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Authors’ response 

 

We would like to thank the editor and two reviewers for the detailed and thoughtful comments and 

the time that you spent on the article. All your invaluable comments have inspired us to rethink 

carefully the problem that we tried to investigate. With our revision we hope that you will find it a 

better article. 

 

Regarding the manuscript with track changes, we did not use the MS-word track change function 

since the changes are really a lot so that the manuscript became hard to be understood with the 

complex track change indications. Instead, we highlighted the changes by ourselves using different 

colors. If this is a problem, please tell us. 

 

In addition, we have modified the abstract according to the comments from the editor and two 

reviewers to show more clearly about the object of our Part 2 paper. We tried to answer the rest 

concerns from the editor in the responses below. We hope it can satisfy you. 

 

Finally, we would like to change the order of the authors as indicated in the revised manuscript. We 

hope that you can accept the changes.  

 

Reviewer 1: 

(1) The paper describes the application of a large (1600 members) ensemble of high-resolution 

rainfall forecasts for flood forecasting in a small (72 km2 ) catchment where the lead time required 

to respond to a flood warning is longer than the characteristic response time of the catchment. 

This is an important issue for unban catchments where hydrological predictions need to be based 

on rainfall forecasts and not observed rainfall.The temporal resolution should always be included 

when discussing resolution. I assume that the ensemble had 10-minute resolution since this is 

used by the hydrological model. 

 

Reply: Since 4D-EnVAR-NHM outputted data every hour due to limited data storage, we also 

applied the hourly data to the rainfall-runoff model. 

 

(2) Section 2 – details of the rainfall event. I looked up the 2016 paper for more details of the 

meteorological situation, but found very little extra. It would be very helpful to understand better 

the meteorological situation. I am assuming that, since this case is in Japan and summer, the 

situation was mostly orographic triggering of severe convection in a very moist airmass. This 

implies that the model rainfall forecasts are closely forced by the topography where the storms are 

initiated in the near vicinity of the catchment and are likely to be slow moving? This is important 

because advection nowcasts will not be able to provide accurate nowcasts in these circumstances. 
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Reply: We have added a paragraph in the revised manuscript to analyze the meteorological situation 

in more details, which we reproduce here: 

 

For the details of the 2011 Niigata-Fukushima heavy rainfall, see our Part 1 paper (Kobayashi et al., 

2016). An additional note is that the torrential rain of the 2011 Niigata-Fukushima heavy rainfall 

occurred over the small area along the synoptic scale stationary front (for surface weather map, see 

Fig. 1 of Kobayashi et al. 2016). Saito et al (2013) conducted two 11-member downscale ensemble 

forecasts with different horizontal resolutions (10 and 2 km) for this event using JMA-NHM and 

JMA’s global ensemble EPS perturbations. They found that the location where intense rain 

concentrates variable to small changes of model setting, thus the position of the heavy rain was 

likely controlled mainly by horizontal convergence along the front, rather than the orographic 

forcing. 

 

(3) I really missed some radar rainfall images, say the 10 (or 30)-min rain rates at the times of the 

three peaks in the hydrograph, just so that we can get a feeling for the space-time structure of the 

rainfall fields. Actually, the spatial and temporal correlation functions would also be interesting, 

at least to me as a rainfall person. 

 

Reply: For supplement information, we would like to show here the radar images corresponding to 

the times when the three peaks occurred in the hydrograph (Figure S1). We do not intend to add this 

figure into the manuscript. 

 

 

Figure S1. Reflectivity from radar composition at the time of the first (left), second (center), and 

third (right) peaks of the hydro-graph. 

 

(4) Section 6 – Results. It would be very good to extend the results to include a basic analysis of the 

rainfall forecasts before going to the hydrological verification. In particular, how reliable are the 

probability of precipitation estimates for the extreme rain rates, especially as a function of 

ensemble size? This is very important if we are running an ensemble prediction system to predict 

the probability of extreme rainfall. The paper should include some results that show the skill of 
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the model, say the reliability diagram for high rain rates, as a function of lead time. Did 

subsequent model runs reproduce the second and third maxima in the hydrograph? 

 

Reply: We have added two paragraphs to Section 3 describing the verification results of the rainfall 

forecasts. We agree with the reviewer’s comment that verification scores for rainfall forecasts with 

respect to different lead times should be included in the paper. However, it was very costly to run a 

high-resolution (2 km grid spacing) ensemble forecast using 1600 members even for a specific time. 

Due to this reason, we could only run deterministic forecasts for all other initial times and use the 

Fraction Skill Score to measure forecast performance of the deterministic forecasts at different lead 

times. We had also run an additional experiment using only 50 ensemble members to compare with 

the case using 1600 members. Reliability diagrams are then plotted for these ensemble forecasts by 

the two experiments, even though we only run the ensemble forecasts at a specific time. Of course, 

the FSSs are also calculate for this additional experiment. Here are the paragraphs that we have 

added to the revised manuscript: 

 

“Due to limited computational resource, ensemble forecasts with 1600 members were only 

employed for the target time of 0000 JST July 29th, 2011. However, deterministic forecasts were 

run for all other initial times to examine impact of number of ensemble members on analyses and 

the resulting forecasts. Figure 1 shows the verification results for the 3-hour precipitation forecasts 

as measured by the Fraction Skill Score (FSS) (Duc et al., 2013). Here we aggregate the 3-hour 

precipitation in the first and second 12-hour forecasts to increase samples in calculating the FSS. By 

this way, robust statistics are obtained but at the same time dependence of the FSS on the leading 

times can still be shown. Note that an additional experiment with 4D-EnVAR-NHM using 50 

ensemble members, which is called 4DEnVAR50 to differentiate with the original one 

4DEnVAR1600, was run. It is very clear from Figure 1 that 4DEnVAR1600 outperforms 

4DEnVAR50 almost for all precipitation thresholds, especially for intense rain. Also for high 

rain-rate, compared to JNoVA, 4DEnVAR1600 forecasts are worse than JNoVA forecasts for the 

first 12-hour forecasts, which can be attributed to the fact that 4D-EnVAR-NHM did not assimilate 

satellite radiances and surface precipitation like JNoVA. However, it is interesting to see that 

4D-EnVAR-NHM produces forecasts better than JNoVA for very intense rains for the next 12-hour 

forecasts. 

To check reliability of the ensemble forecasts, reliability diagrams are calculated and plotted in 

Figure 2 for 4DEnVAR1600 and 4DEnVAR50. Since JNoVA only provided deterministic forecasts, 

reliability diagram is irrelevant for JNoVA. Note that we only performed ensemble forecasts 

initialized at the target time of 0000 JST July 29th, 2001 due to lack of computational resource to 

run 1600-member ensemble forecasts at different initial times. Therefore, the same strategy of 

aggregating 3-hour precipitation over the first and second 12-hour forecasts in calculating the FSS 

in Figure 1 is applied to obtain significant statistics. Clearly, Figure 2 shows that 4DEnVAR1600 is 

distinctively more reliable than 4DEnVAR50 in predicting intense rain. While 4DEnVAR50 cannot 

capture intense rain, 4DEnVAR1600 tends to overestimate areas of intense rain. The tendency of 
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overestimation of 4DEnVAR1600 becomes clearer if we consider the forecast ranges between 12 

and 24 hours. However, for the first 12 hours, 4DEnVAR1600 slightly underestimates areas of light 

rains. This also explains why the FSSs of 4DEnVAR1600 are smaller than those of 4DEnVAR50 for 

small rainfall thresholds in Figure 1.” 

 

Since we only run deterministic forecasts for other initial times, we show here the forecast results 

for other lead times as supplement information (Figure S2). Again, we do not intend to add this 

figure into the manuscript. It turns out that it is more difficult to forecast the second and third peaks 

in the hydrograph.  

 

 

Figure S2. Time series of one-hour accumulated rainfall over the catchment by deterministic 

forecasts of JNoVA (top) and 4DEnVAR1600 (bottom) at different lead times. 

 

(5) I really liked Figures 7, the probability of the inflow exceeding a critical threshold, and 10, the 

probability of an emergency operation, as examples of probabilistic products that meets the needs 

of an end-user. Once again, it would be interesting to see these products for a range of lead times. 

Regarding Figure 7, moving the forecasts around in time did not improve the results, but what 

about moving the ensemble in space? Generally, I find that the NWP rainfall forecasts that I work 

with have limited skill at scales that are below around 100 km. I assume that the rainfall in this 
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case is strongly influenced by the topography so you would not want to shift the rainfall fields too 

much, but it would still be interesting to move them around by a few tens of km. 

 

Reply: As explained above, our computational resource can only afford running 1600-member 

ensemble forecast for a specific time. Although it’s desirable to know the forecasts as plotted Figure 

7 for other lead times, limited computation resource prevented us to employ this. In design the plot 

in Figure 7, we introduced the idea of using spatial and temporal uncertainty in verification from the 

FSS into the hourly discharges. It is clear that hourly discharges have strong correlation with hourly 

precipitation. Then it is reasonable to consider temporal uncertainty in hourly precipitation. Since 

the rainfall over the catchment here is not rainfall at any specific grid point but rainfall over many 

grid points (more than 70 km2 in our problem). Therefore, temporal uncertainty is more relevant to 

hourly catchment rainfall rather than spatial uncertainty. Also, computation with spatial uncertainty 

is more complicated in this case since we must consider all directions of displacement vectors in a 

two-dimensional space, which have more degree of freedom that just one direction in the 

one-dimensional space of temporal uncertainty. Therefore, we do not consider spatial uncertainty in 

plotting Figure 7 and 10. 

 

Nevertheless, please kindly note that the supplemental information for the spatial uncertainty was 

then written to reply the reviewer 2 (1) comment.  

 

(6) The conclusion that it is difficult to select a “set of best ensemble members” based on past 

performance is significant, if a little discouraging. 

 

Reply: The second reviewer has also shown interest on this problem. In the revised version, we 

have tried to established a theoretical framework to support the idea of “the best ensemble 

members”. From this theory, we have explained why the best ensemble members based on past 

performance can vary considerably in time and this makes selection of best ensemble members 

difficult. 

 

Reviewer 2: 

(1) This manuscript presents the ensemble streamflow forecast forced by a large number of rainfall 

ensemble at a high resolution. It is a follow-up study of a NHESS paper published in 2016. The 

main difference is the number of ensemble from 11 to 1600 while the catchment setup is nearly 

identical. The key idea, use of a large number of rainfall ensemble, is of interest and worth 

testing since lack of diversity in ensemble has been commonly used as a good excuse for 

explaining poor performance of hydrologic forecasting. Now, there are 1,600 rainfall ensemble. 

Can such a large number of rainfall ensemble significantly improve the streamflow forecasting? 

What factors play an important role in the improved forecast? These are critical questions 

hydrological and meteorological communities have been pursuing for a long time. 
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Unfortunately, these questions couldn’t be properly answered in the manuscript. For convincing 

potential readers with new evidence, the experimental setup and analysis methods need 

significant changes. However, the required changes are too enormous. I have nothing but 

suggest reject & resubmit. If this manuscript is accepted despite my suggestion, I request the 

following comments would be addressed before publication. 

 

Reply: First, we agree with the reviewer that impact of large weather ensemble forcing on 

hydrological forecasts are worth to examine in details. However, this interesting research topic itself 

is not the main topic that we would like to pursue this time in this paper as the Part 2 in a series on 

the hydrological forecast for the Kasahori dam. Our purpose in using the 1600-member ensemble 

forecast was only that we have found the rainfall forecast for the large area covering the small 

catchment of the Kasahori dam was significantly improved when using this ensemble forecast and 

we have hoped that this helps, as a result, to improve the streamflow forecast for the Kasahori dam. 

The impression that the topic of our research is on impact of large ensemble forcing on hydrological 

forecasts will not occur if, instead of the 1600-member ensemble forecast, we used a 50-member 

ensemble forecast in the paper. In fact, we have tried to use a 50-member ensemble forecast with 

the same data assimilation system 4D-EnVAR-NHM, however the performance of the rainfall 

forecast was not better than the operational forecast that we used in Part 1. Of course, the 

improvement rooted in the use of very large ensemble members and this problem involved to the 

way that this large ensemble members mitigate site-effects of localization in 4D-EnVAR-NHM by 

removing vertical localization and imposing a unique horizontal localization length scale for all 

variables at all vertical levels. We have described these special characteristics of 4D-EnVAR-NHM 

in the text. 

 

Likewise, as the information from hydrological aspects, we would like to show Figures S3 and S4 

below (Figures 6 and 7 in the revised manuscript this time). Figure S3 shows the comparisons of the 

hydrographs of (a) 11 discharge simulations in Part 1 (cited from Kobayashi et al., 2016), (b) same 

11 member but with a positional shift in Part 1 (Kobayashi et. al. 2016), (c) 50 discharge 

simulations with 4D-EnVAR-NHM and (d) 1600 discharge simulations with 4D-EnVAR-NHM. In 

addition, Figure S4 shows the histogram of NSE based on the simulated and observed discharges 

for the 4 cases.  

 

First, Figure S4 (c) and (d) are showing the large improvement of 1600 ensemble discharge 

simulation in terms of NSE compared with 50 ensemble simulations. Second, Figure S4 (a) and (c) 

are showing that the performance of the discharge forecast with 50 member 4D-EnVAR-NHM was 

not necessarily better than the discharge forecast with the forecast in Part 1 in terms of NSE. 

Likewise, Figure S4 (b) shows that the discharge forecasts could be improved by positional shift of 

the rainfall field in Part 1, though this positional shift still needs further statistical verification with 

more rainfall events.  
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With these analysis, the explanation below is added in pages 8 and 9 of the manuscript.  

 

“Figure 6 shows the comparisons of the hydrographs of (a) 11 discharge simulations in Part 1, (b) 

same 11 member but with a positional shift in Part 1, (c) 50 discharge simulations with 

4D-EnVAR-NHM and (d) 1600 discharge simulations with 4D-EnVAR-NHM. Note that the 

duration of the 4D-EnVAR-NHM ensemble weather simulation is 30 hours from 0000 July 29th to 

0700 July 30th JST, but the ensemble flood simulation is carried out only for 24 hours from 0300 

July 29th to 0300 July 30th, 2011 JST since we consider that JMA-NHM uses the first 3 hours to 

adjust its dynamics. The result in Figure 6 (d) shows that, except for the third peak, the 1600 

ensemble inflows can encompass the observed rainfall within the range, which was not realized in 

Part 1 with 11 downscale ensemble rainfalls of 2 km resolution (Figure 6 (a)). In other words, the 

extreme rainfall intensity of the event can be reproduced by the ensemble members with 1600 

4D-EnVAR-NHM. Likewise, comparing Figure 6 (c) and (d), the simulated discharges by 50 

ensemble rainfalls of 4D-EnVAR-NHM encompass the observation within the range less than those 

of 1600 ensemble members. In addition, Figure 7 shows the histogram of NSE based on the 

simulated and observed discharges for the 4 cases. Looking at Figure 7 (c) and (d), clearly, the 1600 

ensemble discharge simulations outperform 50 ensemble simulations. The NSE>0 was around 

17.75% (284 members) in 1600 ensembles, while it was 0% in 50 ensembles. On the other hand, 

Figures 7 (a) and (c) show that the performance of the discharge forecast with 50 member 

4D-EnVAR-NHM was not necessarily better than the 11 discharge forecast in Part 1 in terms of 

NSE. Likewise, Figures 6 (b) and 7 (b) show that the discharge forecasts could be improved by the 

positional shift of the rainfall field in Part 1, though this positional shift still needs further statistical 

verification with more rainfall events.” 
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Figure S3. Hydrographs of (a) 11 discharge simulations in Part 1 (Kobayashi et al., 2016), (b) same 

11 member but with a positional shift in Part 1, (c) 50 discharge simulations with 

4D-EnVAR-NHM and (d) 1600 discharge simulations with 4D-EnVAR-NHM. 
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Figure S4. Histograms of NSE based on the simulated and observed discharges to Kasahori dam: (a) 

11 discharge simulations in Part 1 (Kobayashi et al., 2016), (b) same 11 member but with a 

positional shift  in Part 1 (Kobayashi et. al. 2016), (c) 50 discharge simulations with 

4D-EnVAR-NHM and (d) 1600 discharge simulations with 4D-EnVAR-NHM. 

 

(2) - Validation at multiple streamflow gauges: Impact of large ensemble forcing should be 

estimated on multiple gauging locations. If findings are based on the results from a single 

streamflow gauge, feasibility of flood forecasts cannot be claimed while any conclusions can be 

considered site-specific. In my view, new locations for ensemble verification don’t have be 

limited to dam reservoirs. Any streamflow gages affected by the extreme rainfall are encouraged 

to be included. 

 

Reply: As we have explained in the previous answer, our research focused on the hydrological 

forecast for the Kasahori dam but not on impact of large ensemble forcing. Thus, it is inappropriate 

here to verify the hydrological ensemble forecast at all gauging locations in the domain covered by 

the meteorological forecast. We agree with the reviewer that if the topic is on impact of large 

ensemble forcing, conclusion should be relied on verification at all gauging locations. However, in 

this case verification for rainfall forecast over the whole domain is enough to draw conclusion on 
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performance of the ensemble forecast. We have already provided this kind of verification in Section 

3 of the manuscript. 

 

(3) - Selection of a proper size of ensemble: The later part of the result section is about how to find 

good rainfall ensemble members among 1600 for better streamflow forecasts. The conclusion is 

vague while all additional efforts are left as future research. Anything additional should be done 

to draw meaningful findings on this topic. For example, what statistical features do good 

ensemble have? In addition to rainfall, other meteorological variables may be examined together 

for analyzing good ensemble. How different or similar ensemble are selected at each time step 

compared to the previous steps? These questions also should be addressed for multiple gauges, 

not for a single gauge.  

 

Reply: We agree with the reviewer that this section lacks a rigorous theory on guiding to choose the 

best ensemble members that supports our conclusions. We have added this theory on the revised 

manuscript that we would like to copy here: 

 

“Clearly, the flood forecasting becomes very useful if we could just select the best ensemble 

members in advance. Logically, this is impossible since we only know the best members after 

knowing the observations which enable us to compute verification scores like NSE. This raises the 

question whether or not the best ensemble members can be inferred from the partial information 

provided by the observations at the first few hours. It is easy to see that the answer should be 

negative due to nonlinearity of the model and the presence of model error: the best marching at the 

first few hours is almost certainly not the best marching over all forecast ranges. However, it is 

obvious that the observations at the first few hours have a certain value which can help to reduce 

uncertainty in the ensemble forecast if we could incorporate this information into the forecast. 

This procedure has already been well-known under the name “data assimilation” in which we 

assimilate the observations at the first few hours to turn the prior probabilistic density function (pdf) 

given by the short-range forecasts into the posterior pdf given by the analysis ensemble (Reich and 

Cotter, 2015). Thus, if we know the observations at the first few hours, we should assimilate these 

data to replace the short-range ensemble forecasts by the ensemble analyses at these hours, then run 

the model initialized by the new ensemble to issue a new ensemble forecast. As a result, we should 

replace the definition of the best members based on verification scores to a more appropriate one 

based on the posterior pdf. Here, we identify the best members with the most likely members. 

Clearly, if we assume the posterior pdf is unimodal, the best members should be the members 

clustering around the mode of this pdf, which is also the analysis. However, it is not clear how to 

identify the best members if this pdf is multimodal. 

To overcome this problem, we will use the mathematical framework settled up by particle filter 

(Doucet et al., 2001). Let us denote the short-range forecasts by 𝐱1 to 𝐱𝐾 where K is the number 

of ensemble members. The short-range ensemble forecast therefore yields an empirical pdf given by 

the sample (𝐱𝑖, 𝑤𝑖
𝑝𝑟𝑒

= 1/𝐾) with 𝑤𝑖
𝑝𝑟𝑒

 denoting the equal weight for the i-th member 
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p𝑋(𝐱) = ∑ 𝑤𝑖
𝑝𝑟𝑒  δ(𝐱 − 𝐱𝑖)

𝐾
𝑖=1 = ∑

1

𝐾
δ(𝐱 − 𝐱𝑖)

𝐾
𝑖=1 . (3) 

Using this prior pdf as the proposal density, the posterior pdf has the following form 

p𝑋(𝐱|𝐲) = ∑ 𝑤𝑖
𝑝𝑜𝑠𝑡 δ(𝐱 − 𝐱𝑖)

𝐾
𝑖=1 = ∑

p𝑌(𝐲|𝐱𝑖)

∑ p𝑌(𝐲|𝐱𝑗)𝐾
𝑗=1

δ(𝐱 − 𝐱𝑖)
𝐾
𝑖=1 . (4) 

Here, p𝑌(𝐲|𝐱𝑖) denotes the likelihood of the observations y conditioned on the forecast 𝐱𝑖, and the 

weight 𝑤𝑖
𝑝𝑜𝑠𝑡  are the relative likelihoods. Moreover, it can be shown that p𝑌(𝐲|𝐱𝑖)  is the 

observation evidence for the ith member (Duc and Saito, 2018). Then applying the model M as the 

transition model, the predictive pdf is given by 

p𝑋(𝐱|𝐲, M) = ∑ 𝑤𝑖
𝑝𝑜𝑠𝑡 δ(𝐱 − M(𝐱𝑖))𝐾

𝑖=1 . (5) 

This equation shows that the contribution of each member to the predictive pdf is unequal, which 

differs from the prior pdf (3). While the members with large values of 𝑤𝑖
𝑝𝑜𝑠𝑡

 dominate the 

predictive pdf, those with very small values of 𝑤𝑖
𝑝𝑜𝑠𝑡

 can be ignored. This suggests that the best 

members can be identified with the largest values of 𝑤𝑖
𝑝𝑜𝑠𝑡

. Thus, if we sort 𝑤𝑖
𝑝𝑜𝑠𝑡

 in the 

descending order, the first N weights are corresponding to the first N best ensemble members. In 

this case, the predictive pdf (5) is approximated by 

p𝑋(𝐱|𝐲, M) = ∑
p𝑌(𝐲|𝐱𝑖)

∑ p𝑌(𝐲|𝐱𝑗)𝑁
𝑗=1

 δ(𝐱 − M(𝐱𝑖))𝑁
𝑖=1 . (6) 

Note that by introducing the notion of the best ensemble members, a substantial change occurs, that 

is we now work with a unequal weighted sample (𝐱𝑖, 𝑤𝑖
𝑝𝑜𝑠𝑡

). This should be taken into account in 

computing statistics like ensemble mean from the best ensemble members. 

   If the likelihoods have the Gaussian form 

p𝑌(𝐲|𝐱𝑖) ∝ exp [−
1

2
(𝐲 − h(𝐱𝑖))𝑇𝐑−1(𝐲 − h(𝐱𝑖))], (7) 

where h is the observation operator, and R is the observation error covariance, it is easy to see that 

the largest weights are corresponding to the smallest weighted root mean square errors (WRMSE) 

𝑊𝑅𝑀𝑆𝐸𝑖 = (𝐲 − h(𝐱𝑖))𝑇𝐑−1(𝐲 − h(𝐱𝑖)). (8) 

Therefore, if R is a multiple of the identity matrix I, the WRMSEs become the RMSEs, which in 

turn are equivalent to the NSEs. This shows that selection of the best members based on verification 

scores over the first few hours is in fact selection of the best members based on the relative 

likelihoods in the posterior pdf. It can also be understood as model selection based on observation 

evidence (Mackay, 2003).” 

 

The theory can be traced back to the theory of data assimilation in which the mathematical form of 

particle filter can be served as a foundation for choosing the best ensemble members. Relied on 

available observations, a weight can be assigned for each ensemble members, which in fact 

represents the likelihood of the observations conditioned on this forecast. This reduces to 

verification scores for each member depending on the form of the likelihood. We would like to 

remark here that the theory is applied for any number of ensemble members. 
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Thus, statistical features that define the best ensemble members are the relative likelihood 𝑤𝑖
𝑝𝑜𝑠𝑡 =

p𝑌(𝐲|𝐱𝑖)

∑ p𝑌(𝐲|𝐱𝑗)𝐾
𝑗=1

. These likelihoods vary with the lead time, therefore at different time steps, we will 

have different good ensemble members. The observation 𝐲 here denotes all kinds of observations 

that means the relative likelihoods encompass not only rainfall but also other meteorological 

variables available at the first few hours. However, if we have already known the meteorological 

observations, it is better to run the next assimilation cycle, and using the new analysis ensemble to 

produce the new ensemble forecast. It is more practical to assume that we only know observations 

of discharge and rainfall at the first few hours.  

 

(4) - If necessary, some machine learning approaches the authors mentioned, e.g. SOM and SVM, 

may be used in the current manuscript rather remaining them in the future topics. 

 

Reply: We have removed the call for machine learning methods in the manuscript since this is not 

relevant now. On the other hand, we have added the text below to the page 13 of the revised 

manuscript.  

 

“Herein lies the problem that, NSEs are quite sensitive to spatial and temporal displacement errors 

in rainfall. In principle, it is possible to introduce those errors into NSEs in a way similar to FSSs. 

However, it should be cautious in introducing such errors into NSEs before investigated well, 

although this type of approach has been used frequently in meteorology community. How to 

incorporate them qualitatively is also a problem to be addressed.” 

 

We have tested to incorporate the temporal displacement errors of rainfall into discharge NSE. One 

result is shown in Figure S5 below. The figure shows NSE considering temporal shift of ±1, 2 hr. It 

shows clearly that the number of discharge simulation members with NSE >0 increases, e.g. if we 

consider time-lag of +1hr. Nevertheless, as this analysis needs more elaboration, we would like to 

show them temporally as your information in this reply letter only.  
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Figure S5. NSE considering temporal displacement errors. 

 

(5) - To give up the selection of the best ensemble: In the last part of the result section, although it 

was failed, the authors discussed the possibility of selecting the best discharge simulation using 

the best rainfall ensemble from 1600. I highly disagree with this idea because ensemble 

approaches were introduced to overcome the limitation of deterministic approaches. 

 

Reply: When we select the best ensemble members based on the observations at the first few hours, 

we have already replaced the original ensemble forecast given by the sample (𝐱𝑖, 𝑤𝑖
𝑝𝑟𝑒 = 1/𝐾, 

i=1,..,K) by the new sample consisting of a small number of the best ensemble members. The old 

manuscript did not describe the form of this resulting pdf, and mistakenly assumed that the new 

ensemble forecast is populated from an equally weighted sample (𝐱𝑗
𝑏𝑒𝑠𝑡, 𝑤𝑗

𝑏𝑒𝑠𝑡 = 1/𝑁, j=1,..,N). 

Furthermore, we lost useful information when moving from a large ensemble to a small ensemble. 

And, we have somehow agreed with the point of view of the reviewer on this problem. 

 

Under the theory on selection of the best ensemble members that we have introduced in the revised 

version, the predictive pdf yielded by the best ensemble members is now given its explicit form in 

(6). The theory shows that the notion of the best ensemble members still has a certain application if 

many members have very small relative likelihood 𝑤𝑖
𝑝𝑜𝑠𝑡 =

p𝑌(𝐲|𝐱𝑖)

∑ p𝑌(𝐲|𝐱𝑗)𝐾
𝑗=1

, and the predictive pdf is 

dominated by a small number of ensemble members. The weights 𝑤𝑖
𝑝𝑜𝑠𝑡

 strongly depend on our 
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model on observation errors. 

 

(6) - Probabilistic verification: Although this study is about ensemble forecasting, all measures are 

deterministic, no probabilistic measures are not used for verification of probabilistic forecasts. 

Since ensemble forecasts aim at providing not only better averages from ensemble but also 

predictive uncertainty, adequacy of ensemble spread is critical to assessing probability of 

flooding risks and there are common metrics used in hydrological and meteorological 

communities for assessing reliability, discrimination, resolution, and sharpness of ensemble. 

Such metrics should be estimated and discussed. 

 

Reply: The first reviewer has also shown the same concern on rainfall verification. In the revised 

manuscript we have added reliability diagrams for rainfall forecasts. Ensemble spreads have in deed 

given in the plots for 1600 forecasts of the rainfall and discharge at the catchment (Figures 2 and 6 

in the original manuscript), but under the form of inter-quartiles in the box-and-whisker diagrams. 

The use of inter-quartile is more robust than the normal spread since the latter is more sensitive to 

outliers. Another probabilistic score (the Brier score) has been shown implicitly in Figures 7 and 10 

(in the original manuscript) for discharge and accumulated volume when we predefined some 

thresholds. Instead of plotting all forecast probabilities and the corresponding observations, the 

Brier scores can be computed from all lead times. However, it is more informative to plot all pairs 

of the forecast probabilities and the observations. 

 

(7) - Please elaborate why the different number of ensemble was used for each analysis. For figures 

11, 13(a), and 13(b), the number of selected ensemble varies from 38 to 26. 

 

Reply: The number (i.e. 26 to 38) corresponds to the number of (NSE>0, NSE>0.25, NSE>0.9 etc.). 

Thus, it is not same each other. But we decided to make the number all 50 and replotted the figures 

considering your comments  

 

(8) - Figure 14. It is negative that any meaningful findings come from simulation results whose 

NSE values are less than -1. This figure is comparing NSE ranging from 1 to -7. 

 

Reply: We have removed this figure in the revised manuscript since the theory on selection of the 

best members introduced in the revised manuscript makes this figure irrelevant now. 

 

(9) - Given that the authors also admitted the accuracy of radar rainfall is better than that of NWP, 

why didn’t you use radar rainfall as input for hydrologic modeling in the past time steps? If 

NWP ensemble are used only for forecasting steps, as most operational models are doing, 

generally forecast performance is expected to be better. 

 

Reply: Yes, we can use radar rainfall available at the first few hours to run our hydrological model. 
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However, in this case, we can no longer select the best members from forecasts for the first few 

hours. In this study one of the topics is to know whether we can infer the best members from the 

observations at the first few hours. If the answer is negative, we agree that your approach is the 

most appropriate way to improve forecast performance. But of course, in this way we need to run 

all 1600 members.  

 

(10) - Review in Introduction: A simple summary of several papers should be avoided. Previous 

papers should be used to show how research questions or gaps the current study is dealing with 

are addressed and remain unsolved. 

 

Reply: We have added several studies focusing on rainfall forecasts at cloud-resolving scales 

around mountainous areas, to show the importance of cloud-resolving ensemble weather simulation 

especially as the input to the rainfall-runoff model. Those are written in the revised manuscript as 

follows:  

 

“Likewise in Europe, Hohenegger (2008) carried out the cloud-resolving ensemble weather 

simulations of the August 2005 Alpine flood. Their cloud resolving EPS of 2.2 km grid space 

included the explicit treatment of deep convection and was the result of downscaling of 

COSMO-LEPS (10km resolution driven by ECMWF EPS).  Their conclusion was that despite the 

overall small differences, the 2.2 km cloud resolving ensemble produces results as good as and even 

better than its 10km EPS, though the paper did not deal with the hydrological forecasting. Another 

paper which dealt with cloud resolving ensemble simulations can be found in Vie et al. (2011) for 

Mediterranean heavy precipitation event. Their ensemble weather simulation model resolution was 

2.5 km by AROME from Meteo-France which uses ALADIN forecast for lateral boundary 

condition (10km resolution), thus the deep convection was explicitly resolved. We can recognize 

from these researches that the European researchers especially around mountain region have been 

farsighted from early days for the importance of these cloud resolving ensemble simulations.”   

 

Likewise, we have also added some clear explanation about the scope of our papers Part 1 and 2 in 

series. Those are written in the revised manuscript as follows.  

 

“Since the new EPS produced better forecasts of the rainfall field, in this study, as a Part 2 version 

of Kobayashi et al. (2016), we applied those 1600 ensemble rainfalls to the ensemble inflow 

simulations to Kasahori Dam without the positional lag correction. The main theme of this Part 2 

paper is that the 1600 ensemble rainfall forecasts can significantly improve the rainfall forecast over 

the large area around Kasahori dam and this would, as a result, help to improve the streamflow 

forecast for the Kasahori dam. In the series of Part 1 and 2, we intentionally have chosen a 

rainfall-runoff model whose specification is quite close to those runoff models used in many 

governmental practices of Japanese flood forecasting to see the usefulness of 1600 ensemble 

rainfalls.”  
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(11) - The summary of K Project should be removed and, if required, moved to 

Acknowledgement section because the exascale computing is far from the scope of this journal, 

despite its importance to the motivation or institutional support to this study. 

 

Reply: These sentences are removed.  

 

(12) - Section 4 and several figures on the catchment are nearly identical to Section 3 and 

associated figures in the 2016 NHESS paper, which should be considered as selfplagiarism if 

not cited properly. 

 

Reply: We have considered that many readers do not have time to read Part 1, thus we added basic 

information of the catchment and dam by citing Part 1 paper. But now the paper is restructured 

considering your comments and keeps balance with Part 1.  

 

 

Changes in manuscript: 

 

We summarize our changes in the revised version: 

 Section 1 Introduction now emphasizes this study is a continuation of the Part 1 in a series on 

the hydrological forecast for the Kasahori dam. The main difference is that in the Part 2 we 

could access a better ensemble forecast for rainfall over the domain around the Kasahori dam. 

An interesting feature of this ensemble forecast is a large number of ensemble members which 

suggested us many interesting problems in verification. Some new references have also been 

updated in this section. 

 Section 2 on the heavy rainfall event has been rewritten. We have mainly referred to the Part 1 

for necessary information. A text has been added to briefly explain the mechanism that causes 

heavy rain in the area around the Kasahori dam. 

 Section 3 on meteorological ensemble forecast has been divided into two subsections: the 

subsection 3.1 uses the original content of Section 3 in the old manuscript; and the subsection 

3.2 devotes to a new content on rainfall verification for the new ensemble forecast. 

 Section 4 is in fact the original Section 5 in the old manuscript. We have removed the original 

Section 4 on the Kasahori dam catchment since all information is available from the Part 1. 

 Section 5 on the results has been divided into two subsections: the subsection 5.1 presents 

probabilistic forecasts for hydrological variables; and the subsection 5.2 describe a theory on 

selection of best members based on past performance and its application in our case. Whereas 

the theory is the new content, the application is mainly based on the content in the old 

manuscript. With this theory, a call for machine learning methods has been irrelevant now and 

all texts involving this topic has been removed. 

 Section 6 Conclusion has been slightly modified by adding discussion on the possibility of 
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introducing spatial and temporal uncertainty into NSE. 
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Abstract. This paper is a continuation of the authors’ previous paper (Part 1) on the feasibility of ensemble flood forecasting 

for a small dam catchment (Kasahori dam; approx.70 km2) in Niigata Japan using a distributed rainfall-runoff model and 15 

rainfall ensemble forecasts. The ensemble forecasts were given by an advanced data assimilation system, a four-dimensional 

ensemble variational assimilation system using the Japan Meteorological Agency non-hydrostatic model (4D-EnVAR). A 

noteworthy feature of this system was the use of a very large number of ensemble members (1600), which yielded a significant 

improvement in the rainfall forecast compared to Part 1. The ensemble flood forecasting using the 1600 rainfalls succeeded in 

indicating the necessity of emergency flood operation with the occurrence probability and enough lead time (e.g., 12 hours). 20 

Then, dynamical selection of the best ensemble members using the Nash Sutcliffe Efficiency (NSE) with different evaluation 

periods are discussed. As the result, it is recognized that the selection based on NSE does not provide an exact discharge 

forecast with several hours lead time, but it can provide some trend in the near future. 

1 Introduction 

Flood simulation driven by ensemble rainfalls is gaining more attention in recent years, because ensemble simulation is 25 

expected to provide flood forecasting with the probability of occurrence. In the Japanese case, it is considered that the ensemble 

rainfall simulation with a high resolution (2 km or below) is desirable since extreme rainfall often takes place due to mesoscale 

convective systems and the river catchments are not as large as continental rivers; even the largest Tone River Basin, is around 

17000 km2.   

A good review of ensemble flood forecasting using medium term global/European ensemble weather forecasts (2-15 days 30 

ahead) by numerical weather prediction (NWP) models can be found in Cloke and Pappenberger (2009). In much of their 

review, the resolution of NWP model is relatively coarse (over 10 km), the number of ensembles is moderate (10-50) and the 
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target catchment size is often large (e.g., Danube River Basin). They basically reviewed global/European ensemble prediction 

systems (EPS) but also introduced some researches on regional EPS nested into global EPS (e.g., Marsigli et al. 2001). They 

stated that “One of the biggest challenges therefore in improving weather forecasts remain to increase the resolution and 

identify the adequate physical representations on the respective scale, but this is a source hungry task”.  

Short-term flood forecasting (1-3 day) based on ensemble NWPs is gaining more attention in Japan.., as evidenced by a 5 

project for high resolution weather/flood forecasting using the K supercomputer in Kobe, Japan (Saito et al., 2013b, hereinafter 

the K Project) and a successor project for the preparation toward the use of a next generation exascale computer (hereinafter 

the Post-K Project; https://www.jamstec.go.jp/pi4/en/sub_00.html). In the K Project, Kobayashi et. al. (2016) dealt with an 

ensemble flood (rainfall-runoff) simulation of a heavy rainfall event occurred in 2011 over a small dam catchment (Kasahori 

Dam; approx. 70 km2) in Niigata, central Japan, using a rainfall-runoff model with a resolution of 250 m. Eleven-member 10 

ensemble rainfalls by the Japan Meteorological Agency nonhydrostatic model (JMA-NHM; Saito et al. 2006) with horizontal 

resolutions of 2 km and 10 km were employed. The 10 km EPS was initiated by the JMA operational mesoscale analysis and 

employed the modified Kain–Fritsch convective parameterization scheme, while its downscaling, the 2 km EPS, did not use 

the convective parameterization. The results showed that, although the 2 km EPS reproduced the observed rainfall much better 

than the 10 km EPS, the resultant cumulative and hourly maximum rainfalls still underestimated the observed rainfall. Thus, 15 

the ensemble flood simulations with the 2 km rainfalls were still not sufficiently valid. To improve the ensemble rainfalls in 

quantity and timing, the cumulative rainfalls of each 2 km ensemble member were calculated, then the rain distribution was 

shifted within 30 km from the original position to where the catchment-averaged cumulative rainfall for the Kasahori Dam 

maximized (i.e., positional lag correction of the rainfall field). Using this translation method, the magnitude of the ensemble 

rainfalls and likewise the inflows to the Kasahori Dam became comparable with the observed inflows.  20 

Other applications of the 2 km EPS, which permit deep convection on some level, can be found in for example Xuan et al. 

(2009). They carried out an ensemble flood forecasting at the Brue catchment, with an area of 135 km2, in southwest England, 

UK. The resolution of their grid based distributed rainfall-runoff model (GBDM) was 500 m and the resolution of their NWP 

forecast by the PSU/NCAR mesoscale model (MM5) was 2 km. The NWP forecast was the result of downscaling of the global 

forecast datasets from the European Centre for Medium-range Weather Forecasts (ECMWF). In the downscaling, four step 25 

nesting were carried out with the inner-most domain covering a region around 100 km x 100 km. The duration of the ensemble 

weather forecasting was 24 hours. Fifty members of the ECMWF EPS and one deterministic forecast were downscaled. Since 

the original NWP rainfall of a grid average still underestimates the intensity compared with rain-gauges, they introduced a best 

match approach (location correction) and a bias-correction approach (scale-up) on the downscaled rainfall field. The results 

showed that the ensemble flood forecasting of some rainfall events are in good agreement with observations within the 30 

confidence intervals, while those of other rainfall events failed to capture the basic flow patterns.  

Likewise in Europe, Hohenegger (2008) carried out the cloud-resolving ensemble weather simulations of the August 2005 

Alpine flood. Their cloud resolving EPS of 2.2 km grid space included the explicit treatment of deep convection and was the 

result of downscaling of COSMO-LEPS (10km resolution driven by ECMWF EPS).  Their conclusion was that despite the 
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overall small differences, the 2.2 km cloud resolving ensemble produces results as good as and even better than its 10km EPS, 

though the paper did not deal with the hydrological forecasting. Another paper which dealt with cloud resolving ensemble 

simulations can be found in Vie et al. (2011) for Mediterranean heavy precipitation event. Their ensemble weather simulation 

model resolution was 2.5 km by AROME from Meteo-France which uses ALADIN forecast for lateral boundary condition 

(10km resolution), thus the deep convection was explicitly resolved. We can recognize from these researches that the European 5 

researchers especially around mountain region have been farsighted from early days for the importance of these cloud resolving 

ensemble simulations.   

While in Japan, Yu et al. (2018) have also used a post-processing method using the spatial shift of NWP rainfall fields for 

correcting the misplaced rain distribution. Their study areas are Futatsuno (356.1 km2) and Nanairo (182.1 km2) dam 

catchments of the Shingu River Basin, in Kii Peninsula, Japan. The resolution of the ensemble weather simulations were 10 10 

km and 2 km by JMA-NHM, which is similar to the downscaling EPS in Kobayashi et al. (2016) but for a different heavy 

rainfall event in west central Japan caused by a typhoon. The data have a 30-hour forecast time. The results showed that the 

ensemble forecasts produced better results than the deterministic control run forecast, although the peak discharge was 

underestimated. Thus, they also carried out a spatial shift of the ensemble rainfall field. The results showed that the flood 

forecasting with the spatial shift of the ensemble rainfall members was better than the original one, likewise the peak discharges 15 

more closely approached the observations.  

As part of our review, we found several pieces of research which increased the resolution of EPSs (up to e.g. 2 km), while 

short-range flood forecasting of relatively small catchment (several 10–100 km2) were dealt with.  Nevertheless, the results 

showed that 2 km resolution EPS were not necessarily sufficient to represent the observed rainfall field both in timing and 

location, and thus the post-processing, such as the location correction of the rainfall field and scaling of the peak discharges, 20 

were required. 

Recently, as a further improvement upon the 2 km downscale ensemble rainfall simulations used by Kobayashi et al. (2016), 

Duc and Saito (2017) developed an advanced data assimilation system with the ensemble variational method (EnVAR) and 

increased the number of ensemble members to 1600. Since the new EPS produced better forecasts of the rainfall field, in this 

study, as a Part 2 version of Kobayashi et al. (2016), we applied those 1600 ensemble rainfalls to the ensemble inflow 25 

simulations to Kasahori Dam without the positional lag correction. The main theme of this Part 2 paper is that the 1600 

ensemble rainfall forecasts can significantly improve the rainfall forecast over the large area around Kasahori dam and this 

would, as a result, help to improve the streamflow forecast for the Kasahori dam. In the series of Part 1 and 2, we intentionally 

have chosen a rainfall-runoff model whose specification is quite close to those runoff models used in many governmental 

practices of Japanese flood forecasting to see the usefulness of 1600 ensemble rainfalls. The organization of this paper is as 30 

follows. In Section 2, an additional comment for the 2011 Niigata-Fukushima heavy rainfall is given.  the 2011 Niigata–

Fukushima heavy rainfall is briefly presented. Section 3 describes the new mesoscale EPS, its forecast and rainfall verification 

results. Section 4 describes and 5 introduce the Kasahori Dam catchment andthe rainfall-runoff model for explaining the 
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changes in the model parameters. Results are shown in Section 5. In Section 6, concluding remarks and future aspects are 

presented.  

2 The 2011 Niigata–Fukushima heavy rainfall 

A severe rainstorm with two rainfall peaks occurred on 27–30 July 2011 over Niigata and Fukushima prefectures in north 

central Japan. Niigata Prefecture (Niigata, 2011) reported that the cumulative rainfall from the onset of the rainfall to 1300 5 

JST (0400 UTC) on 30 July 2011 reached 985 mm at the Kasahori Dam Observatory. There were 68 rainfall observatories 

managed by JMA, the Ministry of Land, Infrastructure and Transport and Tourism (MLIT), and the Niigata Prefecture, where 

the cumulative rainfall exceeded 250 mm. During the rainfall event, JMA announced “record-setting, short-term, heavy rainfall 

information” on 30 occasions. The hourly rainfall recorded from 2000 to 2100 JST on 29 July at the Tokamachi-Shinko 

Observatory reached 120 mm. Six people were killed and more than 13000 houses were damaged by dike breaks, river flooding, 10 

and landslides. A detailed description of this rainfall event has been published by JMA as a special issue of the JMA Technical 

Report (JMA, 2013).  

For the details of the 2011 Niigata-Fukushima heavy rainfall, see our Part 1 paper. An additional note is that the torrential 

rain of the 2011 Niigata-Fukushima heavy rainfall occurred over the small area along the synoptic scale stationary front (for 

surface weather map, see Fig. 1 of Kobayashi et al. 2016). Saito et al (2013) conducted two 11-member downscale ensemble 15 

forecasts with different horizontal resolutions (10 and 2 km) for this event using JMA-NHM and JMA’s global ensemble EPS 

perturbations. They found that the location where intense rain concentrates variable to small changes of model setting, thus 

the position of the heavy rain was likely controlled mainly by horizontal convergence along the front, rather than the orographic 

forcing. Two different types of rainfall are introduced in the following text. The descriptions are as follows:  

(a) Radar Composite (1 km resolution): The echo intensity, which can be converted to rainfall intensity, is observed by 20 20 

meteorological radar stations of JMA and is available with 10 min temporal resolution. 

(b) Radar-AMeDAS (1 km resolution): The rainfall intensity observed by the radar is corrected using rain gauge data 

(ground observation data). The data is available with 30 min temporal resolution.  

3 Mesoscale ensemble forecast  

3.1 Ensemble prediction system 25 

An advanced mesoscale EPS was developed and employed to prepare precipitation data for the rainfall-runoff model. The EPS 

was built around the operational mesoscale model JMA-NHM for its atmospheric model as the downscale EPS conducted by 

Saito et al. (2013). In this study, a domain consisting of 819 × 715 horizontal grid points and 60 vertical levels was used for 

all ensemble members. This domain had a grid spacing of 2 km and covered the mainland of Japan. With this high resolution, 

convective parameterization was switched off. Boundary conditions were obtained from forecasts of the JMA’s global model. 30 
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Boundary perturbations were interpolated from forecast perturbations of the JMA’s operational one-week EPS as in Saito 

(2013). 

  To provide initial conditions and initial perturbations for the EPS, a four-dimensional, variational-ensemble assimilation 

system (4D-EnVAR-NHM) was newly developed, in which background error covariances were estimated from short-range 

ensemble forecasts by JMA-NHM before being plugged into cost functions for minimization to obtain the analyses (Duc and 5 

Saito, 2017). If the number of ensemble members is limited, ensemble error covariances contain sampling noises which 

manifest as spurious correlations between distant grid points. In data assimilation, the so-called localization technique is 

usually applied to remove such noise, but at the same time it removes significant correlations in error covariances. In this study, 

we have chosen 1600 members in running the ensemble part of 4D-EnVAR-NHM to retain significant vertical correlations, 

which have a large impact in heavy rainfall events like the Fukushima-Niigata heavy rainfall. That means only horizontal 10 

localization is applied in 4D-EnVAR-NHM. The horizontal localization length scales were derived from the climatologically 

horizontal correlation length scales of the JMA’s operational four-dimensional, variational assimilation system JNoVA by 

dilation using a factor of 2.0. 

Another special aspect of 4D-EnVAR-NHM is that a separate ensemble Kalman filter was not needed to produce the analysis 

ensemble. Instead, a cost function was derived for each analysis perturbation and minimization was then applied to obtain this 15 

perturbation, which is very similar to the case of analyses. This helped to ensure consistency between analyses and analysis 

perturbations in 4D-EnVAR-NHM when the same background error covariance, the same localization, and the same 

observations were used in both cases. To accelerate the running time, all analysis perturbations were calculated simultaneously 

using the block algorithm to solve the linear equations with multiple right-hand-side vectors resulting from all minimization 

problems. The assimilation system was started at 0900 JST July 24th, 2011 with a 3-hour assimilation cycle. All routine 20 

observations at the JMA’s database were assimilated into 4D-EnVAR-NHM. The assimilation domain was the same as the 

former operational system at JMA. To reduce the computational cost, a dual-resolution approach was adopted in 4D-EnVAR-

NHM where analyses had a grid spacing of 5 km, whereas analysis perturbations had a grid spacing of 15 km. The analysis 

and analysis perturbations were interpolated to the grid of the ensemble prediction system to make the initial conditions for 

deterministic and ensemble forecasts. 25 

 

3.2 Rainfall verification 

Due to limited computational resource, ensemble forecasts with 1600 members were only employed for the target time of 

0000 JST July 29th, 2011. However, deterministic forecasts were run for all other initial times to examine impact of number of 

ensemble members on analyses and the resulting forecasts. Figure 1 shows the verification results for the 3-hour precipitation 30 

forecasts as measured by the Fraction Skill Score (FSS) (Duc et al., 2013). Here we aggregate the 3-hour precipitation in the 

first and second 12-hour forecasts to increase samples in calculating the FSS. By this way, robust statistics are obtained but at 

the same time dependence of the FSS on the leading times can still be shown. Note that an additional experiment with 4D-

EnVAR-NHM using 50 ensemble members, which is called 4DEnVAR50 to differentiate with the original one 4DEnVAR1600, 
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was run. It is very clear from Figure 1 that 4DEnVAR1600 outperforms 4DEnVAR50 almost for all precipitation thresholds, 

especially for intense rain. Also for high rain-rate, compared to JNoVA, 4DEnVAR1600 forecasts are worse than JNoVA 

forecasts for the first 12-hour forecasts, which can be attributed to the fact that 4D-EnVAR-NHM did not assimilate satellite 

radiances and surface precipitation like JNoVA. However, it is interesting to see that 4D-EnVAR-NHM produces forecasts 

better than JNoVA for very intense rains for the next 12-hour forecasts. 5 

To check reliability of the ensemble forecasts, reliability diagrams are calculated and plotted in Figure 2 for 4DEnVAR1600 

and 4DEnVAR50. Since JNoVA only provided deterministic forecasts, reliability diagram is irrelevant for JNoVA. Note that 

we only performed ensemble forecasts initialized at the target time of 0000 JST July 29th, 2001 due to lack of computational 

resource to run 1600-member ensemble forecasts at different initial times. Therefore, the same strategy of aggregating 3-hour 

precipitation over the first and second 12-hour forecasts in calculating the FSS in Figure 1 is applied to obtain significant 10 

statistics. Clearly, Figure 2 shows that 4DEnVAR1600 is distinctively more reliable than 4DEnVAR50 in predicting intense 

rain. While 4DEnVAR50 cannot capture intense rain, 4DEnVAR1600 tends to overestimate areas of intense rain. The tendency 

of overestimation of 4DEnVAR1600 becomes clearer if we consider the forecast ranges between 12 and 24 hours. However, 

for the first 12 hours, 4DEnVAR1600 slightly underestimates areas of light rains. This also explains why the FSSs of 

4DEnVAR1600 are smaller than those of 4DEnVAR50 for small rainfall thresholds in Figure 1. 15 

As examples of the forecasts, Figure 3 shows the accumulated precipitation at the peak period (1200-1500 JST July 29th, 

2011) as observed and forecasted by the 4D-EnVAR prediction system. For comparison, the deterministic forecast initialized 

by the analysis from JNoVA using the same domain has also been given. Note that the forecast range corresponding to this 

peak period is from 12 to 15 hours. Clearly, the deterministic forecast initialized by 4D-EnVAR-NHM outperformed that by 

the JNoVA, especially in terms of the location of the heavy rain, although the forecast by 4D-EnVAR-NHM tended to slightly 20 

overestimate the rainfall amount as verified with the reliability diagrams in Figure 2. This over-estimation can also be observed 

in the coastal area near the Sea of Japan. Note that a significant improvement was also attained against the former downscale 

EPS  used in Part 1 (see Fig. 9 of Kobayashi et al. 2016) .      

Since it is not possible to examine all 1600 forecasts, the ensemble mean forecast is only plotted in the bottom right of 

Figure 3. Again, the location of the heavy rain corresponds well with the observed location, as in the case of the deterministic 25 

forecast, but the ensemble mean precipitation is smeared out as a side effect of the averaging procedure. Therefore, to check 

the performance of the ensemble forecast we plot one-hour accumulated precipitation over the Kasahori Dam catchment in 

time series under box-and-whisker plots in Figure 4. It can be seen that while the deterministic forecast could somehow 

reproduce the three-peak curve of the observed rainfall, ensemble members tended to capture the first peak only. Note that 

some members showed this three-peak curve, such as the best member, but their number was much less than the number of 30 

ensemble members. 
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4 Kasahori Dam catchment  

Figure 5 (left) shows the Shinanogawa and Aganogawa river catchments, where severe floods occurred in the 2011 Niigata–

Fukushima heavy rainfall. The Kasahori Dam catchment exists in the Shinanogawa river catchment. Figure 5 (right) shows an 

enlarged view of the Kasahori Dam catchment (catchment area 72.7 km2, MLIT, 2012). The land use of the Kasahori Dam 

catchment is mostly occupied by forest, and as such, the applied rainfall-runoff model assumed the entire area was forest.  5 

The basic operation of the Kasahori Dam is summarized as follows. 

1. The reservoir water level is lowered to the normal water level for the rainy season (elevation level (EL) 194.5 m). 

2. If a flood risk due to extreme rainfall is expected by weather monitoring/prediction, the water level is further lowered to 

the preliminary release water level (EL 192.0 m). 

3. When the inflow exceeds 140 m3 s-1, the threshold value for the onset of flood control operations, the gate opening is fixed 10 

such that the outflow amount is determined only by the water pressure in the dam. This is, in a broad sense, a natural 

regulation operation. The gate opening is not adjusted until the water level reaches EL 206.6 m. 

4. When the reservoir water level reaches EL 206.6 m, an emergency (Tadashigaki in Japanese) operation is taken, and the 

outflow is set equal to the inflow. 

Note that the dam has been under renovation to increase its flood control capacity after the flood event in July 2011, but we 15 

do not address the changes due to the dam renovation here. We consider the dam operational rules at the time of the 2011 flood 

event.  

4 Distributed Rainfall-Runoff Model 

The distributed rainfall–runoff (hereinafter DRR) model used in Part 1 was applied again in this paper. See Kobayashi et al. 

(2016) for the details. The DRR model applied was originally developed by Kojima et al. (2007) and called CDRMV3. the 20 

details of which can be seen in Apip et al. (2011). In the DRR model, the surface and river flows are simulated using a 1D 

kinematic wave model. The subsurface flow is simulated using the q-h relationship by Tachikawa et al. (2004). The details of 

the model can be seen in the paper by Kobayashi et al. (2016). As described in the previous section, we intentionally have 

chosen a rainfall-runoff model whose specification is close to those runoff models used by national/local governments since 

the purpose is more to investigate the usefulness of 1600 ensemble rainfalls. 25 

The parameters of the DRR model were recalibrated in this study using the hourly Radar-Composite of JMA, since Radar 

precipitation data is in general the primary source for real time flood forecasting. Radar-Composite data can be obtained in 

Japan at 10 minutes intervals. The recalibrated equivalent roughness coefficient of the forest, the Manning coefficient of the 

river, and the identified soil-related parameters are described in Table 1 with the parameters in Part 1. The simulated 

hydrograph and observations are shown in Figure 5. The duration of the calibration simulation is from 0100 July 28th to 0000 30 

July 31th, 2011 JST.  
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The Nash Sutcliffe Efficiency (hereinafter NSE: Nash and Sutcliffe, 1970), which is used for the assessment of model 

performance, is calculated as follows:  

NSE = 1 −
∑ {𝑄0

𝑖 −𝑄𝑠
𝑖}

2𝑁
𝑖=1

∑ {𝑄0
𝑖 −𝑄𝑚}

2
𝑁
𝑖=1

                                                                                                                                                             (1)                                                                                                                                    

𝑄𝑚 =
1

𝑁
∑ 𝑄0

𝑖𝑁
𝑖=1                                                                                                                                                                                        (2)                                                                                                                          

where N is the total number of time steps (1 h interval), 𝑄0
𝑖  is observed dam inflow (discharge) at time i, 𝑄𝑠

𝑖  is simulated dam 5 

inflow (discharge) at time i, 𝑄𝑚 is the average of the observed dam inflows.   

In the calibration simulation in Figure 5, the NSE is 0.754. The 2nd peak is not captured well in the simulation because the 

Radar-Composite basically could not capture the strong rainfall intensity of the 2nd peak. Nevertheless, we consider that the 

model can reproduce the discharge on some level if rainfall is properly captured by the observations. Thus, the DRR model is 

used in the following ensemble simulations.  10 

5 Results 

In this section, the results of the ensemble flood simulations are shown focusing on two aspects: 

(1) We examined whether the ensemble inflow simulations can show the necessity of starting the flood control operations 

and emergency operations with sufficient lead time (e.g. 12 h). 

(2) We also examined if we could obtain high accuracy ensemble inflow predictions several hours (1-3 h) before the 15 

occurrence, which could contribute to the decision for optimal dam operation. 

Item (1) provides us with the scenario that we can prepare for any dam operations with enough lead time. Likewise, it may 

enable us to initiate early evacuation of the inhabitant living downstream of the dam. Item (2) is the target that has been 

attempted by researchers of flood forecasting. If we could forecast the inflow almost correctly several hours before the 

occurrence, it could help the dam administrator with the decision for actual optimal dam operations.  20 

 

5.1 Probabilistic forecast 

Item (1) is considered first herein. Figure 6 shows the comparisons of the hydrographs of (a) 11 discharge simulations in 

Part 1, (b) same 11 member but with a positional shift in Part 1, (c) 50 discharge simulations with 4D-EnVAR-NHM and (d) 

1600 discharge simulations with 4D-EnVAR-NHM. Note that the duration of the 4D-EnVAR-NHM ensemble weather 25 

simulation is 30 hours from 0000 July 29th to 0700 July 30th JST, but the ensemble flood simulation is carried out only for 24 

hours from 0300 July 29th to 0300 July 30th, 2011 JST since we consider that JMA-NHM uses the first 3 hours to adjust its 

dynamics. The result in Figure 6 (d) shows that, except for the third peak, the 1600 ensemble inflows can encompass the 

observed rainfall within the range, which was not realized in Part 1 with 11 downscale ensemble rainfalls of 2 km resolution 

(Figure 6 (a)). In other words, the extreme rainfall intensity of the event can be reproduced by the ensemble members with 30 
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1600 4D-EnVAR-NHM. Likewise, comparing Figure 6 (c) and (d), the simulated discharges by 50 ensemble rainfalls of 4D-

EnVAR-NHM encompass the observation within the range less than those of 1600 ensemble members. In addition, Figure 7 

shows the histogram of NSE based on the simulated and observed discharges for the 4 cases. Looking at Figure 7 (c) and (d), 

clearly, the 1600 ensemble discharge simulations outperform 50 ensemble simulations. The NSE>0 was around 17.75% (284 

members) in 1600 ensembles, while it was 0% in 50 ensembles. On the other hand, Figures 7 (a) and (c) show that the 5 

performance of the discharge forecast with 50 member 4D-EnVAR-NHM was not necessarily better than the 11 discharge 

forecast in Part 1 in terms of NSE. Likewise, Figures 6 (b) and 7 (b) show that the discharge forecasts could be improved by 

the positional shift of the rainfall field in Part 1, though this positional shift still needs further statistical verification with more 

rainfall events. 

Figure 8 shows the 95 % confidence limits and inter-quartile limits of the 1600 ensemble members. The results show that 10 

the 3rd peak of the observations was not covered by the 95 % confidence interval, although the rest of the observations can be 

reproduced within the 95 % confidence interval. It is considered also that the ensemble mean and median values capture the 

overall trend of the observations on some level. 

Figure 9 shows the probability that the inflow discharge is beyond 140 m3 s-1 (hereinafter expressed as “q > 140”, where q 

is the discharge), the threshold value for starting the flood control operations. The figure considers the temporal shift of the 15 

ensemble rainfalls, i.e., temporal uncertainty due to the imperfect rainfall simulation. In the figure, 0-hour uncertainty means 

that we only considered discharges at time t to calculate probability, while 1-hour uncertainty means that we considered the 

discharges at t-1, t, t+1 to calculate probability and 2-hour means that we considered the discharges at t-2, t-1, t, t+1, t+2 to 

calculate probability. The 3- and 4-hour uncertainties were calculated in the same way. It becomes clear from the figure that 

the starting time of q > 140 is likely at t = between 0800 and 0900 July 29th JST, where all curves cross, while the ending time 20 

is likely at t = 1800 JST, where all curves cross again. Before and after the cross points there are jumps in the probabilities. In 

other words, the forecast can indicate that the situation of q > 140 would take place after 8–9 hours from the beginning of 

forecasting with the probability of around 50 %. We consider that this is a very valuable information for the users of the 

ensemble forecast.  

On the other hand, the emergency operation was undertaken in the actual flood event. In the emergency operation, the dam 25 

outflow has to equal the inflow to avoid dam failure as the water level approaches overtopping of the dam body. As written in 

Part 1, when the reservoir water level reaches EL 206.6 m, an emergency operation is undertaken, and the outflow is set to 

equal the inflow. As the Height-Volume (H-V) relationship of the dam reservoir was not known during the study, we judged 

the necessity of the emergency operation by whether the cumulative dam inflow was beyond the flood control capacity of 

8700000 m3. Actually, the flood control capacity had not been previously filled during regular operations more than the 30 

estimation given herein, since the dam can release the dam water by natural regulation. However, again, since we do not know 

some of the relationships to calculate the dam water level, the judgement is done based on whether the cumulative dam inflow 

exceeds the flood control capacity.   
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Figure 10 shows the cumulative dam inflows of all the ensemble simulations starting from 0300 July 29th, 2011 JST, as 

well as the mean and observed cumulative inflows with the flood control capacity. The figure shows that the mean of the 

ensembles was roughly similar to the observations. Figure 11 shows the 38 best ensemble members selected based on NSE > 

0.25, as well as the mean of all ensemble members, mean of the best ensemble members, and observations and flood control 

capacity. Figure 11 shows that the ensemble mean of the best 38 members resembles the observations for the first 12 hours 5 

better than the mean of all ensemble members, but the accuracy deteriorates for the last 12 hours. The difference between the 

observations and ensemble mean of all members is about 20 % after 24 hours. Figure 11 shows the probability that the 

cumulative dam inflow exceeds the flood control capacity of 8700000 m3. The figure indicates that, for instance, the cumulative 

inflow would exceed flood control capacity after 12 hours from the start of the forecast with the probability of around 45 %. 

In the actual event, the cumulative inflow based on observations and assuming no dam water release, would exceed the flood 10 

control capacity between 1200 and 1300 July 29th, 2011 JST. Around that interval, the exceedance probability of the forecast 

is 35–55 %. Until around this time, the forecast shows a slight delay in the estimate of the cumulative dam inflow. In the end, 

the forecast shows that the flood control capacity will be used up with the probability of more than 90 % with regard to this 

flood event. Thus, we consider this information is very useful as it can inform the inhabitant downstream of the dam to evacuate.  

 15 

5.2 Selection of the best members 

Figure 12 shows all ensemble members, the 50 best ensemble members out of 1600 ensembles selected based on NSE > 

0.224, and observations. The 38 best ensemble members are the same as in Figure 11. The figure shows that the selected 50 

members reproduce the observations well. In some of the selected members, even the 3rd peak is reproduced. In the case where 

the 3rd peak is reproduced, the inflow hydrographs are beyond the 95 % confidence interval. Figure 13 shows the catchment 20 

average rainfalls of the 50 best ensemble inflow simulations. The black line is the observed gauge rainfall, the blue line is the 

Radar-AMeDAS (operational precipitation analysis of JMA based on radar and rain gauge observations), the green line is the 

Radar-Composite, while the grey lines are the 50 rainfalls for the best ensemble discharges. As mentioned, the rainfall-runoff 

model parameters are calibrated using Radar-Composite since the Radar-Composite is the primary source for the flood 

forecasting. Therefore, the rainfalls from the best 50 ensemble inflow simulations resemble those of the Radar-Composite.  25 

Clearly, the flood forecasting becomes very useful if we could just select the best ensemble members in advance. Logically, 

this is impossible since we only know the best members after knowing the observations which enable us to compute verification 

scores like NSE. This raises the question whether or not the best ensemble members can be inferred from the partial information 

provided by the observations at the first few hours. It is easy to see that the answer should be negative due to nonlinearity of 

the model and the presence of model error: the best marching at the first few hours is almost certainly not the best marching 30 

over all forecast ranges. However, it is obvious that the observations at the first few hours have a certain value which can help 

to reduce uncertainty in the ensemble forecast if we could incorporate this information into the forecast. 

This procedure has already been well-known under the name “data assimilation” in which we assimilate the observations at 

the first few hours to turn the prior probabilistic density function (pdf) given by the short-range forecasts into the posterior pdf 
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given by the analysis ensemble (Reich and Cotter, 2015). Thus, if we know the observations at the first few hours, we should 

assimilate these data to replace the short-range ensemble forecasts by the ensemble analyses at these hours, then run the model 

initialized by the new ensemble to issue a new ensemble forecast. As a result, we should replace the definition of the best 

members based on verification scores to a more appropriate one based on the posterior pdf. Here, we identify the best members 

with the most likely members. Clearly, if we assume the posterior pdf is unimodal, the best members should be the members 5 

clustering around the mode of this pdf, which is also the analysis. However, it is not clear how to identify the best members if 

this pdf is multimodal. 

To overcome this problem, we will use the mathematical framework settled up by particle filter (Doucet et al., 2001, 

Tachikawa et al., 2011). Let us denote the short-range forecasts by 𝐱1 to 𝐱𝐾 where K is the number of ensemble members. The 

short-range ensemble forecast therefore yields an empirical pdf given by the sample (𝐱𝑖, 𝑤𝑖
𝑝𝑟𝑒 = 1/𝐾) with 𝑤𝑖

𝑝𝑟𝑒
 denoting 10 

the equal weight for the i-th member 

p𝑋(𝐱) = ∑ 𝑤𝑖
𝑝𝑟𝑒 δ(𝐱 − 𝐱𝑖)

𝐾
𝑖=1 = ∑

1

𝐾
δ(𝐱 − 𝐱𝑖)

𝐾
𝑖=1 . (3) 

Using this prior pdf as the proposal density, the posterior pdf has the following form 

p𝑋(𝐱|𝐲) = ∑ 𝑤𝑖
𝑝𝑜𝑠𝑡

 δ(𝐱 − 𝐱𝑖)
𝐾
𝑖=1 = ∑

p𝑌(𝐲|𝐱𝑖)

∑ p𝑌(𝐲|𝐱𝑗)𝐾
𝑗=1

δ(𝐱 − 𝐱𝑖)
𝐾
𝑖=1 . (4) 

Here, p𝑌(𝐲|𝐱𝑖) denotes the likelihood of the observations y conditioned on the forecast 𝐱𝑖 , and the weight 𝑤𝑖
𝑝𝑜𝑠𝑡

  are the 15 

relative likelihoods. Moreover, it can be shown that p𝑌(𝐲|𝐱𝑖) is the observation evidence for the ith member (Duc and Saito, 

2018). Then applying the model M as the transition model, the predictive pdf is given by 

p𝑋(𝐱|𝐲, M) = ∑ 𝑤𝑖
𝑝𝑜𝑠𝑡

 δ(𝐱 − M(𝐱𝑖))𝐾
𝑖=1 . (5) 

This equation shows that the contribution of each member to the predictive pdf is unequal, which differs from the prior pdf 

(3). While the members with large values of 𝑤𝑖
𝑝𝑜𝑠𝑡

 dominate the predictive pdf, those with very small values of 𝑤𝑖
𝑝𝑜𝑠𝑡

 can be 20 

ignored. This suggests that the best members can be identified with the largest values of 𝑤𝑖
𝑝𝑜𝑠𝑡

. Thus, if we sort 𝑤𝑖
𝑝𝑜𝑠𝑡

 in the 

descending order, the first N weights are corresponding to the first N best ensemble members. In this case, the predictive pdf 

(5) is approximated by 

p𝑋(𝐱|𝐲, M) = ∑
p𝑌(𝐲|𝐱𝑖)

∑ p𝑌(𝐲|𝐱𝑗)𝑁
𝑗=1

 δ(𝐱 − M(𝐱𝑖))𝑁
𝑖=1 . (6) 

Note that by introducing the notion of the best ensemble members, a substantial change occurs, that is we now work with a 25 

unequal weighted sample (𝐱𝑖, 𝑤𝑖
𝑝𝑜𝑠𝑡

). This should be taken into account in computing statistics like ensemble mean from the 

best ensemble members. 

   If the likelihoods have the Gaussian form 

p𝑌(𝐲|𝐱𝑖) ∝ exp [−
1

2
(𝐲 − h(𝐱𝑖))𝑇𝐑−1(𝐲 − h(𝐱𝑖))], (7) 

where h is the observation operator, and R is the observation error covariance, it is easy to see that the largest weights are 30 

corresponding to the smallest weighted root mean square errors (WRMSE) 
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𝑊𝑅𝑀𝑆𝐸𝑖 = (𝐲 − h(𝐱𝑖))𝑇𝐑−1(𝐲 − h(𝐱𝑖)). (8) 

Therefore, if R is a multiple of the identity matrix I, the WRMSEs become the RMSEs, which in turn are equivalent to the 

NSEs. This shows that selection of the best members based on verification scores over the first few hours is in fact selection 

of the best members based on the relative likelihoods in the posterior pdf. It can also be understood as model selection based 

on observation evidence (Mackay, 2003). 5 

One of the practical problems with the assimilation process lies in high cost in computational resource, especially when 

1600 members are used to sample the prior and posterior pdfs. To be more practical, we assume that only rainfalls and 

discharges at the first few hours are available. As a first step, we attempted to select some of the best members out of the 1600 

members several hours in advance of the event based only on NSEs for the discharges. Figure 14(a) shows a result where we 

selected the best 50 ensemble members (NSE > -0.04) for the first 9 hours from the start of the forecast. In this case, we had a 10 

3-hour lead time towards the observed peak discharge, and the selected 50 members cover the observed discharge after the 

first 9 hours on some level. The result shows that the ensemble inflow simulations selected can indicate the possibility of rapid 

increases in the discharge after the 9 hours with a three-hour lead time.  

Likewise Figure 14 (b) shows the selected best 50 members (NSE > -0.33) for the first 10 hours (two hours ahead of the 

observed peak discharge). It is apparent that the result is worse than the previous first 9-hour selection. The ensemble inflow 15 

simulations after the 10 hours do not cover the observation well in this case. Figure 14(c) shows the selected best 50 members 

(NSE > 0.86) for the first 11 hours (1 hour ahead of the observed peak discharge). In this case, the ensemble inflows after the 

11 hours could cover the observed peak discharge 1 hour later on some level, although it only has a one-hour lead time. 

 Nevertheless, overall it is recognized that we cannot select the best members in advance only by judgement based on NSE of 

the discharge. Figure 16(a) shows a scatter plot of NSE of the catchment average rainfall vs NSE of the discharge. Clearly, the 20 

figure shows that catchment average rainfalls with similar NSEs produce discharges with different NSEs. In detail, the 

catchment average rainfall with NSE of around 0 produces discharges with NSE close to 0.5 and -0.5. We consider that the 

spatial distribution of the rainfall field caused these differences even though the amount of the catchment average rainfalls are 

the same. Even if the catchment area is small, different patterns in the rainfall field bring different discharge simulations with 

different NSEs. As a reference, Figure 16(b) shows the Root Mean Square (RMS) of the simulated and observed discharge vs 25 

simulated and observed rainfall. It is apparent that RMS cannot be used for the decision in regard to the best discharge 

simulations as the catchment average rainfalls with the same RMS also produce both favorable and less favorable discharges.  

The rainfall pattern chosen based only on NSE or RMS does not reflect the variety of rainfall patterns. We consider that 

selection directly from the rainfall data, and comparing them with Radar based on e.g. Self-Organizing Map (SOM), Support 

Vector Machine (SVM), pattern recognition, machine learning, etc., would be more promising to better cluster the ensemble 30 

rainfalls. However, we have not addressed that aspect in this study and this remains for future work. It seems that the selection 

method based on NSE does not provide us an exact discharge forecast with several hours lead time, although it can provide us 

some trend in the near future. This can be traced back to the use of the Gaussian form (7) to model the likelihood p𝑌(𝐲|𝐱𝑖). 

The resulting WRMSE (8), or equivalently NSE, is quite sensitive to spatial and temporal displacement errors of rainfall. Part 
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1 of this study is an illustration for impact of spatial displacement errors on forecast performance while Figures 9 and 11 here 

show the case of temporal displacement errors. Thus, it is expected that if we can introduce spatial and temporal uncertainty 

in modelling the likelihood p𝑌(𝐲|𝐱𝑖), the predictive pdf (6) could yield a more useful ensemble forecast. However, this requires 

a lengthy mathematical treatment that is worth to explore in details in a separate study.   

6 Concluding Remarks and Future Aspects 5 

The study used 1600 ensemble rainfalls produced by 4D-EnVAR which contain various rainfall fields with different rainfall 

intensities. No post processing such as the location correction of the rainfall field and/or rescaling of rainfall intensity was 

employed. The ensemble flood forecast using the 1600 ensemble rainfalls in this study has shown that the extremely high 

amount of observed inflow discharge can be reproduced within the confidence interval, which was not possible by the 11 

member downscale ensemble rainfalls used in Part 1, although the accuracy of each simulation of 1600 ensembles is, at best, 10 

around NSE = 0.6. We can calculate the probability of occurrence (e.g. the necessity of emergency dam operations) with the 

1600 ensemble rainfalls. Thus, the result of the study shows that the ensemble flood forecasting can inform us that, after 12 

hours for example, emergency dam operations would be required with the probability of around 45 %, and that the probability 

would be more than 90 % for the entire flood event, etc. We consider that this kind of information is very useful. For instance, 

a warning of dam water release can be issued to the inhabitant in the downstream with enough lead time, if the result obtained 15 

in this study is applicable to other locations and events.  

On the other hand, the accuracy of each discharge simulation is, at best, around NSE = 0.6 out of all the 1600 ensemble 

members. Likewise, discharge simulations with similar NSEs until X hours before the onset of forecasting produce different 

future forecasts after the X-th hour. In other word, we cannot select the best discharge simulation from the NSE only until X 

hours. Herein lies the problem that, NSEs are quite sensitive to spatial and temporal displacement errors in rainfall. In principle, 20 

it is possible to introduce those errors into NSEs in a way similar to FSSs. However, it should be cautious in introducing such 

errors into NSEs before investigated well, although such type of approach has been used frequently in meteorology community. 

How to incorporate them qualitatively is also a problem to be addressed. similar NSEs of the catchment average rainfall with 

different rainfall distribution, even in the small catchment areas, produce different NSEs of the discharges. Thus, we cannot 

select one best ensemble discharge simulation from the rainfall NSEs. by comparing the simulated rainfall field with observed 25 

Radar fields, etc. using some methods, such as SOM, SVM, pattern recognition, machine learning, etc., Thus, in this sense, 

the dynamical selection of the best rainfall field from rainfall simulations considering both spatial and temporal displacement 

errors is required, although this was not addressed here and remains for future work. 
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List of Table 

 

Table 1. The equivalent roughness coefficient of the forest, the Manning coefficient of the river, and identified soil-related parameters 

of Part 2 (this paper) and Part 1 (Kobayashi et al., 2016). 

 Forest  

[m(-1/3)/s] 

River  

[m(-1/3)/s] 

D [m] Ks  

[ms-1] 

This paper 0.170 0.005 0.234 0.0008 

Part 1 0.150 0.004 0.320 0.0005 
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Figure 1. Fraction skill scores of 3-hour precipitation at Fukushima-Niigata from deterministic forecasts initialized by analyses from 

JNoVA (left), 4D-EnVAR-NHM using 1600 (center) and 50 members (right). These scores are averaged over the period from 2100 5 

JST July 27th to 2100 JST July 29th, 2011. To obtain robust statistics, precipitation is aggregated over the first 12-hour forecasts 

(valid between 03-12-hour forecast) and the next 12-hour forecasts (valid between 12-24-hour forecasts) as shown in the top and 

bottom rows, respectively. Note that the first 3-hour precipitation is discarded due to the spin-up problem. 
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Figure 2. As Figure 1 but for reliability diagrams of 3-hour precipitation from ensemble forecasts initialized by analysis ensembles 

of 4D-EnVAR-NHM using 1600 and 50 members. Three precipitation thresholds of 01 mm (left), 10 mm (center), and 50 mm (right) 

are chosen. Note that the ensemble forecasts were only run for the time 0000 JST July 29th, 2011. 
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Figure 3.Three-hour accumulated precipitation for 1200-1500 JST July 29th, 2011 at Fukushima-Niigata as observed by Radar-

AMeDAS (R/A; top left), forecasted by NHM initialized by the analysis of JNoVA (top right), forecasted by NHM initialized by the 

analysis of 4D-EnVAR-NHM (bottom left), and the ensemble mean forecast of NHM initialized by the analysis ensemble of 4D-

EnVAR-NHM (bottom right). All forecasts were started at 0000 JST July 29th, 2011. 5 
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Figure 4. Time series of one-hour accumulated rainfall over the catchment as forecasted by all ensemble members. The two whiskers 

in each box-and-whisker diagram show the inter-quartile and 5th and 95th percentile of forecasted precipitation. The observation, 

control forecast, ensemble mean forecast, and best member forecast are also plotted for comparison. Here, the best member is 

defined as the member that has the minimum distance between its time series and the observed time series. 5 
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Figure 5. The observed inflow and simulated dam inflow using Radar-Composite.   
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Figure 6. Hydrographs of (a) 11 discharge simulations in Part 1 (Kobayashi et al., 2016), (b) same 11 member but with a positional 

shift in Part 1, (c) 50 discharge simulations with 4D-EnVAR-NHM and (d) 1600 discharge simulations with 4D-EnVAR-NHM.  
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Figure 7. Histograms of NSE based on the simulated and observed discharges to Kasahori dam: (a) 11 discharge simulations in Part 

1 (Kobayashi et al., 2016), (b) same 11 member but with a positional shift  in Part 1 (Kobayashi et. al. 2016), (c) 50 discharge 

simulations with 4D-EnVAR-NHM and (d) 1600 discharge simulations with 4D-EnVAR-NHM.  
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Figure 8. The 95% confidence limits and inter-quartile limits of the 1600 ensemble members. 
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Figure 9. Probability that the simulated inflow is beyond 140 m3/s considering temporal uncertainty. 
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Figure 10. Cumulative dam inflow by the ensemble simulations, mean of simulation and observations, as well as critical dam volume. 
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Figure 11. Probability that the dam needs emergency operation. 
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Figure 12. Hydrographs of all 1600 ensemble members, the 50 best ensemble members (NSE>0.224), and observations. 
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Figure 13. Rainfall intensity of the 50 best ensemble inflow simulation members, of Radar AMeDAS, of Radar-Composite, and 

ground observations. 
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Figure 14. (a) best 50 ensemble members (NSE >-0.04) selected from first 9-hour forecast, (b) best 50 ensemble members (NSE >-

0.33) selected from first 10-hour forecast, and (c) best 50 ensemble members (NSE > 0.86) selected from first 11-hour forecast. 
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