Dear Editor and Reviewers,

Thank you very much again for the time you spent for the review of our paper. Considering your comments carefully, we
would like to answer as follows.

Reviewer 3
General comments:

The authors provide an interesting study about using ensemble forecasts with a very large number of members and
subsequent reduction of the members for a more “practical” application in real time flood forecasting. The temporal and
spatial error of NWP is less investigated than the error in the predictor. This paper addresses such issues and is of scientific
interest. The study is based on only one flood event, which makes conclusions very difficult. It is a major drawback, but an
inherent problem in using a relatively new technique for forecasting very rare events. Therefore, | consider studies about
single events useful for the flood forecasting community even if there should not be a significant advance of science.
However, this must be made clearer.

Reply: We have revised the Introduction to make the object of this study more clear, especially to emphasize that this study
is a continuation of Part 1 for the Niigata-Fukushima heavy rainfall event with an updating in the rainfall ensemble forecasts
to use. New methods are required to deal with the large number of ensemble members in this case, which makes Part 2 more
interesting. We have added the following paragraphs into the Introduction:

Recently, as a further improvement upon the 2 km downscale ensemble rainfall simulations used by Kobayashi et al.
(2016), Duc and Saito (2017) developed an advanced data assimilation system with the ensemble variational method
(EnVAR) and increased the number of ensemble members to 1600. This new data assimilation system was aimed to
improve the rainfall forecasts of the 2011 Niigata-Fukushima heavy rainfall event. The torrential rain of this event occurred
over the small area along the synoptic scale stationary front (for surface weather map, see Fig. 1 of Kobayashi et al. 2016).
Saito et al (2013) found that the location where intense rain concentrates varied to small changes of the model setting, thus
the position of the heavy rain was likely controlled by horizontal convergence along the front, rather than the orographic
forcing.

Since the new EPS produced better forecasts of the rainfall fields, in this study, as a Part 2 version of Kobayashi et al.
(2016), we applied those 1600 ensemble rainfalls to the ensemble inflow simulations to Kasahori Dam. In the series of Part
1 and 2, we intentionally have chosen a rainfall-runoff model whose specification is quite close to those runoff models used
in many governmental practices of Japanese flood forecasting to see the usefulness of 1600 ensemble rainfalls. Our
objective is to assess impact of the improvement of the rainfall forecast over the large area around Kasahori dam on the
streamflow forecast for the Kasahori dam. In Part 1 the technique of positional lag correction has been applied to match the
rainfall forecasts with the observations to have a better hydrological forecast. This technique is hard to be applied in
real-time flood forecasting since rainfall observations are unknown and there exist a lot of potential positional lag vectors to
choose. Statistically the positional lag vector should respond to the local orographic features but it may vary depending on
the synoptic condition on the day and model forecast errors in a specific event. Thus the positional lag vector for one
extreme rainfall event basically cannot be applied to other extreme event as is. The new EPS is expected to remove the use
of such technique.

In addition, the very large number of ensemble members, which is 10 to 20 times larger than the typical number of
ensemble members currently run in operational forecast centers, poses new issues needed to solve in computation and
interpretation. First, regional forecast centers may not afford running 1600 hydrological forecasts in real-time and a method
to choose the most important members may be helpful. Such kind of method is known as ensemble reduction in ensemble
forecast (Molteni et al., 2011; Montani et al., 2011; Hacker et al., 2011; Weidle et al., 2013; Serafin et al., 2019), which is
built upon cluster analysis when observations are not used as a guidance for selection. However, our problem is more
interesting where we can access the observations at the first few hours and ensemble reduction should make use of these
past observations in selecting important members. Second, it is more challenging to interpret the result when temporal and



spatial uncertainties are realized more distinct now. Without taking such uncertainties into account, the ensemble forecasts
are easily to be considered as useless.

Other authors have already done a lot of research in ensemble calibration or member reduction techniques for application in
forecasting. E.g., methods based on Bayesian theory and regression techniques were used to assign weights to the members
of an ensemble forecast based on prior information. Here, the authors should extend their literature study in their
introduction (Reich and Cotter is “just” a text book citation). They could also add this aspect to the objectives of their work.

Reply: We have added citations to the studies on ensemble reduction in the Introduction as shown in the previous reply. Also
citations to the data assimilation literature have been extended in Section 4.2 to emphasize our approach in deed roots into
the data assimilation theory.

How stable is the selection of members with time? It seems to be relatively stable for their case study, but might happen that
the selection must be updated very often. | have doubts if a single event study can provide a solution ready for operational
forecasting. In the discussion, they should give more information or judgement if the proposed solution is transferrable to
other events and make limitations clearer.

Reply: Thank you for this interesting question. In fact Figure 14 (Figure 12 in revised manuscript) shows that the set of the
best members are not stable at all. We have added a paragraph to explain this behavior. The limitation of our approach is
explained in the next paragraph. We reproduce the two paragraphs here:

It is very clear from Figure 12 that the set of the best members varies considerably with the time intervals of available
observations. This is because the NSE index is sensitive to the large difference between forecasts and observations. That
means, unless we simulate all the discharges of the 1600 members in advance, we may need to run many new members to
update this set every time when new observations are available and this causes management of the best members more

complicated. To see why this occurs, suppose that we have a member with the sums Z?’:‘f{Q(‘; — Qsi}zare almost zero for

the first 1, 2, ..., N-1 hours when we only have no rain or light rain during this time. When we consider the next hour to
reselect the best members, if the term {Q) — Q¥}? becomes very large, this member will suddenly be out of favour
despite the fact that it is always selected as one of the best members in all previous selection rounds. However, this large
difference may come from spatial and temporal displacement errors of rainfall forecasts and not necessary reflect an
inaccurate forecast. This shows that the use of NSE in selecting the best members is quite sensitive to spatial and temporal
displacement errors of rainfall. Part 1 of this study is an illustration for impact of spatial displacement errors on forecast
performance while Figures 7 and 9 here show the case of temporal displacement errors. On the other hand, NSE of rainfall
cannot be used to select the best discharge members since rainfall NSEs of similar values can produce different discharge
hydrographs. For example, the catchment average rainfall with NSE of around 0 produces discharges with NSE close to 0.5
and -0.5. The spatial distribution of the rainfall field causes these differences even though the amount of the catchment
average rainfalls is the same. Even if the catchment area is small, different patterns in the rainfall field bring different
discharge simulations with different NSEs. Furthermore, the error model for rainfall does not follow the Gaussian
distribution and a more appropriate distribution like gamma or lognormal should be used. However, such distributions make
NSE irrelevant and new verification scores derived from these distributions are needed, which can take the form like FSS.
Thus, it is expected that if we can introduce spatial and temporal uncertainty in modelling the likelihood py (y|x;), the
predictive pdf (6) could yield a more useful ensemble forecast. However, this requires a lengthy mathematical treatment that
is worth to explore in details in a separate study.

Specific comments:

Abstract: when introducing the ,,dynamical selection” of the best ensemble members (a kind of sub-ensemble), the authors
should not refer to the criterion (NSE), which can be questioned, but mention the techniques applied. Furthermore, they
should make clear that only a single extreme event was used for the study.



Reply: We have updated the abstract following your suggestion. The revised abstract is as follows:

Abstract. This paper is a continuation of the authors’ previous paper (Part 1) on the feasibility of ensemble flood forecasting
for a small dam catchment (Kasahori dam; approx.70 km2) in Niigata Japan using a distributed rainfall-runoff model and
rainfall ensemble forecasts. The ensemble forecasts were given by an advanced data assimilation system, a four-dimensional
ensemble variational assimilation system using the Japan Meteorological Agency non-hydrostatic model (4D-EnVAR). A
noteworthy feature of this system was the use of a very large number of ensemble members (1600), which yielded a
significant improvement in the rainfall forecast compared to Part 1. The ensemble flood forecasting using the 1600 rainfalls
succeeded in indicating the necessity of emergency flood operation with the occurrence probability and enough lead time
(e.g., 12 hours) with regard to this extreme event. A new method for dynamical selection of the best ensemble members
using-the-Nash-Suteliffe-Efficiency-(NSE) based on the Bayesian reasoning with different evaluation periods is proposed. As
the result, it is recognized that the selection based on Nash Sutcliffe Efficiency does not provide an exact discharge forecast
with several hours lead time, but it can provide some trend in the near future.

P 1 L 25ff: ensemble forecasts do not necessarily give the probability of occurrence of a flood — that is a common
misunderstanding. A good ensemble gives information about the range of uncertainty (“frames the future development”), i.e.
the observation should be within the uncertainty band. Most ensemble forecasts assume the same probability for each
member and use frequency evaluations. Probability is obtained by data assimilation and post-processing, as the authors have
added in their revision. The authors could carefully revise their usage of probability in the text and check where frequency is
a more appropriate term.

Reply: We have updated the first sentence of the Introduction to show benefit of ensemble forecast:

Flood simulation driven by ensemble rainfalls has attracted more attention in recent years with a lot of useful information
that ensemble flood forecasts can provide in flood control such as forecast uncertainty, probabilities of rare events, and
potential flooding scenarios.

Each ensemble forecast can be identified with an empirical pdf
Px(¥) = XK, 28(x-x), (1)

as we showed in Equation (3) in the text. It is clearly that the above pdf assume “the same probability for each member” as
the reviewer said. So from this pdf if we want to know the probability that X is greater a certain threshold we can integrate
this pdf and due to its Dirac mixture nature, the probability reduces to counting the number of ensemble members that have
their forecasts greater than this threshold, which in other words the frequency. Therefore, we think that both the uses of
probability or frequency are valid here.

P 3 L 27: “The main theme of this Part 2 paper is that the 1600 ensemble rainfall forecasts can significantly improve the
rainfall forecast over the large area around Kasahori dam”: They should not give a theme with statements of their result, but
first put the research question and objectives here. Also, after the revision, they have added work regarding the selection of
best members in an operational case. It could be mentioned now in the objectives if not the title.

Reply: We have removed this sentence and updated the Introduction in accordance with your suggestion as mentioned in the
reply to the general comments.

Section 2 is a very short — the content might be moved to section 1.
Reply: Modified.
P 5 L 31: The rationale of the FSS should be briefly explained. Please explain the meaning of high and low values (just add

sth. like “can have values between x and y, where y indicates the best possible score...”). Equations can be referred to by the
citation. The reference (Duc et al., 2013) is not appropriate. The FSS is relatively new, so the original source must be cited



here instead of own work of the authors using the FSS, which others proposed earlier.

Reply: The reference to the original paper has been done. We have added the following paragraph to briefly explain the
rationale underlying the FSS:

Figure 1 shows the verification results for the 3-hour precipitation forecasts as measured by the Fraction Skill Score (FSS)
(Roberts and Lean, 2008). Given a rainfall threshold and an area around a grid point, which is called a neighborhood, the
FSS indicates relative difference between observed and forecasted rainfall fractions in this area. This verification score is
used to mitigate difficult in rainfall verification at grid scale with very high-resolution forecasts in which high variability of
rain fields usually makes the traditional scores inadequate due to their requirement of exact match between observations and
forecasts at grid points. Thus the solution that the FSS follows is to consider forecast quality at spatial scales coarser than
grid scale by comparing forecasts and observations not at grid points but at neighbourhoods whose sizes are identified with
spatial scales. The FSS is normalized to range from 0 to 1 with the value of 1 indicating a perfect forecast and the value of 0
a no-skill forecast which can be obtained by a random forecast.

P 5 L 34 “Note that an additional experiment with 4DEnVAR-NHM using 50 ensemble members™: how were the 50
members produced? Please give information (or a citation) about the differences in the ensemble generation mechanism of
the 50- and 1600-member ensembles.

Reply: We have added the sentence below to provide information for this additional experiment:

The main difference between 4DEnVARS0 and 4DEnVAR1600 is that vertical localization was applied in the former case
to generate its ensemble members. As mentioned in the previous section, vertical localization can potentially weaken vertical
flows in convective areas by removing physically vertical correlations.

P 6 L 26: “but the ensemble mean precipitation is smeared out as a side effect of the averaging procedure”: then, the
averaging procedure is maybe not a good solution. This is a well-known effect of ensembles of large size. Instead of
averaging, other authors have used ensemble size reduction techniques. Finally, the authors did that but do not introduce at
this stage of the manuscript (see comment above).

Reply: We have added some sentences in Section 2 to highlight this problem and show a potential solution developed later
in Section 4:

Therefore, the ensemble mean should not be used into our hydrological model as a representative of the ensemble forecast.
Rather than that, all ensemble precipitation forecasts should be fed into the hydrological model to avoid rainfall distortion
caused by averaging in addition to a faithful description of rainfall uncertainty. Of course with 1600 members this causes a
huge increase in computational cost and we will try to reduce this burden by testing a suitable dynamical selection described
later in Section 4.

P 71 26 ff: The calibration of a hydrological model for a single event is questionable. Furthermore, using radar data instead
of observations rises questions about the quality of the radar data, as can be seen later (fig. 13). Calibrating against “wrong”
inputs produces higher uncertainty of the hydrological model, because it does not represent the physical processes well. The
observed runoff is not a product of the radar data but a product of the observed rain. Parameters could get non-behavioral
values in order to fit with the wrong rain input. As the authors assume a perfect hydrological model (without considering its
uncertainty), it should be calibrated against the most perfect input data available. 1 think that the hydrological model is not
valid here. However, the calibration and their discussion could be updated with a reasonable effort and the overall study is
not about hydrology. If the radar data are used in operational service, but an error is known, the input data must be improved
or post-processing can be applied, e.g. bias corrections. Research went a lot further in these topics.

Reply: We wrote in Part 1 paper that the catchment-averaged cumulative rainfalls during the period were 765.0 mm for



ground rain-gauges (RG), 762.8 mm for Radar AMEDAS (RA, operational precipitation analysis of JMA based on radar
and rain-gauge observations), and 568.5 mm for Radar-Composite (RC), respectively. Thus, the cumulative rainfall by RC is
0.74 times that of RG, whereas the value by RA is almost similar to RG. Considering your comment, we decided to replace
all the figures using parameters by RC (in previous version paper) with those figures using parameters by RA. However, in
the paper we kept several figures by the parameters with RC as references since it can show the forecast uncertainty by the
model parameters. Figures 5-12 (in revised manuscript) are all replaced by those with RA parameters. Likewise, the
sentence below was added.

The parameters of the DRR model were recalibrated in this study using hourly Radar AMEDAS since the amount of total
rainfall for the period (762.8mm) is closer to ground rain-gauge (765.0 mm) (Kobayashi et. al., 2016). The hourly
Radar-Composite (RC, radar data) of JMA was also used for another recalibration as a reference since Radar precipitation
data is in general the primary source for real time flood forecasting. The total rainfall amount with RC was 568.5 mm which
is smaller than the ground rain-gauge (765.0 mm).

P 8L 7: In figure 4, it can be seen that the observation captured all three peaks quite well. Observed data show a consistent
behavior. The hydrological model shows weakness in simulating double-peak flood waves. This would not necessarily
prohibit it’s use for the study.

Reply: The simulated hydrograph with RA shows better reproduction especially for the 2nd peak in Figure 5 (in revised
manuscript), though NSE of the 72 hour hydrograph with RA (NSE=0.686) is not necessarily better than that with RC
(0.743). Considering your comment, in the paper we decided to show the results basically with the parameters by RA since
the rainfall is considered more accurate and, as reviewer mentioned, the model parameters are physically more meaningful.
After all, the sentence below was added.

In the calibration simulations in Figure 5, the NSEs with RA and RC are 0.686 and 0.743 respectively. Although the NSE
with RA is worse than RC, the total rainfall amount with RA is considered more accurate and the 2nd and 3rd discharge
peaks seem to be captured better with RA, thus the following discussion will be made basically with the parameters
calibrated with RA. Some results with RC will be added as references. The main difference of the parameters between RA
and RC is that the surface soil thickness D to hold the rainfall at the initial stage is thicker in RA, which yields the lower
discharge in the river.

The authors could add observed areal rainfall in Fig. 5 for better interpretation. From fig. 13, it is clear that there is an
underestimation of rainfall by the radar products compared to the gauge stations. It would be good to use observed rain input
to simulate stream flow as the reference for comparisons.

Reply: We decided to show the results with the model parameters by RA, then we show some results with the parameters by
RC (previous version). Likewise the areal rainfall is added in Fig. 5.

P 8 L 29: “observed rainfall within the range” — | think that Fig. 6 only shows runoff ensembles, so instead of “rainfall” they
should use “runoff” here.

Reply: Thank you very much. Modified.

P9 L 2 ff: see comment for fig. 7.

Reply: Figure 7 is removed considering your comment.

P 10 L 17 ff.: The authors should add if the NSE is of stream flow. Why not choose the best 50 members of the rain forecast?

Reply: We have added a paragraph to explain why it is more problematic if we want to choose the best 50 rainfall forecasts



using NSE. The paragraph is as follows.

This shows that the use of NSE in selecting the best members is quite sensitive to spatial and temporal displacement errors
of rainfall. Part 1 of this study is an illustration for impact of spatial displacement errors on forecast performance while
Figures 7 and 9 here show the case of temporal displacement errors. On the other hand, NSE of rainfall cannot be used to
select the best discharge members since rainfall NSEs of similar values can produce different discharge hydrographs. For
example, the catchment average rainfall with NSE of around O produces discharges with NSE close to 0.5 and -0.5. The
spatial distribution of the rainfall field causes these differences even though the amount of the catchment average rainfalls is
the same. Even if the catchment area is small, different patterns in the rainfall field bring different discharge simulations with
different NSEs. Furthermore, the error model for rainfall does not follow the Gaussian distribution and a more appropriate
distribution like gamma or lognormal should be used. However, such distributions make NSE irrelevant and new
verification scores derived from these distributions are needed, which can take the form like FSS. Thus, it is expected that if
we can introduce spatial and temporal uncertainty in modelling the likelihood py (y|x;), the predictive pdf (6) could yield a
more useful ensemble forecast. However, this requires a lengthy mathematical treatment that is worth to explore in details in
a separate study.

Fig. 1: what is the meaning of the spatial scale? | did not find an explanation in the text or the caption.

Reply: We have explained the meaning of spatial scales in a short description for the rationale underlying the FSS. The
description is as follows.

Figure 1 shows the verification results for the 3-hour precipitation forecasts as measured by the Fraction Skill Score (FSS)
(Roberts and Lean, 2008). Given a rainfall threshold and an area around a grid point, which is called a neighborhood, the
FSS indicates relative difference between observed and forecasted rainfall fractions in this area. This verification score is
used to mitigate difficult in rainfall verification at grid scale with very high-resolution forecasts in which high variability of
rain fields usually makes the traditional scores inadequate due to their requirement of exact match between observations and
forecasts at grid points. Thus the solution that the FSS follows is to consider forecast quality at spatial scales coarser than
grid scale by comparing forecasts and observations not at grid points but at neighbourhoods whose sizes are identified with
spatial scales. The FSS is normalized to range from 0 to 1 with the value of 1 indicating a perfect forecast and the value of 0
a no-skill forecast which can be obtained by a random forecast.

Fig. 2: Y axis is “Observed Relative Frequency” and should be labelled accordingly. The reliability diagram is not intuitive,
in my opinion not even appropriate for a single event situation — even if recommended by one reviewer. Usually, there are
not such pairs like 90 % forecast probability and 0% observed frequency. For small data sets, other authors have used
bootstrapping to refine the probability distributions. However, from a single event, one cannot conclude the reliability of a
certain forecast technique. The authors may re-consider their usage of reliability diagrams in that context. Fig. 1 gives a good
idea of the performance of the different systems for different rain intensities. | propose to leave out the reliability diagrams
here, or replace with a more suitable performance measure for the single event. Maybe just give the Brier score or other
metrics, as mentioned by reviewer #2.

Reply: We agree with the reviewer that reliability diagrams are prone to sampling errors if we populate it with a small
sample of observation — forecast pairs. Although we plotted our reliability diagrams for one event, the dataset was in fact not
small at all since we used 3-hour observation — forecast pairs from several intervals with the verification domain covering
not only the Kasahori dam but also a more larger region around Fukushima and Niigata prefectures. Also the Brier scores
are in fact given implicitly in the reliability diagrams since each Brier score can be decomposed as

Brier score = Reliability — Resolution + Uncertainty, (2)

where the three terms on the right-hand side are represented in the reliability diagrams. To make them visible, in the revised
version we have shown these values explicitly in the plots. Another reason to keep the reliability diagrams is that Figure 1
with the FSS only shows the performance of the deterministic forecasts but not the ensemble forecasts and the reliability
diagrams are needed if we want to access the performance of the ensemble forecasts.



Fig. 4: does R/A stand for “observation™? Is that radar composite or ground based? The plot is not easy to understand. It
would be better to draw the 5-95 percentiles as light gray, the iqr as darker gray areas and the observed/derived lines as such,
in colors. As done in fig. 8.

Reply: Modified.
Fig. 6: Using the same style as figure 8 would be more informative. Then, figure 8 could be left out.
Reply: Modified.

Fig. 7: the NSE is not good in characterizing the performance of stream flow ensembles of a single event. It is usually
applied for calibrating hydrological models against observations, and more common for long time series. | propose to leave
out fig. 7, and remove the corresponding text. It does not add to the findings but rises questions.

Reply: Removed accordingly.

Fig. 10: again, the style of fig. 8 would be better here.
Reply: Modified.

Reviewer 2

| express my gratitude to the authors for their detailed response and the revised manuscript. | carefully read them to provide
my suggestion. The main reasons for suggesting reject & resubmit in the previous review include 1) that apparently
probabilistic discharge forecasts by a large set of ensemble cannot be seen as an improved prediction and 2) the proposed
ensemble selection method has a significant potential flaw because the method is valid only for one location and not feasible
for distributed modeling. To resolve these issues, | suggested validation of discharge simulation at multiple gaging locations
within the study catchment and rigorous evaluation with probabilistic measures. Despite the efforts of the authors, I don’t
think these two main issues are properly addressed in the revised manuscript. Therefore, | do not recommend the publication
of this manuscript in NHESS.

If this article is published despite my opposition, | suggest the readers and editors take a close look at 1600 ensemble
discharge traces shown in gray (Fig 6) which fill a whole range of discharge values from 0 to 2,000 cms. I don’t think any
expert can make a meaningful decision on the risk management with these highly uncertain forecasts even though the mean
values are close to the observed. Unfortunately, in my view, this is one of the typical cases which should be avoided in the
probabilistic forecasts. However, in this study, rigorous statistical evaluations (e.g. calculation of probabilistic scores per each
forecast lead time throughout the simulation) are lacking and failed to demonstrate the adequacy of the probabilistic
discharge forecasts.

As a remedy for too dispersed ensemble forecasts, an ensemble selection method adapted from particle filtering was applied
in the latter part of the revised manuscript. However, in addition to the fact that the performance of the selected ensemble
deteriorates quickly, there is a critical flaw that this selection may be valid only for one location. To resolve this issue, the
evaluation is required at multiple locations, which is also lacking in the manuscript.

Reply: The first argument of the reviewer for rejection of our research is the claim that the probabilistic discharge forecasts
as shown in Figure 6 cannot be seen as a good forecast. Here the reviewer assumed that the pdf at each forecast lead time is
a uniform distribution ranging from 0 to 2000 m3/s. However, this is only an illusion caused by plotting since any curve
crosses this forecast time will leave a spot with gray color. The true distributions should be read from Figure 8 (Figure 6 in
revised manuscript) which shows the interquartile ranges are indeed much smaller than 2000 m3/s. As we discussed many



times in the text, Figure 8 (Figure 6 in revised manuscript) still leads to misjudgment for the true performance of the
ensemble forecast the temporal displacement errors were not considered here, which is inherently the same problem in
rainfall verification that leads to the development of new verification scores like FSS. To mitigate impact of temporal
displacement errors, it is better to consider the accumulated volume forecasts as shown in Figures 10 and 11 (Figures 8 and 9
in revised manuscript). Figure 11 (Figure 9 in revised manuscript) itself shows the value of the ensemble forecast in a visual
way rather than a score like the Brier score, which is indeed, the sum of differences between two curves in Figure 11.

The second argument for rejection is the claim that our new ensemble reduction method has a flaw that it is only valid for
one location. We disagree with this claim due to the fact that the new method is established under the mathematical
framework of particle filtering and data assimilation in general. Thus, the theory here does not depend on its application for
any specific location. We should differentiate here the theoretical aspect of a method with its application. To use this method
in practice, the choice of the error model for observations plays a crucial role here. In the paper, we chose the Gaussian
model which is equivalent to the use of NSE to select the best members. This choice somehow works in the paper but as we
discussed it is better if we can incorporate temporal and spatial uncertainties in the error model for discharges.
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Abstract. This paper is a continuation of the authors’ previous paper (Part 1) on the feasibility of ensemble flood forecasting
for a small dam catchment (Kasahori dam; approx.70 km?) in Niigata Japan using a distributed rainfall-runoff model and
rainfall ensemble forecasts. The ensemble forecasts were given by an advanced data assimilation system, a four-dimensional
ensemble variational assimilation system using the Japan Meteorological Agency non-hydrostatic model (4D-EnVAR). A
noteworthy feature of this system was the use of a very large number of ensemble members (1600), which yielded a
significant improvement in the rainfall forecast compared to Part 1. The ensemble flood forecasting using the 1600 rainfalls
succeeded in indicating the necessity of emergency flood operation with the occurrence probability and enough lead time
(e.g., 12 hours) with regard to this extreme event. A new method for dynamical selection of the best ensemble members
using-the-Nash-Sutcliffe Efficiency-(NSE) based on the Bayesian reasoning with different evaluation periods is proposed. As
the result, it is recognized that the selection based on Nash Sutcliffe Efficiency does not provide an exact discharge forecast

with several hours lead time, but it can provide some trend in the near future.

1 Introduction

Flood simulation driven by ensemble rainfalls has attracted more attention in recent years with a lot of useful information
that ensemble flood forecasts can provide in flood control such as forecast uncertainty, probabilities of rare events, and
potential flooding scenarios. In the Japanese case, it is considered that the ensemble rainfall simulation with a high resolution
(2 km or below) is desirable since extreme rainfall often takes place due to mesoscale convective systems and the river
catchments are not as large as continental rivers; even the largest Tone River Basin, is around 17000 km?,

A good review of ensemble flood forecasting using medium term global/European ensemble weather forecasts (2-15 days
ahead) by numerical weather prediction (NWP) models can be found in Cloke and Pappenberger (2009). In much of their
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review, the resolution of NWP model is relatively coarse (over 10 km), the number of ensembles is moderate (10-50) and the
target catchment size is often large (e.g., Danube River Basin). They basically reviewed global/European ensemble
prediction systems (EPS) but also introduced some researches on regional EPS nested into global EPS (e.g., Marsigli et al.
2001). They stated that “One of the biggest challenges therefore in improving weather forecasts remain to increase the
resolution and identify the adequate physical representations on the respective scale, but this is a source hungry task”.
Short-term flood forecasting (1-3 day) based on ensemble NWPs is gaining more attention in Japan. Kobayashi et. al.
(2016) dealt with an ensemble flood (rainfall-runoff) simulation of a heavy rainfall event occurred in 2011 over a small dam
catchment (Kasahori Dam; approx. 70 km?) in Niigata, central Japan, using a rainfall-runoff model with a resolution of 250

m. Eleven-member ensemble rainfalls by the Japan Meteorological Agency nonhydrostatic model (JMA-NHM; Saito et al.

2006) with horizontal resolutions of 2 km and 10 km were employed. Fhe-10-km-ERPS-was-initiated-by-the IMA-operational

a ale analy angd-emploved-the mod an a N conva V/aWa meta on hama \whila adown ng Nna
[

2-km-EPSdid-not-use-the-convectiveparameterization—The results showed that, although the 2 km EPS reproduced the

observed rainfall much better than the 10 km EPS, the resultant cumulative and hourly maximum rainfalls still

underestimated the observed rainfall. Thus, the ensemble flood simulations with the 2 km rainfalls were still not sufficiently

valid

i ke and a positional lag correction of the rainfall fields was
applied. Using this translation method, the magnitude of the ensemble rainfalls and likewise the inflows to the Kasahori Dam
became comparable with the observed inflows.

Other applications of the 2 km EPS, which permit deep convection on some level, can be found in for example Xuan et al.
(2009). They carried out an ensemble flood forecasting at the Brue catchment, with an area of 135 km?, in southwest
England, UK. The resolution of their grid based distributed rainfall-runoff model (GBDM) was 500 m and the resolution of
their NWP forecast by the PSU/NCAR mesoscale model (MM5) was 2 km. The NWP forecast was the result of downscaling
of the global forecast datasets from the European Centre for Medium-range Weather Forecasts (ECMWF). la—the

duration—of-the—ensemble—weatherforecasting—was—24-hours: Fifty members of the ECMWF EPS and one deterministic

forecast were downscaled. Since the original NWP rainfall of a grid average still underestimates the intensity compared with
rain-gauges, they introduced a best match approach (location correction) and a bias-correction approach (scale-up) on the
downscaled rainfall field. The results showed that the ensemble flood forecasting of some rainfall events are in good
agreement with observations within the confidence intervals, while those of other rainfall events failed to capture the basic
flow patterns.

Likewise in Europe, Hohenegger (2008) carried out the cloud-resolving ensemble weather simulations of the August 2005
Alpine flood. Their cloud resolving EPS of 2.2 km grid space included the explicit treatment of deep convection and was the
result of downscaling of COSMO-LEPS (10km resolution driven by ECMWF EPS). Their conclusion was that despite the
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overall small differences, the 2.2 km cloud resolving ensemble produces results as good as and even better than its 10km
EPS, though the paper did not deal with the hydrological forecasting. Another paper which dealt with cloud resolving
ensemble simulations can be found in Vie et al. (2011) for Mediterranean heavy precipitation event. Their ensemble weather
simulation model resolution was 2.5 km by AROME from Meteo-France which uses ALADIN forecast for lateral boundary
condition (10km resolution), thus the deep convection was explicitly resolved. We can recognize from these researches that
the European researchers especially around mountain region have been farsighted from early days for the importance of
these cloud resolving ensemble simulations.

While in Japan, Yu et al. (2018) have also used a post-processing method using the spatial shift of NWP rainfall fields for
correcting the misplaced rain distribution. Their study areas are Futatsuno (356.1 km?) and Nanairo (182.1 km?) dam
catchments of the Shingu River Basin, in Kii Peninsula, Japan. The resolution of the ensemble weather simulations were 10
km and 2 km by JMA-NHM, which is similar to the downscaling EPS in Kobayashi et al. (2016) but for a different heavy
rainfall event in west central Japan caused by a typhoon. Fhe-data-have-a-30-heurforecast-time. The results showed that the
ensemble forecasts produced better results than the deterministic control run forecast, although the peak discharge was
underestimated. Thus, they also carried out a spatial shift of the ensemble rainfall field. The results showed that the flood
forecasting with the spatial shift of the ensemble rainfall members was better than the original one, likewise the peak
discharges more closely approached the observations.

Recently, as a further improvement upon the 2 km downscale ensemble rainfall simulations used by Kobayashi et al.
(2016), Duc and Saito (2017) developed an advanced data assimilation system with the ensemble variational method
(EnVAR) and increased the number of ensemble members to 1600. This new data assimilation system was aimed to improve
the rainfall forecasts of the 2011 Niigata-Fukushima heavy rainfall event. The torrential rain of this event occurred over the
small area along the synoptic scale stationary front (for surface weather map, see Fig. 1 of Kobayashi et al. 2016). Saito et al
(2013) found that the location where intense rain concentrates varied to small changes of the model setting, thus the position
of the heavy rain was likely controlled by horizontal convergence along the front, rather than the orographic forcing.

Since the new EPS produced better forecasts of the rainfall fields, in this study, as a Part 2 version of Kobayashi et al.
(2016), we applied those 1600 ensemble rainfalls to the ensemble inflow simulations to Kasahori Dam-witheut-the-positional
lagcorrection. In the series of Part 1 and 2, we intentionally have chosen a rainfall-runoff model whose specification is quite
close to those runoff models used in many governmental practices of Japanese flood forecasting to see the usefulness of
1600 ensemble rainfalls. Our objective is to assess impact of the improvement of the rainfall forecast over the large area
around Kasahori dam on the streamflow forecast for the Kasahori dam. In Part 1 the technique of positional lag correction
has been applied to match the rainfall forecasts with the observations to have a better hydrological forecast. This technique is
hard to be applied in real-time flood forecasting since rainfall observations are unknown and there exist a lot of potential
positional lag vectors to choose. Statistically the positional lag vector should respond to the local orographic features but it

may vary depending on the synoptic condition on the day and model forecast errors in a specific event. Thus the positional
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lag vector for one extreme rainfall event basically cannot be applied to other extreme event as is. The new EPS is expected to
remove the use of such technique.

In addition, the very large number of ensemble members, which is 10 to 20 times larger than the typical number of
ensemble members currently run in operational forecast centers, poses new issues needed to solve in computation and
interpretation. First, regional forecast centers may not afford running 1600 hydrological forecasts in real-time and a method
to choose the most important members may be helpful. Such kind of method is known as ensemble reduction in ensemble
forecast (Molteni et al., 2011; Montani et al., 2011; Hacker et al., 2011; Weidle et al., 2013; Serafin et al., 2019), which is
built upon cluster analysis when observations are not used as a guidance for selection. However, our problem is more
interesting where we can access the observations at the first few hours and ensemble reduction should make use of these past
observations in selecting important members. Second, it is maore challenging to interpret the result when temporal and spatial
uncertainties are realized more distinct now. Without taking such uncertainties into account, the ensemble forecasts are

easily to be considered as useless.

The organization of this paper is as follows.

rainfals-given—Section 2 describes the new mesoscale EPS, its forecast and rainfall verification results. Section 3 describes

the rainfall-runoff model for explaining the changes in the model parameters. Results are shown in Section 4. In Section 5,

concluding remarks and future aspects are presented.

2 Mesoscale ensemble forecast

2.1 Ensemble prediction system

An advanced mesoscale EPS was developed and employed to prepare precipitation data for the rainfall-runoff model. The
EPS was built around the operational mesoscale model JMA-NHM for its atmospheric model as the downscale EPS
conducted by Saito et al. (2013). In this study, a domain consisting of 819 x 715 horizontal grid points and 60 vertical levels

was used for all ensemble members. This domain had a grid spacing of 2 km and covered the mainland of Japan. With this
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high resolution, convective parameterization was switched off. Boundary conditions were obtained from forecasts of the
JMA’s global model. Boundary perturbations were interpolated from forecast perturbations of the JMA’s operational one-
week EPS as in Saito (2013).

To provide initial conditions and initial perturbations for the EPS, a four-dimensional, variational-ensemble assimilation
system (4D-EnVAR-NHM) was newly developed, in which background error covariances were estimated from short-range
ensemble forecasts by IMA-NHM before being plugged into cost functions for minimization to obtain the analyses (Duc and
Saito, 2017). If the number of ensemble members is limited, ensemble error covariances contain sampling noises which
manifest as spurious correlations between distant grid points. In data assimilation, the so-called localization technique is
usually applied to remove such noise, but at the same time it removes significant correlations in error covariances. In this
study, we have chosen 1600 members in running the ensemble part of 4D-EnVAR-NHM to retain significant vertical
correlations, which have a large impact in heavy rainfall events like the Fukushima-Niigata heavy rainfall. That means only
horizontal localization is applied in 4D-EnVAR-NHM. The horizontal localization length scales were derived from the
climatologically horizontal correlation length scales of the JMA’s operational four-dimensional, variational assimilation
system JNoVA by dilation using a factor of 2.0.

Another special aspect of 4D-EnVAR-NHM s that a separate ensemble Kalman filter was not needed to produce the
analysis ensemble. Instead, a cost function was derived for each analysis perturbation and minimization was then applied to
obtain this perturbation, which is very similar to the case of analyses. This helped to ensure consistency between analyses
and analysis perturbations in 4D-EnVAR-NHM when the same background error covariance, the same localization, and the
same observations were used in both cases. To accelerate the running time, all analysis perturbations were calculated
simultaneously using the block algorithm to solve the linear equations with multiple right-hand-side vectors resulting from
all minimization problems. The assimilation system was started at 0900 JST July 24th, 2011 with a 3-hour assimilation cycle.
All routine observations at the JMA’s database were assimilated into 4D-EnVAR-NHM. The assimilation domain was the
same as the former operational system at JMA. To reduce the computational cost, a dual-resolution approach was adopted in
4D-EnVAR-NHM where analyses had a grid spacing of 5 km, whereas analysis perturbations had a grid spacing of 15 km.
The analysis and analysis perturbations were interpolated to the grid of the ensemble prediction system to make the initial

conditions for deterministic and ensemble forecasts.

2.2 Rainfall verification

Due to limited computational resource, ensemble forecasts with 1600 members were only employed for the target time of
0000 JST July 29", 2011. However, deterministic forecasts were run for all other initial times to examine impact of number
of ensemble members on analyses and the resulting forecasts. Figure 1 shows the verification results for the 3-hour
precipitation forecasts as measured by the Fraction Skill Score (FSS) (Bue-etal-Roberts and Lean, 2008). Given a rainfall
threshold and an area around a grid point, which is called a neighborhood, the FSS measures the relative difference between

observed and forecasted rainfall fractions in this area. This verification score is used to mitigate difficulty in rainfall
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verification at grid scale with very high-resolution forecasts in which high variability of rain fields usually makes the
traditional scores inadequate due to their requirement of exact match between observations and forecasts at grid points. Thus
the solution that the FSS follows is to consider forecast quality at spatial scales coarser than grid scale by comparing
forecasts and observations not at grid points but at neighbourhoods whose sizes are identified with spatial scales. The FSS is
normalized to range from O to 1 with the value of 1 indicating a perfect forecast and the value of 0 a no-skill forecast which
can be obtained by a random forecast.

In Figure 1 we aggregate the 3-hour precipitation in the first and second 12-hour forecasts to increase samples in
calculating the FSS. By this way, robust statistics are obtained but at the same time dependence of the FSS on the leading
times can still be shown. Note that an additional experiment with 4D-EnVAR-NHM using 50 ensemble members, which is
called 4DEnVARS50 to differentiate with the original one 4DEnVAR1600, was run. The main difference between
4DEnVAR50 and 4DEnVAR1600 is that vertical localization was applied in the former case to generate its ensemble
members. As mentioned in the previous section, vertical localization can potentially weaken v