map to the jointly-occurring forcings driving the return level water

surface. The large sample space of simulated variables permits a comparison of event-based return levels, where the 100-yr5

water level is determined by the 100-yr forcing, to response-based return levels, where the 100-yr water level is derived.

5 River-influence in the tide gauge

Once the observational SWL at the La Push tide gauge is decomposed, peak ηSS events are found to be the highest on record

compared to all US West coast tide gauge stations (Serafin et al., 2017). ηSS is often found to be jointly related to significant

wave height (Hs), where the most extreme ηSS occur during storms with associated low pressures, high winds, and high waves.10

When compared to the relationship of Hs and ηSS towards the south in Westport, Washington, many large ηSS at La Push occur

during small waves, outside of the joint Hs-ηSS relationship (Figure 2).

Upon further investigation of the La Push ηSS record, almost all instances of extreme ηSS events irregular to the joint Hs-ηSS

relationship are positively correlated with high discharge events. This is inconsistent with ηSS in Westport, Washington (Figure

2) and with other tide gauges along the US West coast (not shown). Most tide gauges in Washington and Oregon are situated15

in bays and estuaries where the estuary volume is much larger than the river input volume. On the other hand, the La Push tide

gauge is located on a river discharging directly into the ocean. It is therefore hypothesized that the anomalously large signal in

the ηSS is indeed river-induced.

Resulting storm surge at the La Push tide gauge modeled using ADCIRC for a simulation including full forcing (red) and a

simulation including only discharge and tides (blue) compared to the observed storm surge (black). The ADCIRC simulation20

was run for the maximum discharge event on record occurring on January 8, 2009.

4.1 Physics-based evidence of river-induced signal

To further investigate the anomalously large ηSS at the La Push tide gauge, the hydrodynamic model ADvanced CIRCculation

(ADCIRC, Luettich Jr et al. (1992)) and Simulating Waves nearshore (SWAN, Zijlema (2010) model (ADCSWAN; Dietrich et al. (2011)

) is used to simulate an example storm event. ADCSWAN has been extensively validated worldwide and has recently found25

to be skillful for modeling ηSS in the PNW (Cheng et al., 2014). ADCIRC is run in 2D depth-integrated barotropic mode

which performs well for calculating water surface elevations during storm events (Weaver and Luettich, 2010). SWAN is run

in non-stationary mode on an unstructured grid, allowing for tight coupling to ADCIRC.

To test the influence of streamflow on water levels at the tide gauge, the peak streamflow event on record, occurring on

January 8, 2009, is simulated. The model is run with two forcing implementations: one including full forcing (e.g., waves,30

wind, pressure, streamflow, sea level anomalies, seasonality, and tides) and one including only streamflow and tides. Model

results show that the simulation including only streamflow and tides is nearly able to recreate the measured ηSS signal at the
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tide gauge (Figure 7). The addition of wind, pressure, waves, sea level anomalies, and seasonality is found to have minimal

impact on the peak observed ηSS . Furthermore, maximum peak ηSS is found to occur during low tide, indicating a relationship

between tide and discharge. While this simulation only explores one instance of this phenomenon, it provides physics-based

evidence that anomalously high ηSS at this tide gauge is likely being driven by large discharge events.

A comparison of storm surge (ηSS) decomposed from all tide gauges along the northern Washington to central Oregon5

coastline. The solid, black line depicts the regional average of all of the ηSS signals, while the dashed black line represents the

regional average ηSS + 2.5*σ of all ηSS in the region. When the La Push ηSS exceeds the regional average ηSS + 2.5*σ it is

removed from the record and considered river influence.

4.1 Removal of river-influence from the oceanographic signal

Storms tend to influence large stretches of coastline at once, and while site-specific variations in the coastline or distance10

from storm can drive local variations in the amplitude of ηSS , the overall ηSS signal is fairly coherent across regional tide

gauges across the PNW. The river-influenced water levels are therefore isolated and removed from the La Push ηSS record by

developing a relationship between the La Push ηSS and a regionally-averaged ηSS .

ηSS decomposed from the Neah Bay, Westport, Astoria, South Beach, and Garibaldi tide gauges are averaged each hour to

create a regional ηSS record (black line; Figure ??; tide gauge locations in Figure 1). The standard deviation (σ) of the available15

ηSS records at each hour is used to represent the variability of ηSS due to local effects at each station. ηSS at La Push that are

larger than the regional average + 2.5σ are considered anomalous to the region, and defined as river-influenced water levels

(ηRi). Observations flagged as larger than the regional average + 2.5σ (dashed line; Figure ??) were replaced with the regional

average + σ. A value of + σ was chosen to minimize jumps in time series when subsituting in a smoother dataset. While this

methodology does not remove all the effects of ηRi in the ηSS signal, it captures the majority of anomalous water levels driven20

by high discharge events.

ηRi is produced from the difference between the original La Push ηSS and the ηSS modified described above which removes

ηSS anomalous events. ηRi occurring during low discharge events (here low is defined as less than 10 m3s−1, the approximate

summer average discharge) is added back into the La Push ηSS , as it is likely not driven by river forcing. After ηRi was removed

from the ηSS signal, it is saved as a time series of river-forced water level events.25

4.1 SR14 modifications for estuarine environments

SR14 was originally developed to simulate TWLs in a Monte Carlo sense in open-coast environments and does not have a

mechanism in place for simulating the new variables of interest, river discharge (Q) and ηRi. SR14 was therefore modified to

include simulations of ηRi and Q at both the Calawah and Sol Duc rivers. To do this, relationships were formed with variables

already simulated within the SR14 model.30

High discharge events in the Sol Duc and Calawah (and therefore Bogachiel) riverstend to occur within hours of peak wave

:::::
events

::::::::
recorded

::
in

:::::::
offshore

:::::
wave

::::
buoy

:::::::
records and water level events

:::::::
recorded

::
in

:::
the

:::
tide

::::::
gauge

::::
data. Due to the interrelated

nature of these forcings, daily maximum estimates of Q at the Calawah River
:::::::
Calawah

:::::
River

::::::::
discharge

:::::
(QC)

:
are compared

14



to all variables simulated in the SR14 model (e.g., Hs
::::
wave

::::::
height, ηSS , ηNTR, ηMMSLA, etc.) to capture any dependency

inherent in
:::::::::::
dependencies

:::::::
between

:
these processes. The most correlated variable to Q is Hs.

Similar to methods in SR14, extreme Hs and Qevents at the Calawah River are determined using the Peak Over Threshold

approach, where all independent daily maximum events over a defined threshold are selected. Threshold excesses are fit to

non-stationary Generalized Pareto distributions, which include seasonality as a covariate. Both variables are transformed to5

approximately Fréchet margins. A bivariate logistics model is then used to model the dependency between the variables.

To simulate, random numbers are sampled from a uniform distribution and mapped to each variable’s prescribed Fréchet

cumulative probability distribution function. Based on the probability
::::::
variable

::::
with

:::
the

:::::::
highest

:::::::
monthly

:::::::::
correlation

::
to
::::

QC ::
is

::::
wave

::::::
height

:::::
(Hs).

:::::::
Extreme

::::
QC :::::

events
:::

are
:::::::::

simulated
:::::
using

::
a

:::::::
bivariate

:::::::
logistic

::::::
model,

::::::
which

::
is

:::
the

:::::
same

::::::::
technique

::::
used

:::
to

:::::::
simulate

::::
ηSS .

::::
The

:::::::
bivariate

:::::::
logistic

::::::
model

::::::::
preserves

:::
the

::::::::::
dependency

:::
and

:::::::::
frequency

:
of occurrence of the transformed value,10

the estimate is transformed back to the physical scale using the Generalized Pareto distribution if extreme , dependent on the

variable’s threshold. If not extreme, the estimate is transformed back to the physical scale using monthly-varying Gaussian

copulas.
::::
joint

:::::
Hs-Q

:::::
events

::
in

:::::::
extreme

::::
and

::::::::::
non-extreme

::::::
space. This technique generates a synthetic record of Qat the Calawah

River gauge
:C:

that is seasonally varying, related to larger-scale climate variability through wave height (essentially as a proxy

for storms), and carries the same dependency between variables as the observational record (Figure 4
:
a). Q

:C:
is then multiplied15

by 2.09 to represent inflow from both the Bogachiel and Calawah rivers. The bivariate logistic model preserves the dependency

and frequency of occurrence of joint Hs-Q events in extreme and non-extreme space. This modeling technique is also used to

simulate ηSS in SR14.

Because discharge
::::::::
Discharge measurements at the Sol Duc River are highly correlated with the

::::::::
discharge

::::::::::::
measurements

:
at
::::

the Calawah River (ρ = 0.9, τ = 0.83), the
:::
thus

:
Sol Duc River

::::::::
discharge

:::::
(QSD)

:
is modeled based on a relationship with20

the Calawah River. Once the Calawah River is scaled to represent
:::::
scaled

:::
QC ,

:::::::::::
representing the Bogachiel River , estimates of

Qat the Sol Duc River
:::::
(QB).

::::::::
Estimates

::
of
:::::

QSD are related to the Bogachiel River
:::
QB during the summer and winter seasons.

First, daily maximum Q is split into summer (May, June, July, August, September, and October) and winter (January, February,

March, April, November, December) seasons. Next, two models are fit to the joint relationship between the Sol Duc River

Q(hereinafter Q
:
QSD ) and the Bogachiel River Q(hereinafter Q

:::
and

:::
QB ) each season, such that for the summer season, a25

best-fit linear model represents QSD

QSD = 1.186QB +0.226.
:::::::::::::::::::::

(1)

:
is
:::::
used

:
when QB falls between 0-10 m3s−1, and a best-fit quadratic represents QSD

QSD =−1.0× 10−4Q2
B +0.38QB +14.07.

::::::::::::::::::::::::::::::::::::
(2)

15



Figure 4. a) Joint relationship between wave height (Hs) and storm surge and discharge (Q) for the observational record (black) and one

example 500 year simulation (red). b) Seasonal model fit for the probabilistic simulation of the Sol Duc River Q in relation to the Bogachiel

River Q. The inset displays the model fits for discharge less than 30
:::
100 m3s−1.

:
is
:::::
used when QB falls between 10 - 700 m3s−1 (Figure 4).

::
b).

::::::
When

:::
QB::

is
::::::
greater

::::
than

::::
700

:::::::
m3s−1,

::::
QSD::

is
::::::::::
determined

::::
using

:

QSD = 0.216QB +61.25.
:::::::::::::::::::::

(3)

For the winter model, a linear model is fit to QSD ::::::
season,

:

QSD = 0.816QB +1.168.
:::::::::::::::::::::

(4)5

:
is
:::::
used

:
when QB fell between 0-30

:::
falls

:::::::
between

::::
0-25

:
m3s−1, and a quadratic

QSD =−1.0× 10−4Q2
B +0.46QB +16.11.

::::::::::::::::::::::::::::::::::::
(5)
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when QB falls between 30
::
25 - 2300 m3s−1 (Figure 4). Equally spaced bins are determined and

:::
b).

:::::
When

:::
QB::

is
::::::
greater

::::
than

::::
2300

::::::
m3s−1,

:::::
QSD ::

is
:::::::::
determined

:::::
using

QSD = 0.075QB +500.42.
::::::::::::::::::::::

(6)

:::::::
Summer

:::
and

::::::
winter

:::
QB::

is
::::::
binned

:::
and

:
residuals of QSD from the

:::::
above model fits are generated. Normal distributions are fit to

the QSD residuals in each bin, except for low bins (less than 30
::
25

:
m3s−1) where residuals are fit to exponential distributions.5

QSD is then directly related to simulated estimates of QB ; QSD is first determined by fitting the prescribed model to each

estimate of QB , and then a random sample is taken from the residuals per that bin
:::::
binned

:::
QB:

and added to the model. This

technique captures the joint-peaks of the river systems visible in the observed dataset, while allowing for variability in
:::::::
between

the simulated estimates
::::::
(Figure

:::
4b).

The largest ηRi usually occur coincident with low tide . This is likely due to the competing ocean and river processes during10

high Q events. During high tide, riverine floodwaters are blocked from outletting to the ocean and back up in the river. As the

water recedes during low tide, the river is no longer suppressed and exits through the inlet (Kumbier et al., 2018; Chen and Liu, 2014)

. The drainage of the river into the ocean generates high water levels at the mouth, elevating the SWL during low tide, driving

a peak in the ηNTR. ADCIRC simulations confirm this phenomenon, as the river discharge peak is modeled exactly at low tide

(Figure 7). We are, however, most interested in the15

4.0.1
::::::::
Modeling

:::
the

::::::::::::
river-induced

::::::
water

::::
level

::
At

::::
tide

::::::
gauges

:::::
along

:::
the

::::
US

::::
West

::::::
coast,

:::
the maximum daily SWL that drives flooding, which generally occurs during, or

close to, the daily high tide . Modeling large
:::::::::::::::::::::::::::::::::::::::
(Serafin and Ruggiero, 2014; Serafin et al., 2017)

:
.
::::::::
Modeling

:
peaks in ηRi that

occur during low tide would therefore erroneously increase simulated estimates of the SWL occurring during high tide. Thus,

instances of ηRi occurring approximately during high tide are retained and all other ηRi peaks are discarded. The resulting
:
,20

:::::::
resulting

::
in

:
155 peaks in ηRi are correlated with QB (Figure 5)

:::::
events.

In order to statistically simulate
:::::::
Synthetic

::::::::
estimates

::
of

:
ηRi , two linear regression models are fit to

::
are

:::::::::
developed

::
by

:::::::
relating

QB and ηRi, where QB is the independent variable. Two models rather than one are chosen because the elevation of ηRi

increases and becomes more varied as QB increases. The first linear model is fit to
:
.
::::
This

::::::::::
relationship

::
is

:::::::
modeled

:::::
using

ηRi = 0.039QB +0.854× 10−3.
::::::::::::::::::::::::::

(7)25

::::
when

:
QB :

is
:
below 190 m3s−1 , and the second is fit to

:::
and

:

ηRi = 0.093QB +0.284× 10−3.
::::::::::::::::::::::::::

(8)

::::
when

:
QB :

is
:
above 190 m3s−1

::::::
(Figure

:::
5a). Next, coarse bins ranging from 100 to 400

::::
4000

:
m3s−1 are created and the

:::::::
standard

:::::::
deviation

::
(σ

:
) of ηRi values within each bin is saved. For bins that contained

::::::
contain less than 10 observations, observations

17



Figure 5. a) The relationship between the river-influenced water level (ηRi) and river
:::::::
Bogachiel

:::::
River discharge (Q)

::
on

::
a

:::::::
log-linear

::::
scale.

The solid black line represents the linear
::::
model

:
fit to the observational records (black dots). b) The percentage of time ηRi occurs in the

record during a specific Q
:B

. In both panels, black represents the observational record and red represents one example 500 year simulation.

from the previous bins were
::
are

:
included until there were

::
are

:
more than 10 observations per bin for σ calculations. Finally, a 2-

point running average was
::
is used to smooth the σ from each bin to ensure continuous transitions and

::
to avoid the edge-effects

from binning a sparse dataset. After QB were simulated using SR14, the developed modification simulates ηRi for every day in

time by selecting the synthetic daily estimate of QB and randomly sampling from a normal distribution for each QB bin, where

the distribution parameters are modeled as µ = the regression model and σ = the standard deviation from each bin (Figure 5).5

There are times of high QB without a distinguishable ηRi in the tide gauge record, thus a model is also developed to simulate

the frequency of occurrence of ηRi as not to artificially elevate
:::::
during

:::::
daily

:::::::::
maximum SWLs. The frequency of occurrence

of ηRi is therefore defined as the percentage of time ηRi occurs in the observational record. In the observational record, ηRi

occurs ,
::::::
which

:
is
:
less than 10% of the time when QB is less than 210 m3/s, and 15 - 25% of the time when Q

:B:
is between 840

and 2090 m3s−1 (Figure 5
:
b). For Q

:B
greater than 2090 m3s−1, ηRi occurs during daily maximum water levels approximately10

50% of the time. Estimates of the percentage of time
::::
The

::::::::
frequency

::
of

::::::::::
occurrence

::
of

:
ηRi occurs are modeled by

:
is
::::::::
modeled

::::
using

:
a best-fit cubic functionto the

:
,
:::::
where

:::
the

:::::::::
frequency

::
of

:::::::::
occurrence

::
is
::
a

:::::::
function

::
of

:::
QB::::::

based
::
on

:::
the

:
percentage of time

the values have occurred in the record. Because there is no record of
:::
are

::
no

:
events greater than 2500 m3s−1

::
on

::::::
record, we
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represent the percentage of occurrence
::::
over

:::
this

:::::
value as 100% , because at some point, large Qevents would drive

::::::
(Figure

::::
5b).

::::
Once

:::
QB::

is
::::::::
simulated

:::::
using

:::::
SR14,

:
ηRi to occur 100% of the time

:
is
:::::::::
simulated

::
for

:::::
every

:::
day

::
in

::::
time

:::
by

:::::::
selecting

:::
the

::::::::
synthetic

::::
daily

:::::::
estimate

::
of

::::
QB :::

and
::::::::
randomly

::::::::
sampling

::::
from

::
a
::::::
normal

::::::::::
distribution

::
for

:::::
each

:::
QB :::

bin,
::::::
where

:
µ
::
is
:::
the

:::::::::
regression

:::::
model

::::
and

:
σ
::
is

:::
the

:::::::
standard

::::::::
deviation

:::::
from

::::
each

:::
bin

:
(Figure 5

:
a). The example simulationshows SR14 captures

::::::::
frequency

::
of

::::::::::
occurrence5

:::::
model

::
is

::::
then

:::::
used

::
to

:::::
select

:::
the

:::::::
correct

:::::::::
proportion

::
of

::::
ηRi :::::

events
:::

to
:::::
retain

:::
for

::::
each

::::::::
synthetic

::::::::::
simulation.

:::::
These

::::::::::
techniques

::::::
capture both the spread of ηRi related to Qevents

:B
as well as the percentage of time of occurrence (Figure 5).

4.1
::::::::

Hydraulic
::::::
model

:::
for

::::::::::
along-river

:::::
water

:::::
levels

:::::
While

::
a

::::::
variety

:::
of

::::::::
hydraulic

:::::::
models

:::
can

:::
be

:::::
used

:::
for

::::::::::
determining

::::
the

::::::::
elevation

::
of

:
along-river water level for the worst

performing condition in the validation tests.
:::::
levels,

:::
we

:::::::
employ

:::
the

::::::::
Hydraulic

:::::::::::
Engineering

:::::::
Center’s

:::::
River

::::::::
Analysis

:::::::
System10

::::::::::
(HEC-RAS;

:::::::::::::
Brunner (2016)

:
).

:::::::::
HEC-RAS

::
is

::::
used

::
to

:::::::
estimate

:::::
water

:::::::
surface

::::::::
elevations

::
in

:::::
rivers

::::
and

::::::
streams

:::
in

::::
both

:::::
steady

::::
and

:::::::
unsteady

::::
flow

::::
and

:::::
under

:::::::::
subcritical,

::::::::::::
supercritical,

:::
and

::::::
mixed

::::
flow

:::::::
regimes

:::::::::::::
(Goodell, 2014)

:
.
:::::::::
HEC-RAS

:::
has

:::::
been

:::::::::
previously

::::
used

::
to

:::::
model

:::::
water

:::::::
surfaces

:::
for

::
a

:::::
range

::
of

::::::::::
applications

:::::::::
including,

:::
but

:::
not

::::::
limited

:::
to,

::::::::
floodplain

::::::::
mapping

:::::::::::::::
(Yang et al., 2006)

:
,

::::
flood

:::::::::
forecasting

::::::::::::::::
(Saleh et al., 2017),

::::
dam

:::::::::
breaching

::::::::::::::
(Butt et al., 2013)

:
,
:::
and

::::
flood

:::::::::
inundation

:::::::::::::::::::::
(Horritt and Bates, 2002).

:::::::::
HEC-RAS

::::::::
computes

:::::
water

:::::
levels

:::
by

:::::::
solving

:::
the

:::
1D

::::::
energy

::::::::
equation

::::
with

:::
an

:::::::
iterative

::::::::::
procedure,

::::::
termed

:::
the

::::
step

:::::::
method,

:::::
from

::::
one15

::::::::::
cross-section

::
to
:::
the

::::
next

:::::::::::::
(Brunner, 2016)

:
.
:::
For

:::::::::
subcritical

:::::
flows,

:::
the

:::
step

:::::::::
procedure

:
is
::::::
carried

:::
out

:::::::
moving

::::::::
upstream;

:::::::::::
computations

::::
begin

:::
at

:::
the

::::::::::
downstream

:::::::::
boundary

::
of

:::
the

:::::
river

::::
and

:::
the

:::::
water

:::::::
surface

::::::::
elevation

::
at

::
an

:::::::::
upstream

:::::::::::
cross-section

::
is

:::::::::
iteratively

::::::::
estimated

::::
until

:
a
::::::::

balanced
:::::
water

:::::::
surface

:
is
::::::::

obtained.
:::::::

Energy
:::::
losses

:::::::
between

::::::::::::
cross-sections

:::
are

:::::::::
comprised

:::
of

:
a
::::::::
frictional

::::
loss

::
via

:::
the

::::::::::
Manning’s

:::::::
Equation

::::
and

:
a
:::::::::::::::::::
contraction/expansion

:::
loss

:::
via

::
a
:::::::::
coefficient

:::::::::
multiplied

::
by

:::
the

::::::
change

:::
in

:::::::
velocity

::::
head

::::
(see

:::::::::::::
Brunner (2016)

::
for

:::::
more

:::::::
details).20

::
In

:::
this

::::::::::
application,

:::::::::
HEC-RAS

::
is

::::
used

::
to
::::::

model
:::
1D

:::::
water

:::::
levels

:::::
under

::::::::
gradually

::::::
varied,

::::::
steady

::::
flow

:::::::::
conditions

::
at

::::::::
transects

::::
along

::::
the

:::::::::
Quillayute

:::::
River.

::::::
While

:
a
::::::::::::
simplification

::
of

:::::
flood

:::::::::
processes,

:::
the

:::
1D

::::::::::
application

::
is

:::::::::
commonly

::::
used

::
to
::::::

create
:::::
flood

:::::
hazard

:::::
maps.

::
A
:::::::
detailed

::::::
Digital

::::::::
Elevation

:::::
Model

:::::::
(DEM)

:
is
:::::::::
developed

:::
for

::
the

::::
river

::::::::
network,

::::::::
including

:::::::::
bathymetry

::::
and

:::::::::
topography

::
for

:::
the

::::::::::
floodplains

::
of

:::::::
interest

:::::::
(Figure

::
6).

::::::
Model

:::::::
domain

::::::::
boundary

:::::::::
conditions

:::
are

:::::::
chosen

::
as

:::
the

:::::
SWL

::
at

:::
the

::::
tide

:::::
gauge

::::
(m;

::::::::::
downstream

::::::::
boundary)

::::
and

::::
river

::::::::
discharge

::::
from

:::
the

:::
Sol

::::
Duc

:::
and

:::::::::
Bogachiel

::::
rivers

:::::::
(m3s−1;

::::::::
upstream

:::::::::
boundary).

::::
The

:::::::::
HEC-RAS25

:::::
model

::
is

::::::::
validated

:::::
using

:::::
water

:::::::
surface

::::::::::::
measurements

:::::
from

:
a
:::::
2010

::::::
survey.

:::::::
Details

::
of

:::
the

::::::::::
HEC-RAS

:::::
model

:::::::::
validation

::::
and

:::::::::
calibration

:::::::::
procedures

:::
are

::::::::::
documented

::
in

:::::::::::
supplemental

:::::::::::
information.

4.2
::::::

Hybrid
::::::::::::::::
statistical-physical

::::::::
modeling

:::
The

::::::::
modified

:::::::::
simulation

::::::::
technique

:::
of

:::::
SR14

::
is

::::
used

::
to

:::::::
produce

:::
70

::::
500

::::
year

::::
long

::::::::
synthetic

::::::
records

:::::::::::
representing

::::::::::
present-day

::::::
climate

:::
for

:::
the

::::
time

::::::
period

::
of

:::::::::
1980-2016

:::
of

::::
daily

:::::::::
maximum

:::::
SWL

:::
and

::
Q
:::

for
:::::

both
:::
the

:::
Sol

::::
Duc

:::
and

:::::::::
Bogachiel

::::::
rivers.

::::::
Rather30

:::
than

::::
run

:::
the

::::
∼13

::::::
million

:::::::::
conditions

::::::::
simulated

:::::::
through

:
a
:::::::::
numerical

::::::
model,

:
a
:::::::
limited

::
set

:::
of

::::
joint

::::::::
boundary

:::::::::
conditions

::
of

:::::
SWL

:::
and

::
Q

:::
(at

:::
the

:::::::::
Bogachiel

::::
and

:::
Sol

::::
Duc

::::::
rivers)

:::
are

::::
run

::::::
through

::::::::::
HEC-RAS,

:::::::::
outputting

:::
the

::::::::
elevation

:::
of

:::
the

::::::::::
along-river

:::::
water

::::
level

::
at

::::
each

:::::::::
HEC-RAS

:::::::
transect.

:::::::::
Surrogate

::::::
models

:::
are

::::::::
generated

:::::
from

:::
the

:::::::::
HEC-RAS

::::
runs

:::
for

::::
each

:::::::
transect

:::::
using

:
a
::::::::
scattered
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Figure 7.
::::::

Resulting
:::::

storm
::::
surge

:::
(a)

:::
and

:::
still

:::::
water

::::
level

:::
(b)

:
at
:::

the
:::
La

::::
Push

:::
tide

:::::
gauge

::::::
modeled

:::::
using

:::::::
ADCIRC

:::
for

:
a
::::::::
simulation

::::::::
including

:::
full

:::::
forcing

::::
(red)

:::
and

::
a
::::::::
simulation

:::::::
including

::::
only

:::::::
discharge

::::
and

::::
tides

::::
(blue)

::::::::
compared

::
to

:::
the

:::::::
observed

::::
storm

:::::
surge

::::::
(black).

:::
The

::::::::
ADCIRC

::::::::
simulation

:::
was

:::
run

::
for

:::
the

::::::::
maximum

:::::::
discharge

::::
event

::
on

::::::
record

:::::::
occurring

::
on

::::::
January

::
8,

::::
2009.

:::::
linear

::::::::::
interpolation

::
of

:::
the

:::
3D

:::::::
surface

::
of

::::::::
boundary

:::::::::
conditions.

::::
The

::::::
number

::
of

::::::::::::
combinations

::
of

:::::
SWL

:::
and

::
Q

::::
used

::
to

:::::::
develop

:::
the

:::::::
surrogate

:::::::
models

:::
are

:::::
chosen

::
to
::::::::
minimize

:::::::::::
interpolation

:::::
errors

::::::
during

::::::::
validation

:::::
runs.

:
A
:::::
daily

:::::::
estimate

::
of

:::::
water

::::
level

::::::::
elevation

::
at

::::
each

::::::
transect

::
is
::::::::
produced

:::
by

::::::::
inputting

::
all

:::::
daily

::::::::
maximum

:::::
SWL

:::
and

::
Q
:::::::::
conditions

::::
into

:::
the

::::::::
surrogate

:::::::
models,

:::::
which

:::::::::
efficiently

:::::
extract

::::::::::
along-river

:::::
water

:::::
levels

:::
for

::::
any

:::
set

::
of

:::::
SWL

:::
and

::
Q
::::::

inputs.
::::::

Using
:::
the

:::::::::
countback

:::::::
method,

::::::
where

:::
for

:::::::
example,

::::
the

:::
5th

:::::
largest

:::::
event

:::
for

::::
each

::::::::
synthetic

::::::
record

::::::
would

::
by

:::
the

::::::
100-yr

::::::
event,

:::::
water

::::
level

::::::
return

:::::
levels

:::
are

::::::::
extracted

:::
for

::
all

:::
70

::::
500

::::
year5

:::::::
synthetic

:::::::
records

:::
for

:::
the

::
1)

::::::::::
along-river

:::::
water

:::::
levels

::
at
:::::

each
:::::::
transect,

:::
2)

::::::
SWLs,

:::
and

:::
3)

::
Q.

:::::
This

:::::::::::
methodology

:::::::
provides

:::::
both

::
an

:::::::
estimate

:::
of

:::
the

:::::
return

:::::
level

:::::::::
magnitude

::::
(e.g.,

::::
the

::::::
average

:::
of

:::
the

::
70

::::::
100-yr

:::::::
events),

:::
as

::::
well

::
as

:::
the

::::::::::
uncertainty

::::::
around

::::
that

::::::::
magnitude

:::::
(e.g.,

:::
the

::::::::::
distribution

::
of

:::
the

:::
70,

::::::
100-yr

:::::::
events).

::
It

::::
also

:::::::
provides

::
a

::::::::
technique

::
to

::::::::
compare

:::
the

::::::::::::
response-based

::::::
return

::::
level

:::::
(e.g.,

:::
the

::::::
100-yr

:::::
water

:::::
level)

::
to

:::
the

::::::::::
event-based

::::::
return

::::
level

:::::
(e.g.,

:::::
water

:::::
level

:::::
driven

:::
by

:::
the

::::::
100-yr

:::::
SWL

:::
or

::::::
100-yr

::
Q

:::::
event).

:
10

5 Results

The following section first provides a validation of the surrogate models by comparing
::::
The

::::::::
following

::::::
section

::::
first

::::::::
validates

::
the

::::::::
presence

::
of

::
a
:::::::::::
river-induced

:::::
water

:::::
level

:::::
within

:::
the

::::
tide

:::::
gauge

::::::
signal,

::::
then

:::::::::::
demonstrates

:::
the

:::::::::::
effectiveness

:::
of

:::
the

::::::::
surrogate

::::::
models

::
in

::::::::::
representing

:
along-river water levels from a specific set of conditions directly modeled in

:::::
water

:::::
levels

::
for

::::::::::
unmodeled
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HEC-RAS to along-river water levels interpolated from the surrogate models for the same set of
:::::::
boundary

:
conditions. Next,

the spatial and temporal variability of the magnitude of along-river water levels and their driving conditions are examined.

Finally, low probability water levels, like the 100-yr event, are extracted and their
::::
from

:::
the

:::::::::
simulated

::::::
records

::
of

::::::::::
along-river

::::
water

:::::
levels

::::
and

:::
the dominant drivers are evaluatedand compared to the low probability water level from the 100-yr dischargeor

100-yr SWL event at each transect.5

5.1
::::::::::::
River-induced

:::::
water

::::
level

:::::::::
validation

::::::
Results

::::
from

:::::::::::
ADCSWAN

::::::::
modeling

::
of

:::
the

::::::
January

::
8,

:::::
2009

:::::
storm

::::
event

:::::
show

::::
that

:::
the

::::::::
simulation

::::::::
including

::::
only

:::::
river

::::::::
discharge

:::
and

::::
tides

::
is

::::::
nearly

:::
able

::
to
:::::::
recreate

:::
the

::::::::
measured

:::::
peak

:::
ηSS::::::

signal
::
at

:::
the

:::
tide

:::::
gauge

:::::::
(Figure

:::
7a).

::::
The

:::::::
addition

::
of

:::::
wind,

::::::::
pressure,

:::::
waves,

::::
sea

::::
level

::::::::::
anomalies,

:::
and

::::::::::
seasonality

::
is

:::::
found

:::
to

::::
have

:::::::
minimal

:::::::
impact

::
on

:::
the

:::::
peak

::::::::
observed

::::
ηSS .

::::::::::::
Furthermore,

:::
the

::::::::
maximum

::::
ηSS :::::

occurs
::::::
during

:::
low

::::
tide

::::::
(Figure

:::
7b),

::::::
which

:::::::
indicates

:
a
::::::::
potential

::::::::::
relationship

:::::::
between

:::::
water

::::::
surface

::::::::
elevation,

::::
tidal10

::::
level,

::::
and

::::
river

::::::::
discharge.

::::::
While

:::
the

::::::::::
ADCSWAN

::::
runs

::::
only

::::::
explore

::::
one

:::::::
instance

::
of

:::
this

:::::::::::
phenomenon,

::
it

:::::::
provides

::::::::::::
physics-based

:::::::
evidence

::::
that

::::::::::
anomalously

::::
high

::::
ηSS::

at
:::
the

:::
La

::::
Push

:::
tide

::::::
gauge

::
is

:::::
likely

:::::
being

:::::
driven

:::
by

::::
large

::::::::
discharge

::::::
events.

:

5.2 Surrogate models
:::::
model

:::::::::
validation

Approximately 3,000 Q-SWL
:
A
:::::::
number

::
of

:
validation scenarios are directly modeled through

:::::::
modeled

::
in

:
HEC-RAS to de-

termine if the number of conditions used for surrogate model generation
:::::::
whether

:::
the

:::::::::::
combinations

::
of

::
Q
::::
and

:::::
SWL

::::::::
boundary15

::::::::
conditions

:::::
used

::
to

:::::::
develop

:::
the

::::::::
surrogate

:::::::
models represent a large enough sample space of forcing conditions for correctly

interpolating
::
the

:::::::::::
interpolation

::
of along-river water levels. The validation scenarios are chosen to cross through both HEC-RAS

modeled and unmodeled conditions (Figure 8
:
a). Across all validation scenarios, the average root mean square error (RMSE)

between the
:::::::::
HEC-RAS

:
directly-modeled and surrogate model-generated water level

:::
the

::::::::
surrogate

::::::::::::::::
model-interpolated

:::::
water

:::::
levels is 1 cm. Only about 1.5% of the validation scenarios have a bias greater than 10 cm, and the largest RMSE at any tran-20

sect is 20 cm across all water level scenarios (Figure 9). The worst represented scenarios occur during high Bogachiel River

Qevents
::::::::
validation

:::::::
scenario

::::
with

:::
the

:::::
worst

:::::::::::
performance

::::::
occurs

::::::
during

::::
high

:::
QB:::

and
::::

low
::::
QSD:

paired with low Sol Duc River

Q and low SWL events. However, even during these cases
:::
this

::::
case, the differences between the

::::::::
HEC-RAS

:::::::::::::::
directly-modeled

::
the

:
surrogate model-interpolated and directly modeled water levels are

::::
water

::::
level

::
is
:

small (Figure 8
:
b). The main research

interest
:::::
focus here is extreme water levels, and the conditions driving low probability return level events rarely fell

:::
fall around25

the scenarios with the highest bias.

a) Variability of along-river water levels averaged over summer (JJA), fall (SON), winter (DJF) and spring (MAM). b) The

difference between the fall, winter, and summer and the spring along-river water level.

Left) Observational (black) and simulated (red) monthly median still water level (SWL), non-tidal residual (ηNTR), and

discharge (Q). Right) Observational (black) and simulated (red) monthly 98th percentile of the SWL, Q, and ηNTR. Red30

shading indicates the bounds value from each simulation.
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Figure 8. a)
:::::::
Modeled

::::::::
HEC-RAS

:
Q
::::::::

boundary
::::::::
conditions

:::
used

::
to
:::::::
generate

:::
the

:::::::
surrogate

:::::
models

:::::::::
(red-dotted

::::
lines)

::::::::
compared

::
to

::
the

::::::::
simulated

::::::::
conditions

:::
used

:::
for

::::::::
surrogate

:::::
model

::::::::
validation

:::::
(green

::::
dots).

::::
The

:::::
black

:::
dots

:::::::
represent

:::
the

:::::::::::
observational

::::
daily

::::
max

::::::::
conditions,

:::::
while

:::
the

:::::
colored

::::::
circles

:::::::
represent

:::
the

:::::::::::::
worst-performing

::
of

:::
the

::::::::
validation

::::
tests.

:::
The

:::
red

::::
and

:::
blue

::::::
colored

::::::
circles

:::::::
represent

:::
the

:::::::
scenarios

:::::
where

:::
the

:::::::::
interpolated

::::
water

::::::
surface

:::
had

::
a
:::
bias

::
of
::::

over
:::
10

::
cm

:::::
lower

::::
than

:::
the

:::::
model.

::
b)
::::::::

Example
::::::::
along-river

:::::
water

::::
level

:::
for

::
the

:::::
worst

:::::::::
performing

:::::::
condition

::
in

::
the

::::::::
validation

::::
tests.

5.3 Temporal variability in
::::::
Hybrid

::::::::
modeling

:::
of along-river water levels

Similar to the driving boundary conditions of SWL and Q, seasonal

5.3.1
::::::::
Temporal

::::::::::
variability

:::::::
Seasonal

:
variability exists in the elevation of along-river water levels. The highest elevation water level occurs during the winter

(here defined as December, January, and February), while the lowest elevation water level occurs during the spring (March,5

April, May) (Figure 10
:
a). The spring profile

:::::::::
along-river

:::::
water

::::
level

:
is on average (maximum difference) 50 cm (84 cm)

::::
0.50

::
m lower than the winter profile, 33 cm (63 cm)

:::::::::
along-river

:::::
water

:::::
level,

::::
0.33

::
m

:
lower than the fall (September, October, and

November) profile, and 3 cm (12 cm)
:::::::::
November)

:::::::::
along-river

:::::
water

:::::
level,

:::
and

::::
0.03

:::
m lower than the summer (June, July, and
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Figure 9.
::
a) Average root mean square error (RMSE) and b) bias for all

::
197

::::::::
discharge validation scenarios (e.g., 197 Q and

:::::
across

:
4
:::
out

::
of

::
the

:
15 SWL ) across four SWL scenarios. The worst-performing model (pictured in the previous figure) is discharge scenario 153.

August) profile
::::::
August)

:::::::::
along-river

:::::
water

:::::
level (Figure 10

:
b). The difference between seasonal profiles

:::::::::
along-river

:::::
water

:::::
levels

is nonlinear upstream, and certain sections of the river have larger changes in elevation between months (Figure 10
:
b). However,

this variation becomes relatively linear downstream of river km 3.

The seasonal variability of the along-river water level is driven by the seasonality of the forcings, which are well represented

in the simulations compared to the observations (Figure 11). The median Q of the Quillayute (combined Sol Duc and Bogachiel5

Q) is approximately 200 m3s−1 higher in winter months than summer months (Figure 10
:::::::
monthly

::::::
median

::::::
SWLs

::::
and

::::::
ηNTRs

::
are

::::::
higher

::
in

:::
the

:::::
winter

::::
than

::
in

:::
the

:::::::
summer

::::::
(Figure

::::
11a

:::
and

:::::
Figure

::::
11b). This cyclical variability is also depicted in the monthly

median SWL and ηNTR. Winter ηNTR is approximately 40 cm higher than summer ηNTR, which is also reflected in the SWLs

(a and b, Figure 11
::::
river

::::::::
discharge

:::::
from

:::
the

:::::::::
Quillayute

::::
River

::::::::::
(combined

:::
Sol

::::
Duc

:::
and

:::::::::
Bogachiel

:::
Q),

:::
and

::
is

::::::::::::
approximately

::::
200

:::::
m3s−1

::::::
higher

::
in

::::::
winter

::::::
months

::::
than

:::::::
summer

:::::::
months

::::::
(Figure

::::
11c). The 98th percentile of Q, SWL, and

::::
SWL,

:
ηNTR,

::::
and

::
Q10

have a similar seasonal variability as
::
the

:
median conditions (Figure 11

::
d,

::::::
Figure

:::
11e,

::::
and

::::::
Figure

:::
11f).
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5.4 Probabilistic spatially-varying extreme water levels

Using the count-back method,

5.3.1
::::::
Spatial

:::::::::
variability

:::
The

:::::
large

:::::::
number

::
of

::::
joint

:::::
SWL

::::
and

::
Q

:::::::::
conditions

::::::
allows

:::
for

:::
the

:::::
direct

:::::::::
extraction

::
of

:
water level return level events at each

transect are extracted for all 70 500 year long simulations representing present-day climate from 1980-2016. This methodology5

thus provides both an estimate of the average water level return level as well as the uncertainty around that value.
::::
levels

::::
and

::
the

::::::::::::
corresponding

:::::::::
univariate

::
or

::::::::::
multivariate

::::::
drivers

:::::
along

:::::
each

:::::::::
HEC-RAS

:::::::
transect.

:
The magnitude of along-river water level

return level events are between 2 and 10 m, with peaks near 1
:::
the

:::
100,

:::
25,

:::
10,

:::
and

::::::
annual

:::::
return

::::
level

:::::
water

:::::
levels

::
is

:::::::
between

:
3

and 9 km (Figure 12
::
17

::
m
:::::::::
(NAVD88,

::::::
Figure

::::
12a). While the peaks in water level return level events occur at similar locations,

the difference between water level return level events spatially varies
:::::
varies

:::::::
spatially

:
moving upriver. For example, at river km10

1, the difference between the average
::
(of

:::
all

::::::::::
simulations)

:
annual and 100-yr event is approximately 50 cm

:::
0.9

::
m, whereas at

river km 9.5
:
8

:::
and

::::::::
upstream, the difference between the

::::
these two events is

:::::
closer

::
to 2 m (Figure 12

:
b).

The many realizations of joint SWL-Q allows for the investigation of the fluvial and oceanographic processes driving the

magnitude of

:::
The

::::::::
dominant

:::::::
forcing

:::::::::
conditions

::::::
driving

:
water level return level events. Panels c and d in Figure 12 displays the average15

condition forcing the water level return level for the annual, 25, 100, and 500-yr event . Between river km 0 and 1.5, the average

SWL driving the water level return level eventis constant and then gradually decreases over a 1 km zone by approximately 50

cm. On the other hand, the
::::
levels

::::::
varies

:::::::::
along-river.

:::
At

:::
the

:::::
river

::::::
mouth,

:::
the

::::::
annual

:::::
water

::::
level

:::::
event

:::::
(e.g.,

:::
the

:::::
event

::::
that

::
is

:::::::
expected

:::::
every

:::::
year)

::
in

:::::
each

:::::::::
simulation

::::::
occurs

::::::
during

::
Q

:::::::
ranging

::::
from

:::
40

::
-
::::
2600

::::::
m3s−1

::::
and

::::::
SWLs

::::::
around

:::
3.3

:::
m,

::::::
which

::::::::::
corresponds

::::
with

:::
the

::::::
annual

:::::
SWL

:::::
event

::::::
(Figure

:::::
13a).

:::::::
Moving

::::::::
upstream

::
to

::::
river

:::
km

::
1
:::
and

::
2,
::::

the
:::::
annual

:::::
water

:::::
level

:::::
event

::
is20

:::::
driven

:::
by

::::
both

::::
high

:::::
SWL

::::::::
occurring

::::::
during

::::
low

::
Q

::::
and

:::
low

:::::
SWL

::::::::
occurring

::::::
during

::::
high

:::
Q.

:::
At

::::
river

:::
km

:::
4,

:::
the

::::::
annual

:::::
water

::::
level

:::::
event

::::::
occurs

:::::
during

:::
the

::::::
annual

:::
Q

::::
event

:::::::::
coincident

:::::
with

:::::
SWLs

::::
that

:::::
range

::::
from

::::
1.8

:
-
:::
3.9

::
m

:::::::
(Figure

::::
13a).

::::::
These

::::::
results

::
are

:::::::
similar,

:::::
albeit

:::::
events

:::
are

::::::
larger

:::::::::
magnitude,

:::
for

:::
the

::::::
100-yr

:::::
water

::::
level

:::::
event.

:::::::::::
Downstream

::::::
100-yr

:::::
water

:::::
levels

:::
are

:::::
driven

:::
by

::::::
SWLs,

::::::::
upstream

::::::
100-yr

:::::
water

::::::
levels

:::
are

:::::
driven

:::
by

:::
Q,

:::
and

:::
the

::::::
100-yr

:::::
water

:::::
level

:::::::
between

:::
km

::
1
:::
and

::
2
::
is

::::::
driven

::
by

::::::::
different

:::::::::::
combinations

::
of

::::
high

:::
and

::::
low

:::::
SWL

:::
and

::
Q

:::::
events

:::::::
(Figure

::::
13b).

:
25

:::
The

::::::
relative

::::::::::
importance

::
of

::::
both

:::::::
oceanic

:::
and

:::::::
riverine

::::::
forcing

::
to

:::::::
extreme

:::::
water

:::::
levels

:::::::
emerges

:::::
when

::::::::
averaging

:::
the

:::::::::
magnitude

::
of

:::
the

::::::
drivers

::
of

:::
the

::::
water

:::::
level

:::::
return

:::::
levels

::
at

::::
each

:::::::
transect

::::
from

:::
all

::
70

::::
500

::::
year

::::
long

:::::::::
simulations

:::::::
(Figure

:::
14).

::::
The

:::::::::
magnitude

::
of

:::
the average Q driving the water level return level event

::::
levels

:
gradually increases by approximately 2000

::::
1000 m3s−1 over

river km 0 - 3
:
2 and then is fairly constant

::::::::
consistent from river km 3

:
2 to 10 (Figure 12). Compared to the univariate return

level forcings,
::::
14a).

:::::::::::
Downstream,

:::::::
between

:::::
river

:::
km

:
0
::::
and

::::
0.25,

:::
the

:::::::::
magnitude

::
of

:::
the

:::::::
average

:::::
SWL

::::::
driving

:::::
water

::::
level

::::::
return30

:::::
levels

:
is
:::::::::
consistent

:::
and

::::
then

::::::::
gradually

::::::::
decreases

::::
over

::
a
:
1
:::
km

:::::
zone

::::::
(Figure

:::::
14b).

:::::
When

:::::::::
comparing

::
to

:::::
water

::::
level

:::::
return

:::::
levels

::::::
driven

::
by

:
a
:::::::::
univariate

::::::
forcing

::
or

:::::
event

:::::
return

::::
level

:::::
(e.g.,

:::::::::
along-river

:::::
water

:::::
levels

:::::::
modeled

::::
from

:::
the

::::::
100-yr

::
Q

::
or

:::::
SWL

::::::
event), we find that the stretches of river that display constant

:::::
driven

::
by

::
a

::::::::
consistent

:
SWL
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Figure 11.
::::
Left)

:::::::::::
Observational

:::::
(black)

:::
and

::::::::
simulated

::::
(red)

:::::::
monthly

::::::
median

:::
still

::::
water

::::
level

::::::
(SWL),

::::::::
discharge

:::
(Q),

:::
and

:::::::
non-tidal

:::::::
residual

::::::
(ηNTR).

:::::
Right)

:::::::::::
Observational

::::::
(black)

:::
and

::::::::
simulated

::::
(red)

::::::
monthly

::::
98th

::::::::
percentile

::
of

:::
the

:::::
SWL,

:::
and

:::::
ηNTR::

Q.
::::
Red

::::::
shading

:::::::
indicates

:::
the

:::::
bounds

:::::
value

:::
from

::::
each

:::::::::
simulation.

or Q forcing approximate
::::::::::
approximates

:
the univariate return level eventsuch that .

:::::::::
Therefore,

:
the 100-yr SWL does indeed

cause the 100-yr water level in the lower river near the ocean outlet
:::::::::::
downstream,

:::::::
between

::::
river

:::
km

:
0
::::
and

::::
0.25, while the 100-yr

Q event drives the 100-yr water level along river km 3
::::::::
upstream,

:::::::
between

::::
river

::::
km

:
2
:
- 10 (grey dashed lines, Figure 12

::
14).

However, between river km 1.5
::::
0.25 - 2.5

:::
1.75

:
a flood transition zone is present, where neither the SWL return level or the

Q return level drives
:::::
events

::::
drive

:
the water level return level. This is consistent across all return level events, regardless of5

likelihood. This is further evidenced by investigating the SWL and Q conditions that drive the annual and 100-yr event at

specific along river transects (Figure 13). At the river mouth, the annual water level event occurs during Q ranging from 20 -

3200 m3s−1 and SWLs that vary by only 10 cm. Moving upstream to river km 2, which lies in the flood transition zone, the

annual event is driven by both high SWL occurring during low Q and low SWL occurring during high Q. By river km 4, the

annual event is forced by the univariate, annual Q event (Figure 13). This pattern is similar for the 100-yr event at all transects10

but with higher magnitude SWL and Q conditions.
:
.

a) The average along-river water level return level at each transect for all 70 probabilistic simulations. b) The along-river

difference between the average annual and 100-yr event. The average forcing condition driving the response-based return level

at each river transect where c) displays the Quillayute Q scenario driving low probability water levels and d) displays the
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Figure 12.
::
a)

:::
The

::::
water

::::
level

:::::
return

::::
level

:
at
::::

each
::::::
transect

:::
for

::
all

::
70

::::::::::
probabilistic

:::::::::
simulations.

::::
Each

:::::
return

::::
level

::::
event

::::::
displays

:::
the

::::::
average

::
of

::
the

:::::::::
simulations

:::::
(solid

::::
line)

::
as

:::
well

::
as

:::
the

::::
range

::::::
around

:::
the

::::::
average

:::::::
(shaded).

::
b)

:::
The

:::::::::
along-river

::::::::
difference

::::::
between

:::
the

:::::
annual

:::
and

::::::
100-yr

::::
event,

:::::::
averaged

::::
over

::
70

:::::::::
simulations.

:

SWL scenario driving low probability water levels. The grey dashed lines depict the event-based return level, where the low

probability water level would be modeled based off , for example, the low-probability discharge. Red, orange, blue, and black

lines represent the 500, 100, 25, and annual return level event. In panels c and d, the pink shaded area represents a transition

zone, where neither event drives the water level.

6 Discussion5

The hybrid model developed in this study, which combines statistical simulations with a physics-based model, provides a

novel
::
an

:
approach for probabilistically evaluating the conditions that drive extreme water levels, not only at a tide gauge

::
in

::
an

:::::::::
open-coast

::::::
setting, but also miles upriver. The ability to simulate hundreds of thousands of

:::::::
millions

::
of

:
combinations of Q

and SWL events allows for a robust estimate of resulting along-river water levels, which numerical models alone are unable to

consider due to large computational expenses. While some of our modeling techniques are specific to this location, the overall10

framework for combining statistical and physics-based models is general enough for use in coastal locations throughout the

globe where flooding arises from compounding processes.

The decomposition of the SWL into low and high frequency signals, including a river-influenced component, helps characterize

::::::
identify

:
the importance of physical processes in

:::
for

:::::::::
generating

::::
high

:::::
water

:::::
levels

::::::
across various regional settings. This is es-

pecially important in locations like the US West coast, where the steep, narrow continental shelf prevents wind and pressure15
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Figure 13.
:::
The

::::::::
individual

:
Q
::
or

::::
SWL

::::::::
condition

:::::
driving

:::
the

::
a)

:::::
annual

:::
and

::
b)

:::::
100-yr

::::
water

::::
level

:::::
event

:
at
::::::
specific

:::::::::
along-river

::::::
locations

:::
for

::::
each

::
70

:::
500

:::
year

:::::::::
simulation.

::
In

::::
both

:::::
figures,

:::
the

::::
black

::::
lines

:::::::
represent

:::
the

:::::
annual

:::
and

:::::
100-yr

:::::
return

::::
level

::::::::
magnitude

:::
for

:
Q
::::

and
::::
SWL.

driven storm surge from being overwhelmingly large (Allan et al., 2011). The influence of the river signal in the tide gauge is

directly related to the setting of our study site. The estuary is relatively small and narrow with the river discharging directly

into the ocean. This is dissimilar to other tide gauges in the region which are located in larger estuaries, situated away from

river input. Estuaries typically exhibit wave, tide, or river-dominant morphology, based on the relative energy of each process

(Dalrymple et al., 1992). The Quillayute River outlets directly to a high wave energy environment and has a small estuary5

volume compared to its river input volume. The steep catchment of the mountainous environment means a short response

time for rainfall, therefore producing peak discharges temporally similar to peak storm-induced still water levels, allowing for

interaction between the two. In contrast, water level elevations with large estuary volume compared to river discharge are less

influenced by fluvial processes. Furthermore, a larger estuary may experience variability in the water surface elevation due

to wave-induced setup and/or other local storm-induced processes (Cheng et al., 2014; Olabarrieta et al., 2011), which may10

further dampen the influence of a river signal.

Defining compounding extreme events based on a more complete probability space of jointly-occurring conditions has

been described in open coast settings (Serafin et al., 2017), however this is the first application to riverine environments. This

research confirms the presence of an oceanographic-fluvial transition zone, where traditional, univariate methodologies for
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Figure 14. The individual Q or SWL event
:::::
average

::::::
forcing

::::::::
condition driving the

::::::::
along-river

:::::
return

:::::
levels

::
at

:::
each

:::::::
transect

::::
where

:
a) annual

::::::
displays

:::
the

::::::::
Quillayute

::
Q

::::::::
conditions and b) 100-yr event at specific

:::::
displays

:::
the

:::::
SWL

::::::::
conditions.

::::
The

:::::
dashed

::::
lines

:::::
depict

:::
the

::::::::
univariate

:::::
forcing

:::::::::
conditions,

:::::
where

::
the

:
along-river locations

::::
return

::::
level

::
is
:::::::
assumed

::
to

::
be

:::::
driven

:::
by

::::
either

::
Q
::
or

:::::
SWL.

:::
Red,

::::::
orange,

::::
blue,

:::
and

:::::
black

:::
lines

::::::::
represent

::
the

::::
100,

:::
25,

:::
10,

:::
and

:::::
annual

:::::
return

::::
level

:::::
event.

::::
The

:::
grey

::::::
shaded

:::
area

::::::::
represents

::
a
:::::::
transition

:::::
zone,

:::::
where

::
the

:::::
water

::::
level

::
is

:::::
driven

::
by

:
a
:::::::::
combination

::
of
:::::
SWL

:::
and

:
Q
::::::

events.

defining return level events are insufficient for defining water level return levels. Between river km 1.5 and 2.5
:
1
:::
and

::
2, we find

that a range of SWL and Q events
::::::::
conditions

:
drive all return level events, and

::::
water

:::::
levels

:::
are

::::::
driven

::
by

:
neither the univariate

SWL or Q return level drives the water level
::::
event. A similar flood zone transition was recently modeled numerically, and albeit

for a single event, physically demonstrated
::::::::::
demonstrates

:
the importance of including multiple variables to reproduce accurate

flooding (Bilskie and Hagen, 2018). Thus, flood hazard assessments on systems with multivariate forcings may misrepresent5

water level elevations for low probability events if only univariate variables are modeled. This has large implications for

characterizing the risk to flooding, especially in the context of mapping flooding hazards. Furthermore, we show that return

level water levels can occur over a range of combined extreme and non-extreme forcing in the flood transition zone. This
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illustrates that in order to properly understand the impacts of compounding flooding, more than just design scenarios need to

be considered for the proper assessment of risk.

Many of our results can be explained by dynamics that occur during interacting ocean and river flows. For example, a

coincidence of high SWL and peak river discharge may induce blocking, where river-induced water levels are trapped upstream

and either flood overbank or outlet to the ocean when water
::
as

:::
the

::::
tide recedes (Kumbier et al., 2018; Chen and Liu, 2014).5

While our ADCIRC
:::
The

::::::::
outletting

::
to

:::
the

:::::
ocean

::
as

:::
the

:::
tide

:::::::
recedes

::::::::
artificially

:::::::
inflates

:::::
SWLs

::
at

:::
the

:::
tide

::::::
gauge,

:::::::::
increasing

:::::
water

:::::
levels

::
for

:::::
days

:
at
::
a
::::
time

:::
and

::::::::::
prolonging

:::::::
exposure

::
to

::::::::
flooding.

:::::
When

:::::::::
subtracting

::
a
:::
tide

::::
time

:::::
series

:::::
from

:::
this

::::::
signal,

:::::
storm

:::::
surge

:::::
would

::::::
appear

::
to

:::
be

:::::::
elevated

::
at

:::
low

:::::
tide.

:::::
While

:::
the

:::::::::::
ADCSWAN simulation confirms the presence of this effect by matching

the peak storm surge at low tide, our hybrid methodology only models steady flow scenarios. Thus, with co-occurring daily

maximum SWL and discharge, we
:::
our

:::::
model

:
may miss certain dynamics important for flooding over unsteady conditions.10

At low tide, a high river discharge may promote drainage of the floodwater into the ocean (Kumbier et al., 2018), increasing

water levels for days at a time and prolonging exposure to flooding. Furthermore, interactions between storm surge and river

discharge may increase the overall elevation of the residual (Maskell et al., 2013).
:::::
While

::::::
beyond

:::
the

:::::
scope

::
of

:::
our

:::::::
present

:::::
study,

:::
this

:::::::
unsteady

::::::::::::
characteristics

:::
are

:::::::::
important

::
to

:::::::
consider

::
in

:::::
future

::::::::
research.

Because sea level rise, along with other changes to the climate, will exacerbate the compounding effects of flood drivers15

(Moftakhari et al., 2017; Wahl et al., 2015), it is also important to consider the impact of changes to processes driving flooding

events in the future (Zscheischler et al., 2018). By 2100, the likely range of relative sea level rise in the La Push area is projected

to be between 18 and 80 cm, considering vertical land motion and high and low
::::::
various

:
emissions scenarios (Miller et al., 2018).

The western Olympic Peninsula is projected to experience increased winter precipitation (Mote et al., 2013; Halofsky et al.,

2011) which could subsequently increase either the frequency or intensity of high Q events along the Quillayute River. While20

we have characterized the spatial variability in extreme water levels in the present-day, there is a high likelihood changes in the

future climate will shift the importance of these interacting processes.

7 Conclusions

This research illustrates the importance of considering a large number of forcing conditions to model compounding processes

when evaluating extreme water levels. Here we find that in coastal settings, river discharge can be an important driver of high25

water levels measured in a tide gauge. We also find that the univariate, forcing-driven
:::::::::
event-based

:
return level event, like the

100-yr discharge, does not always match the response
:::::::::::::
response-based return level, like the 100-yr water level. Furthermore,

when processes compound, the low probability water level
:::::::::
along-river

::::::
return

:::::
levels

:
may be driven by events that are not

:::::::::
considered extreme themselves. Probabilistic techniques allowing for the analysis of thousands

::
to

:::::::
millions

:
of combinations of

events not captured in the observational record provides a robust characterization of where river, ocean, or the combination of30

the two, may be important for generating extreme events.

Overall, the hybrid merging of a statistical and numerical model provides a methodology for better understanding the drivers

of flooding along the length of a river. While our model does not actively resolve the physical interaction of river and oceano-
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graphic flow, it develops an approach for characterizing and extracting river-influenced water levels measured at tide gauges

while robustly modeling the drivers of extreme along-river water levels. Understanding the
::::::::
dominant,

:::::::
spatially

:::::::
variable drivers

of flooding events now and into the future will ultimately increase the preparedness of the community of La Push
:::
will

::::
help

::::::
coastal

::::::::::
communities

:::::
better

::::::::::
understand

::::
their

:::::
risks,

:::::
which

::
is

::::::::
important

:::
for

:::::::::
increasing

::::::::
resilience

::
to

:::::
future

::::::
events.
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1 Hydraulic model domain and setup

HEC-RAS model runs require detailed terrain information for the river network, including bathymetry and topography for the

floodplains of interest. Topography data is sourced from a 2014 U.S Army Corps of Engineers (USACE) lidar survey (USACE,

2014). Bathymetry data is developed by blending two NOAA digital elevation models (DEM): National Geophysical Data

Center’s (NGDC) La Push, WA tsunami DEM (1/3 arc second; NGDC (2007)) and the coastal relief model (3 arc seconds;5

NGDC (2003)). These datasets, however, do not accurately resolve the channel depths of the Quillayute River inland of the

coast, so a 2010 US Geological Survey (USGS)-conducted bathymetric survey of the river is also blended into the DEM (Czuba

et al., 2010).

In 2010, depths of along-river cross sections and an 11 km long longitudinal profile from the Bogachiel River to the mouth of

the Quillayute River were surveyed (Czuba et al., 2010). The survey of the longitudinal river profile also recorded the elevation10

of the water surface. Ideally, the collected bathymetry dataset would be merged directly into the existing DEM. The Quillayute

River, however, is uncontrolled and meanders over time, producing a variation in the location of the main river channel between

the DEM and the high-resolution USGS-collected bathymetric data. Therefore, the USGS bathymetric profiles are adjusted to

match the location of the DEM channel. While a product of multiple datasets and processing steps, the final DEM provides

bathymetric/topographic data with the most up-to-date channel depths for the Quillayute River (Figure 6, main text).15

A series of 58 transects are extracted from the DEM using HEC-GeoRas (Ackerman, 2009) and written into a geometric

data file for input into HEC-RAS. Each river transect extends across the floodplain to the 10 m contour, where applicable.

Otherwise, each transect terminates at the highest point landward of the river. Because HEC-RAS computes energy loss at

each transect via a frictional loss based on the Manning’s equation, Manning’s coefficients, an empirically derived coefficient

representing resistance of flow through roughness and river sinuosity, are selected for the river channel and the floodbanks. In-20

channel Manning’s coefficients are tuned to calibrate the model’s resulting water surface elevations with that of the observed

water surface data. Manning’s coefficients for the rest of the computational domain (e.g., anything overbank) are estimated

using 2011 Land Cover data from the Western Washington Land Cover Change Analysis project (NOAA, 2012) and visual

inspection of aerial imagery and range from 0.04 (cleared land with tree stumps) - 0.1 (heavy stands of timber/medium to

dense brush). These values are extracted from the HEC-RAS Hydraulic Reference Manual, Table 3-1 (Brunner, 2016). Model25
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domain boundary conditions are chosen as the water surface elevation at the tide gauge (m; downstream boundary) and river

discharge from a combination of records representing the Quillayute River watershed (m3s−1; upstream boundary).

1.1 HEC-RAS model validation

In order to determine the dominant inputs to Quillayute River discharge, combined estimates of the Sol Duc and Calawah

Rivers are compared to measurements taken on the Quillayute River in May 2010 (Czuba et al., 2010). Combined discharge5

estimates from the Sol Duc and Calawah rivers underpredict streamflow in the Quillayute River by approximately 33%. An area

scaling watershed analysis (Gianfagna et al., 2015), described in the main text, found that the Bogachiel and Calawah Rivers

had similar contributions. Thus the Calawah river is scaled by a factor of 2.09 to represent the Bogachiel River. Combined

discharge estimates from the Sol Duc River and Bogachiel River, representing the Quillayute River, are also compared to

the Quillayute discharge measurements taken during the 2010 survey. Using this methodology, the discharge estimates of the10

Quillayute River fall within the uncertainty of the discrete USGS measurements in most cases (Table 1).

The longitudinal measured water surface profile allows for the verification and calibration of HEC-RAS modeled water

surface elevations on the day of the survey (Figure 1). HEC-RAS is run using discharge of the watershed-scaled Bogachiel

River as the upstream boundary condition during the hour of the field survey and this discharge is combined with a lateral

inflow from the Sol Duc River around river km 8.5. Manning’s coefficients within the main channel of the Quillayute River are15

calibrated to best represent the water surface elevation on the day of the USGS longitudinal survey. Final Manning’s coefficients

range from to 0.005 to 0.1, and are on average 0.025.

The final calibrated HEC-RAS model produces a water surface elevation with an average bias less than 1% (less than 1 cm)

and an average standard deviation of approximately 5% (7.5 cm). The maximum difference between the two water surfaces is

approximately 14 cm (20%). The percent difference between the depth of the observed and modeled water surface is almost20

always less than 10% (Figure 1).

2 Tide gauge processing

The continuous La Push tide gauge record begins in 2004, recording 12 years of water levels. This record, however, does not

capture the extreme water levels occurring during the 1982/83 and 1997/98 El Niños. Therefore, water levels from the La

Push tide gauge are merged with water levels from the Toke Point tide gauge (beginning in 1980, NOAA station 9440910) to25

create a combined water level record representing a larger range of extreme conditions. ηA and ηSE , water level components

deterministic to the La Push tide gauge, are extended to 1980. Water level components influenced by regional or local forcings

like ηMMSLA and ηSS , are compared before combining. ηMMSLA between the Toke Point and La Push tide gauges are

similar, so Toke Point ηMMSLA are appended to the beginning of the La Push ηMMSLA. Toke Point, however, has slightly

higher magnitude ηSS than La Push and there is a noticeable offset in the highest ηSS peaks. A correction is thus applied to30

the Toke Point ηSS before appending it to the beginning of the La Push ηSS . ηMSL is extended back to 1980 using relative

sea level rise trends for the region. Once the two tide gauges are merged, the combined hourly tide gauge record extends from
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Figure 1. a) Bathymetry and longitudinal profile from the Bogachiel River to the mouth of the Quillayute River surveyed by the USGS in

May of 2010 (black). The longitudinal water level for the calibrated HEC-RAS model is depicted in blue. b) Percent difference between the

measured (black) and HEC-RAS modeled (blue) water level. c) Actual difference between the measured (black) and HEC-RAS modeled

(blue) water level.

1980 - 2016 and is 97% complete. Discharge measurements sampled at 15 minute intervals for the Calawah and Sol Duc rivers

are interpolated to hourly increments to match the timing of the SWL measurements.

2.1 Removal of river-influence from the oceanographic signal

Storms tend to influence large stretches of coastline at once, and while site-specific variations in the coastline or distance

from storm can drive local variations in the amplitude of ηSS , the overall ηSS signal is fairly coherent across regional tide5

gauges across the PNW. The river-influenced water levels are therefore isolated and removed from the La Push ηSS record by

developing a relationship between the La Push ηSS and a regionally-averaged ηSS .

ηSS decomposed from the Neah Bay, Westport, Astoria, Garibaldi, and South Beach tide gauges are averaged each hour to

create a regional ηSS record (black line; Figure 2). The standard deviation (σ) of the available ηSS records at each hour is used

4



to represent the variability of ηSS due to local effects at each station. ηSS at La Push that are larger than the regional average +

2.5σ are considered anomalous to the region, and defined as river-influenced water levels (ηRi). Observations flagged as larger

than the regional average + 2.5σ (dashed line; Figure 2) were replaced with the regional average + σ. A value of + σ was

chosen to minimize jumps in time series when substituting in a smoother dataset. While this methodology does not remove all

the effects of ηRi in the ηSS signal, it captures the majority of anomalous water levels driven by high discharge events.5

ηRi is produced from the difference between the original La Push ηSS and the ηSS modified described above which removes

ηSS anomalous events. ηRi occurring during low discharge events (here low is defined as less than 10 m3s−1, the approximate

summer average discharge) is added back into the La Push ηSS , as it is likely not driven by river forcing. After ηRi was removed

from the ηSS signal, it is saved as a time series of river-forced water level events.

Extreme Hs and Q events at the Calawah River are determined using the Peak Over Threshold approach, where all inde-10

pendent daily maximum events over a defined threshold are selected. Threshold excesses are fit to non-stationary Generalized

Pareto distributions, which include seasonality as a covariate. Both variables are transformed to approximately Fréchet mar-

gins. A bivariate logistic model is then used to model the dependency between the variables. To simulate, random numbers

are sampled from a uniform distribution and mapped to each variable’s prescribed Fréchet cumulative probability distribution

function. Based on the probability of occurrence of the transformed value, the estimate is transformed back to the physical15

scale using the Generalized Pareto distribution if extreme, dependent on the variable’s threshold. If not extreme, the estimate

is transformed back to the physical scale using monthly-varying Gaussian copulas. This technique generates a synthetic record

of Q at the Calawah River gauge that is seasonally varying, related to larger-scale climate variability through wave height

(essentially as a proxy for storms), and carries the same dependency between variables as the observational record. Q is then

multiplied by 2.09 to represent inflow from both the Bogachiel and Calawah rivers.20
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