
Reviewer #1 
I have now read the article titled “Estimating flood damage in Italy: empirical vs expert-based 

modelling approach”. The article focuses on the comparison of different models (empirical vs 

expert based and Multi-, Bi and Univariate models aiming at the estimation of flood losses in 

Italy. Given the plethora of models and approaches in the field the paper is important and 

interesting. Furthermore, the paper is well structured and written. I recommend it for publication 

following minor revision. Please consider the following comments before publication: 

1. The title should be revised and become more attractive. How about: “Putting flood loss 

models to the test: the case of Italy” or something like that….(just a suggestion) 

Thank you, the title has been revised as “Testing empirical and synthetic flood damage models: the 

case of Italy” 

2. Chapter materials and methods: 3.1 data description – consider a few introductory 

sentences before listing the datasets used for the study. 

➢ Added: “Our purpose is first to draw a detailed, homogeneous description of the hazard and 

exposure features involved in the three hazard events in order to evaluate their relationship 

with measured impacts. Several datasets are required for this task. These have been collected 

from different sources and spatially projected to the building level (i.e. micro-scale) for each 

one of the three study areas. The dataset we compiled for this analysis comprises:” 

3. Subchapter 3.2: This is a chapter full of dense information. I would prefer two chapters 

instead: one, giving an overview of the existing models and explaining their characteristics 

and, two, a chapter describing the method used by the authors focusing on the reasons 

why they chose to test the particular models. 

➢ 3.2 has been split into 3 sub-chapters (3.2. Damage models overview; 3.3 Models from 

Literature; 3.4 Models trained on observed records) 

4. In the proposed “method” chapter a schematic description of the model used or work 

flow would be good and very practical for the reader (a figure showing the models used, 

the category they belong to expert-based/empirical and UVM, BVM or MVM or a table 

with a short description of the models and their characteristics). 

➢ A workflow figure has been added as 3.4.3. 

5. Page 8, line 4: “exposure indicators” why are these “exposure” and not “vulnerability” 

indicators? 

➢ “Indicators related to exposure and vulnerability” 

6. Page 8, Table 1. What is “finishing level”? 

➢ Finishing level represent the state of quality of a buildings, as described in INSYDE. 

7. Page 9, line 16: Age and heat system are not in table 1. If you do not use them do not 

mention them at all. 



➢ deleted 

8. Is “number of floors” named “FN” as in table 1 or “NF” as in Figures 4 and 7? 

➢ NF is the right acronym. Thanks for having spotted it, the revised version is now consistent. 

9. The language is overall good. There are, however, some small typos that have to be 

edited. E.g. page 9, line 23: “such as high prediction accuracy” and not “such prediction 

accuracy”. 

➢ Thank you. We checked the overall manuscript and we hope to have fixed all the typos. 

10. Page 14, line 17: “micro-scale”. What is considered a micro-, meso- and macro-scale? The 

issue of scale should be further discussed in the discussion chapter and conclusions. 

➢ Added in page 7, line 18: “Models can further be classified in relation to the scale of their 

development and application (de Moel et al., 2015): “micro-scale” usually refers to a model 

built to account impacts over buildings individual components and it is commonly applied 

for local assessment; “meso-scale” refers to sub-national analysis which commonly relies on 

data aggregated on provincial or regional administrative units; “macro-scale” concerns 

assessments at country level.” Added specification of scale in conclusions. 

11. Page 14, lines 18-19: the authors refer to one of the case study areas and suggest that the 

differences in the model results may be subject to the different type of flood that these 

areas experienced. This issue should be further discussed. Where all the events similar? 

What is the difference of the impact of a flash flood? What about the presence of debris? 

Are these models reliable for all these types of processes? 

➢ Added explanation: “In fact, Luino’s model was produced based on a flash flood event 

characterised by higher flow velocities and larges relative impacts”. In all other cases, we 

speak of river floods and not flash floods, we specified in text. Also added in the conclusion: 

“The results have shown important errors when transferring models derived from different 

countries and scales such as the JRC-IT curve, or from events with different characteristics: 

the model from Luino is based on a flash-flood event where flow velocity has likely a 

significant role on the event impact.” 

Reviewer #2 
The manuscript “Estimating flood damage in Italy: Empirical vs expert-based modelling approach” 

validates different types of flood damage models for Italy and discusses the advantages and 

disadvantages of these models. This is a very interesting paper and the most extensive comparison 

of flood damage models for a specific area I have seen so far. I therefore believe this paper is a 

useful contribution to the scientific literature. I do however have some comments/questions 

regarding the setup of the study and some discussion points to be considered. 

More important points: 

• Currently the data-driven models developed in this study have been produced with data 

points from the same event it is validated on, hence no model transfer of the data-driven 

models is included. In practice a model transfer from one event to another is always 



required for flood risk studies, it would therefore be fairer to always train the models on 2 

events and validate it on the third event. Such an approach is also carried out in Schröter et 

al., (2014) and Wagenaar et al., (2018) and both studies show that multi-variable models 

typically have more difficulties in such a transfer setting. 

➢ Thank you for this very important comment. What the Reviewer suggests is definitely a 

valuable alternative for independent model validation. However, in case of adopting the 

suggested approach, one must consider that the results would depend on the selection of the 

calibrating events, since the available events are inevitably different in terms of data amount 

and quality. On the contrary, merging all the data and selecting two thirds in a Monte Carlo 

framework overtakes the problem of selecting one out of 3 available events. We believe this 

approach might increase the utility of the collected records and the statistical significance of 

the trained models. 

 

➢ Added to 3.4 (page 9, Line 9): 

Trained models share the same sampling approach for validation: the observation dataset is 

split in three parts, where two thirds are used to train the model and one third for validation. 

This process is iterated 1,000 times, scrabbling the data and resampling the training set at 

each cycle. The output takes the mean of all iterations and provides a curve which represents 

the empirical damage relationship for the three events. This cross-validation approach has 

been previously employed in Hasanzadeh Nafari et al. (2017) and in Seifert et al. (2010) in 

order to optimise the statistic utility of the collected sample.  

• I think the data-driven UVMs wouldn’t perform so well in a transfer setting because the 

main advantage of MVMs seems their transferability (Wagenaar et al., 2018). In the current 

setup this advantage of MVMs isn’t used. Also if the model setup is changed some discussion 

is required on how significant the model transfer is between the events and whether a MVM 

is required or whether the events are so similar that a UVM would do. 

➢ As specified in 3.4 (now improved), all trained models share the same scrambling-and-

resampling iterative approach. Changing the training approach for the UVM would mean to 

change it also for the MVMs in order for the comparison to remain meaningful. The 

advantage of MVMs is that they consider location-specific indicators and more hazard 

variables in addition to water depth; by feeding the MVMs with these event-specific data (10 

variables), while UVM only consider water depth, we are exactly assessing the added value 

of MVM and thus their transferability potential. See also the previous comment on that.  

• For the wider applicability of the results of this research some more discussion is required on 

to what extend the good performing literature models are tailored to the specific flood 

event and setting. These expert-based models seem to be made for Italy and for similar 

flood events to the one seen in this study. Are these models for example also made for the 

same region, did the developers have access to the damage data of these events or did they 

carry out surveys in the region? Point here is to help the reader identify when you can take a 

model from the literature and when you can’t and for this we need more information about 

the good performing literature models. 



➢ Thank you for pointing out this. More details have been added to the description of literature 

models and the source of their data. Also, additional explanations have been added in the 

discussion section. 

Minor points: 

• The abstract currently mostly summarizes the method, as a reader I would be very curious 

about the findings (what works better). Could you summarize these in the abstract. 

➢ Thank you, we updated the abstracts with details about the findings.  

• Page 2 line 16-18: Can you clarify this sentence, it is unclear and seems very crucial for the 

story so I wouldn’t want to look up the references to get this clarification. 

➢ The sentence has been rewritten as: “Synthetic models, on the other hand, are based on 

‘‘what-if analyses’’, relying on expert-based knowledge in order to generalise the relation 

between the magnitude of a hazard event and the resulting damage estimate. That means, 

synthetic models have a higher level of standardisation and thus are better suited for both 

temporal and spatial transferability.” 

• Page 3, line 32: You mention 1000 flood events in 45 years, that seems way too much, what 

do you mean here by the word “events”? 

➢ Correct observation, the number of events refer to the AVI catalogue from CNR and in their 

records there are more than 1,000 unique event codes, however some of them refer to the 

same date. We then aggregated events in the same date and corrected the number to 300 

events. 

• Page 6, line 27: You choose to use relative flood damages rather than absolute flood 

damages. This is a common choice, but I think not an obvious one, can you motivate this 

decision? 

➢ We chose to measure impacts in relative terms so to make them easier to compare through 

different times (inflation effect) and places (different currencies). 

• Section 3.2 introduction: Nice overview on UVMs and MVMs but I think this needs 

something on the transferability advantage of MVMs (see above). 

➢ Improved the intro: 

“[…] other parameters may influence the flood damage process, [...] a large number of other 

non-hazard factors can be significantly different from one place to another [...] Multivariable 

models (MVMs) can account for such additional factors and thus are able to adapt the 

damage estimate to the characteristics of a specific event and location. Therefore, they may 

be better-suited to describe the complexity of the flood-damage process for transferability 

purpose.” 

• Section 3.2.1: Can you make a heading for each literature model. 

➢ Sub-chapters have been split differently 



• Section 3.2.1: Huizinga got his damage curves from the literature also, could you reference 

to the study that Huizinga got his damage function from. 

➢ That’s quite a long list of studies that have been averaged, none of which related to Italy; for 

this reason, we prefer to keep it shorter. 

• Page 9, line 2: Change “observation” in “observed” 

➢ Changed “observation datasets” into “observed records” 

• The Random Forests and ANN both have all sorts of tuning parameters. Like number of 

neurons (ANN), minimum number of observations per leaf (RF), learning rate (ANN) and 

more. Could you describe how you determined these settings? 

➢ Unless specified, RF and ANN run on default parameters. We added the minimum number 

of observations per leaf in RF (5). We also added to ANN: “The learning rate is controlled by 

coefficient μ: when μ is very small, the training process approximates the Gauss-Newton optimization 

algorithm (i.e. fast learning, low stability), while when μ is very large, the training process resembles 

the steepest descent algorithm (i.e. slow learning, high stability) (Wilamowski & Irwin, 2011). The 

value of μ starts as 1 and is updated during each training epoch. In case a training epoch is successful 

in reducing the SSE in the output layer, then μ is reduced by half; otherwise, the value of μ is increased 

by a factor of two and a new training attempt is performed.” 

The number of neurons in ANN is already specified: “the initial number of hidden neurons 

per hidden layer is approximated as two-thirds of the summation of the number of neurons 

in the previous and next layers”. 

• On page 11, from line 20. You describe something about the setup of the study. I think this 

should be somewhere else in the manuscript as this probably applies to all data-driven 

models (that would be most fair to do this the same for all data-driven models). If not why 

did you do that differently for the other models? 

➢ The referenced setup is specifically related to the ANN model; we explained better the 

training procedure that is shared among the trained models (3.4, pg 9 line 11:) “All these 

models share the same sampling approach for training and validation: the observation 

dataset is split in three parts, where two thirds are used to train the model and one third for 

validation. This process is iterated 1,000 times, scrabbling the data and resampling the 

training set at each cycle.” 

• Sometimes you use the word “water velocity”, sometimes “flow velocity” and sometimes 

“water flow velocity”, I think commonly the word “flow velocity” is used. Can you unify this 

throughout the paper. 

➢ Yes, thank you 

• Page 16, line 14. Not all these citations fit a root function to data they just all have damage 

curves that have the shape of a root function. So please rephrase the sentence before the 

citation (message can be the same). 



➢ Thanks for the comment. The sentence has been rephrased as the following: “Our findings 

confirm previous results indicating that the curve shape described by the root function is the 

most adequate to describe the flood damage process”. 

• In this study a limited number of variables was available for the MVMs. If more variables had 

been available the models might have performed better. Can you make this point 

somewhere. 

➢ Added to discussion: “We can’t exclude that the performances of MVMs would benefit from 

the inclusion of additional predictive variables, such as those related to the early warning 

system and precaution measures, or social vulnerability; however, the availability of such 

information is limited for our case study.” 

Schröter, K., Kreibich, H., Vogel, K., Riggelsen, C., Scherbaum, F. and Merz, B. (2014), How useful 

are complex flood damage models? Water Resour. Res. 50, 3378–3395. doi:10.1002/2013WR014396, 

2014. 

Wagenaar, D., Lüdtke, S., Schröter, K., Bouwer, L., Kreibich, H., 2018. Regional and Temporal 

Transferability of Multivariable Flood Damage Models. Water Resources Research. Volume 54, Issue 

1. https://doi.org/10.1029/2017WR022233 

➢ Very interesting thank you, these have been added to the discussion. 

https://doi.org/10.1029/2017WR022233
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Abstract 10 

Flood risk management generally relies on economic assessments performed using flood loss models of 11 

different complexity, ranging from simple univariable to more complex multivariable models. These latter 12 

accounts for a large number of hazard, exposure and vulnerability factors, being potentially more robust 13 

when extensive input information is available. In this paper wWe collected a comprehensive dataset related 14 

to three recent major flood events in Northern Italy (Adda 2002, Bacchiglione 2010 and Secchia 2014), 15 

including flood hazard features (depth, velocity and duration), buildings characteristics (size, type, quality, 16 

economic value) as well as reported losses. The objective of this study is to compare the performances of 17 

expert-based and empirical (both uni- and multivariable) damage models for estimating the potential 18 

economic costs of flood events to residential buildings. The performances of four literature flood damage 19 

models of different nature and complexity are compared with the performancethose of univariable, 20 

bivariable and multivariable models empirically trained and tested using empirical recordsdeveloped for 21 

Italy and tested at from Italy the micro scale based upon observed records. The uni- and bivariable models 22 

are produced developed usingtesting  linear, logarithmic and square root regression while whereas 23 

multivariable models are based on two machine learning techniques, namely Random Forest and Artificial 24 

Neural Networks. Results provide important insights about the choice of the damage modelling approach 25 

for operational disaster risk management. Our findings suggest that multivariable models hold better 26 

potential for producing a reliable damage estimates when extensive ancillary data for flood event 27 

characterisation are available, while univariable models can be adequate if data are scarce. Performance 28 

metricsThe analysis also highlights that expert-based synthetic models are likely better suited for 29 

transferability to other areas compared to empirically-based flood damage models. 30 

Key-words: flood risk assessment empirical expert-based model machine learning stage damage curves 31 

1. Introduction 32 

Among all natural hazards, floods historically cause the highest economic losses in Europe (EEA 2010; 33 

EASAC 2018). In Italy alone, a country with the largest absolute uninsured losses among EU countries 34 

(Alfieri et al., 2016; EEA, 2016; Paprotny et al., 2018), around EUR 4 billion of public money were spent over 35 

a 10 years period to compensate the damage inflicted by major extreme hydrologic events (ANIA 2015). 36 

From 2009 until 2012, the recovery funding amounted to about EUR 1 billion per year; about half  fraction of 37 
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the total estimated damage of around EUR 2,2 billion (Zampetti et al., 2012). In this context, and particularly 1 

compelled by the EU Flood Directive (2007/60/EC) and the Sendai Framework for Disaster Risk Reduction 2 

(Mysiak et al., 2013, 2016) , sound and evidence-based flood risk assessments should provide the means to 3 

support the development and implementation of cost-effective flood risk reduction strategies and plans. 4 

Several different approaches of varying complexity exist to estimate potential losses from floods, depending 5 

mainly on the category of damage (e.g. direct impacts or secondary effects, tangible or intangible costs, etc.) 6 

and the scale of application (i.e. macro, meso or micro scale) (Apel et al., 2009; Carrera et al., 2015; Hallegatte, 7 

2008; Koks et al., 2015; de Moel et al., 2015). Direct tangible damages to assets are typically assessed using 8 

simple univariable models (UVMs) that rely on deterministic relations between a single descriptive variable 9 

(typically maximum water depth) and the economic loss mediated by the type/value of buildings or land 10 

cover directly affected by a hazardous event (Huizinga et al., 2017; Jongman et al., 2012; Jonkman et al., 2008; 11 

Merz et al., 2010; Messner et al., 2007; Meyer and Messner, 2005; de Moel and Aerts, 2011; Scawthorn et al., 12 

2006; Smith, 1994; Thieken et al., 2009). Empirical, event-specific damage models are developed from 13 

observed flood loss data. A major drawback of empirically-based damage models relies on its low 14 

transferability to other study areas or regions, as significant errors are often verified when these are used to 15 

infer damage in other regions than those for which they were built to (Amadio et al., 2016; Apel et al., 2004; 16 

Carisi et al., 2018; Hasanzadeh Nafari et al., 2017; Jongman et al., 2012; Merz et al., 2004; Scorzini and Frank, 17 

2015; Scorzini and Leopardi, 2017; Wagenaar et al., 2016). Synthetic models, on the other hand, are based on 18 

‘‘what-if analyses’’, relying on expert-based knowledge in order to generalise the relation between the 19 

magnitude of a hazard event and the resulting economic damage estimate. That means , synthetic models 20 

have a higher level of standardisation and thus are An advantage of synthetic models over empirically-based 21 

models relies on the fact that the first are less sensitive to the input data, thus being better suited for both 22 

temporal and spatial transferability (Smith 1994; Merz et al. 2010; Dottori et al. 2016).  23 

Both empirical and synthetic models can be configured as uni- or multivariable. The vast majority of 24 

univariable flood damage models account for water depth as the only explanatory variable to explain the 25 

often complex relation between the magnitude of a flood event and the resulting damages; however, a non-26 

exhaustive literature search shows that, other parameters may influence the flood damage process, such as 27 

flow velocity (Kreibich et al., 2009), flood duration, and water contamination (Molinari et al., 2014; Thieken 28 

et al., 2005), just to name just a few. In addition, a large number of other non-hazard factors can be 29 

significantly different from one place to another, such as type and quality of buildings, presence of 30 

basements, density of dwellings, early warning systems and precautionary measures (Cammerer et al., 2013; 31 

Carisi et al., 2018; Figueiredo et al., 2018; Kreibich et al., 2005; Merz et al., 2013; Penning-Rowsell et al., 2005; 32 

Pistrika and Jonkman, 2010; Schröter et al., 2014; Smith, 1994; Thieken et al., 2008; Wagenaar et al., 2017b). 33 

Therefore, Mmultivariable modelss (MVMss) can account for such additional factors and thus are able to 34 
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adapt the damage estimate to the characteristics of a specific event and location. Therefore, they are are 1 

potentially better-suited alternatives to describe the complexity of the flood-damage relation process and be 2 

transferred to other contexts (Apel et al., 2009; Elmer et al., 2010; Schröter et al., 2014; Wagenaar et al., 2018).. 3 

Common techniques applied in a context of MVM are machine learning (e.g., Artificial Neural Networks and 4 

Random Forests) (Merz et al. 2013; Spekkers et al. 2014; Kreibich et al. 2017, Carisi et al. 2018), Bayesian 5 

networks (Vogel et al., 2013), and Tobit estimation (Van Ootegem et al., 2015). Moreover, some MVMs 6 

support probabilistic analysis of damage (Dottori et al., 2016; Essenfelder, 2017; Wagenaar et al., 2017a). 7 

MVMs need to be validated against empirical records in from the region of where they are applied the 8 

model application in order to produce reliable estimates (Hasanzadeh Nafari et al., 2017; Molinari et al., 9 

2014, 2019; Scorzini and Frank, 2015; Zhou et al., 2013). However, greater sophistication of MVMs requires 10 

more detailed hazard, exposure and losses description. Due to the lack of consistent and comparable 11 

observed flood data, this kind of models are still seldom rarely applied. This is why it is necessary to compile 12 

comprehensive, multivariable datasets with detailed catalogue of flood events and their impacts (see 13 

Amadio et al., 2016, Molinari et al., 2012 and 2014, and Scorzini and Frank, 2015). 14 

Our study contributes to this end by assembling detailed data on three recent flood events in Northern Italy. 15 

For each event, our dataset comprises the following buildingmicro-scale data: 1) hazard characteriszation 16 

derived from observational data and/or hydraulic modelling, 2) high-resolution exposure in terms of 17 

location, size, typology, economic value, etc. obtained from multiple sources, and 3) declared costs per 18 

damage categories. Building upon this extensive dataset, we employ supervised learning algorithms to 19 

explore the parameters of hazard, exposure and vulnerability and their influence on damage magnitude. We 20 

test linear, logarithmic and square root regression to select the best fitting Uni-Variable (UVM) and Bi-21 

Variable (BVM) models, and two supervised machine learning techniquesalgorithms, namely Random 22 

Forest (RF) and Artificial Neural Networks (ANN), for training and testing the empirical MVMs. The models 23 

developed on the three considered case studies provide a benchmark to test the performance of four 24 

literature models of different nature and complexity, specifically developed for Italy. The results of this 25 

study provide important insights to understand the feasibility and reliability of flood damage models as 26 

practical tools for predictive flood risk assessments in Italy. 27 

2. Study area 28 

With an extent of 46,000 km2, the Po Valley is the largest contiguous floodplain in Italy. It extends from the 29 

Alps in the north to the Apennines in the south-west, and the Adriatic Sea to the east. It comprises the Po 30 

river basin, the eastern lowlands of Veneto and Friuli, and the south-eastern basins of Emilia-Romagna. The 31 

Po Valley is one of the most developed and populated areas in Italy, generating about half of the country’s 32 

gross domestic product (AdBPo, 2006). In the lower part of the Po river, flood-prone areas are protected by a 33 
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complex system of embankments and hydraulic works that are part of the flood defence system in the Po 1 

Valley, extending for almost 3,000 km as a result of centuries-long tradition of river embanking (Govi and 2 

Turitto, 2000; Lastoria et al., 2006; Masoero et al., 2013). However, flood protection structures generate a false 3 

sense of safety and low risk awareness among the floodplain residents (Tobin, 1995). As a result, exposure 4 

has steadily increased in flood prone areas of the Po Valley (Domeneghetti et al., 2015). Records of past flood 5 

events (1950-1995) maintained by the National Research Council (Cipolla et al., 1998) show that more than 6 

3,300 individual locations were affected by approximately 1,0300 flood events within the Po Valley. 7 

Three of the most recent flood events within the Po Valley (figure 1) have been chosen as case studies for this 8 

analysis: the 2002 Adda flood that affected the province of Lodi (1); the 2010 Bacchiglione flood which 9 

involved the area of Vicenza (2); and the 2014 Secchia flood in the province of Modena (3). All three locations 10 

have been subject to frequent flooding between 1950 and 2000 according to the historical catalogue. A short 11 

description of these three events is provided hereinafter to understand the dynamics and the impacts of each 12 

flood. 13 

 14 
Figure 1. Case studies in Northern Italy (Po Valley). 1: Adda river flooding the town of Lodi, 2002; 2: Bacchiglione river 15 
flooding the province of Vicenza, 2010; 3: Secchia river flooding the province of Modena, 2014. Flooded buildings for 16 
which damage records are available are shown in black. 17 

2.1.1 Adda 2002 18 

On the 27th of November 2002, the province of Lodi (Lombardy) was struck by a flood caused by the 19 

overflow of the Adda river. The flood-wave reached a record discharge of about 2,000 m3/s, corresponding to 20 
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a return period of 100 years (Rossetti et al., 2010). The river overtopped the embankments and flooded the 1 

rural area first, later reaching the residential and commercial areas within the capital town of the province, 2 

Lodi. The low-speed flood waters rose up to 2.5-3m. The inundation lasted for about 24 hours and affected a 3 

large area of the Adda floodplain, including 5.5 ha of residential buildings. There were no reported 4 

casualties, but several families were evacuated during the emergency and important service nodes such as 5 

hospitals were severely affected. The reported damage to residential properties, commercial assets and 6 

agriculture summed up to EUR 17.7M, out of which EUR 7.8M relate to residential buildings. 7 

2.1.2 Bacchiglione 2010 8 

From the 31st of October to the 2nd of November 2010, persistent rainfall affected the pre-Alpine and foothill 9 

areas of Veneto region exceeding 500 mm in some locations (ARPAV, 2010). As a result, about 140 km2 of 10 

land were flooded, involving 130 municipalities (Belcaro et al., 2011). The Bacchiglione river, in the province 11 

of Vicenza, was particularly negatively affected. Heavy precipitation events and early snow melting 12 

increased the hydrometric levels of the Bacchiglione river and its tributaries, surpassing historical records 13 

(Belcaro et al., 2011). On  the morning of November 1st, the water flowing at 330 m3/s opened a breach on the 14 

right levee of the river, flooding the countryside and the settlements of Caldogno, Cresole and Rettorgole 15 

with an average water depth of 0.5 m (ARPAV, 2010). Then the river overflowed downstream, towards the 16 

chief-town of Vicenza, which was inundated up to its historical center. The inundation lasted for about 48 17 

hours, and its extent was about 33 Ha, of which 26 Ha consisted of agricultural land and 7 Ha were urban 18 

areas. The total damage including residential properties, economic activities, agriculture and public 19 

infrastructures was estimated to be around EUR 26M, while dwellings alone accounted for EUR 7.5 M 20 

(Scorzini and Frank, 2015). 21 

2.1.3 Secchia 2014 22 

In January 2014 severe rainfall endured for two weeks on the central part of Emilia-Romagna region, 23 

discharging the annual average amount of rain in just a few days. On the 19th, at around 6 AM, the water 24 

started to overtop a section (10 m) of the of the right levee of the Secchia river, which stands 7-8 meters over 25 

the flood plain. Later in the morning the levee breached at the top by one meter, flooding the countryside. 26 

After 9 hours, the levee section was completely destroyed for a length of 80 meters, spilling 200 m3/s and 27 

flooding around six thousand hectares of rural land (D’Alpaos et al., 2014). Seven municipalities were 28 

affected, with the small towns of Bastiglia and Bomporto suffering the largest impact. Both towns, including 29 

their industrial districts, remained flooded for more than 48 hours. The total volume of water inundating the 30 

area was estimated to be around 36 million m3, with an average water depth of 1 meter (D’Alpaos et al., 31 

2014). The economic cost inflicted to residential properties according to damage declaration amounts to EUR 32 

36M. 33 
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3. Materials and methods 1 

3.1 Data description 2 

We have first collected detailed and uniform data portraying hazard and exposure in the areas affected by 3 

the three events in order to evaluate their relationship with measured impacts. Several datasets have been 4 

The compiled from different sources, harmonised and geographically projected to the building level (i.e. 5 

micro-scale) for each one of the three study areas. The dataset we compiled for this analysis comprises:  6 

▪ Detailed hazard data, including the flood extent, depth, persistenceduration, and flow velocity. 7 

▪ High-resolution spatial exposure data, including type, location and value of affected buildings. 8 

▪ Comprehensive vulnerability data, including the characteristics of building and dwellings in terms 9 

of material, quality and age. 10 

▪ Reported damage in terms of replacement and reconstruction costs of reparation or replacement of 11 

damaged goods. 12 

The main hazard features (extent, depth, flow velocity and duration) are obtained from flood maps 13 

produced by 2D hydraulic models based on observations performed during and after the events. In detail, 14 

the hydraulic flood simulation for the Adda river has been produced by means of River2D model (Steffler 15 

and Blackburn, 2002) using a 5m resolution digital terrain model10m computational mesh based on a  and 16 

high-resolution LiDAR data DEM for the description of the floodplains obtained from the river basin district 17 

authority (Scorzini et al., 2018)(Scorzini et al., 2018). The Bacchiglione flood have been simulated using the 18 

1D/2D model Infoworks RS (Beta Studio, 2012). The 1D river network geometry comes from a topographic 19 

survey of cross-sections, while the 2D floodplain morphology (5 m resolution) is obtained from LiDAR data 20 

produced by the Italian Ministry of Environment (Molinari et al., 2018). The reliability of the simulations for 21 

the Adda and Bacchiglione floods was verified using hydrometric data, aerial surveys of inundated areas 22 

and photos/videos from the affected population (Rossetti et al., 2010; Scorzini et al., 2018; Scorzini and Frank, 23 

2015). The Secchia flood event has been simulated using an innovative, time-efficient approach (Vacondio et 24 

al., 2016) which integrates both river discharge and floodplain characteristics in a parallel computation. The 25 

simulation was performed on a 5 meters m grid and its results were validated against several field data and 26 

observations, including a high-resolution radar image (Vacondio et al., 2014, 2017). The information needed 27 

for the characterization characterisation of exposure is collected from a variety of sources and then spatially 28 

projected to have a homogeneous, georeferenced dataset for each case study. External buildings perimeter 29 

and area are obtained from the Open Street Map database (Geofabrik GmbH, 2018) and associated with 30 

official street-number points containing addresses. The land cover is freely available as perimeters classified 31 

by the CORINE legend (4th level of detail) (Feranec, J. Ot’ahel’, 1998) obtained from Regional Environmental 32 

Agencies databases. Land cover information is used to discriminate housing from other buildings 33 
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(industrial, commercial, etc.). In addition, indicators for building characteristics (Table 1) have been selected 1 

from the database of the official 2011 Italian population Ccensus of 2011 (ISTAT, 2011). CReconstruction and 2 

restoration costs as EUR/m2 are obtained for the case study areas from the CRESME database 3 

(CRESME/CINEAS/ANIA, 2014). They are used to convert the absolute damage values into relative damage 4 

shares. We chose to measure impacts in relative terms so to make them easier to compare through different 5 

times (inflation effect) and places (different currencies). Empirical damage records have been collected by 6 

local administrations after the flood events in relation to households’ street numbers. The records falling 7 

outside the simulated flood extents are filtered from the dataset. Each record includes: claimed; verified; and 8 

refunded damage to residential buildings. Since actual compensation often covers only a fraction of the 9 

damage costs, claimed damage is preferred in order to measure the economic impact (see Carisi et al. 2018). 10 

We restricted our analysis on direct monetary damage to the structure of residential buildings, excluding 11 

furniture and vehicles. Economic losses, building values and construction costs for the three events have 12 

been scaled to EUR2015 inflation value.  13 

3.2 Damage models overview 14 

Empirical damage models are drawn based on actual data collected from specific events (e.g. Luino et al. 15 

2009; Hasanzadeh Nafari et al. 2017); in some regions they represent the only knoweldge base for the 16 

assessment of flood risk. However, they carry a large uncertainty when employed in different times and 17 

places (Gissing and Blong, 2004; McBean et al., 1986). Differently, synthetic models are based on a valuation 18 

survey which assesses how the structural components are distributed in the height of a building (Barton et 19 

al., 2003; Oliveri and Santoro, 2000; Smith, 1994). In such expert-based models, the magnitude of potential 20 

flood loss is estimated based on the vulnerability of structural components via “what-if” analysis and in the 21 

evaluation of the corresponding damage based on building and hazard features (Gissing and Blong, 2004; 22 

Merz et al., 2010). Most empirical and synthetic models are UVMs based on water depth as the only 23 

predictor of damage; yet recent studies (Dottori et al., 2016; Schröter et al., 2014; Wagenaar et al., 2018) (see 24 

e.g. Dottori et al., 2016 and Merz et al. 2013) suggest that MVMs developed using expert-based or machine-25 

learning approaches outmatch the performances of customary univariable regression models. However, the 26 

development of MVMs requires a comprehensive set of data in order to correctly identify complex 27 

relationships among variables. Models can be further be classified in relation to the scale of their 28 

development and application (de Moel et al., 2015): “micro-scale” usually refers to a model built to account 29 

impacts over individual buildings individual components and it is commonly applied for local assessment; 30 

“meso-scale” refers to sub-national analysis which commonly relies on data aggregated on provincial or 31 

regional administrative units; “macro-scale” concerns assessments at country level. 32 

 33 
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3.2.13.3 Models from literature 1 

There are few models in the literature that are dedicated to the economic assessment of flood impacts over 2 

Italian residential structures (see e.g. Oliveri and Santoro 2000; Huizinga 2007; Luino et al. 2009; Dottori et al. 3 

2016). All Tthese models have been developed independently using different approaches, assumptions, scale 4 

and base data. The first model we selected for testing (Luino et al., 2009) is an empirical UVM based on the 5 

official impact data collected at micro-scale after the flash-flood event of May 2002 in the Boesio Basin, in 6 

Lombardy. One stage-damage curve was generated for structural damage to the most common building 7 

type in the area using loss data measured after the flood combined with estimates of water depth from a 1D 8 

hydraulic model. In this model, the estimation of building value is based on its geographical location, use 9 

and typology, based on market value quotations by the official real estate observatory of Italy (Agenzia delle 10 

Entrate, 2018). Market values of residential stocks for specific areas. The second model (OS - Oliveri and 11 

Santoro 2000) is a synthetic UVM developed for a study performed at the micro-scale  in the city of Palermo 12 

(Sicily). The model is based on describes damage in relation to water depth and consists of two curves, one 13 

for buildings with 2 floors and one for those with more than 2 floors. It considers water stage steps of 0.25 m; 14 

for each stage, the model computes the overall replacement cost as the result of damage over different 15 

components (internal and external plaster, fixtures, floors and electric appliances) plus the expenses for 16 

dismantling the damaged components. This model is based on an estimate of the average reconstruction 17 

value of exposed properties, a hydraulic simulation of potential flood hazard and expert-based assumptions 18 

about the damage process, but it has not been validated on empirical damage data. The third model we 19 

included in our analysis is part of a stage-damage curve database developed for the meso-scale by the EU 20 

Joint Research Centre (Huizinga, 2007; Huizinga et al., 2017) on the basis of an extensive literature survey. 21 

Damage curves are provided for a variety of assets and land use classes on the global scale by normalising 22 

the maximum damage values in relation to country-specific construction costs. These are obtained by means 23 

of statistical regressions with socioeconomic development indicators. The JRC curves are suggested for 24 

application at the supra-national scale but can be a general guide to carry on assessments at the meso-scale 25 

in countries where specific risk models are not available. We select the curve provided for Italian residential 26 

buildingsy (JRC-IT) to be tested on our dataset, although .JRC curves have been already tested at the micro-27 

scale in Italy, revealing some large uncertainty in the estimates (Amadio et al., 2016; Carisi et al., 2018; 28 

Hasanzadeh Nafari et al., 2017; Scorzini and Frank, 2015). 29 
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The fourth model considered is INSYDE, In-depth 

Synthetic Model for Flood Damage Estimation (Dottori 

et al. 2016), which is a synthetic MVM developed 

for residential buildings and released as open 

source R script. Repair or replacement costs are 

modelled by means of analytical functions 

describing the damage processes for each 

component as a function of hazard and building 

characteristics, using an expert-based “what-if” 

approach at the micro-scale. Hazard features 

include physical variables describing the flood 

event at the building location, e.g. water depth, 

flood duration, presence of contaminants and 

sediment load. 

 

Figure 2. Examples of damage curves in relation to water 

depth produced by INSYDE for riverine floods in relation 

to a building with FA=100 m2, NF=2, BT=3, BS=2, FL=1, 

YY=1990, CS=1. 

Exposure iIndicators related to exposure and vulnerability include building characteristics such geometry 1 

and features. Building features affect costs estimation either by modifying the damage functions or by 2 

affecting the unit prices of the building components by a certain factor. Damage categories include clean-up 3 

and removal costs, damage to finishing elements, windows, doors, wirings and installations (Figure 2). The 4 

model adopts probabilistic functions for some of the buildings’ components for which it is difficult to define 5 

a deterministic threshold of damage occurrence in relation to hazard parameters. The curves are calibrated 6 

on damage micro-data surveyed from a flood event in central Italy (Umbria) (Molinari et al., 2014). Despite 7 

the large number of inputs, the model proved to be adaptable to the actual available knowledge of the flood 8 

event and building characteristics (Molinari and Scorzini, 2017). The list of explicit inputs variables 9 

accounted by INSYDE is adopted to select the variables accounted by all MVMs assessed in our analysis 10 

(shown in Table 1)., with the indication of their respective data sources. Despite the large number of inputs, 11 

the model proved to be adaptable to the actual available knowledge of the flood event and building 12 

characteristics (Molinari and Scorzini, 2017). 13 

Variable Description Source Unit Name 

Hazard features 

Water depth Maximum depth Hydro model m he 

Flow velocity Maximum velocity Hydro model m/s v 

Duration Hours of inundation Hydro model h d 

Exposure and vulnerability of buildings 

Replacement value Economic value of the building structure CRESME EUR/m2 RV 

Area and perimeter Footprint area and external perimeter OSM/CTR m2, m FA, EP 

Basement Presence (1) or absence (0) of basement CRESME - B 

Number of floors 1, 2, 3 or more than 3 floors Census/Inspection - FNF 

Building type Flat (1), semi-detached (2) or detached (3) Census/Inspection - BT 
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Building structure Bricks (1) or concrete (2) Census/Inspection - BS 

Finishing levellevel Low (0.8), medium (1) or high (1.2) Census/Inspection - FL 

Conservation status Bad (0.9), normal (1) or good (1.1) Census/Inspection - CS 

Observed damage 

Damage claims Private and shared structural parts Official survey EUR D 

Table 1. List of variables included in the multivariable analysis. 1 

3.2.23.4 Models developed and trained on the observationed records dataset 2 

This section provides an overview about on the empirical damage models obtained from our events dataset, 3 

namely two supervised learning algorithms (Random Forest, Artificial Neural Network) and three uni- and 4 

bivariable regression models used to assess the importance of variables (listed in tTable 1) as damage 5 

predictors. All Trained these models share the same sampling approach for training and validation: the 6 

observation dataset is split in three parts, where two thirds are used to train the model and one third for 7 

validation. This process is iterated 1,000 times, scrabbling the data and resampling the training set at each 8 

cycle. The output takes the mean of all iterations and provides a curve which represents the empirical 9 

damage relationship for the three events. This cross-validation approach has been previously employed in 10 

Hasanzadeh Nafari et al. (2017) and in (Seifert et al. (, 2010) in order to optimise the statistic utility of the 11 

collected sample. 12 

3.2.2.13.4.1 Multivariable models: supervised learning algorithms 13 

A probabilistic approach is required in damage estimation in order to control the effects of data variability 14 

on the model uncertainty. This is useful to overcome the limitations associated with the choice of a singular 15 

model and to increase the statistical value of the analysis (Kreibich et al., 2017). The algorithms we employed 16 

to deal with the empirical data share an iterative scrambling and resampling approach (1,000 repetitions) in 17 

order to draw the confidence interval of the models independently from source data variability. For the 18 

setup of empirically-based MVMs we selected ten variables from those listed in Table 1, excluding those 19 

with small variability (basement, conservation status) or those for which an adequate level of detail is not 20 

possible in our case studies (age, heat system). These ten variables serve as input for two supervised 21 

machine learning algorithms, namely Random Forest (RF) and Artificial Neural Network (ANN), described 22 

in the next paragraphs. Both algorithms are trained on our empirical dataset and produce a distribution of 23 

estimates for each record, from which the mean value is calculated. 24 

3.4.1.1 Random Forest 25 

The RF is a data mining procedure, a tree-building algorithm that can be used for classification and 26 

regression of continuous dependent variables (CART method - see Breiman 1984) like the one used by Merz 27 

et al. (2013). RF has numerous advantages, such as accuracy of high prediction accuracy, tolerance of outliers 28 

and noise, avoidance of overfitting problems, and no need of assumptions about independence, distribution 29 

or residual characteristics. Because of this, it has already been employed in the context of natural hazards, 30 
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including earthquake-induced damage classification (Tesfamariam and Liu, 2010), flood hazard assessment 1 

(Wang et al., 2015), and flood risk (Carisi et al., 2018; Chinh et al., 2015; Kreibich et al., 2017; Merz et al., 2013; 2 

Spekkers et al., 2014). 3 

 4 
Figure 3. Example of one of the regression trees produced by the Random Forest model. 5 

We use the algorithm implemented in the R package RandomForest by Liaw and Wiener (2002). The Random 6 

Forest algorithm builds and combines many decision trees (500 in our case), where each tree has a non-linear 7 

regression structure, recursively splitting the input dataset into smaller parts by identifying the variables 8 

and their splitting values which maximize the predictive accuracy of the model. The tree structure has 9 

several branches, each one starts from the root node and includes several leaf nodes, until either a threshold 10 

for the minimum number of data points in leaf nodes is reached or no further splitting is possible (see Liaw 11 

and Wiener, 2002 for details about the default values used, e.g. the size of the leaves). The minimum number 12 

of observations per leaf is 5. Each estimated value represented by the resulting terminal node of the tree 13 

answers to the partition question asked in the previous interior nodes and depends on the response variable 14 

of all the parts of the original dataset that are needed to reach the terminal node (Merz et al., 2013). In order 15 

to reduce the uncertainty associated with the selection of a single tree, the RF algorithm (Breiman, 2001) 16 

creates several bootstrap replicas of the learning data and grows regression trees for each subsample, 17 

considering a limited number of variables at each split (normally this number is equal to the root of the 18 

number of the total variables). This will result in a great number of regression trees, each based on a different 19 

(although similar) set of damage records and each leaving out a different number of variables at each split. 20 

The mean value among all prediction of the individual trees is chosen as representative output. An example 21 

of a built tree for the present study is shown in Figure 3. Another important strength of RF is its capability to 22 

evaluate the relative importance of each independent variable in the tree-building procedure, i.e., in our 23 

case, in representing the damage process. By randomly simulating the absence of one predictor, the RF 24 

algorithm calculates the decreasing of the performance of the model and thus the importance of the variables 25 

in the prediction. 26 
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3.4.1.2 Artificial Neural Network 1 

ANNs are mathematical models based on non-linear, parallel data processing (Haykin, 2001). They have 2 

been applied in several fields of research, such as hydrology, remote sensing, and image classification 3 

(Campolo et al., 2003; Giacinto and Roli, 2001; Heermann and Khazenie, 1992). The model used in this study 4 

(Essenfelder, 2017) consists of a Multi-Layer Perceptron (MLP) neural network model, using back-5 

propagation as the supervised training technique and the Levenberg-Marquardt as the optimization 6 

algorithm (Hagan and Menhaj, 1994; Yu and Wilamowski, 2011) (see figure 4 for the structure of the model). 7 

 8 

Figure 4. Structure of the Artificial Neural Network model applied in this study using two neurons (nodes) layers. 9 

The developed ANN model evaluates the Sum of Squared Errors (SSE) of the model outputs with regards to 10 

the targets for each training epoch as a way of assessing the generalization property of a trained ANN model 11 

(Hsieh and Tang, 1998; Maier and Dandy, 2000). The ANN runs in a multi-core configuration and provides 12 

an ensemble of trained ANN models as a result, thus being suitable for probabilistic analysis. The input and 13 

target information are normalized by feature scaling before being processed by the model, while the initial 14 

number of hidden neurons per hidden layer is approximated as two-thirds of the summation of the number 15 

of neurons in the previous and next layers (Han, 2002). Regarding the activation functions, a log-sigmoid 16 

function is used for the connection with neurons in the first and second hidden layers, while a linear 17 

function is used for the connections with neurons in the output layer, allowing values to be either lower or 18 

greater than the maximum observed valued in the target dataset. This configuration is interesting as it does 19 

not limit the output range of the ANN model to the range of normalized values. The input data is randomly 20 

split between three distinct sets, namely training, validation, and test. The training dataset is used to 21 

calibrate the ANN model, meaning that the weight connections between neurons are updated with respect 22 

to the data available in this dataset. The learning rate is controlled by coefficient μ: when μ is very small, the 23 

training process approximates the Gauss-Newton optimizsation algorithm (i.e. fast learning, low stability), 24 

while when μ is very large, the training process resembles the steepest descent algorithm (i.e. slow learning, 25 

high stability) (Wilamowski & Irwin, 2011). The value of μ starts as 1 and is updated during each training 26 

epoch; μ is reduced by half if training epoch is successful in reducing the SSE in the output layer, otherwise 27 

the value of μ is increased by a factor of two and a new training attempt is performed. The validation set is 28 

utilized utilised to avoid the overtraining or overfitting of the ANN model, being used to stop the training 29 
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process. The test set is not presented to the model during the training procedure, being used only as a way of 1 

verifying the efficiency of a trained ANN when stressed by new data. In order avoid any possible bias 2 

coming from the random split of the original dataset into training, validation, and test datasets, about 1,000 3 

training attempts are performed, each with a different initial weight initialization and training dataset 4 

composition. The resulting ANN model consists of an ensemble of 4 models, representing the best overall 5 

results after the training procedure, that are used to define the confidence interval.  6 

3.2.2.23.4.2 Univariable and bivariable models 7 

In order to understand if the added complexity of MVMs brings any improvement in the accuracy of 8 

damage estimates, we compare them with traditional, deterministic univariable (UVM) and bivariable 9 

(BVM) regression models that are empirically derived from the observation dataset. Considering the first 10 

(water depth) or the first two variables (water depth and water flow velocity), we investigate whether a 11 

linear, logarithmic or exponential function has the best regression fit to the records. All functions that 12 

consider water depth are forced to pass through the origin, because most buildings have no basement and, 13 

accordingly, no water means no damage. Similarly to what we did for the MVM training, we uses an 14 

iteration of 1,000 scrambling and resampling cycles which is repeated using the two different sampling 15 

strategy: first the models are trained on 2/3 of the data and validated on the remaining 1/3 of the records. 16 

3.4.3 Workflow of the study 17 

The main elements of the proposed 

study are represented in the 

workflow shown in Figure 5. The 

dataset collected from flood events 

is presented for training the UV, BV 

and MV models by iterative cross-

fold procedure. The trained RF 

provides the relative importance of 

predictive variables. Hazard and 

exposure variables are then used to 

test the performance of both trained 

and literature models. Simulated 

damage is compared to observed 

costs in terms of error metrics. 

  

Figure 5. Workflow of the analyses performed in this study. 

 18 

Formatted: Heading 3



14 

 

4. Results and discussion 1 

4.1 Observed damage records 2 

Our combined dataset contains records of 1,158 damaged residential buildings (Table 2). More than a half of 3 

these were damaged by the Secchia flood, which affected the largest residential area (17.7 ha) and caused the 4 

largest total losses. Only verified, spatially-matching records are accounted; economic losses are scaled to 5 

EUR2015 inflation value. Note that these losses are related to the structural damage of residential buildings, 6 

thus they do not represent the full cost inflicted by of these events. 7 

Case study 
[River basin, year] 

Affected 
buildings [n] 

Flood  
extent [ha] 

Avg. water 
depth [m] 

Declared 
damage 

[M EUR 2015] 

Adda, 2002 270 5.5 0.8 4.7 

Bacchiglione, 2010 294 7.1 0.5 7.9 

Secchia, 2014 594 17.7 1 21.1 

Total 1,158 30.3 2.3 33.7 

Table 2. Summary of residential buildings affected by the three investigated flood events according to hydraulic 8 
simulations and damage claims.  9 

Boxplots in Figure 65 show the variance of variables driving the damage. Water depths range from 0.01 to 10 

about 2 meters, with most records falling in the interval 0.4 – 1.2 meters. Water velocities range between 0.01 11 

and 1.5 m/s. . Footprint areas and observed relative damages have similar average values for all three events, 12 

however the Secchia case study presents the longer count of records as well as the largest spread of outliers. 13 

 14 
Figure 65. Data distribution for four variables from the three sample case studies. 15 

The scatterplot in Figure 76 better shows the density of observed damages records in relation to the 16 

maximum water depth. The increase in depth corresponds to a larger range of variability in the economic 17 

damage. 18 
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Figure 7. Scatterplot of relative damage (y-

axis) in relation to maximum observed 

water depth (x-axis). Records from the same 

event are shown with the same color. 

4.2 Influence of hazard and exposure variables on predicting flood damage 1 

Water depth (he) is identified by RF as the most important 

predictor of damage (factor 3.4) among the ten examined 

variables (Figure 87). This confirms previous findings 

(Wagenaar et al., 2017b) and justifies the use of depth-damage 

curves for post-disaster need assessment. Flow velocity and 

geometric characteristics of buildings (area and perimeters) are 

also important (factor 2.7 to 2.3), followed by other predictors 

such as building value, flood duration, number of floors, 

finishing level level (quality) and type of structure (factor 1 or 

less). Although water depth is the most influential variable, it is 

only moderately more important than other predictors. That 

substantiates the efforts to test the applicability of 

multivariable approaches to improve the estimation of damage. 

  

                

Figure 87. Relative importance of variables as 

predictors of damage according to the RF 

model. 

4.3 Performance of the damage models 2 

For assessing the predictive capacity of the four selected literature models, we compare them with 3 

empirically-based, data-trained models structured on the same variables, i.e. the evaluation of the models’ 4 

performances is carried out by measuring and comparing the error metrics from the aforementioned models 5 

(JRC-IT, Luino, OS and INSYDE) to those provided by the empirical MVMs obtained from supervised 6 

learning algorithms, the BVMs and traditional UVMs (depth-damage curves) developed on our dataset. The 7 

performances of each model are evaluated by using three metrics, namely Mean Absolute Error, Mean Bias 8 

Error and Root Mean Square Error. The MAE indicates the precision of the model in replicating the total 9 

recorded damage. The MBE shows the systematic error of the model, which is its mean accuracy. The RMSE 10 

measures the average magnitude of the error, enhancing the weight of larger errors. In addition to these 11 

error metrics, the total percentage error (E%, difference between observed and simulated damage divided by 12 

observed damage) is shown in tables. 13 
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4.3.1 Literature models 1 

As first step, estimates of empirical and synthetic models from literature are compared with observed 2 

damages and the results in terms of total loss and total percentage error are shown in Table 3. JRC-IT is the 3 

worst performing model, largely overestimating damage from the three events (E% 143-417). This confirms 4 

previous findings about the scarce suitability of JRC meso-scale models for application at the micro-scale 5 

without previous validation  (as in Amadio et al., 2016; Carisi et al., 2018; Hasanzadeh Nafari et al., 2017; 6 

Scorzini and Frank, 2015).  The UV empirical model from Luino overestimates damage with a percentage 7 

error ranging from 44 to 177. This probably happens because the damage curve is based on observations 8 

foromr a flash flood event characterised by higher flow velocities and larges relative impacts, proving that 9 

empirical models should be carefully transferred with caution on flood events with characteristics different 10 

from those from which the models are generated. 11 

Case study Unit Obs. JRC-IT LUINO OS INSYDE 

Adda 

2002 

M EUR 2015 4.7 24.3 13.0 8.1 5.6 

E%  417.0 176.6 72.3 19.1 
       

Bacchiglione 

2010 

M EUR 2015 7.9 19.2 11.4 6.5 8.3 

E%  143.0 44.3 -17.7 5.1 
       

Secchia 

2014 

M EUR 2015 21.1 64.5 44.1 19.8 28.8 

E%  205.7 109.0 -6.2 36.5 

       
Full set 

M EUR 2015 33.7 108.0 68.5 34.4 42.7 

E%  220.5 103.2 2.0 26.7 

Table 3. Estimates and error from literature models compared to observed damage. Monetary values are in Million Eur, 12 
E% is total percentage error. 13 

JRC-IT is the worst performing model, largely overestimating damage from the three events (E% 143-417), 14 

followed by the UV empirical model from Luino which overestimates damage with a percentage error 15 

ranging from 44 to 177. These results indicate that meso-scale models are not suitable for application at the 16 

micro-scale and that empirical models should be carefully applied for flood events with different 17 

characteristics from the ones for which they are developed. In fact, Luino’s model was produced for a flash-18 

flood event, with higher velocities and impacts. The two synthetic models, OS and INSYDE, perform much 19 

better, yet showing a large variability of the error factor, depending on the considered case. In detail, OS 20 

provides better results for the Secchia event (6% underestimation) and worse for the Adda set (72% 21 

overestimation), resulting in an estimate that is very close to the observations in terms of percentual error on 22 

the total dataset, although this is mainly due to compensation of positive and negative errors for the 23 

different events. Differently, the INSYDE model exhibits a better performance for the Bacchiglione event (5% 24 

overestimation) and worse for the Secchia case study (37% overestimation). Figure 98 compares the 25 

estimated and observed damages for the entire dataset for the two best performing literature models (OS 26 

and INSYDE). 27 
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OS 

 

INSYDE 

 

Figure 98. Scatterplot comparing relative damage estimates produced by the two best performing literature models, 

OS (left) and INSYDE (right). Simulated damage on the y-axis, observed damage on the x-axis. Colors represent 

records density. 

 It is worth noting that, although the accuracy of the OS model is higher than of the INSYDE model for the 1 

full set, the latter is more accurate for two out of the three case studies (i.e. Adda 2002 and Bacchiglione 2 

2010). Moreover, the INSYDE model provides more precise results, with a variance in errors 10 times lower 3 

than of the OS model and with maximum errors never exceeding an absolute value of 40%. However, 4 

INSYDE seems to consistently overestimate the total damages. Figure 8 compares the estimated and 5 

observed damages for the entire dataset for the two best performing literature models (OS and INSYDE). 6 

OS 

 

INSYDE 

 
Figure 8. Scatterplot comparing relative damage estimates produced by the two best performing literature models, OS 

(left) and INSYDE (right). Simulated damage on the y-axis, observed damage on the x-axis. Colors represent records 

density. 
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4.3.2 Data-trained univariable, bivariable and multivariable models  1 

In this section, damage values estimated by empirical, data-trained UVMs, BVMs and MVMs are compared 2 

with observed damage data. The results provided by these empirically-based models are used as a 3 

benchmark to understand the capability of tested literature models in predicting damage. The error metrics 4 

chosen for comparing the models’ performances are presented for relative damage based on official 5 

estimates of replacement value, however training and validation were carried out also in terms of monetary 6 

damage with similar results, not presented for the sake of brevity. 7 

 UVMs BVMs 

Function MBE MAE RMSE MBE MAE RMSE 

Linear -0.015 0.087 0.127 -0.012 0.087 0.126 

Log -0.046 0.080 0.131 -0.046 0.080 0.131 

Root -0.003 0.086 0.123 -0.002 0.086 0.123 

Table 4. Error metrics for the Univariable and Bivariable models. 8 

    9 
Figure 9. Testing the predictive capacity of uni- and bivariable models: estimated relative damage (y-axis) from the UVM 10 
(left) and BVM (right) are plotted against observed relative damage (x-axis) according to the three tested regression 11 
functions (LINear, LOGarithmic and ROOT function). 12 

The results shown in Table 4 and figure 9 indicate no significant differences between UVMs and BVMs. We 13 

can affirm that the inclusion of water flow velocity as complementary explanatory variable does not improve 14 

the performance of simple regression models in our case study. For this reason, BVMs are dropped from 15 

further discussion from now on, to focus on a direct comparison between UVMs and MVMs.  16 

Taking into consideration only UVMs, MAE and RMSE are very similar for the three tested regression 17 

functions. However, the root function described by the general formula 𝑦 = 𝑏(√𝑥
𝑎

) has a slightly better fit 18 

(correlation is higher, MBE is lower) compared to linear and log functions. We select the function described 19 

by the equation 𝑦 = 0.13(√𝑥) as the best performing UVM to be included in the comparison with MVMs. 20 

Our findings confirm previous results indicating that the curve shape described by the root function is the 21 

most adequate to describe the flood damage process Our findings confirm previous results indicating that 22 
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the root curve as the most adequate to describe the flood damage process (Buck and Merkel, 1999; 1 

Cammerer et al., 2013; Elmer et al., 2010; Kreibich and Thieken, 2008; Penning-Rowsell et al., 2005; 2 

Scawthorn et al., 2006; Sluijs et al., 2000; Thieken et al., 2008; Wagenaar et al., 2017b). 3 

    4 
Figure 109. Testing the predictive capacity of uni- and bivariable models: estimated relative damage (y-axis) from the 5 
UVM (left) and BVM (right) are plotted against observed relative damage (x-axis) according to the three tested 6 
regression functions (LINear, LOGarithmic and ROOT function). 7 

 8 

Figure 109 shows a direct comparison between the damage estimated by the empirically-based models 9 

against observed damage. The upper panel shows the output from the UVM described by the root function. 10 

The lower panels show the output of the RF (left) and ANN (right) algorithms. The two machine learning 11 

algorithms produce comparable results, with both RF and ANN models tending to slightly overestimate the 12 

average damage (higher density of points, in red) and to significantly underestimate extreme values (lower 13 

density of values, in blue). This is a common result of data-driven models, where better results are biased to 14 

high-frequency values in comparison to low-frequency values due to the larger sample of those data in the 15 

calibration dataset. In Figure 10, the range of estimates, shown as min-max, describes the confidence of the 16 

model for individual records. In the case of RF, it shows the min-max range over all the 1,000 iterations of 17 

the model, while in the case of ANN only an ensemble of the four best-fit models is shown (see Section 18 

3.2.2.1).  19 

Theoretically, MVMs should simulate the complexity of the flooding mechanism better than UVMs. In our 20 

test, the ANN model has the best fit to the data, but UVMs (depth-damage curves) appear to perform 21 

similarly: the MVMs describe recorded damage with a percentage error between 0.2 and 10, while UVMs’ 22 

error is around 12 (see table 5 in the next paragraph). Accordingly, when extensive descriptive data are not 23 

available, UVMs appear to be a reasonable alternative to describe the flood damage process. These 24 

empirically data-driven models are useful to understand the capability of multivariable approaches in 25 
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predicting damage, i.e. which is the range of uncertainty that can be expected when assessing the flood 1 

damage process, comparing to simpler models like UVMs. 2 

 3 
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Figure 1110. Comparison of the predictive capacity of 

UV and MV models: simulated damage (y-axis) is 

plotted against the observed damage (x-axis) for the 

UV model using square root function (top-left), 

Random Forest (bottom-left) and Artificial Neural 

Network (bottom-right). The grey dashed line shows 

the range of model outputs for each damage record. 

The median is shown in color as a function of the 

record density. 
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Theoretically, MVMs should simulate the complexity of the flooding mechanism better than UVMs. In our 4 

test, the ANN model has the best fit to the data, but UVMs (depth-damage curves) appear to perform 5 

similarly: the MVMs describe recorded damage with a percentage error between 0.2 and 10, while UVMs’ 6 

error is around 12 (see table 5 in the next paragraph). Accordingly, when extensive descriptive data are not 7 

available, UVMs appear to be a reasonable alternative to describe the flood damage process. These 8 

empirically data-driven models are useful to understand the capability of multivariable approaches in 9 

predicting damage, i.e. which is the range of uncertainty that can be expected when assessing the flood 10 

damage process, comparing to simpler models like UVMs. 11 
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4.3.3 Comparing models’ performances 1 

First, we evaluate how selected literature UVMs (JRC-IT, Luino and OS) compare to the root function trained 2 

on the empirical dataset. Figure 1110 shows the distribution and the density of observed relative damage as 3 

a function of water depth for the full dataset, together with the UV curves selected for testing. This figure 4 

explains the results presented in Section 4.3.1, with the JRC-IT and Luino models growing too fast for 5 

shallow water depths, as opposed to OS (shown as two separate curves for different number of floors of the 6 

building), which has a good mean fit to the data. 7 

 

Figure 1211. Scatterplot of relative damage 

records (y-axis) and water depth (x-axis). 

Points color represents record density. The 

red line shows the empirical root function 

(𝑦 = 0.13(√𝑥), selected as best fit. The other 

lines represent the three UV literature models 

(JRC-IT, Luino, and OS) selected for the test. 

OS model is made of two curves, in relation 

to the number of floors of the building. 

Table 5 summarises the main results from all the models in terms of error metrics. Specifically, among all 8 

models, MVMs RF and ANN are those with the lowest MAE and RMSE, followed by UVM ROOT with a 9 

MAE of 0.086 and a RMSE of 0.123. In terms of percentage error, the ranking is the same, with the only 10 

exception of OS, whose result in terms of this metric lies between the two empirical data-trained MVMs. 11 

Overall, the two expert-based literature models OS and INSYDE, are the best performing ones when 12 

compared benchmarked againstto empirically-trained models, as shown by MAE, MBE and RMSE. As 13 

mentioned before, the performance of the UVM OS is very close to those of the MVM INSYDE, although this 14 

result may depend on the fact that the large share of records come from the Secchia event, for which OS 15 

outperforms INSYDE.   16 

 

Model MBE MAE RMSE 

Est. dmg 

[M EUR 

2015] 

Abs. error 

[M EUR 

2015] 

Percent 

error 

[%] 

T
ra

in
ed

 
m

o
d

el
s UVM (ROOT) -0.003 0.086 0.123 37.8 +4.1 +12.3 

MVM (RF) -0.024 0.081 0.126 30.4 -3.3 -9.8 

MVM (ANN) +0.009 0.091 0.115 33.8 -0.1 -0.2 

L
it

er
a

tu
re

 
m

o
d

el
s 

 UVM (JRC_IT) +0.217 0.239 0.27 108 +74.3 +220.5 

UVM (Luino) +0.082 0.13 0.154 68.5 +34.8 +103.2 

UVM (OS) -0.009 0.088 0.127 34.4 +0.8 +2.0 

MVM (INSYDE) +0.019 0.093 0.132 42.7 +9.0 +26.7 

Table 5. Comparing error metrics between empirically-base models and INSYDE. 17 



22 

 

Based on these results, the synthetic models INSYDE and OS currently represent very good alternatives for 1 

flood risk assessment in Italy, in cases where no empirical loss data are available to develop specific damage 2 

models. Indeed, our analysis has shown that particular care should be taken when transferring models 3 

derived from specific events (Luino curve) or from different scales (JRC-IT), while synthetic models can be 4 

considered more robust tools, relying on a physically-based description of flood damage mechanisms. 5 

Overall, for the investigated dataset, the synthetic MVM INSYDE has not been found to not provide much 6 

different an improvement in the accuracy of damage estimates performances compared to those of the UV 7 

OS. However, the results of INSYDE are more precise if considering the different flood events, with a 8 

general, although limited, damage overestimation in all the cases, as opposed to OS which exhibited more 9 

accurate performance only for the Secchia flood and larger variability for the other two events, consequently 10 

being less precise. Thus, caution should be used in the generalisation of this finding. Further validation 11 

exercises, combined with the application of standardised and detailed procedures for damage data collection 12 

(e.g. Molinari et al. 2014) could improve INSYDE’s predictive accuracy; being an open-source model, it is 13 

possible to modify the damage functions for the different building components; for example, the availability 14 

of datasets with building losses subdivided into different categories (e.g. structural/non-structural elements, 15 

finishing, systems, etc.) could help to identify which damage components are responsible for the larger share 16 

of the error. . The same cannot be said for OS, which is presented as a simple stage-damage curve, without a 17 

detailed explanation of the modelling assumptions on the considered flood-damage mechanisms.  18 

We can’t exclude that the performances of MVMs would benefit from the inclusion of additional predictive 19 

variables, such as those related to the implementation of early warning system and precaution measures, or 20 

social vulnerability; however, the availability of such information is limited for our case study. As a final 21 

consideration, the accuracy and precision of damage observations are key aspects for the correct 22 

development of an MVM. This makes synthetic and empirical MVMs better fit for applications at the micro-23 

scale (up to the census block scale (Molinari and Scorzini 2017)), where explanatory variables can be spatially 24 

disaggregated. Indeed, the aggregation scale is of primary importance in the application of MVMs: if we can 25 

compare our results to those reported in other studies applying similar multivariable approaches on an 26 

extensive damage dataset (bagging of regression trees), as in Wagenaar et al. (2017a) and in Kreibich et al 27 

(2017), we observe that our range of uncertainty is drastically smaller. This difference is likely imputable to 28 

the fact that, in the referred studies, information is aggregated at the municipality level, as opposed to our 29 

case, where each variable is precisely linked to buildings’ location.   30 

5. Conclusions 31 

Risk management requires a reliable assessment tool to identify priorities in risk mitigation and adaptation. 32 

Such tool should be able to describe potential damage based on the available data related to hazard features 33 
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and exposure characterisation. Recent studies suggest that multivariable flood damage modelling can 1 

outperform customary univariable models (depth-damage functions). In this study we collected a large 2 

empirical dataset at the micro-scale (i.e. individual buildings) which includes multiple hazard and exposure 3 

variables for three riverine flood events in Northern Italy, including the declared economic damage to 4 

residential buildings. On this basis, we produced three univariable, three bivariable and two multivariable 5 

models that are compared in terms of predictive accuracy and precision. We found that water depth is the 6 

most important predictor of flood damage for the assessed events, followed by secondary variables related 7 

to hazard (flow velocity, duration) and exposure features (area, perimeter and replacement value of the 8 

building). However, our results suggest that the inclusion of one additional variable (flow velocity) does not 9 

improve the estimates produced by simple regression models in a bivariable setup. On the other side, the 10 

analysis confirms the literature notion that the root function is the best fitting curve to describe damage in 11 

relation to water depth. Two MVMs were trained using two different machine learning algorithms, namely 12 

Random Forest and Artificial Neural Network. These empirically-trained MVMs performed well (with an 13 

error ranging from 1 to 10%) in reproducing the damage output from the three events and thus were set as a 14 

reference for assessments in the same geographic context. In this perspective, other case studies are needed 15 

to confirm their robustness. Moreover, our results corroborate previous findings about the advantages of 16 

supervised machine learning approaches for developing or improving flood damage models. Still, their 17 

application remains limited by the availability of the data required for the MVM setup. In case of scarce 18 

number of variables, however, simple univariable models trained on the specific contexts seem to be a good 19 

alternative to MVMs. 20 

We then considered four literature models of different nature and complexity to be tested on our extended 21 

case study dataset. We compared their error metrics with those of the empirically-trained UVMs and MVMs 22 

in order to evaluate their performance as predictive tool for flood risk assessment. The results have shown 23 

important errors when transferring models derived from different countries and scales such as the JRC-IT 24 

curve, or from events with different characteristics, as the empirical : the model from Luino, which is based 25 

on a flash-flood event where flow velocity has likely a significant role on the eventflood impacts. On the 26 

other hand, we found that both UV (Oliveri and Santoro 2000) and MV (INSYDE, Dottori et al. 2016) 27 

synthetic models can provide similar similar results (although with obviously larger uncertainty) errors to 28 

those observed from the empirically-trained models. On the contrary, we found important errors when 29 

transferring models derived from other specific events (Luino curve) or different scales (JRC-IT). Therefore, 30 

tThe tested synthetic models can be currently considered as the best option for damage prediction purposes 31 

in the Italian context, in cases where no extensive loss data are available to derive a location-specific flood 32 

damage model. Overall, we found that errors produced by synthetic models were smaller thanwithin 30% of 33 

observed damage, with MVM INSYDE providing more precise results over the different, single case study 34 
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events (with a percentage overestimation of 19, 5 and 37% of observed damage for Adda, Bacchiglione and 1 

Secchia, respectively) and is more accurate for two out of the three case studies (i.e. Adda and Bacchiglione), 2 

while the OS model is generally less precise but more accurate for the Secchia flood event only (2% error, as 3 

opposed to a 72% overestimation for the Adda and 18% underestimation for the Bacchiglione event). 4 

Observed errors depend in part on the inherent larger variability found in the dataset related to that 5 

particular event. Nevertheless, the collection of additional independent flood records from different 6 

geographic contexts in Italy would help to further evaluate the adaptability of these models, estimate their 7 

uncertainty, especially of the open-source INSYDE, to estimate their uncertainty, and to increase their 8 

predictive accuracy. The open-source INSYDE model INSYDE holds the best potential in this sense. 9 

FinallyTo conclude, the work presented here has assembled a dataset that is currently one of the most 10 

extended and advanced for Italy; empirical damage data is the most important piece of information that 11 

allows to improve and validate damage models. Onon this track, we aim to promote a shared effort towards 12 

an updated catalogue of floods that includes hazard, exposure and damage information at the micro-scale. 13 

To this purpose, the adoption of a standardised and detailed procedure for damage data collection is a 14 

mandatory step. 15 

Data availability 16 

The INSYDE model is available as R open source code from https://github.com/ruipcfig/insyde 17 
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