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Abstract. Through the recent technological developments of radar and optical remote sensing in (i) the areas of temporal,
spectral, spatial, and global coverage, (ii) the availability of such images either at a low cost or free of charge, and (iii) the
advancement of tools developed in image analysis techniques and GIS for spatial data analysis, there is a vast potential for
landslide studies using remote sensing and GIS as tools. Hence, this study aimed to assess the efficacy of using Radar Derived
Factors (RDF) in identifying landslide susceptibility using bivariate, Information Value method (InfoVal method) and
multivariate, Multi Criteria Decision Analysis based on Analytic Hierarchy Process statistical analysis. Using identified
landslide causative factors, four landslide prediction models as bivariate without and with RDF, multivariate without and with
RDF were generated. Twelve factors as topographical, hydrological, geological, land cover and soil plus three RDF are
considered. The weight of index for landslide susceptibility is calculated by using landslide failure map and susceptibility
regions are categorized into four classes as very low, low, moderate, and high susceptibility to landslides. With the integration

of RDF, boundary detection between high and very low susceptible regions are increased by 7%, and 4% respectively.

1 Introduction

Landslides are one of the major types of geo-hazards in the world as approximately 9% of global natural disasters are recorded
as landslides (Chae et al., 2017, Chalkias et al., 2014). The recent statistics on landslide disasters per continent, from year 2000
to 2017, summarized in the Emergency Disaster Database (EM-DAT). The database indicates that landslides cause around
16500 deaths and affect 4.5 million people worldwide, with property damages of about US $3.5 million (OFDA/CRED, 2016).
The spatial prediction of landslide disasters, incorporating statistical analysis to identify areas that are susceptible to future
land sliding is one the important areas of geo-scientific research. These studies are based on the knowledge of past landslide

events, topographical parameters, geological attributes, and other possible environmental factors (Park et al., 2013).

Presently, remote sensing has been used extensively to provide landslide-specific information for emergency managers and
policy makers in terms of disaster management activities in the world (Baron et al., 2014, Martha, 2011).The spatial resolution
of space-borne optical data is now less than 1m in panchromatic images, and at the same time, Synthetic Aperture Radar (SAR)
sensors and related processing techniques has also increased. Radar is considered to be unique among the remote sensing
systems, as it is all-weather, independent of the time of day, and is able to penetrate into the objects. Additionally, radar images
have been shown to depend on several natural surface parameters such as the dielectric constant and surface roughness. The
dielectric constant is highly dependent on soil moisture due to the large difference in dielectric constant between dry soil and
water (Kseneman et al., 2012). It is accepted in the scientific community that remote sensing techniques do offer an additional
tool for extracting information on the causes of landslides and their occurrences. Especially for deriving various parameters

related to the landslide predisposing and triggering factors at global and regional scales, remote sensing plays a vital role
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(Corominas et al., 2014, Muthu et al., 2008, Pastonchi et al., 2018). Most importantly, landslide susceptibility analysis has
greatly aided the prediction of future landslide occurrences, which is important for humans who reside in areas surrounded by
unstable slopes. It is therefore identified that remote sensing techniques are significant in order to extract the landslide

susceptibility regions by providing most suitable landslide predisposing factors at smaller scale.

There is massive potential for applicational research in the area of disaster management, if, conventional remote sensing data
and radar are integrated. This is because each method has its inherent disadvantages and shortcomings, as well as advantages,
and integrating the two potentially complement each other. As such, this study combines the predisposing factors derived from
both optical and radar satellite data for landslide susceptibility analysis. Furthermore, significant landslide predisposing factors
like soil moisture, surface roughness, and forest biomass are derived from radar images, and the impacts of these factors on

landslide susceptibility are examined.

1.1  Methods for Landslide Susceptibility Analysis

There are inherent limitations and uncertainties in landslide susceptibility analysis, and yet, several methods have been utilized
and successfully applied in the past (Kanungo et al., 2009). These methods have been of both qualitative and quantitative
nature. Generally, qualitative methods are based on expert opinions while the quantitative approaches, such as statistical and

probabilistic approaches, depend on the past landslide experiences.

Qualitative methods simply make use of landslide inventories to identify areas with similar geological and geomorphologic
properties that show susceptibility for land failures. These methods can be divided into two groups as geomorphologic analysis,
and map combination. In geomorphologic analysis, the landslide susceptibility is determined directly either in the field or by
the interpretation of images through geomorphologic analysis (Bui et al., 2011). Map combination is based on combining a
number of predisposing factor maps for landslide susceptibility analysis. However, map combination analysis comprises of a
semi-quantitative nature by integrating the ranking and weighting of landslide susceptibility (Ayalew et al., 2004, Kavzoglu
et al., 2014, Saaty, 1980). The analyses based on the quantitative approaches depend on numerical data and statistics,
expressing the relationship between instability or predisposing factors with landslides (Reis et al., 2012). These methods are
categorized into two groups as bivariate and multivariate statistical analysis. Within the context of this work, popular
Information Value method (InfoVal) as bivariate and Multi-Criteria Decision Analysis (MCDA) based on Analytic Hierarchy

Process (AHP) as multivariate methods are compared with respect to their performances in landslide susceptibility analysis.

1.2  Landslide predisposing factors

It is understood that landslides may occur as consequences of complex predisposing and triggering factors. Topographical and
geological factors, together with local climatic conditions, lead to landslide occurrences. The selection of these factors, and
preparation of corresponding thematic data layers, are vital for models used in landslide susceptibility analysis (Jakob et al.,
2006, Lee et al., 2017). There are no universal guidelines regarding the selection of predisposing factors in landslide
susceptibility analysis. Some parameters may be important factors for landslide occurrences in a certain area but not for another
one. Scientists (van Westen, 1997, van Westen and Getahun, 2003, van Westen et al., 2003) show that every study area has its
own particular set of predisposal factors which condition landslides. Determination of appropriate causal factors is a difficult
task, and no specific rule exists to define how many factors are sufficient for a specific landslide susceptibility analysis. Hence,
the selection of predisposing factors are dependent on the nature of the study area, opinions of the experts, and the availability

of data for generating the appropriate spatial and thematic information (Kavzoglu et al., 2015, Shahabi and Hashim, 2015).
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2  Study Area

Koslanda in Sri Lanka is located at the geographical coordinates of 06° 44' 00" North and 81° 01' 00" East, and the elevation
is around 700 — 1000 m abeve-Mean-Sea-Level{MSL)a.s.l.- It is a remote, hilly area with harsh weather conditions, where the
monthly rainfall ranges from 60 mm to 200 mm, and average temperature is 20° C. The area has rains for most of the year,
with very short, dry period during the months of February to April. The population is around 5000 people, and the study area
has an extent of 19 km? within the Koslanda area. Koslanda has been the site for of several massive landslides over the years,
and both the Naketiya landslide in the year 1997, and Meeriyabedda landslide in the year 2014, are very distinct in Fig. 1, and
within a span of two years, major landslides have occurred three times at the same location. When considering the typology of
landslides in this study area, falling, toppling, subsidence, lateral displacements, and debris flows are prominent (NBRO,
2016).

The geomorphology of the area is described as a gently inclined talus slope, with a thick, loosely compacted colluvium deposit
at the foot of the near vertical rocky scarp. Koslanda is situated at the middle part of the slope, with the lower area showing a
fairly steep surface as well. The composition of the colluvium deposit in the area includes a randomly arranged mixture of
weathered clayey and sandy materials, with the organic matter making the deposit act as a [RiJhighly absorbing entity with
high water content. The study area was an abandoned tea land in which the properly maintained surface drainage system has
been neglected” (Somaratne, 2016). Geology refers to the physical structure and the substance of the Earth. The study area
consists mainly of undifferentiated charnockitic biotite gneisses and Quartzites, according to the 1:10000 geological map from
the Geological Survey Mines Bureau (GSMB), Sri Lanka. Such geomorphological and geological formation, together with

improper land use management practices, has made the area extremely vulnerable for landslide events.

FIGURE 1

e e

313 Data

The most important phases in landslide prediction analyses are the collection of data from different sources, and the
construction of a spatial database on a common platform (Lan et al., 2004). The data utilized for the landslide prediction
susceptibility analysis include the topographical, hydrological, geological, soil, and land cover factors. All factors are derived
from optical images (Landsat-8, Sentinel-2), radar images (Sentinel-1, TerraSAR-X), Digital Elevation Model (DEM) derived
from aerial triangulation and other available data sources (geology, rainfall). Stereo aerial photographs from 1993 are used to
generate the 7 m resolution DEM using aerial triangulation. The landslide inventory map for the study area was constructed
by integrating the interpreted multi-temporal aerial photographs, satellite images, and some temporal images from the Google
Earth (Figure 2). Verifications are carried out through field investigations. In this research, the predisposing factors were

selected from among the most widely considered factors in literature and opinion from the experts.

Most data are derived as primary data from remote sensing techniques for a large area with up-to-date information. As such,
fifteen predisposing factors are selected for the landslide susceptibility analysis by using bivariate and multivariate statistical
techniques. Of these, twelve factors (elevation, slope, aspect, planar curvature, profile curvature, Topographical Wetness Index
(TW1), land use, lineament density, distance to water bodies, soil moisture, geology, and rainfall) are derived from optical

images, DEM and auxiliary data, while three more factors (soil moisture from Delta Index, surface roughness, and forest
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biomass) are derived from radar images. These factors were then combined in order to analyse the performance of this

integration for landslide susceptibility analysis.

3-1443.1 Topographical Factors

The topographical factors include elevation, slope, aspect, planar curvature, profile curvature and surface roughness of the
terrain. The first four factors are derived from the 7 m resolution DEM, and surface roughness is derived using Sentinel 1 radar
image. The elevation is important to study the local relief of the terrain and ranges from 446 -1537 m above MSL in the study
area. Since the area contains high mountains, more than a 1000 m difference in elevation can be observed. The basic parameter
for the slope stability analysis is the slope angle. The slope angle of the study area ranges from 0° to 80°, showing a significant
increase of slope within a relatively small area. Additionally, the area with steep slopes ranging from 60° - 80° can be seen in
the northern part of Koslanda. Aspect is defined as the direction of maximum slope of the terrain surface, or the compass
direction of a particular slope. The curvature is theoretically defined as the rate of change of slope (or slope), of the focused
slope. Planar curvature describes convergence and divergence of the flow across a surface, while the profile curvature refers

to acceleration or deceleration of the flow across a surface.

Under radar configuration, the magnitude of radar backscatter is defined as a function of surface roughness and moisture
content. Similar studies from Rahman et al., 2008 and Septiadi and Nasution, 2009 emphasized the extraction of surface
roughness from radar data using textural analysis. Hence, to estimate the surface roughness without the use of any ancillary
field data, a Sentinel-1 radar image on 12" March 2015 under the dry climatic condition was used to reduce the effect of the
moisture component from the radar backscatter. The texture is the structure, or appearance, of the surface, and as such,
describes the coarseness or the homogeneity of the image structure. One of the most prominent methods for texture analysis is
Grey Level Co-occurrence Matrix (GLCM), which is based on the second order probability density function. The GLCM
describes how often a grey level occurs at a pixel located at a fixed geometric position relative to its neighbourhood pixels.
The surface roughness is normally a measure of finer surface irregularity in the surface texture. These texture features extracted
from the GLCM would be the best descriptors for quantifying the state of surface roughness (Septiadi and Nasution,2009).
Hence, the GLCM texture analysis is performed using a window size of 9*9 pixels and the homogeneity or dissimilarity

criterion is used to determine the surface roughness of the study area.

3-4.23.2 Hydrological Factors

Distance to hydrological features, rainfall, and TWI defined by Eq. (1) are selected as the hydrological factors for this landslide
susceptibility analysis. Proximity to the hydrological features is an important factor when considering the landslide susceptible
analyses (Sar et al., 2016, Shahabi and Hashim, 2015). TWI is a solid index that is capable of predicting areas susceptible to
saturation or wetness of land surfaces, and the areas that have the potential to produce an overland flow. Within the Sri Lankan
context, heavy and prolonged rainfall is the main triggering factor for the landslides. The monthly average rainfall data for the
years 2014 to 2016 from 10 nearby stations to Koslanda were used in this study. Monthly rainfall data from 10 rain gauge
stations are averaged, and the average rainfall map for the study area is generated using the Inverse Distance Weighting (IDW)
interpolation method within the ArcGIS environment. TWI has been used to study the spatial scale effects, or topographic

control, on hydrological processes. This index was developed by Beven and Kirkby, 1979 and can be defined in Eq. (1) as;
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where o is the local upslope area draining through a certain point per unit of contour length, and g is the gradient of the local
slope in degrees. The applicability of the TWI in the calculation and validation of landslide susceptibility analysis has been

shown by Kavzoglu et al., 2014 and Sgrensen et al., 2006 among others.

3-4:33.3 Soil Factors

The Soil Moisture Index (SMI) defined in Eq. (2) and Delta Index defined in Eg. (5) are the soil factors focused upon in this
research. Surface soil moisture is one of the most important parameters in land susceptibility analysis (Carlson et al., 1994,
Zhan et al., 2002). Several methods have been proposed to estimate the surface soil moisture conditions accurately with insitu
measurements. However, these methods are time consuming and costly when the area of interest is large, and the scale of work
is small. Hence, this research uses the Universal Triangle relationship between Soil Moisture, Normalized Difference
Vegetation Index (NDVI) and Land Surface Temperature (LST) derived from Landsat-8 image bands as an optical remote
sensing approach, and the Delta Index derived from two radar images, as wet and dry conditions, as a radar remote sensing
approach. Band 5 (Near Infrared (NIR), 30 m resolution), band 4 (Red, 30 m resolution) and band 11 (Thermal, TIR-2, 100 m
resolution) of Landsat-8 image of 3@ July 2015 is processed for extracting the soil moisture index in the Thermal-NDVI space.
The SMI is "0" along the dry edge and "1" along the wet edge. According to the studies from (Wang and Qu, 2009, Zenga et
al., 2004), SMI can be defined in Eq. (2) as;

T —
SMI = —=—— @)

where Tmax, Tminare the maximum and minimum surface temperature for a given NDVI, and T is the remotely sensed derived
surface temperature at a given pixel for a given NDVI. The simple regression relationship between T and NDV1 is formulated
in Eg. (3) and Eq. (4) as;

Tonax = @1 * NDVI + b, (3)

Typin = az - NDVI + b, (4)
where, a; = -5.2362, b, = 300.14, a, = 2.9254, and b, = 289.11. Radar remote sensing provides advantages for extracting
near surface soil moisture (0-5 cm), including timely coverage with repeat passes during day and night, under all weather
conditions. Radar imagery from space can provide broad scale information on near surface soil moisture as radar signal return
is responsive to changes in soil moisture. Technically, the surface roughness and vegetation affect radar backscatter much
more than soil moisture. Hence, both the surface roughness and vegetation have to remain unchanged during the image
acquisition for soil moisture estimation (Thoma et al., 2006). Delta Index is a modified, image differencing technique, and
many studies (Barrett et al., 2009, Sano et al., 1998, Thoma et al., 2004) have proven it to be a good predictor for near surface
soil moisture extraction. This index describes the change of wet scene backscatter relative to the dry scene backscatter, and is
defined by Thoma et al., 2004 in Eq. (5) as;

0 0
Owet — Ogr
Delta Index = |———~

®)

0
adry

where, a2, is the radar backscatter (decibels) from a pixel in the radar image representing wet soil conditions, and agry is the

radar backscatter (decibels) from a pixel in the same geographic location representing dry soil conditions at a different time.
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Sentinel-1 images with 10m spatial resolution and V'V polarization is used in the presented study. The dry reference image
was acquired on 12" March 2015 and the wet image was acquired on 24 November 2014 after the landslide in Meeriyabedda,
Sri Lanka. Therefore, the topographical changes like roughness and vegetation density showed no significant changes during

these four months’ time.

3.4:43.4 Land Use

The major land uses existing in this study area are identified as tea, scrub, forest, rock, rice, water, and residential. The Sentinel-
2A image from 10" October 2016 is used to extract the desired land uses from the study area by applying supervised
classification. Scrub areas are typically the tea estates that are in abundance, while the residential areas are the rooms of tea
workers. It is noted that most of the devastating landslides in this area had occurred within the extensive tea estates. Hence,
the main reason for the continuous occurrence of these landslides can be identified as the lack of proper land use management

in the area.

Forest biomass is a significant factor that can control the landmass failures or landslides. The main limitations of using optical
remote sensing for forest biomass estimation is the near constant tropical cloud cover, and the insensitivity of reflectance to
change of the biomass in older and mixed forests. Radar has potential to overcome the above limitations due to its all-weather,
day and night capability, with the positive relationship of radar backscatter and forest biomass. The spatial, spectral, temporal,
and polarization characteristics of radar backscatter has known influence with the forest biophysical properties. Kuplich et al.,
2005 and Caicoya et al., 2016 related the radar image texture derived from GLCM to the forest biomass. An experiment was
conducted by Kuplich et al., 2005 with seven texture measures, but only the GLCM derived contrast increased the correlation

between the backscatter and the log of biomass in Eq. (6) as;

Log of Biomass = 2.24 4+ 0.33b + 0.0001c¢ (6)

where, b is the radar back scatter and the ¢ are the GLCM contrast texture for the particular radar image. TerraSAR-X spot
light image from 2" November 2014, with 3 m resolution and dual polarization (HH and V), was used to estimate the forest
biomass in this research.

3-1.53.5 Geological Factors

Geology refers to the physical structure and the substance of the Earth. In order to investigate the land mass failures, the
geological structure of that particular area have to be analysed carefully. In addition to the Geology of the area, lineament
density has also been considered as a factor. The geological information of the particular area is obtained from the geological
map available at the Geological Survey Mines Bureau (GSMB), Sri Lanka at 1:100,000 scale, and seven types of different
geological structures are contained in the selected study region. Primarily the undifferentiated charnockitic biotite gneisses and
Quartzites are prominent with Garnet-sillimanite and Garnetiferous quartzofeldspathic gneiss in the study area. Lineaments
are extractable linear features which are correlated with the geological structures of the earth. When considering the analysis
of lineaments with respect to the landslide potentiality, lineaments exhibit the zones of weakness surfaces as faults, fractures,
and joints (Adiri, et al., 2017, Kati, et al., 2018, Mandal and Maiti, 2015). This study uses the Sentinel-2 optical satellite image,
with 10 m resolution, for the extraction of lineaments of the study area.
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3.24_Methodology

The InfoVal method determines the susceptibility at each point or pixel, jointly considering the weight of influence of all
predisposing factors. The weight of influence is based on the landslide inventory map of the particular area. When constructing
a probability model for landslide prediction, it is necessary to assume that the landslide occurrence is determined by landslide-
related factors, and that future landslides will also occur under the same, or almost similar, conditions as past landslides
(Remondo et al., 2013, Saha et al., 2005). Hence, at the beginning of the analysis, the landslide inventory map is divided in to
two samples as training and validation, enabling the use of this data for landslide susceptibility analysis and validation of
results respectively as in Fig 2. Log function is used to control the large variation of weights in calculations. Larger the weight

of influence, the stronger the relationship between landslide occurrence and the given factor’s attribute.

FIGURE 2

This method overlays all individual predisposing factors as thematic maps with the landslide inventory map to calculate the
density of the landslide detachment zones for each class of the selected factors. The density of landslide pixels represents the

weight of influence of each predisposing factor in Eq. 7 as;

W, =1L (DeLclass) — < Npix(S)/Npix(N;) )

.
Densmap 1 Npix (S /371 Npix(N)) @

Where, W;is the weight given to the parameter class, Densclass is the landslide density within the parameter class and
Densmap is the landslide density within the entire map. Npix(Si) is the number of landslide pixels within parameter class i,
and Npix(Ni) is the total number of pixels in the same parameter class. It means that, if the parameter class contains no

landslide occurrence, it will have no correlation with the landslide inventory map (Bui et al., 2011, Kavzoglu et al., 2015).

The MCDA method integrates all the independent predisposing factors with the inclusion of relative contribution of each factor
by putting more emphasis on the predisposing factors that contribute to landslide occurrence. The same predisposing factors
without or with radar, are used to investigate the landslide susceptibility regions from AHP technique within the GIS domain.
In AHP, each pair of factors in a particular factor group is examined at one time, in terms of their relative importance. Relative
weights for each factor are calculated based on a questionnaire survey from experts in the field. These relative weights are then
used to generate a pair-wise comparison matrix which is the basic measurement mode when applying the AHP procedure. The
selected predisposing factors, and relevant relative weights, are used to generate the normalized matrix with final average
weights. However, expert knowledge could be subjective at times, or may cause to assign different weights for each factor,
when dealing with a large number of causative factors. Hence, in order to avoid this inconsistency, Consistency Ratio (CR) is
calculated. For better predictive models, the CR should be less than 0.01, else each factor has to be generated with the proper
pairwise comparison.

The calculated final weights for twelve landslide predisposing factors without RDF as elevation, slope, aspect, planar
curvature, profile curvature, TWI, land use, lineament density, distance to water bodies, soil moisture, geology, and rainfall
were 0.030, 0.172, 0.022, 0.018, 0.014, 0.074, 0.149, 0.052, 0.045, 0.094, 0.185, and 0.145, respectively. The CR is 0.089,
making it less than the 0.1, the value showed the reasonable level of consistency in the pairwise comparison. The final weights
for fifteen predisposing factors with RDF as elevation, slope, aspect, planar curvature, profile curvature, TWI, land use,

lineament density, distance to water bodies, SMI in NDVI-T domain, geology, rainfall, soil moisture (Delta index), surface
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roughness, and forest biomass are 0.022, 0.145, 0.016, 0.013, 0.011, 0.053, 0.126, 0.039, 0.033, 0.065, 0.153, 0.124, 0.088,
0.088, and 0.027, respectively. When considering the fifteen predisposing factors, the CR is calculated as 0.092, which is less
than the 0.1 thereby showed a realistic level of consistency in the pairwise comparison matrix.

After decisive analysis of the types of predisposing factors, the presented work proceeded to consider fifteen predisposing
factors that are derived from optical, radar and other available auxiliary data sources. Three significant causative factors as
surface roughness, soil moisture from Delta Index, and forest biomass were estimated by using radar satellite images. Thus,
this work investigated the performance of landslide susceptibility analysis using bivariate and multivariate methods with the

inclusion of RDF and described the processing steps in Fig.3.

The weight of influence of all predisposing factors as thematic maps are added in bivariate and multivariate nature to obtain
the contribution of all predisposing factors for landslide susceptibility analysis. After calculating the cumulative percentage of
failures of the weighted susceptibility maps, value ranges for each percentage of failure are obtained from quantile
classification for 10 classes. The entire study area of each landslide susceptibility map is then discretized in to four classes as

0%, 10%, 30% and 60% of failure regions for very low, low, moderate, and high susceptibility classes, respectively.

FIGURE 3

45  Results

Four Landslide prediction models, (i) bivariate without RDF (BiNR), (ii) bivariate with RDF (BiWR), (iii) multivariate without
RDF (MNR), and (iv) multivariate with RDF(MWR) are discussed. The region has been analysed and classified into four (04)

landslide susceptibility regions as; high, moderate, low, and very low.

4:15.1 Bivariate InfeValmethed-Analysis Without and With RBFRadar Derived Factors

Susceptible regions are identified from the bivariate InfoVal method without RDF as 12% for high, 45% for moderate, 38%
for low, and 5% for very low as shown in Fig.4(a). Hence, 57% areas from the total study area are predicted as having high
and moderate susceptibility for the landslide hazard. Very steep slope mountains in the North, North West, and East regions
are identified as very low susceptibility areas, given that the area was free from historical landslides. The middle regions with
30°-50%lope are detected as having a high probability for landslide occurrences. The bivariate InfoVal method with RDF
identified 19% of failure regions for high susceptibility, 39% for moderate, 33% for low, and 9% for very low susceptible
regions as presented in Fig.4(b). Therefore, 58% of the total study area is predicted as having high and moderate susceptibility
for landslides. Very steep slope mountains in the North, North West, East, and South East regions, the area near the
Eruwendumpola Oya, are identified as having very low susceptibility for landslides. Similar to the bivariate analysis without
RDF, the middle regions with 30°-50%lope are detected as having high probability for landslide occurrences and the reason

for this is mainly with the past experience from Naketiya and Meeriyabedda landslides that had taken place in the same area.

FIGURE 3
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4.25.2 Multivariate MEDBA-based-on-AHPANalysis -Without and With RBFRadar Derived Factors

All fifteen weighted predisposing factors were grouped as without and with RDF, and weighted overlay is performed separately

in order to obtain the landslide susceptibility regions.

Figure 4(c) illustrates the landslide susceptibility map from the multivariate method without RDF and is able to identify 18%
for high, 44% for moderate, 36% for low and 2% for very low susceptible regions. Hence, 62% of areas from the total study
area are predicted to be of high and moderate susceptibility for the landslide hazard. In the landslide susceptibility map from
the multivariate method with RDF, from the total area, 21% of the area show a high susceptibility to landslides, with 40% of
area as moderate, 34% area as low, and 5% of area as having very low susceptibility as shown in Fig.4(d). Hence, 61% of
areas from the study area are predicted as having high and moderate susceptibility for the landslide hazard. In a similar manner
to the InfoVal method, the top of the mountains in the North, North West, East, and South East regions, area near to the
Eruwendumpola Oya, are identified as having a very low susceptibility to landslide hazards, while the middle regions with

30°-50° slopes are detected as having high and moderate probability for landslide occurrences.

56 Discussions

Landslide prediction is utmost importance in all phases of disaster management and development activities in a country. Within

the recent years Koslanda in Sri Lanka, has been found to be significantly prone to the landslide disaster. Hence, this study

investigated the efficacy of radar derived factors for landslide susceptibility analysis from bivariate and multivariate nature.

The main difference of bivariate and multivariate analysis is that in multivariate analysis the predisposing factors are weighted

by considering how each of them affect for landslide hazard. Four landslide susceptibility maps are produced from bivariate

and multivariate analysis without and with radar derived factors. The area identified as having high and moderate susceptibility
classes in these four approaches (57%, 58%, 62%, and 61% respectively in BiNR, BiWR, MNR, and MWR) are close in value,

but shows an increase in multivariate analysis when compared with bivariate analysis as tabulated in Table 1. Moderate and
low landslide susceptibility areas show very small ((1-2)%) changes between these four types of analysis. With the integration
of RDF as surface roughness, near surface soil moisture from Delta Index, and forest biomass in bivariate and multivariate
analysis, the high and very low susceptible areas are increased significantly (high: 7% - bivariate, 3% - multivariate and very
low: 4% - bivariate, 3% - multivariate). However, when comparing the high and very low susceptibility areas from bivariate
and multivariate analysis, high susceptibility areas show a considerable increase (without radar: 6% and with radar: 2%) while,

very low susceptibility areas have a noteworthy decrease (without radar: 3% and with radar: 4%).

TABLE1

5.16.1 Results Validation

The landslide susceptibility maps derived from the bivariate and multivariate analysis are validated using the selected
validation samples from the landslide failure map. The most commonly used and scientifically recognized Receiver Operating
Characteristics (ROC) curves are used to analyse the prediction and validation performances. ROC is a graphical plot that
illustrates the performance of classification, and is considered as a powerful tool for the validation of landslide susceptibility
analysis for many years (Neuhduser et al., 2012). The Area Under Curves (AUC) for the four different approaches, as bivariate

and multivariate without and with RDF, are calculated and graphed in Fig.5.
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FIGURE 4

The areas under the success rate curves measure how the landslide prediction analysis fit with the training data set, while the
areas under the prediction rate curves measure how well the landslide prediction models and landslide causative factors predict
the landslides. If the area under the ROC curve is closer to 1, the result of the test is excellent and vice versa, and when AUC

is closer to 0.5, the result of the test is fair or acceptable (Kamp et al., 2008).

The AUC of all the success rates are more-or-less near 0.80, indicating good prediction performances according to the
definition. The AUC of all the prediction rates are having values above 0.50, thereby indicating that they are within the
acceptable range as per the definition. As such, they indicate that the accuracy of prediction rate of land susceptibility and the
selection of land causative factors are acceptable, but not excellent, even though the fit between the landslide prediction and
the training data set are excellent as compared in Table 2. The incompleteness of the available landslide inventory map, as
well as an insufficient number of validation samples in the study area can be shown as reasons for the discrepancy. As a whole,
better prediction and validation capabilities are shown by the bivariate analysis when compared with the multivariate

approaches.

TABLE 2

67 ___Conclusions

This study focused on the applicability of remote sensing and GIS for rapid landslide prediction analysis at finer scale. Further,
by considering the significance of radar data for landslide analysis, this study mainly investigates the efficacy of radar derived
factors for landslide prediction analysis which is not well experimented in the current researches. Most significant predisposing
factors as surface roughness, soil moisture, and forest biomass derived from radar are incorporated to examine the landslide

prediction analysis. The prediction analysis is performed by using bivariate and multivariate statistical analysis.

The main difference between bivariate and multivariate analysis is that in multivariate analysis, selected predisposing factors
are weighted by considering, how each of them are influenced for landslide susceptibility. This study investigated fifteen
landslide predisposing factors as elevation, slope, aspect, planar curvature, profile curvature, TWI, land use, lineament density,
distance to hydrology, SMI in NDVI-T domain, geology, rainfall, soil moisture (Delta Index), surface roughness, and forest
biomass. Most of the factors are derived from radar and optical remote sensing techniques, where smaller scale studies with

up-to-date information allows the work to be conducted at the meter-level accuracy, and repeated analysis simultaneously.

From the results obtained, it can be concluded that the bivariate and multivariate statistical analysis, without and with RDF,
can be used for landslide prediction analysis. However, with the integration of RDF as surface roughness, near surface soil
moisture from Delta Index, and forest biomass, the detection of the boundary between the high and very low susceptibility
regions is increased. When comparing the bivariate analysis with multivariate, the increase of high and very low susceptibility
regions are high in bivariate than multivariate. In landslide prediction analysis, the most important susceptibility classes are
high and very low classes, as they provide significant information about the danger from a disaster. Hence, with the integration
of radar derived factors, by increasing the accuracy of prediction for high susceptibility regions, the possibility of mitigating
dangers can be considerably improved. When the accuracy and prediction of very low susceptibility regions are increased, the

use of such lands can be encouraged for residential, community places, and safe areas when a landslide occurs.
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Successful prediction and validation of prediction analysis via ROC curves are achieved. Even though this study was tested
for a sample area, the same methodology can be applied for any landslide prone area to investigate the landslide prediction
analysis using radar derived factors by using bivariate and multivariate analysis. This is because the radar derived factors can
be derived for any area, as long as the data are available, and at any time under whatever the weather conditions as radar are
weather independent. Additionally, the technology can be learned easily and anyone can be trained to use this methodology to
predict landslide susceptibility areas, and this is especially helpful for developing countries who do not have up-to-date data
at fine resolutions. With the increasing availability of free data in optical, radar, and DEM, it is possible to derive more landslide
predisposing factors as thematic maps. Further, there are many statistical analyses developed in qualitative and quantitative
natures for spatial data analysis. Hence, further investigations have to be performed for landslide susceptibility analysis even

focusing the changing nature of the environments.
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Figure 1 :Topographical formation of Koslanda, Sri Lanka with its previous Landslides Signatures
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Figure 2 : Landslide fature-map-catalogue of the Koslanda area with two different training and validating samples
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5 Table 1:Landslide susceptible area comparison from bivariate and multivariate analysis without and with RDF, BiNR -Bivariate
analysis without RDF, BiWR -Bivariate analysis with RDF, MNR -Multivariate analysis without RDF, MWR -Multivariate analysis

with RDF

BiNR BiWR MNR MWR
High 12% 19% 18% 21%
Moderate 45% 39% 44% 40%
Low 38% 33% 36% 34%
Very Low 05% 09% 02% 05%
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Table 2 : Comparison of area under Success rate and Prediction rate curves for bivariate analysis without RDF (BiNR), with RDF
(BIWR), and multivariate analysis without RDF (MNR), and without RDF (MWR).

AUC BINR BiWR MNR MWR
Success rate 0.8315 0.8560 0.7986 0.8023
Prediction rate 0.6692 0.6804 0.5882 0.5901
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