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Abstract 15 

In this paper, we study the impact of lightning and radar reflectivity factor data assimilation on the 16 
precipitation VSF (Very Short-term Forecast, 3 hours in this study) for two relevant case studies 17 
occurred in Italy. The first case refers to a moderate and localised rainfall over central Italy 18 
occurred on 16 September 2017.  The second case, occurred on 9 and 10 September 2017, was 19 
very intense and caused damages in several geographical areas, especially in Livorno (Tuscany) 20 
where nine people died. 21 
The first case study was missed by several operational forecasts (from both public and private 22 
sectors), including that performed by the model used in this paper, while the Livorno case was 23 
partially predicted by operational models. 24 
We use the RAMS@ISAC model (Regional Atmospheric Modelling System at Institute for 25 
Atmospheric Sciences and Climate of the Italian National Research Council), whose 3D-Var 26 
extension to the assimilation of RADAR reflectivity factor is shown in this paper for the first time.  27 
Results for the two cases show that the assimilation of lightning and radar reflectivity factor, 28 
especially when used together, have a significant and positive impact on the precipitation 29 
forecast. For specific time intervals, the data assimilation is of practical importance for civil 30 
protection purposes because changes a missed forecast of intense precipitation (³ 40 mm/3h) in a 31 
correct one.  32 
While there is an improvement of the rainfall VSF thanks to the lightning and radar reflectivity 33 
factor data assimilation, its usefulness is partially reduced by the increase of the false alarms, 34 
especially when both data area assimilated. 35 
Keywords: data assimilation, lightning, radar reflectivity factor, RAMS@ISAC. 36 
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1. Introduction 38 
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Initial conditions of numerical weather prediction (NWP) models are a key point for a good 39 

forecast (Stensrud and Fritsch, 1994; Alexander et al., 1999). Nowadays limited area models are 40 

operational at the resolution of few kilometres (< 5 km) and data assimilation of non-conventional 41 

observations, as lightning or radar data, is crucial to correctly represent the state of the 42 

atmosphere at local scale (Weisman et al., 1997; Weygandt et al., 2008). This is especially 43 

important over the sea, where the absence of local observations and model deficiencies can 44 

misrepresent convection. 45 

The assimilation of radar reflectivity factor1 is useful to improve the weather forecast  considering 46 

the high repetition rate (asynoptic data) and the high spatial resolution (local scale) of the radar 47 

data. 48 

First attempts to assimilate radar reflectivity factor are reported in Sun and Crook (1997, 1998), 49 

who expanded VDRAS (Variational Doppler Radar Analysis System) to include microphysical 50 

retrieval. Following these studies, several systems to assimilate radar observations, both Doppler 51 

velocity and reflectivity factor, were developed (Xue et al., 2003, Zhao et al., 2006; Xu et al., 2010). 52 

All these studies showed the stability and robustness of assimilating radar observations as well as 53 

the improvement of weather forecast. 54 

Radar data are also assimilated in WRF (Weather Research and Forecasting model, Skamarock et 55 

al., 2008; Barker et al., 2012) both using 3DVar (Xiao et al., 2005, 2007; Barker et al., 2004) and 56 

4DVar (Wang et al., 2013; Sun and Wang, 2012). The capability to assimilate radar data into WRF 57 

was recently applied to a heavy rainfall event over Central Italy by Maiello et al. (2014). They 58 

showed a notable and positive impact of the radar data assimilation on the precipitation forecast, 59 

also when radar data were assimilated together with conventional data (SYNOP and RAOB). 60 

In addition to direct methods, which assimilate the radar reflectivity factor adjusting the 61 

hydrometeor contents, there are indirect methods adjusting other variables. In particular, the 62 

method of  Caumont et al. (2010) acts on the relative humidity field. It consists of two different 63 

steps: a 1D retrieval of relative humidity (pseudo-profile), which depends on the radar reflectivity 64 

factor observations, followed by 3D-Var assimilation of the pseudo-profile. This method has the 65 

advantage to reduce the computational cost at the kilometric scale.  66 

                                                        
1 Throughout the paper we use the expression radar reflectivity factor, which is the quantity provided by the radar 
(and expressed in mm6m-3 or dBz) after conversion from the received power. The radar reflectivity factor is different 
from reflectivity and is obtained in the special case of Rayleigh scattering. Reflectivity is not the quantity that radars 
usually provide and display on their screens although most of people refer to it. 
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The choice of updating the moisture field directly is motivated by its greater impact on analyses 67 

and forecasts in comparison to that of hydrometeor-related quantities (e.g., Fabry and Sun, 2010). 68 

Caumont et al. (2010) showed that the method improved the weather prediction of a heavy 69 

precipitation event in southern France and of a eight-day long assimilation cycle experiment. 70 

The method was applied in other studies (Wattrelot et al., 2014, using AEROME model; Ridal and 71 

Dalbom, 2017; using HARMONIE model), or modified using 4D-Var in place of 3D-Var (Ikuta and 72 

Honda, 2011; using JNoVa model) showing its capability to improve the weather forecast. The 73 

method is also used in the operational context (Wattrelot et al., 2014). 74 

Flashes are another important source of asynoptic data due to their ability to locate precisely the 75 

convection with few temporal gaps (Mansell et al., 2007). In the last two decades, there have been 76 

attempts to assimilate lightning into meteorological models both at low horizontal resolution, 77 

which need a cumulus parameterization scheme to simulate convection, and at convection 78 

permitting scales.  79 

The first attempts to assimilate lightning in NWP models were based on relationships between 80 

lightning and rainfall rate estimated by microwave sensors on board polar satellites (Alexander et 81 

al., 1999; Chang et al., 2001; Jones and Macpherson, 1997; Pessi and Businger, 2009). In this 82 

approach, the rainfall rate was computed as a function of lightning observations and then 83 

transformed into latent heat, which was assimilated. The results of these studies showed a 84 

positive impact of the lightning data assimilation on the forecast up to 24h also for fields at the 85 

large scale, as sea-level pressure. 86 

The study of Papadopulos et al. (2005) used lightning to locate convection and the model water 87 

vapour profile was nudged towards vertical profiles recorded during convective events. 88 

Mansell et al. (2007) modified the Kain-Fritsch (Kain and Fritsch, 1993) cumulus convective scheme 89 

to force convection when/where flashes are observed while the convective scheme was not 90 

activated in the model simulation, demonstrating the potential of lightning to improve the 91 

convection forecast. A similar approach was introduced by Giannaros et al. (2016) into WRF 92 

showing the positive impact of lightning data assimilation on the precipitation forecast up to 24h 93 

for eight convective events occurred over Greece. 94 

Fierro et al. (2012) introduced a methodology to assimilate lightning at convection permitting 95 

scales by modifying the water vapour mixing ratio simulated by the WRF according to a function 96 

depending on the flash-rate and on the simulated graupel mixing ratio. The water vapour could be 97 

assimilated by nudging (Fierro et al., 2012) or 3D-Var (Fierro e al., 2016). 98 
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Qie et al. (2014), using WRF, extended the methodology of Fierro et al. (2012) to assimilate ice 99 

crystals, graupel and snow, showing promising results for deep convective events in China. 100 

Fierro et al. (2015) studied the performance of the Fierro et al. (2012) method for 67 days 101 

spanning the 2013 warm season over the CONUS giving a statistically robust estimation of the 102 

performance of the method. The computationally inexpensive lightning data assimilation method 103 

improved considerably the short-term (≤ 6h) precipitation forecast of high impact weather.  104 

Lynn et al. (2015), Lynn (2017) also applied the method of Fierro et al. (2012) to boost the local 105 

thermal buoyancy where/when lightning is observed. Results show that lightning data assimilation 106 

improved lightning forecast. Importantly, Lynn et al. (2015) offer an approach to address spurious 107 

convection (i.e., convection removal), which is a far more challenging problem to tackle. 108 

Federico et al. (2017a) implemented the methodology of Fierro et al. (2012) in RAMS@ISAC 109 

model, showing the systematic and significant improvement of the precipitation forecast at the 110 

very short range (3h) for twenty case studies occurred over Italy; the impact of lightning data 111 

assimilation for longer time ranges (6h-24h; Federico et al., 2017b) showed considerable impact 112 

on the 6h precipitation forecast, with smaller (negligible) effects at 12 h (24 h).  113 

In this paper, we study the impact of radar reflectivity factor and lightning data assimilation on the 114 

very short term (3h) rainfall prediction for two case studies over Italy. We use the method of 115 

Fierro et al. (2012) to assimilate lightning and the method of Caumont et al. (2010) to assimilate 116 

the radar reflectivity factor. The case studies occurred in September 2017. The first case, hereafter 117 

also referred to as Serano, occurred on 16 September, was characterized by moderate-intense and 118 

localized rainfall. The second case, hereafter also referred to as Livorno, occurred on 09-10 119 

September, was characterized by deep convection and very intense precipitation in several parts 120 

of Italy. Even if the Livorno case occurred before the Serano case, we reverse the chronological 121 

order in the discussion, ordering the event from the less intense to the most intense. 122 

The forecast of severe events at the local scale still remains a challenge because of the multitude 123 

of physical processes involved over a wide range of scales (Stensrud et al., 2009). The Serano case 124 

study, being localized in space, poses challenges in forecasting the exact position and timing of 125 

convection initiation; the Livorno event involves the interaction between a high impact storm and 126 

the complex orography of Italy, which is difficult to simulate at the local scale. For the above 127 

reasons the forecast of both events was challenging, as confirmed by the poor forecast of 128 

RAMS@ISAC. The difficulty to forecast timely and accurately the precipitation field is the reason 129 

for choosing them as test cases. 130 
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This paper presents for the first time the assimilation of the total lightning (intra cloud + cloud to 131 

ground) and radar reflectivity factor in RAMS@ISAC and shows how the assimilation of the radar 132 

reflectivity factor works together with total lighting data assimilation. Also, this paper shows how 133 

accurate in space and time can be the forecast of the precipitation field using cloud scale 134 

observations over complex terrain, contributing in this way to a number of works on the same 135 

subject. 136 

The paper is organized as follows: Section 2 gives details on the synoptic environment of the case 137 

studies showing daily precipitation, lightning and radar observations; Section 3 gives details on the 138 

meteorological model, lightning and radar data assimilation; Section 4 shows the results for three 139 

very short-term forecast (VSF), one for Serano and two for Livorno; Discussion and conclusions are 140 

given in Section 5. This paper has additional material where we discuss: a) how the lightning and 141 

radar reflectivity factors data assimilation adjust the total water field; b) the sensitivity of the 142 

results to the choice of key parameters of lightning data assimilation. 143 

 144 

2. The case studies 145 

2.1 The 16 September 2017 (Serano) case study 146 

During the 16 September 2017 Italy was under the influence of a cyclone that developed to the lee 147 

of the Alps. The storm crossed Italy from NW to SE leaving light precipitation over most of the 148 

peninsula with moderate rainfall over Central Italy. Figure 1 shows the precipitation recorded by 149 

the Italian raingauge network on 16 September 2017. Light precipitation (< 5 mm/day) is reported 150 

by 1018 raingauges out of the 1666 stations measuring precipitation (≥ 0.2 mm/day) on this day. 151 

Fourteen stations over Central Italy recorded more than 50 mm/day. The maximum precipitation 152 

was 90 mm/day in Città di Castello (Umbria Region, Figure 1). Because the meteorological radar 153 

closest to the maximum precipitation is over mount Serano (Figure 1), hereafter this event will be 154 

referred to as Serano.  155 

The synoptic condition during the event is shown in Figure 2. At 500 hPa (Figure 2a) a trough, 156 

elongated in the SW-NE direction, extends over Western Europe and air masses are advected from 157 

SW towards western Alps. The interaction between the airflow and the Alps generates a low 158 

pressure to the lee of the Alps over Northern Italy.  159 

The analysis at the surface (Figure 2b) shows the meteorological front represented by the 160 

equivalent potential temperature gradient between air masses advected over the Mediterranean 161 
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Sea from NW and air masses advected from the South over the Tyrrhenian Sea. Notable is the 162 

feeding of warm unstable air masses towards Central Italy. 163 

Infrared satellite images (Figure 3), from 00 UTC on 16 September to 00 UTC on 17 September, 164 

show the cold front structure moving slowly from NW to SE. Interestingly, at 00 UTC on 16 165 

September, it is apparent the well-defined cloud system over Central Italy (red circle of Figure 3a), 166 

which caused most of the daily precipitation observed between 43.50 and 45.0 N in the six-hours 167 

00 UTC-06 UTC on 16 September. 168 

The well-defined cloud system over Central Italy is also evident in the radar Constant Altitude Plan 169 

Position Indicator (CAPPI) at 3 km above sea level at 02 UTC on 16 September (Figure 4). This 170 

CAPPI is formed by interpolating all the available data from the federated Italian radar network 171 

coordinated by the Department of Civil Protection (twenty-two radars, see Section 3.3 for their 172 

positions) and it is also referred to as the national radar composite (hereafter also mosaic). Several 173 

convective cells exceeding 35 dBz can be noted over central-northern Italy. Importantly, the cloud 174 

system over Central Italy shown by the satellite infrared channel at 00 UTC (Figure 3a) and that of 175 

the radar at 02 UTC have similar positions, showing that the cloud system was active for several 176 

hours over Central Italy.  177 

Figure 5 shows the lightning recorded by the LINET network (Betz et al., 2009) on 16 September 178 

2017. More than 105.000 flashes were recorded during the day; most of them occurred during the 179 

afternoon and evening, but a secondary maximum occurred in the night, from 00 UTC to 06 UTC. 180 

In this phase, more than 3000 flashes were observed over Central Italy.   181 

 182 

2.2 The 09-10 September 2017 (Livorno) case study 183 

During the days 09 and 10 September 2017, Italy was hit by a severe storm characterised by 184 

intense and widespread rainfall over the country. Figure 6a shows the precipitation on 09 185 

September recorded by the Italian raingauge network. Rainfall was intense over the Alps, where 186 

the maximum daily precipitation was observed (193 mm/day) and over Liguria, with precipitation 187 

of the order of 30-50 mm/day. One station over Tuscany reported 90 mm/day, showing that 188 

intense precipitation already started over the Region. The intensity of the storm on 09 September 189 

was high because 20 raingauges reported more than 100 mm/day and 70 raingauges more than 60 190 

mm/day, and, in most cases, this precipitation occurred within few hours. 191 

The following day (see Figure 6b) had higher rainfall. Precipitation occurred mainly over Central 192 

Italy, especially over Lazio, and over Northern Italy, in particular the North-East. In Tuscany, the 193 
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two stations close to the sea, in the Livorno area, recorded about 150 mm/day mostly fallen in the 194 

hours between 00 and 06 UTC. The rainfall on 10 September was abundant: and 60 raingauges 195 

recorded more than 100 mm/day. 196 

Synoptic conditions leading to this storm are shown in Figure 7. At 500 hPa (Figure 7a) a trough 197 

extends from Northern Europe towards the Mediterranean. The interaction between the air-198 

masses and Western Alps generated a depression to the lee of the Alps, which crossed the whole 199 

peninsula from NW to SE. It is noted the divergent flow over Central and Northern Italy favouring 200 

upward motions.  201 

At the surface, Figure 7b, it is evident the equivalent temperature gradient over the western 202 

Mediterranean caused by the contrast between air masses pre-existing over the sea and air 203 

masses advected from France towards the Mediterranean. The pressure field at the surface 204 

advects air masses from the South over the Tyrrhenian Sea. These warm and humid air masses 205 

feed the cyclone during its development. 206 

From a synoptic point of view, Livorno and Serano cases are similar and represent two cyclones 207 

developing to the lee of the Alps (Buzzi and Tibaldi, 1978). However, the Livorno case is more 208 

intense than Serano as shown by the larger rainfall occurred in the former case. 209 

The notable intensity of the Livorno case is confirmed by the lightning observations (Figure 8). 210 

During the evening of 9 September (after 18 UTC) about 38.000 flashes were recorded by LINET. 211 

On 10 September about 290.000 flashes were recorded over Italy, following the movement of the 212 

storm propagating from NW to SE. So, more than 300.000 flashes were recorded from 18 UTC on 213 

09 September to 00 UTC on 11 September, which are more than three times those recorded for 214 

Serano. 215 

Thermal infrared satellite images (channel, 10.8 micron; Figure 9) show the extension of the cloud 216 

coverage every 12 hours. It is well evident the cloud system associated with the cold front over 217 

Europe. More specifically, the satellite image at 00 UTC shows the cloud system over Livorno area 218 

(red circle in Figure 9b), before the main precipitation event over Tuscany (00-06 UTC), while 219 

Figure 9c shows the cloud system over Central Italy (orange circle), at the end of the period of 220 

intense precipitation over Lazio (06-12 UTC). 221 

We conclude the synoptic analysis of the case study with two CAPPI at 3 km observed by the radar 222 

network of the Department of Civil Protection. The CAPPI in Figure 10a, at 00 UTC on 10 223 

September, shows the cloud system over Tuscany with reflectivity factor up to 40 dBz. Other 224 
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clouds cause rainfall over northern Italy. The CAPPI of Figure 10a is the last assimilated by the 00-225 

03 UTC VSF on 10 September shown in Section 4.2.1.  226 

Figure 10b shows the CAPPI of the national radar mosaic at 3 km above the sea level and at 06 227 

UTC. The cloud system is moving towards Central Italy with reflectivity up to 45 dBz. Other cloud 228 

systems are apparent over northern Italy. Figures 10a-10b well represent the movement of the 229 

storm towards SE and Figure 10b shows the last CAPPI assimilated by the 06-09 UTC VSF shown in 230 

Section 4.2.2. 231 

 232 

3.Data and Methods 233 

3.1 RAMS@ISAC and simulations set-up 234 

The RAMS@ISAC is used as NWP driver in this work. The model is based on the RAMS 6.0 model 235 

(Cotton et al., 2003) with the addition of four main features, as well as a number of minor 236 

improvements. First, it implements additional single moment microphysical schemes, whose 237 

performance is shown in Federico (2016): among them, the WSM6 (Hong and Lim, 2006) is used in 238 

this paper. Second, it predicts the occurrence of lightning following the diagnostic method of Dahl 239 

et al. (2011), the implementation being discussed in Federico et al. (2014). Third, the model 240 

assimilates lightning through nudging (Fierro et al., 2012, 2015; Federico et al., 2017a). Fourth, the 241 

model implements a 3D-Var data assimilation system (Federico, 2013, hereafter also RAMS-242 

3DVar), whose extension to the radar reflectivity factor is presented in this paper (Section 3.3). 243 

The list of the main physical parameterisation schemes used in the simulations of RAMS@ISAC is 244 

shown in Table 1.  245 

Considering the domains and the configuration of the grids (Figure 11 and Table 2), two different 246 

set-ups are used for Serano and Livorno. For the first case, we use the domains D1 and D2, while 247 

for Livorno we use also the domain D3. The first domain covers a large part of Europe and extends 248 

over the North Africa. For this domain, the horizontal resolution of the grid is 10 km (R10). The 249 

second domain extends over the whole Italy and part of Europe and the grid has 4 km horizontal 250 

resolution (R4). The third domain covers the Tuscany Region, has 4/3 km horizontal resolution 251 

(R1), and it is used for Livorno to represent with higher spatial detail the precipitation field over 252 

Tuscany. The fine structures of the precipitation field are smeared out over Tuscany using only 253 

domains D1 and D2. The operational implementation of the RAMS@ISAC model uses the domains 254 

D1 and D2 and no refinements for specific areas of Italy are used because Italy is a complex 255 
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orography country and grid refinements for a specific event can be done only a-posteriori, i.e. 256 

after the occurrence of the event.  257 

The resolution and the extension of the grids in the vertical direction is the same for the three 258 

domains. The vertical grid covers the troposphere and the lower stratosphere. Vertical levels have 259 

different spacings and are more packed close to the ground. Among the 36 levels used in this 260 

paper 10 are below 1 km, 15 below 2 km and 18 below 3 km. The first vertical level is at 24 m 261 

above the surface in the terrain following coordinates used by RAMS@ISAC, the level 21 is at 5200 262 

m. Above 6 km the model levels are about 1000 m apart, with a maximum of 1200 m for the 263 

vertical layer at the model top.  264 

The vertical grid is the same as  the operational setting of RAMS@ISAC and is a compromise 265 

between vertical resolution and computing time. In the future, the number of vertical levels will 266 

be increased to better resolve the phenomena in this direction (Planetary Boundary Layer 267 

processes, vertical motions, interaction between air masses and orography etc.), nevertheless the 268 

current setting was used successfully in the forecast of several heavy precipitation events over 269 

Italy. The nesting between the first and second domains is one-way, while the nesting between 270 

the second and the third domains is two-way. 271 

VSF is implemented as shown in Figure 12. First a run with R10 configuration is performed using 272 

the 0.25° horizontal resolution GFS analysis/forecast cycle issued at 12 UTC as initial and boundary 273 

conditions. R10 run, which starts at 12 UTC on 16 September for Serano and at 12 UTC on 09 274 

September for Livorno, lasts 36 h and doesn’t assimilate neither radar reflectivity factor nor 275 

lightning. The R10 run is not updated after the acquisition of new data by the analysis system and 276 

this is a limitation of the results shown in this paper. 277 

Starting from 12 UTC, ten VSF are performed using R4 for Serano and both R4 and R1 for Livorno. 278 

The VSF lasts 9h and uses R10 simulation as initial and boundary conditions (one-way nesting). The 279 

9h forecast is divided into two parts: the first six hours are the assimilation stage when 280 

RAMS@ISAC simulation is adjusted by data assimilation, whereas the last three hours are the 281 

forecast stage, without data assimilation. During the assimilation stage, flashes are assimilated by 282 

nudging (Section 3.2), while radar reflectivity factor is assimilated every one-hour by RAMS-3DVar 283 

(Caumont et al. (2010), Section 3.3). 284 

It is noted that data assimilation is performed over the domain D2 (R4) only, and the innovations 285 

are transferred to the domain D3 (R1), for the Livorno case, by the two way-nesting. The domain 286 

D3 is used for the Livorno case to refine the resolution of the precipitation field over Tuscany and 287 
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to show the spatial and temporal precision of the precipitation forecast over Tuscany using data 288 

assimilation. However, its usage is exceptional because, as stated above, Italy is a complex 289 

orography country and grid refinements for specific areas are used only after the occurrence of 290 

the event. For this reason, the domain D3 is usually not used in RAMS@ISAC and no statistics 291 

about the background error are available for this grid.  292 

Because lightning and radar reflectivity factor are cloud scale observations, their assimilation at 293 

higher horizontal resolution by 3D-Var is foreseeable in future works.  294 

The verification of the VSF for precipitation is done by visual comparison of the model output with 295 

the raingauge network of the Department of Civil Protection, which has more than 3000 296 

raingauges all over Italy. 297 

In addition we consider the FBIAS (Frequency Bias; range [0, + ∞) ), where 1 is the perfect score, 298 

i.e. when no misses and false alarms occur), POD (Probability of Detection; range [0, 1], where 1 is 299 

the perfect score and 0 the worst value) and ETS (Equitable Threat Score; range [-1/3,1], where 1 300 

is the perfect score and 0 is a useless forecast). Scores are computed from 2x2 dichotomous 301 

contingency tables (Wilks, 2006) for different rainfall thresholds.  302 

 303 
3.2 Lightning data assimilation 304 

Lightning data are provided by LINET (LIghtning detection NETwork; Betz et al., 2009; 305 

www.nowcast.de) which has more than 500 sensors worldwide with the greatest density over 306 

Europe (more than 200 sensors). The network has a good coverage over Central Europe and 307 

Western Mediterranean (from 10 W to 35 E and from 30 N to 60 N). The area of good coverage 308 

includes the region considered in this paper. 309 

LINET exploits the VLF/LF electromagnetic bands and provides measurements of both intra-cloud 310 

(IC) and cloud to ground (CG) discharges. IC strokes are detected as long as lightning occurs within 311 

120 km from the nearest sensor thanks to an optimised hardware and advanced techniques of 312 

data processing (TOA-3D, Betz et al., 2004). According to Betz et al. (2009), LINET has a location 313 

accuracy of 125 m for an average distance of 200 km among the sensors verified by strikes into 314 

towers of known positions.  315 

The good performance of the LINET network and its ability to detect IC strokes is shown in 316 

Lagouvardos et al. (2009) for a storm in southern Germany, while the good performance over 317 

Italy, including both CG and IC strokes, is discussed in Petracca et al. (2014). 318 

The lightning data assimilation scheme is that of Fierro et al. (2012; 2014; 2015) and uses the total 319 

lightning, i.e. intra-cloud plus cloud to ground flashes. 320 
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The method starts by computing the water vapour mixing ratio qv: 321 

                                               (1) 322 

Where coefficients are set to A=0.86, B=0.15, C=0.30, D=0.25, a=2.2, qs is the saturation mixing 323 

ratio at the model atmospheric temperature, and qg is the graupel mixing ratio (g kg-1). X is the 324 

number of total flashes (IC+CG) falling in a grid box of domain D2 (R4) in the past five minutes. The 325 

mixing ratio qv of Eq. (1) is computed only for grid points where flashes are recorded. More 326 

specifically, for each grid point we consider the number of flashes falling in a grid box centred at 327 

the grid point in the last five minutes. The mixing ratio of Eqn. (1) is compared with that predicted 328 

by the model. If the mixing ratio of Eqn. (1) is larger than the simulated one, the latter is nudged 329 

towards the value of Eqn. (1), otherwise the modelled mixing ratio is left unchanged. This method 330 

can only add water vapour to the forecast. 331 

The check and eventual substitution of the water vapour is performed every five minutes and it is 332 

made within the mixed phase layer zone (0 °C, -25°C), wherein electrification processes caused by 333 

the collision of ice and graupel are the most active (Takahashi 1978, Emersic and Sounders, 2010; 334 

Fierro et al., 2015). 335 

The scheme of Fierro et al. (2012; 2015) was adapted to RAMS@ISAC in Federico et al. (2017a). In 336 

particular, the coefficient C of Eqn. (1) was rescaled from that of Fierro et al. (2012) considering 337 

the different spatial and temporal resolution of the gridded lightning data; then the coefficient C 338 

was tuned (increased) by trials and errors considering two case studies of HyMeX-SOP1 (15 and 27 339 

October 2012). The C constant was adapted subjectively considering two opposite requests: 340 

increasing the hits and minimising false alarms. POD and ETS scores were considered as metrics 341 

for this purpose. Then, Eqn. (1) was applied to twenty case studies of HyMeX-SOP1 giving a 342 

statistically significant (90, or 95% depending on the rainfall threshold) improvement of the 343 

RAMS@ISAC precipitation VSF (3h).  344 

Nevertheless, an exhaustive statistic on the performance of rainfall VSF to nudging formulation in 345 

RAMS@ISAC is missing and further studies are needed in this direction. Also, the optimal choice of 346 

the coefficients A, B, C, D and a is case dependent.  347 

Fierro et al (2012) applied the method using the ENTLN network, which has a detection efficiency 348 

(DE) greater than 50% for IC over Oklahoma, where the ENTLN data were used. The emphasis on 349 

IC flashes in the set-up of Fierro et al. (2012) is given because observational and model studies 350 

have provided evidence that IC flashes correlate better than CG flashes with various measures of 351 

intensifying convection (updraft strength, volume, graupel mass flux etc.; MacGorman et al. 1989; 352 

qv = Aqs +Bqs tanh(CX)(1− tanh(Dqg
α ))
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Carey and Rutledge 1998; MacGorman et al. 2005; Wiens et al. 2005; Kuhlman et al. 2006; Fierro 353 

et al. 2006; Deierling and Petersen 2008; MacGorman et al. 2011). For this reason methods that 354 

use both IC and CG flashes performs better than those using CG only, being CG flashes correlated 355 

with the descent of reflectivity cores and the onset of the demise of the storm’ s updraft core 356 

(MacGorman and Nielsen, 1991). 357 

The analysis of the case studies shows that IC strokes are about 30% of the total number of strokes 358 

reported. Also, the fraction of IC strokes to the total strokes depends on the position. For example, 359 

for the Serano case, the fraction of IC strokes detected by LINET over the area hit by the largest 360 

precipitation is more than 50% while over the Adriatic Sea it decreases to 10%. 361 

It is also noted that DE for IC strokes cannot be reliably compared between LINET and ENTLN, 362 

because the area is different and the technical details about IC detection remain unclear (type of 363 

signals, VLF/LF or VHF, discrimination IC-CG). 364 

For all the above reasons the application of the Fierro method to RAMS@ISAC is not 365 

straightforward and it is appropriate to study the dependence of the rainfall VSF to the nudging 366 

formulation. This subject is studied in the supplemental material of this paper (Section S.2) and 367 

the results show that the choice of the coefficient of Eqn. (1) used in this paper is reasonable. 368 

 It is finally noted that despite the limitations noted above, the lightning data assimilation, as used 369 

in this paper, has a significant and positive impact on RAMS@ISAC rainfall VSF (Federico et al., 370 

2017a; 2017b). 371 

 372 

 373 

3.3 Radar data assimilation 374 

The method assimilates CAPPI of radar reflectivity factor operationally provided by the Italian 375 

Department of Civil Protection (DPC). Radar data are provided over a regular Cartesian grid with 1 376 

km horizontal resolution and for three vertical levels (2, 3, 5 km above the sea level). The CAPPIs 377 

at 2, 3, and 5km can be considered as under-sampled vertical profiles. CAPPIs are composed 378 

starting from the 22 radars of the Italian Radar Network (Figure 13) 19 operating at the C-band 379 

(i.e., 5.6 GHz) and 3 at X-band (i.e., 9.37 GHz). Data quality control and CAPPI composition is 380 

performed by DPC. Data quality processing chain aims at identifying most of the uncertainty 381 

sources as clutter, partial beam blocking and beam broadening. The radar observations are 382 

processed according to nine steps detailed in Vulpiani et al. (2014), Petracca et al. (2018) and 383 

references therein. 384 
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Radial velocity is not assimilated into RAMS@ISAC because it is not operationally processed, the 385 

scan strategy being optimized for QPE purposes. Furthermore, the implementation of a radial 386 

velocity data assimilation scheme is under development in RAMS-3DVAR and it is not currently 387 

available for testing. For these reasons, we didn’t consider the assimilation of this parameter.  388 

Before entering data assimilation, the Cartesian grid is reduced to 5 km by 5 km by choosing one 389 

point every five of the Cartesian grid provided by DPC in order to reduce the numerical cost of the 390 

data assimilation and to reduce the effect of correlated observation errors (Rohn et al., 2001). The 391 

radar grid (Figure 4, for example) is then a Cartesian grid with 5 km grid-spacing and three vertical 392 

levels. 393 

It is important to note the pure sampling of the data could result in implementation of errors (for 394 

example reflectivity given by insects or birds) or extremes. Creating superobservations would 395 

reduce this problem, the main drawback being the missing of very localised phenomena. While 396 

the aim of this paper is to present the update of the data assimilation system of RAMS@ISAC and 397 

its application to two challenging cases, the problem of using superobservations will be considered 398 

in future studies because it impacts the results.  399 

The methodology to assimilate radar reflectivity factor is that of Caumont et al. (2010), named 400 

1D+3DVar, which is a two-step process: first, using a Bayesian approach inspired to GPROF 401 

(Goddard Profiling Algorithm; Olson et al., 1996; Kummerow et al., 2001), 1D pseudo-profiles of 402 

model variables are computed, then those pseudo-profiles are assimilated by 3DVar. Both steps 403 

are discussed below. 404 

The first step computes a pseudo-profile of relative humidity weighting the model profiles of 405 

relative humidity around the radar profile (Bayesian approach). The pseudo-profile is computed 406 

by:  407 

                                                                      (2) 408 

Where RHi is the RAMS@ISAC vertical profile of relative humidity at a grid point inside a square of 409 

50*50 km2 centred at the radar vertical profile, Wi is the weight of each profile and zop is the 410 

relative humidity pseudo-profile. The summation is taken over all the grid points inside a square of 411 

50*50 km2 around the observed profile and the denominator is a normalisation factor. The 412 

weights are determined by the agreement between the simulated and observed reflectivity factor: 413 

zo
p =

RHiWi
i
∑

Wj
j
∑
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                                            (3) 414 

Where hz is the forward observation operator, transforming the background column xi into the 415 

observed reflectivity factor. The forward radar observation operator is taken from the RIP 416 

(Read/Interpolate/Plot) software (https://dtcenter.org/wrf-417 

nmm/users/OnLineTutorial/NMM/RIP/index.php, last access 03 March 2019) and is given in the 418 

supplemental material of this paper (Section S4). It assumes a Marshall-Palmer hydrometeors size-419 

distribution, Rayleigh scattering, and depends on the mixing ratios of rain, graupel and snow. 420 

The matrix Rz in Eqn. (3) is diagonal and its value is ns2, where s is 1 dBz and n is the number of 421 

available observations in the vertical profile (from 1 to 3). In this way, we give more weight to 422 

vertical profiles containing more data. 423 

The error of radar data is assumed small (1dBz) for two reasons: a) reflectivity data are carefully 424 

checked by the Civil Protection Department; b) the performance of control simulation, not 425 

assimilating any data, is rather poor for the case studies. This setting, however, could not be 426 

optimal for cases when the control forecast performs better.  427 

It is important to point out that the 50 km length-scale of the above step doesn’t represent the 428 

horizontal correlation length-scale of the background error, which determines the horizontal 429 

spread of the innovations in the 3D-Var data assimilation (the latter length-scale is between 14 430 

and 25 km depending on the level). The 50 km length-scale is used to set a square for computing 431 

the pseudo-profile of relative humidity (Eqn. (2)). This profile is given by a weighted average 432 

whose weights are determined by the agreement between the simulated and observed reflectivity 433 

factor. The larger the agreement the larger the weight. This distance is appropriate because the 434 

spatial error of meteorological models in simulating meteorological features, for example fronts, 435 

can be of this order. The control simulation of the two events considered in this paper confirms 436 

this choice.  437 

The method is not able to force convection when the model has no rain, snow or graupel in a 438 

square around (50*50 km2) a radar profile with reflectivity factor greater than zero. In this case, 439 

the pseudo-profile of relative humidity is assumed saturated above the lifting condensation level 440 

and with no data below (Caumont et al., 2010).  441 

It is also noted that the method is able to reduce spurious convection when the reflectivity factor 442 

is simulated but not observed, because the pseudo-profile of relative humidity gives more weight 443 

to the drier relative humidity profiles simulated by RAMS@ISAC inside the 50*50 km2 square 444 

Wi = exp −
1
2
zo − hz (xi )⎡⎣ ⎤⎦

T
Rz
-1 zo − hz (xi )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭
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centred at the radar profile. Of course, the ability to reduce spurious convection depends on the 445 

availability of dry model profiles around the specific radar profile (see the example below). Finally, 446 

if the observed profile is dry and the profile simulated by RAMS@ISAC is dry too, the pseudo-447 

profile is not computed.  448 

In summary, pseudo-profiles are computed for each profile of the radar grid whenever reflectivity 449 

is observed or simulated. 450 

The pseudo-profiles computed with the procedure introduced above, are then used as 451 

observations in the RAMS-3DVar data assimilation (Federico, 2013), minimising the cost-function: 452 

                                     (4) 453 

Where x is the state vector giving the analysis when J is minimized, xb is the background, B and R 454 

are the background and observations error matrices, zop is the pseudo vertical profile computed by 455 

Eqn. (2) and h is the forward observation operator transforming the state vector (RAMS@ISAC 456 

water vapour mixing ratio) into observations. The cost function in RAMS-3DVar is implemented in 457 

incremental form (Courtier et al., 1994) and its minimization is performed by the conjugate-458 

gradient method (Press et al., 1992). No multi-scale approach is used.  459 

The background error matrix is divided into three components along the three spatial directions 460 

(x, y, z). The Bx and By matrices account for the spatial correlation of the background error. The 461 

correlations are Gaussian with length-scales between 14 and 25 km, depending on the vertical 462 

level. These distances are computed using the NMC method (Barker et al., 2012) applied to the 463 

HyMeX-SOP1 (Hydrological cycle in the Mediterranean Experiment – First Special Observing Period 464 

occurred in the period 6 September-6 November 2012; Ducroq et al., 2014) period. It is again 465 

stressed that the spread of the innovations along the horizontal spatial directions in the 3D-Var 466 

analysis is determined by the length scales of Bx and By matrices and varies between 14 and 25 km, 467 

depending on the level. 468 

The Bz matrix contains the error for the water vapour mixing ratio, which is the control variable 469 

used in RAMS-3DVar. This error is about 2 g/kg at the surface and decreases with height. In 470 

particular, it is larger than 0.5 g/kg below 4 km, and less than 0.2 g/kg above 5 km. The vertical 471 

decorrelation of the background error depends on the level and can be roughly estimated in 500-472 

2000 m. The observation error matrix R in Eqn. (4) is diagonal and observations’ errors are 473 

uncorrelated. This choice is partially justified by under sampling the radar reflectivity factor 474 

observation by choosing one point every five grid points in both horizontal directions of the radar 475 
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Cartesian grid. However, correlation observations errors have significant impact on the final 476 

analysis, as shown for example in Stewart et al. (2013), and different choices of the matrix R will 477 

be considered in future studies. 478 

 The value of the elements on the diagonal of R depends on the vertical level and are 1/4 of the 479 

diagonal element of the Bz matrix at the corresponding height. By this choice, we give more credit 480 

to the observations than to the background and analyses strongly adjust the background towards 481 

observations.The background error matrix is computed using the NMC method (Parrish and 482 

Derber, 1992; Barker et al. 2004) applied to the HyMeX-SOP1 (Hydrological cycle in the 483 

Mediterranean Experiment – First Special Observing Period occurred from 6 September to6 484 

November 2012; Ducroq et al., 2014). This choice is motivated by the fact that HyMeX-SOP1 485 

contains several heavy precipitation events over Italy and the background error matrix is 486 

representative of the convective environment of the cases considered in this paper. In particular, 487 

10 out of 20 declared IOP (Intense Observing Period) of HyMeX-SOP1 occurred in Italy (Ferretti et 488 

al., 2014). On the contrary, the period of September 2017, especially before the events selected in 489 

this study was characterized by fair and stable weather conditions over Italy and the background 490 

error matrix for September 2017 is less representative of the convective environment that 491 

characterise the events of this paper. 492 

Because it is the first time that we show the assimilation of radar reflectivity factor in 493 

RAMS@ISAC, it is useful to discuss an example of analysis.  We select the analysis of Livorno case 494 

study at 06 UTC. The observed CAPPI at 3km above sea level is shown in Figure 10b. The 495 

corresponding CAPPI simulated by the background is shown in Figure 14a. In general, the 496 

comparison between simulated and observed reflectivity factor shows the difficulty of the model 497 

to represent convection properly. In particular, the model is able to represent the convection over 498 

Northern Italy but it has poor performance over Sardinia, south of Sicily and over Central Italy. The 499 

difference between the analysis and background relative humidity after and before the analysis is 500 

shown in Figure 14b (absolute values less than 1% are suppressed in the figure for clarity). Both 501 

positive (convection enhancing) and negative (convection suppressing) adjustments are found. 502 

Over Central Italy, Sardinia and South of Sicily relative humidity is increased because the model 503 

doesn’t simulate the observed reflectivity (Figure 10b). Over northern Italy the model is partially 504 

dried for two different reasons: over northwest of Italy because RAMS@ISAC simulates 505 

unobserved reflectivity, over north and northeast of Italy because the model simulates larger 506 

values of reflectivity factor compared to the observations. The RAMS-3DVar is able to dry the 507 
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relative humidity field north of Corsica island, where the RAMS@ISAC predicts unobserved 508 

reflectivity, while RAMS-3DVar didn’t suppress the unobserved convection west of Sardinia 509 

because the pseudo profiles computed over this area weren’t appreciably drier than the 510 

background.   511 

Cross correlations among different variables of the data assimilation system are neglected in this 512 

study and the application of the RAMS-3DVar affects the water vapour mixing ratio only. Cross 513 

correlations among different variables can improve the performance of data assimilation system, 514 

and an example of their impact in the RAMS-3DVar is shown in Federico (2013). Nevertheless, the 515 

impact of cross correlations among different variables in the precipitation VSF will be explored in 516 

future works. 517 

Because also lightning data assimilation adjusts the water vapour mixing ratio, it follows that the 518 

data assimilation presented in this study adjusts only this parameter. 519 

Lightning and radar data assimilation may produce sharp gradients in vertical direction caused by 520 

the addition of water vapour to specific layers. In the case of lightning, the water vapour is added 521 

by nudging to reduce sharp gradients. However, radar data assimilation, which accounts for the 522 

largest mass of water added to RAMS@ISAC (see Section S.1 of the supplemental material), 523 

directly adjusts the water vapour into the model. Our experience with RAMS@ISAC, however, 524 

shows that results are reliable and the sudden addition of water vapour doesn’t cause shocks to 525 

the model simulation, despite the notable gradients of specific humidity. 526 

It is finally noted that the data assimilation increase/decrease the water vapour into the model 527 

depending on the cases. The eventual increase/decrease of the forecasted rainfall depends on the 528 

physical and dynamical processes occurring into the meteorological model, without any specific 529 

tuning. 530 

 531 

4. Results 532 

In this section, we discuss the most intense phase of the Serano case, 03-06 UTC on 16 September, 533 

and two VSF forecasts, 00-03 UTC and 06-09 UTC on 10 September, for the Livorno case. The two 534 

VSF for Livorno correspond to the most intense phase of the storm in Livorno and to a very intense 535 

phase over Lazio region, Central Italy. The aim of the section is to show the notable improvement 536 

given by the lightning and radar reflectivity factor data assimilation to the VSF. 537 

We consider four types of VSF (Table 3): a) CTRL, without radar reflectivity factor and lightning 538 

data assimilation; b) LIGHT, assimilating lightning but not radar reflectivity factor; c) RAD, 539 
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assimilating radar reflectivity factor but not lightning; d) RADLI, assimilating both lightning and 540 

radar reflectivity factor. 541 

In order to avoid excessive length two specific topics are considered in the supplemental material 542 

of this paper; specifically, we study: a) the relative contribution to the total water mass given by 543 

lightning and radar reflectivity factor data assimilation (Section S.1); b) the sensitivity of the 544 

precipitation VSF to the nudging formulation (Section S2). Also, the supplemental material gives 545 

different plots of Figures 15-17 (Section S3) and the forward radar operator used in RAMS-3DVar 546 

(Section S4). 547 

 548 

4.1 Serano: 03-06 UTC on 16 September 2017 549 

In this period, an intense and localised storm hit central Italy, while light precipitation occurred 550 

over northern Italy (Figure 15a). Considering the storm over central Italy, 10 raingauges observed 551 

more than 30 mm/3h, 6 more than 40 mm/3h, 3 more than 50 mm/3h and 1 more than 60 552 

mm/3h, the maximum observed value being 63 mm/3h.  553 

The CTRL forecast, Figure 15b, misses the storm over central Italy and considerably 554 

underestimates the precipitation area over Northern Italy, giving unsatisfactory results. 555 

The assimilation of the radar reflectivity factor improves the forecast, as shown in Figure 15c. In 556 

particular, RAD forecast shows localized precipitation (30-35 mm/3h) close to the area were the 557 

most abundant precipitation was observed. However, the maximum precipitation is 558 

underestimated. Also, the RAD forecast better represents the precipitation over Northern Italy 559 

compared to CTRL. 560 

The rainfall forecast of LIGHT, Figure 15d, shows some improvements compared to CTRL because 561 

the precipitation over central Italy has a maximum of 25-30 mm/3h, close to the area where the 562 

maximum precipitation was observed. LIGHT, however, has a worse performance compared to 563 

RAD because it underestimated the precipitation area over northern Italy. Also, similarly to RAD, 564 

LIGHT underestimates the maximum precipitation in central Italy. 565 

RADLI forecast, Figure 15e, has the best performance. The precipitation over central Italy is well 566 

represented because the maximum rainfall (40-45 mm/3h) is in reasonable agreement with 567 

observations, and also because the area of intense precipitation (> 25 mm/3h) is elongated in the 568 

SW-NE direction in agreement with raingauge observations, giving a much better idea of the real 569 

storm intensity compared to RAD and LIGHT, as well as CTRL. The precipitation over northern Italy 570 

is well represented by RADLI. 571 
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Table 4 shows the ETS and POD scores for selected rainfall thresholds for different neighbourhood 572 

radii. Different radii are considered to account for the well-known double penalty error (Mass et 573 

al., 2002; Mittermaier et al., 2013) caused by displacement errors of the detailed precipitation 574 

forecast in convection allowing grids. CTRL was unable to predict rainfall larger than 6 mm/3h. The 575 

comparison between RAD and LIGHT shows that assimilating radar reflectivity factor performs 576 

better than assimilating lightning. This behaviour, however, is not general and sometimes the 577 

assimilation of lightning has a better performance than assimilating radar reflectivity factor (see 578 

section 4.2.1). 579 

RADLI forecast has the best performance among all model configurations. In particular, it is the 580 

only forecast having positive scores for thresholds larger than 30 mm/3h.  581 

In conclusion, for this VSF, the assimilation of lightning and radar reflectivity factor acted 582 

synergistically to improve the precipitation VSF and the simulation assimilating both data performs 583 

considerably better than simulations assimilating either lightning or radar reflectivity factor. 584 

 585 

4.2 Livorno 586 

The Livorno case study lasted for several hours starting at 18 UTC on 9 September 2017 and 587 

ending more than a day later. The most intense phase in Livorno and its surroundings was 588 

observed during the night between 9 and 10 September. In the following, we will show two 589 

representative VSF (3h), including the most intense phase in Livorno. 590 

 591 

4.2.1 Livorno: 00-03 UTC on 10 September 2017 592 

This period represents the most intense phase of the storm in Livorno. In particular, the raingauge 593 

close to the label A (Figure 16a) reported 151 mm/3h (Collesalvetti), while the one close to the 594 

label B measured 82 mm/3h. Among the 518 raingauges reporting valid data, 75 observed more 595 

than 10 mm/3h, 31 more than 20 mm/3h, 17 more than 30 mm/3h, 9 more than 40 mm/3h, and 6 596 

more than 50 mm/3h. 597 

The CTRL precipitation forecast is shown in Figure 16b. The forecast is poor because it misses the 598 

precipitation swath from the coast towards NE. A precipitation swath is forecasted about 50 km to 599 

the North of the real occurrence, but it is less wide compared to the observations.  600 

The RAD forecast , Figure 16c, shows that the assimilation of radar reflectivity factor gives a clear 601 

improvement to the forecast. The largest precipitation in the coastal part of the swath (we 602 

searched for the maximum  in the area with longitudes between 10.20E and 10.70E and latitudes 603 
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between 43.10N and 43.60N) is 94 mm/3h. Another local maximum is in the southern part of the 604 

domain (label B of Figure 16a). The maximum location is well represented, but the forecast value 605 

(55 mm/3h) underestimates the observed maximum (82 mm/3h). 606 

An improvement, compared to both CTRL and RAD, is given by the assimilation of lightning (Figure 607 

16d). Also for this simulation there is a precipitation swath from coastal Tuscany to the Apennines, 608 

but the shape of the swath better resembles that observed. The maximum value close to Livorno, 609 

i.e. in the coastal part of the swath, is 158 mm/3h. 610 

LIGHT simulation shows the local maximum in the southern part of the domain (about 50 mm/3h), 611 

but the amount is underestimated.  612 

Figure 16e shows the RADLI rainfall forecast. The precipitation swath from coastal Tuscany 613 

towards NE is more apparent compared to LIGHT and RAD. The maximum rainfall accumulated 614 

close to Livorno is 186 mm/3h. Also, the second precipitation maximum in the southern part of 615 

the domain reaches 70 mm/3h in good agreement with observations (82 mm/3h). RADLI is the 616 

only run giving a satisfactory precipitation VSF over the south-eastern Emilia Romagna (north-617 

eastern part of the domain), to the lee of the Apennines. It is also noted that the main 618 

precipitation swath forecasted by RADLI is too broad in the direction crossing the swath compared 619 

to the observations. This is confirmed by the FBIAS of RADLI (not shown), which is more than 3 for 620 

thresholds larger than 42 mm/3h.  621 

The analysis of the scores (Table 5) confirms the results outlined above. CTRL has the lowest 622 

performance and the improvement given by the data assimilation to the VSF is apparent for POD 623 

and ETS for all thresholds and neighbourhood radii considered. For this specific VSF, lightning data 624 

assimilation gives a better improvement to rainfall forecast compared to RAD. RADLI has the best 625 

performance, especially for 25 km and 50 km neighbourhood radii, nevertheless it over forecast 626 

the precipitation field. Because ETS penalises false alarms, the value of this score for RADLI is 627 

sometimes lower than that of LIGHT. 628 

 629 

4.2.3 Livorno: 06-09 UTC on 10 September 2017 630 

In this period, the most intense precipitation occurred  over the coastal part of Lazio (Figure 17a). 631 

More in detail, among the 2695 raingauges reporting valid data over the domain of Figure 17a, 632 

307 reported more than 10 mm/3h, 132 more than 20 mm/3h, 86 more than 30 mm/3h, 66 more 633 

than 40 mm/3h, 49 more than 50 mm/3h and 35 more than 60 mm/3h. Among the 35 raingauges 634 
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measuring more than 60 mm/3h, 33 were over Lazio, showing the heavy rainfall occurred over the 635 

Region. 636 

Some precipitation persisted over Tuscany but the rainfall is much lower compared to previous 6h 637 

(the rainfall over Tuscany between 03 and 06 UTC was very intense, not shown). Other notable 638 

precipitation areas are over the NE of Italy (moderate to low amounts), over central Alps 639 

(moderate values) and over the whole Sardinia (small amounts).  640 

Figure 17b shows the rainfall simulated by CTRL. The forecast is unsatisfactory, mainly for the 641 

following two reasons: a) heavy precipitation is simulated over Tuscany (> 75 mm/3h), also close 642 

to the Livorno area; b) few millimetres of precipitation are forecasted over central Italy. The 643 

rainfall over NE Italy is well represented in space, but overestimated. 644 

Considering the evolution of CTRL forecast for the two VSF of Livorno, we conclude that it was 645 

able to predict abundant rain over Livorno, but the rainfall forecast was delayed compared to the 646 

real occurrence. A similar behaviour was found in Ricciardelli et al. (2018) using the WRF model, 647 

showing that the results of this paper for Livorno are likely not tied to the specific model used. 648 

The rainfall simulated by RAD (Figure 17c) clearly improves the forecast compared to CTRL. First, 649 

the precipitation over Lazio is very well predicted and the rainfall values are up to 65 mm/3h, so 650 

RAD forecast well represents the main precipitation spot over Italy for this VSF. Second, the 651 

precipitation over Tuscany is less than for CTRL, showing the ability of radar reflectivity factor data 652 

assimilation to dry the model when it predicts reflectivity that is not observed. This is confirmed 653 

by the inspection of the analysis of Figure 14b, the last analysis used before this VSF, which gives a 654 

decrease of the relative humidity over most of Tuscany and over the sea in front of Livorno. Third, 655 

the precipitation over central Alps is represented, even if located about 30 km to the East. It is 656 

noted, however, that the area of intense rainfall (>60 mm/3h) is overestimated by RAD, showing a 657 

wet forecast. This is confirmed by the wet frequency bias of the RAD simulation, which is greater 658 

than 3 between 14 and 44 mm/3h. The wet bias of the RAD forecast is apparent in the 659 

representation of the rainfall VSF shown in the supplemental material of this paper (Figure S5). 660 

LIGHT forecast, Figure 17d, shows a worse performance compared to RAD for this time period. The 661 

precipitation forecast is mainly over Tuscany, where it is overestimated, with a small precipitation 662 

spot over Lazio.  663 

The precipitation forecast of RADLI, Figure 17e, represents very well the precipitation over Lazio, 664 

and the rainfall amount is better predicted compared to RAD. The precipitation over Sardinia is 665 
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well represented by RADLI as well as the precipitation over Central Alps, giving the best results 666 

among all VSF. 667 

The analysis of the scores confirms the above results (Table 6). CTRL has a poor performance as 668 

shown by the POD and ETS values, close to zero, for all thresholds above 30 mm/3h and for all 669 

neighbourhood radii. The simulations assimilating radar reflectivity factor performs better than 670 

LIGHT, the difference being larger for higher rainfall thresholds and for smaller neighbourhood 671 

radii. 672 

It is also notable the good performance of RADLI forecast for the nearest neighbourhood radii 673 

(ETS=0.43, POD=0.92) for the 50 mm/3h threshold. 674 

 675 

5. Discussion and Conclusions 676 

In this paper, we showed the impact of lightning and radar reflectivity factor data assimilation on 677 

the very short term precipitation forecast (3h) for two case studies occurred in Italy. We used 678 

RAMS@ISAC model, whose 3DVar extension to the assimilation of radar reflectivity factor is 679 

shown in this paper for the first time. 680 

The first case study occurred on 16 September 2017 and it is a moderate case with localised 681 

rainfall over central Italy. It was chosen because the control forecast, i.e. without radar reflectivity 682 

factor or lightning data assimilation, missed the event. The second event, occurred on 9-10 683 

September 2017, was characterised by exceptional rainfall over several parts of Italy. This event 684 

was partially represented by the control forecast. In particular, the forecast of the event was 685 

incorrect because: a) the control forecast was delayed compared to the observations; b) the 686 

control forecast missed the rainfall over central Italy (Lazio Region).  687 

It is important to recall that the impact of the lightning data assimilation on the precipitation 688 

forecast of RAMS@ISAC was already studied for the HyMeX-SOP1 period (Federico et al., 2017a, 689 

2017b), and a robust statistic is already available. The results of this study confirm the important 690 

role of the lightning data assimilation on the rainfall forecast for other two case studies. However, 691 

considering the assimilation of radar reflectivity factor, and its combination with lightning data 692 

assimilation in RAMS@ISAC, the results of this paper are new.  693 

Because we analysed only two case studies, no definitive conclusions can be derived on the 694 

performance of RAMS@ISAC for radar reflectivity factor data assimilation. There are, however, 695 

few points worth of mention. 696 
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The VSF performance of RAMS@ISAC is systematically improved by the assimilation of radar 697 

reflectivity factor. This improvement is of paramount importance for some specific VSF (for 698 

example for the 00-03 UTC of Livorno), when the control forecast missed the event while it was 699 

correctly predicted by radar reflectivity factor data assimilation. Sometimes the improvement of 700 

reflectivity factor data assimilation has a lower impact on the precipitation forecast, as for the 701 

period 18-21 UTC on 9 September 2017 (Livorno, not shown, see the discussion paper Federico et 702 

al. (2018) for a description of this VSF). This suggests that there is space for improvement for all 703 

components of the VSF: observations, data assimilation, meteorological model. 704 

Lightning and radar observations are different and both add value to the VSF. In particular, flashes 705 

are recorded when deep convection develops, while radar reflectivity factor is observed also for 706 

light stratiform rain. Flashes of ground based network, as LINET, are available over the open sea, 707 

even if with a reduced detection efficiency, while radar reflectivity factor is confined to the range 708 

of coastal radars in the network. Lightning has a seasonal dependence over Italy, with the 709 

maximum in summer and fall, while radar reflectivity factor is available in all seasons. 710 

For the above reasons, the impact of the two kinds of data on the rainfall VSF is expected 711 

different. Some examples have been shown: the light precipitation over Northern Italy for Serano 712 

is well forecasted assimilating radar reflectivity factor, while it is not simulated assimilating flashes 713 

because they are too few in this area to force convection; lightning data assimilation is able to 714 

better represent the deep convection occurring during the intense phase of the Livorno case (00-715 

03 UTC), especially because it is able to force convection where it occurs, reducing false alarms. 716 

The ability of lightning data assimilation to reduce false alarms compared to RAD and RADLI it is 717 

shown by the fact that the ETS score for LIGHT is sometimes the best among all simulations (see 718 

also the section S2 of the supplemental material of this paper). These results show also that the 719 

influence of different observations depends on the meteorological situation. 720 

The model configuration assimilating both radar reflectivity factor and lightning (RADLI) is able to 721 

retain important features of both data assimilation. For example, the simulation of the Livorno 722 

case in the phase 06-09 UTC was able to simulate the heavy precipitation over Lazio thanks to the 723 

radar reflectivity factor data assimilation and the precipitation over Sardinia, as well as the 724 

moderate precipitation over central Alps, thanks to lightning data assimilation. 725 

The property of RADLI to retain the precipitation features of both RAD and LIGHT it is shown by 726 

the POD score, which is the best, for most cases and thresholds, for RADLI.  727 
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Another interesting feature is the considerable improvement of the POD of RADLI compared to 728 

CTRL for the lowest thresholds.  729 

It is also underlined that the data assimilated, both lightning and radar reflectivity factor, are 730 

available in real time and could be used for an operational implementation of the VSF.  731 

All the above features are promising and deserve future studies to better understand the role of 732 

radar reflectivity factor and its interaction with lightning data assimilation to improve the 733 

precipitation forecast. 734 

There are, however, less satisfactory aspects of assimilating both radar reflectivity factor and 735 

lightning data. In particular, the wet bias of RAD and RADLI forecast is the main drawback of the 736 

results of this paper. To reduce the moisture added by radar and lightning data assimilation 737 

further research is needed and different approaches are possible (Fierro et al., 2016). In particular: 738 

a) assimilating for a shorter time (0-6h in this paper); b) reducing the length-scales of the 3D-Var in 739 

the horizontal directions to limit the spreading of the innovations, or assuming an innovation 740 

equal to zero for grid points without lightning and with zero reflectivity factor; c) reducing the 741 

amount of water vapour added to the model (for example reducing the values of A and B 742 

constants for lightning data assimilation or relaxing the request of saturation when radar 743 

reflectivity is observed in areas where the model has zero reflectivity); d) adding moisture to a 744 

shallower vertical layer. 745 

It is also noted that a combination of heating and moistening could provide the same buoyancy 746 

with less water vapour addition (Marchand and Fulberg, 2014) and this approach could be used in 747 

future studies. 748 

In addition to the acquisition of more case studies, there are two directions of future development 749 

of this work. The lightning data assimilation can be formulated by 3DVar, using a strategy similar 750 

to the radar reflectivity factor in which pseudo-profiles of relative humidity are first generated 751 

where flashes are recorded, and then those profiles are assimilated by 3DVar. This methodology 752 

was already reported in Fierro et al. (2016). The assimilation of both radar reflectivity factor and 753 

lightning using RAMS-3DVar will be explored in future studies. 754 

Another important point to study is how long the innovations introduced by data assimilation lasts 755 

in the forecast. While in this study we consider the VSF at 3h, future studies must explore longer 756 

time ranges. This kind of study was performed for lightning data assimilation (Fierro et al., (2015); 757 

Federico et al., 2017b; Lynn et al. (2015) among others) and for radar data assimilation (Hu et al. 758 

(2006); Jones et al. (2014), among others), using a rationale similar to that used in this paper.  759 
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In general, the performance of the forecast and the impact of lightning and radar data assimilation 760 

decrease with forecasting time because of the propagation of boundary conditions inside the 761 

domain and because of model errors growth. Improving the data assimilation system also 762 

contributes to a longer resilience of model performance. The studies cited above showed that 763 

lightning and radar data assimilation can have an impact up to 24h depending on several factors 764 

(meteorological model, data assimilation, quality of the data, meteorological conditions, initial and 765 

boundary conditions).  766 

A study considering both radar reflectivity factor and lightning should be performed to understand 767 

the resilience of the innovations introduced by data assimilation. 768 

 769 

ACKNOWLEDGMENTS 770 

This work is a contribution to the HyMeX program. Part of the computational time used for this 771 

paper was granted by the ECMWF (European Centre for Medium Weather range Forecast) 772 

thoughout the special project SPITFEDE. LINET data were provided by Nowcast GmbH 773 

(https://www.nowcast.de/) within a scientific agreement between H.D. Betz and the Satellite 774 

Meteorological Group of CNR-ISAC in Rome.  775 

This work was partially funded by the agreement between CNR-ISAC and the Italian Department of 776 

Civil Protection. 777 

 778 

 779 

References 780 

Alexander, G. D., Weinman, J. A., Karyampoudi, V. M., Olson, W. S., and Lee, A. C. L.: The effect of 781 
assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm, 782 
Mon. Weather Rev., 127, 1433–1457, 1999. 783 

Barker, D.M., Huang, W., Guo, Y.-R., and Xiao, Q.N.: A Three-Dimensional Variational Data 784 
Assimilation System for MM5: Implementation And Initial Results, Monthly Weather Review, 132, 785 
897-914, 2004. 786 

Barker, D. M., Huang, X.-Y., Liu, Z., Aulignè, T., Zhang, X., Rugg ,S., Ajjaji, R., Bourgeois, A., Bray, J., 787 
Chen ,Y., Demirtas, M.,. Guo, Y.-R, Henderson, T., Huang, W, Lin, H.C., Michalakes, J., Rizvi, S.,  and 788 
Zhang, X.: The Weather Research and Forecasting (WRF) Model’s Community 789 
Variational/Ensemble Data Assimilation System: WRFDA.  Bull.  Amer. Meteor. Soc., 93, 831–843, 790 
2012. 791 

 792 



 

26 

Betz, H.-D., Schmidt, K., Laroche, P., Blanchet, P., Oettinger, P., Defer, E., Dziewit, Z., and Konarski, 793 
J.: LINET-an international lightning detection network in Europe, Atmos. Res., 91, 564– 573, 2009. 794 

Buzzi, A. and Tibaldi, S.: Cyclogenesis in the lee of the Alps: A case study. Q.J.R. Meteorol. Soc., 795 
104: 271-287. https://doi.org/10.1002/qj.49710444004, 1978. 796 

Caumont, O., Ducrocq, V., Wattrelot, E.,  Jaubert, G., and Pradier-Vabre, S.: 1D+3DVar assimilation 797 
of radar reflectivity data: a proof of concept, Tellus A: Dynamic Meteorology and 798 
Oceanography, 62:2, 173-187, https://www.tandfonline.com/doi/abs/10.1111/j.1600-799 
0870.2009.00430.x, 2010. 800 

Carey, L. D., and S. A. Rutledge: Electrical and multiparameter radar observations of a severe 801 
hailstorm. J. Geophys. Res., 103, 13 979–14 000, doi:10.1029/97JD02626, 1998. 802 

Chang, D. E., Weinman, J. A., Morales, C. A., and Olson, W. S.: The effect of spaceborn microwave 803 
and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day 804 
storm, Mon. Weather Rev., 129, 1809–1833, 2001. 805 

Chen, C. and Cotton, W.R.: A One-Dimensional Simulation of the Stratocumulus-Capped Mixed 806 
Layer, Boundary Layer Meteorology, 25, 289-321, 1983. 807 

Cotton, W.R., Pielke Sr., R.A., Walko, R.L., Liston, G.E., Tremback, C.J., Jiang, H., McAnelly, R.L., 808 
Harrington, J.Y.m Nicholls, M.E., Carrio, G.G., and McFadden, J.P.: RAMS 2001: Current status and 809 
future directions, Meteorology and Atmospheric Physics, 82, 5-29,2003. 810 

Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for operational implementation of 811 
4D-Var, using an incremental approach, Q. J. Roy. Meteorol. Soc., 120, 1367–1387, 1994. 812 

Dahl, J. M. L., Höller, H., and Schumann, U.: Modeling the Flash Rate of Thunderstorms. Part II: 813 
Implementation. Monthly Weather Review, 139, 3112-3124, 2011. 814 

Deierling, W., and W. A. Peterse: Total lightning activity as an indicator of updraft characteristics. J. 815 
Geophys. Res., 113, D16210, doi:10.1029/2007JD009598, 2008. 816 

Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N.,  Richard, E., 817 
Taupier-Letage, I.,  Ayral, P.-A., Belamari, S., Berne, A.,  Borga, M., Boudevillain, B.,  Bock, O., 818 
Boichard, J.-L., Bouin, M.-N., Bousquet, O., Bouvier, C., Chiggiato, J.,  Cimini, D., Corsmeier, U., 819 
Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P.,  820 
Dufournet, Y., Fourrié, N.,  Gourley, J.J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F.S., Molinié, 821 
G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, 822 
A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HYMEX-SOP1 The Field 823 
Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern 824 
Mediterranean. Bull. Amer. Meteor. Soc., 95, 1083–1100, https://doi.org/10.1175/BAMS-D-12-825 
00244.1 , 2014. 826 



 

27 

Emersic, C., and C. P. R. Saunders, 2010: Further laboratory investigations into the relative 827 
diffusional growth rate theory of thunderstorm electrification. Atmos. Res., 98, 327–340, 828 
doi:https://doi.org/10.1016/j.atmosres.2010.07.011, 2010. 829 

Fabry, F., and Sun, J: For how long should what data be assimilated for the mesoscale forecasting 830 
of convection and why? Part I: On the propagation of initial condition errors and their implications 831 
for data assimilation. Monthly Weather Review, 138(1), 242–255, https://doi.org 832 
/2009mwr2883.1, 2010. 833 

Federico, S.: Implementation of a 3D-Var system for atmospheric profiling data assimilation into 834 
the RAMS model: Initial results, Atmospheric Measurement Techniques, 6(12), 3563-3576, 2013. 835 

Federico, S.: Implementation of the WSM5 and WSM6 Single Moment Microphysics Scheme into 836 
the RAMS Model: Verification for the HyMeX-SOP1, Advances in Meteorology, Volume 2016, 837 
2016. 838 

Federico, S., Avolio, E., Petracca, M., Panegrossi, G., Sanò, P., Casella, D., and Dietrich S.:Simulating 839 
lightning into the RAMS model: Implementation and preliminary results, Natural Hazards and 840 
Earth System Sciences, Volume 14, Number 11, p.2933-2950, 2014. 841 

Federico, S., Petracca, M., Panegrossi, G., and Dietrich, S.: Improvement of RAMS precipitation 842 
forecast at the short-range through lightning data assimilation, Nat. Hazards Earth Syst. Sci., 17, 843 
61–76, https://doi.org/10.5194/nhess-17-61-2017, 2017a. 844 

Federico, S., Petracca, M., Panegrossi, G., Transerici, C., and Dietrich, S.: Impact of the assimilation 845 
of lightning data on the precipitation forecast at different forecast ranges. Adv. Sci. Res., 14, 187–846 
194, 2017b. 847 

Federico, S., Torcasio, R. C., Avolio, E., Caumont, O., Montopoli, M., Baldini, L., Vulpiani, G., and 848 
Dietrich, S.: The impact of lightning and radar data assimilation on the performance of very short 849 
term rainfall forecast for two case studies in Italy, Nat. Hazards Earth Syst. Sci. Discuss., 850 
https://doi.org/10.5194/nhess-2018-319, in review, 2018. 851 

Ferretti, R., Pichelli, E., Gentile, S., Maiello, I., Cimini, D., Davolio, S., Miglietta, M. M., Panegrossi, 852 
G., Baldini, L., Pasi, F., Marzano, F. S., Zinzi, A., Mariani, S., Casaioli, M., Bartolini, G., Loglisci, N., 853 
Montani, A., Marsigli, C., Manzato, A., Pucillo, A., Ferrario, M. E., Colaiuda, V., and Rotunno, R.: 854 
Overview of the first HyMeX Special Observation Period over Italy: observations and model 855 
results, Hydrol. Earth Syst. Sci., 18, 1953–1977, https://doi.org/10.5194/hess-18-1953-2014, 2014. 856 

Fierro, A. O., A. J. Clark, E. R. Mansell, D. R. MacGorman, S. Dembek, and C. Ziegler: Impact of 857 
storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm 858 
season over the contiguous United States. Mon. Wea. Rev., 143, 757–777, 859 
doi:https://doi.org/10.1175/MWR-D-14-00183.1, 2015. 860 



 

28 

Fierro, A.O., Gao, l., Ziegler, C. L., Calhoun, K. M., Mansell, E. R., and MacGorman, D. 861 
R.: Assimilation of Flash Extent Data in the Variational Framework at Convection-Allowing Scales: 862 
Proof-of-Concept and Evaluation for the Short-Term Forecast of the 24 May 2011 Tornado 863 
Outbreak. Mon. Wea. Rev., 144, 4373–4393,https://doi.org/10.1175/MWR-D-16-0053.1, 2016. 864 

Fierro, A. O., J. Gao, C. Ziegler, E. R. Mansell, D. R. MacGorman, and S. Dembek: Evaluation of a 865 
cloud scale lightning data assimilation technique and a 3DVAR method for the analysis and short-866 
term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183–202, doi:10.1175/ 867 
MWR-D-13-00142.1, 2014. 868 

Fierro, A. O., M. S. Gilmore, E. R. Mansell, L. J. Wicker, and J. M. Straka: Electrification and lightning 869 
in an idealized boundary-crossing supercell simulation of 2 June 1995. Mon. Wea. Rev., 134, 3149–870 
3172, doi:10.1175/MWR3231.1, 2006. 871 

Fierro, A. O., Mansell, E., Ziegler, C., and MacGorman, D.: Application of a lightning data 872 
assimilation technique in the WRFARW model at cloud-resolving scales for the tornado outbreak 873 
of 24 May 2011, Mon. Weather Rev., 140, 2609–2627, 2012. 874 

Giannaros, T. M., Kotroni, V., and Lagouvardos, K.: WRFLTNGDA: A lightning data assimilation 875 
technique implemented in the WRF model for improving precipitation forecasts, Environ. Model. 876 
Softw., 76, 54–68, doi:10.1016/j.envsoft.2015.11.017, 2016. 877 

Hong, S.Y., Lim, J.J.O.: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean 878 
Meteorol. Soc. 42, 129–151, 2006. 879 

Hu, M., M. Xue, and K. Brewster: 3DVAR and cloud analysis with WSR-88D level-II data for the 880 
prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. 881 
Mon. Wea. Rev., 134, 675–698, doi:10.1175/MWR3092.1, 2006. 882 

Ikuta, Y. and Honda, Y.: Development of 1D+4DVAR data assimilation of radar reflectivity in JNoVA. 883 
Tech. Report, 01.09–01.10. http://www.wcrp-climate.org/WGNE/BlueBook/2011/individual-884 
articles/01_Ikuta_Yasutaka_WGNE2011_1D4DVAR.pdf, 2011. 885 

Jones, C. D., and Macpherson, B.: A latent heat nudging scheme for the assimilation of 886 
precipitation into an operational mesoscale model, Meteorol. Appl., 4, 269–277, 1997. 887 

Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier: Forecast evaluation of an observing 888 
system simulation experiment assimilating both radar and satellite data. Mon. Wea. Rev., 142, 889 
107–124, doi:10.1175/MWR-D-13-00151.1, 2014. 890 

Kain, J. S. and Fritsch, J. M.: Convective parameterization for mesoscale models: the Kain-Fritsch 891 
scheme. The representation of cumulus convection in numerical models, Meteor. Monogr. No. 46, 892 
Am. Meteor. Soc., Boston, 165–170, 1993. 893 



 

29 

Kuhlman, K. M., C. L. Zielger, E. R. Mansell, D. R. MacGorman, and J. M. Straka: Numerically 894 
simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 895 
134, 2734–2757, doi:10.1175/MWR3217.1, 2006. 896 

Kummerow, C., Hong, Y., Olson, W.S., Yang. S., Adler, R.F., McCollum, J., Ferraro, R., Petty, G., Shin. 897 
D.-B., and Wilheit, T.T.: The evolution of the Goddard profiling algorithm (GPROF) for rainfall 898 
estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820, 2001. 899 

Lagouvardos, K., Kotroni, V., Betz, H.-D., and Schmidt, K.: A comparison of lightning data provided 900 
by ZEUS and LINET networks over Western Europe, Nat. Hazards Earth Syst. Sci., 9, 1713–1717, 901 
https://doi.org/10.5194/nhess-9-1713-2009, 2009. 902 

Lynn, B. H., G. Kelman, and G. Ellrod: An evaluation of the efficacy of using observed lightning to 903 
improve convective lightning forecasts. Wea. Forecasting, 30, 405-423 doi:10.1175/ WAF-D-13-904 
00028.1., 2015. 905 

Lynn, B.H., 2017: The Usefulness and Economic Value of Total Lightning Forecasts Made with a 906 
Dynamic Lightning Scheme Coupled with Lightning Data Assimilation.Wea. Forecasting, 32, 645–907 
663, https://doi.org/10.1175/WAF-D-16-0031.1 , 2017. 908 

MacGorman, I. R. Apostolakopoulos, N. R. Lund, N. W. S. Demetriades, M. J. Murphy, and P. R. 909 
Krehbiel: The timing of cloud-to-ground lightning relative to total lightning activity. Mon. Wea. 910 
Rev., 139, 3871–3886, doi:10.1175/MWR-D-11-00047.1, 2011. 911 

MacGorman, D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning 912 
rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221–251, 913 
doi:10.1175/ 1520-0469(1989)046,0221:LRRTTS.2.0.CO;2. 914 

MacGorman, D.R. and K.E. Nielsen: Cloud-to-Ground Lightning in a Tornadic Storm on 8 May 1986. 915 
Mon. Wea. Rev., 119, 1557–1574, https://doi.org/10.1175/1520-916 
0493(1991)119<1557:CTGLIA>2.0.CO;2, 1991. 917 

MacGorman, W. D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens: The electrical structure of 918 
two supercell storms during STEPS. Mon. Wea. Rev., 133, 2583–2607, doi:10.1175/MWR2994.1, 919 
2005. 920 

MacGorman, W. D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens: The electrical structure of 921 
two supercell storms during STEPS. Mon. Wea. Rev., 133, 2583–2607, doi:10.1175/MWR2994.1, 922 
2005. 923 

Maiello, I., Ferretti, R., Gentile, S., Montopoli, M., Picciotti, E., Marzano, F. S., and Faccani, C.: 924 
Impact of radar data assimilation for the simulation of a heavy rainfall case in central Italy using 925 
WRF–3DVAR, Atmos. Meas. Tech., 7, 2919-2935, https://doi.org/10.5194/amt-7-2919-2014, 2014. 926 

Mansell, E. R., Ziegler, C. L., and MacGorman, D. R.: A lightning data assimilation technique for 927 
mesoscale forecast models, Mon. Weather Rev., 135, 1732–1748, 2007. 928 



 

30 

Marchand, M., and H. Fuelberg: Assimilation of lightning data using a nudging method involving 929 
low-level warming. Mon. Wea. Rev., 142, 4850–4871, doi:10.1175/MWR-D-14-00076.1, 2014. 930 
 931 
Mass, C. F., Ovens, D., Westrick, K., and Colle, B. A.: Does increasing horizontal resolution produce 932 
more skilful forecasts?, B. Am. Meteorol. Soc., 83, 407–430, 2002. 933 

Mellor, G., and Yamada, T.: Development of a Turbulence Closure Model for Geophysical Fluid 934 
Problems, Review of Geophysics and Space Physics, 20, 851-875, 1982. 935 

Mittermaier, M., N. Roberts, and S. A. Thompson: A long-term assessment of precipitation forecast 936 
skill using the Fractions Skill Score. Meteor. Appl., 20, 176–186, 937 
doi:https://doi.org/10.1002/met.296, 2013. 938 

Molinari, J., and Corsetti, T.: Incorporation of cloud-scale and mesoscale down-drafts into a 939 
cumulus parametrization: results of one and three-dimensional integrations, Monthly Weather 940 
Review, 113, 485-501, 1985. 941 

Olson, W. S., Kummerow, C. D. , Heymsfield, G. M., and Giglio, L.: A method for combined passive-942 
active microwave retrievals of cloud and precipitation profiles. J. Appl. Meteor., 35, 1763-1789, 943 
1996. 944 

Papadopoulos, A., Chronis, T.G., Anagnostou, E.N.. Improving convective precipitation forecasting 945 
through assimilation of regional lightning measurements in a mesoscale model. Mon.  Weather 946 
Rev. 133, 1961-1977, 2005ì. 947 

Parrish, D.F., and Derber, J.C.: The National Meteorological Center’s Spectral Statistical 948 
Interpolation analysis system, Monthly Weather Review, 120, 1747-1763, 1992. 949 

Pessi, A.T. and S. Businger: Relationships among Lightning, Precipitation, and Hydrometeor 950 
Characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833–951 
848, https://doi.org/10.1175/2008JAMC1817.1 , 2009. 952 

Petracca M., Casella D., Dietrich S., Milani L., Panegrossi G., Sanò P., Möhrlein M., Riso S. and Betz 953 
H.D. (2014), “Lightning strokes frequency homogenization for climatological analysis: application 954 
to LINET data records over Europe”, 2nd TEA – IS Summer School, June 23 – 27, Collioure, France, 955 
2014. 956 

Petracca, M., L. P. D’Adderio, F. Porcù, G. Vulpiani, S. Sebastianelli, and S. Puca: Validation of GPM 957 
Dual-Frequency Precipitation Radar (DPR) rainfall products over Italy. J. Hydrometeor., 19, 907–958 
925. https://doi.org/10.1175/JHM-D-17-0144.1., 2018. 959 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes in Fortran 960 
77, second ed., Cambridge Uni- versity Press, Cambridge, 992 pp., 1992.  961 

Qie, X., Zhu, R., Yuan, T., Wu, X., Li, W., and Liu, D.: Application of total-lightning data assimilation 962 
in a mesoscale convective system based on the WRF model, Atmos. Res., 145–146, 255–266, 2014. 963 



 

31 

Ricciardelli, E.; Di Paola, F.; Gentile, S.; Cersosimo, A.; Cimini, D.; Gallucci, D.; Geraldi, E.; Larosa, S.; 964 
Nilo, S.T.; Ripepi, E.; Romano, F.; Viggiano, M. Analysis of Livorno Heavy Rainfall Event: Examples 965 
of Satellite-Based Observation Techniques in Support of Numerical Weather Prediction. Remote 966 
Sens. 2018, 10, 1549, 2018. 967 
 968 
Ridal, M., and Dahlbom, M.: Assimilation of multinational radar reflectivity data in a mesoscale 969 
model: a proof of concept, Journal of Applied Meteorology and Climatology, 56(6), 1739–1751, 970 
https://doi.org/10.1175/jamc-d-16-0247.1, 2017. 971 

Rohn, M., Kelly, G., Saunders, R. W.: Impact of a New Cloud Motion Wind Product from Meteosat 972 
on NWP Analyses and Forecasts, Monthly Weather Review, 129, 2392-2403, 2001.  973 

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., 974 
Wang, W., and Powers, J. G.: A description of the Advanced Reasearch WRF Version 3. NCAR 975 
Technical Note, TN 475+STR, 113 pp., available at: 976 
http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (last access: November 2018), 2008. 977 

Smagorinsky, J.: General circulation experiments with the primitive equations. Part I, The basic 978 
experiment, Monthly Weather Review, 91, 99-164, 1963. 979 

Stensrud, D. J., and Fritsch, J. M.: Mesoscale convective systems in weakly forced large-scale 980 
environments. Part II: Generation of a mesoscale initial condition, Mon. Weather Rev., 122, 2068-981 
2083, 1994. 982 

Stensrud, D.J., M. Xue, L.J. Wicker, K.E. Kelleher, M.P. Foster, J.T. Schaefer, R.S. Schneider, S.G. 983 
Benjamin, S.S. Weygandt, J.T. Ferree, and J.P. Tuell: Convective-Scale Warn-on-Forecast System. 984 
Bull. Amer. Meteor. Soc., 90, 1487–1500, https://doi.org/10.1175/2009BAMS2795.1, 2009. 985 

Stewart, L. M., Dance, S. L., Nichols, N. K.: Data assimilation with correlated observation errors: 986 
experiments with a 1-D shallow water model, Tellus A: Dynamic Meteorology and 987 
Oceanography, 65:1, DOI: 10.3402/tellusa.v65i0.19546, 2013. 988 

Sun, J., and Crook, N. A.: Dynamical and Microphysical Retrieval from Doppler RADAR 989 
Observations Using a Cloud Model and Its Adjoint, Part I: Model Development and Simulated Data 990 
Experiments, J. Atmos. Sci., 54, 1642–1661, 1997. 991 

Sun, J., and Crook, N. A.: Dynamical and Microphysical Retrieval from Doppler RADAR 992 
Observations Using a Cloud Model and Its Adjoint, Part II: Retrieval Experiments of an Observed 993 
Florida Convective Storm, J. Atmos. Sci., 55, 835–852, 1998. 994 

Sun, J. and Wang, H.: Radar data assimilation with WRF 4DVar. Part II: comparison with 3D-Var for 995 
a squall line over the US Great Plains, Mon. Weather Rev., 11, 2245–2264, 996 
https://doi.org/10.1175/MWR-D-12-00169.1, 2012. 997 

Takahashi, T.: Riming electrification as a charge generation mechanism in thunderstorms. J. 998 
Atmos. Sci., 35, 1536–1548, doi:https://doi.org/10.1175/1520 0469(1978)0352.0.CO;2, 1978. 999 



 

32 

Vulpiani, G., A. Rinollo, S. Puca, and M. Montopoli: A quality-based approach for radar rain field 1000 
reconstruction and the H-SAF precipitation products validation. Proc. Eighth European Radar 1001 
Conf., Garmish-Partenkirchen, Germany, ERAD, Abstract 220, 6 pp., 1002 
http://www.pa.op.dlr.de/erad2014/programme/ ExtendedAbstracts/220_Vulpiani.pdf (last access  1003 
January 2019), 2014. 1004 

Walko, R.L., Band, L.E., Baron, J., Kittel, T.G., Lammers, R., Lee, T.J., Ojima, D., Pielke Sr., R.A., 1005 
Taylor, C., Tague, C., Tremback, C.J., and Vidale, P.L.: Coupled Atmosphere-Biosphere-Hydrology 1006 
Models for environmental prediction, Journal of Applied Meteorology, 39, 931-944, 2000. 1007 

Wang, H., Sun, J., Zhang, X., Huang, X., and Auligne, T.: Radar data assimilation with WRF 4D-Var. 1008 
Part I: system development and preliminary testing, Mon. Weather Rev., 141, 2224–2244, 2013. 1009 

Wattrelot, É., Caumont, O. and Mahfouf, J. F.: Operational implementation of the 1D+3D-Var 1010 
assimilation method of radar reflectivity data in the AROME model. Monthly Weather Review, 1011 
142(5), 1852–1873. https://doi.org/10.1175/MWR-D-13-00230.1, 2014. 1012 

Weisman, M. L., Skamarock, W. C., and Klemp, J. B.: The resolution dependence of explicitly 1013 
modeled convective systems, Mon.Weather Rev., 125, 527–548, 1997. 1014 

Weygandt, S. S., Benjamin, S. G., Hu, M., Smirnova, T. G., and Brown, J. M.: Use of lightning data to 1015 
enhance radar assimilation within the RUC and Rapid Refresh models. Third Conf. on 1016 
Meteorological Applications of Lightning Data, 20–24 January 2008, New Orleans, LA, Amer. 1017 
Meteor. Soc., 8.4, available at: 1018 
https://ams.confex.com/ams/88Annual/webprogram/Paper134112.html (last access: 03 October 1019 
2018), 2008. 1020 

Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, A: The 29 June 2000 supercell observed during 1021 
STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 4151–4177, 1022 
doi:10.1175/JAS3615.1, 2005. 1023 

Xiao, Q., Kuo, Y.-H., Sun, J., Chaulee, W., and Barker, D. M.: An Approach of RADAR Reflectivity 1024 
Data Assimilation and Its Assessment with the Inland QPF of Typhoon Rusa (2002) at Landfall, J. 1025 
Appl. Meteor. Climatol., 46, 14–22, 2007. 1026 

Xiao, Q., Kuo, Y.-H., Sun, J., and Lee, W. C.: Assimilation of Doppler RADAR Observations with a 1027 
Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case, J. 1028 
Appl. Meteor., 44, 768–788, 2005. 1029 

Xu, Q., Wei, L., Gu, W., Gong, J., and Zhao, Q.: A 3.5-dimensional variational method for Doppler 1030 
radar data assimilation and its application to phased array radar observations, Adv. Meteorol., vol. 1031 
2010, Article ID 797265, https://doi.org/10.1155/2010/797265, 2010. 1032 



 

33 

Xue, M., Wang, D., Gao, J., Brewster, K., and Droegemeier, K. K: The Advanced Regional Prediction 1033 
System (ARPS), storm scale numerical weather prediction and data assimilation, Meteor. Atmos. 1034 
Phys., 82, 139–170, 2003. 1035 

Zhao, Q., Cook, J., Xu, Q., and Harasti, P. R.: Using radar wind observations to improve mesoscale 1036 
numerical weather prediction, Weather Forecast, 21, 502–522, 2006. 1037 

 1038 

TABLES 1039 

Table 1: List of physical parameterisations used for RAMS@ISAC in this paper. 1040 

Physical parameterization Selected scheme 

Parametrized cumulus 
convection  

Modified Kuo scheme to account for updraft and downdraft 
(Molinari and Corsetti, 1985). The scheme is applied to R10 only. 

Explicit precipitation 
parameterization  

Bulk microphysics with six hydrometeors (cloud, rain, graupel, 
snow, ice, water vapour). Described in Hong and Lim (2006). 

Exchange between the 
surface, the biosphere and 
atmosphere. 

LEAF3 (Walko et al., 2000). LEAF includes prognostic equations for 
soil temperature and moisture for multiple layers, vegetation 
temperature and surface water, and temperature and water 
vapour mixing ratio of canopy air.  

 Sub-grid mixing  The turbulent mixing in the horizontal directions is parameterised 
following Smagorinsky (1963), vertical diffusion is parameterised 
according to the Mellor and Yamada (1982) scheme, which 
employs a prognostic turbulent kinetic energy. 

Radiation scheme  Chen-Cotton (Chen and Cotton, 1983). The scheme accounts for 
condensate in the atmosphere. 

 1041 
Table 2: Basic parameters of the RAMS@ISAC grids (R10, R4 and R1, corresponding, respectively, to the domains D1, 1042 
D2 and D3). NNXP is the number of grid points in the WE direction, NNYP is the number of grid-points in the NS 1043 
direction, NNZP is the number of vertical levels, DX is the size of the grid spacing in the WE direction, DY is the grid 1044 
spacing in the SN direction. Lx, Ly, and Lz are the domain extensions in the NS, WE, and vertical directions. CENTLON 1045 
and CENTLAT are the coordinates of the grid centres.  1046 
 1047 

 

 

R10, D1 R4, D2 R1, D3 

NNXP 301 401 203 

NNYP 301 401 203 

NNZP 36 36 36 

Lx 3000 km 1600 km ~270 km 
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 1048 

 1049 
 1050 
 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

 1065 

Table 3: Types of simulations performed. 1066 

Experiment Description Data assimilated Model variable 

impacted 

CTRL Control run  None None 

RAD RADAR data 

assimilation 

Reflectivity factor 

CAPPI (RAMS-3DVar)  

Water vapour mixing 

ratio 

LIGHT Lightning data 

assimilation (A=0.85; 

B=0.16 in Eqn. (1)) 

Lightning density 

(nudging) 

Water vapour mixing 

ratio 

RADLI RADAR + lightning 

data assimilation 

(A=0.86; B=0.15 in Eqn 

(1)) 

Reflectivity factor 

CAPPI (RAMS-3DVar) + 

Lightning density 

(nudging) 

Water vapour mixing 

ratio 

 1067 

Ly 3000 km 1600 km ~270 km 

Lz ~22400 m ~22400 m ~22400 m 

DX 10 km 4 km 4/3 km 

DY 10 km 4 km 4/3 km 

CENTLAT (°) 43.0 N 43.0 N 43.7 N 

CENTLON (°) 12.5 E 12.5 E 11.0 E 
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Table 4: ETS and POD scores for three different neighbourhood radii. Scores are computed over 1068 
the domain D2. 1069 
Thresh

old 

(mm/3

h) 

ETS nearest 

neighboorhood 

(CTRL, RAD, 

LIGHT, RADLI) 

POD nearest 

neighbourhood 

(CTRL, RAD, 

LIGHT, RADLI) 

ETS 25 km 

(CTRL, RAD, 

LIGHT, RADLI) 

POD 25 km 

(CTRL, RAD, 

LIGHT, RADLI) 

ETS 50 km 

(CTRL, RAD, 

LIGHT, RADLI) 

POD 50 km 

(CTRL, RAD, 

LIGHT, RADLI) 

1 (0.42,0.36,0.44,

0.33) 

(0.57,0.87,0.60,

0.81) 

(0.68,0.73,0.68,

0.73) 

(0.77,0.93,0.75,

0.89) 

(0.79,0.89,0.82,

0.87) 

(0.84,0.92,0.84,

0.90) 

6 (0.06,0.10,0.14,

0.13) 

(0.0,0.5,0.20,0.

72) 

(0.11,0.44,0.72,

0.41) 

(0.11,0.86,0.72,

0.83) 

(0.19,0.86,0.86,

0.92) 

(0.19,0.86,0.86,

0.92) 

10 (0.,0.05,0.,0.15) (0.,0.26,0.,0.79) (0.,0.66,0.58,0.

74) 

(0.0,0.84,0.58,0

.89) 

(0.,0.95,0.74,0.

90) 

(0.,0.95,0.74,0.

90) 

20 (0.,0.,0.,0.41) (0.,0.,0.,0.8) (0.0,0.41,0.33,0

.87) 

(0.,0.47,0.3,0.9) (0.,0.73,0.80,1.

0) 

(0.,0.73,0.80,1.

0) 

30 (0.,0.,0.,0.31) (0.,0.,0.,0.5) (0.,0.,0.,0.90) (0.,0.,0.,0.9) (0.,0.,0.,1.0) (0.,0.,0.,1.0) 

40 (0.,0.,0.,0.) (0.,0.,0.,0.) (0.,0.,0.,0.33) (0.,0.,0.,0.33) (0.,0.,0.,0.50) (0.,0.,0.,0.50) 

 1070 

 1071 

Table 5: ETS and POD scores for three different neighbourhood radii. Scores are computed over 1072 
the domain D3. 1073 
Thresh

old 

(mm/3

h) 

ETS nearest 

neighboorhood 

(CTRL, RAD, 

LIGHT, RADLI) 

POD nearest 

neighbourhood 

(CTRL, RAD, 

LIGHT, RADLI) 

ETS 25 km 

(CTRL, RAD, 

LIGHT, RADLI) 

POD 25 km 

(CTRL, RAD, 

LIGHT, RADLI) 

ETS 50 km 

(CTRL, RAD, 

LIGHT, RADLI) 

POD 50 km 

(CTRL, RAD, 

LIGHT, RADLI) 

1 (0.43,0.64,0.70,

0.56) 

(0.67,0.86,0.98,

0.99) 

(0.68,0.80,0.82,

0.71) 

(0.83,0.92,0.98,

0.99) 

(0.68,0.80,0.82,

0.71) 

(0.83,0.92,0.98,

0.99) 

6 (0.1,0.31,0.60,0

.49) 

(0.24,0.58,0.89,

0.95) 

(0.49,0.70,0.91,

0.96) 

(0.55,0.76,0.96,

0.97) 

(0.49,0.70,0.91,

0.96) 

(0.55,0.76,0.96,

0.97) 

10 (0.11,0.33,0.56,

0.54) 

(0.19,0.56,0.75,

0.80) 

(0.48,0.76,0.91,

0.97) 

(0.52,0.79,0.92,

0.97) 

(0.48,0.76,0.91,

0.97) 

(0.52,0.79,0.92,

0.97) 

20 (0.02,0.30,0.52,

0.59) 

(0.03,0.39,0.74,

0.81) 

(0.18,0.73,0.97,

0.93) 

(0.19,0.74,0.97,

0.97) 

(0.18,0.73,0.96,

0.93) 

(0.19,0.74,0.97,

0.97) 

30 (0.,0.27,0.51,0.

47) 

(0.,0.29,0.76,0.

76) 

(0.,0.64,0.94,1.) (0.,0.65,1.,1.) (0.,0.64,0.94,1.) (0.,0.65,1.,1.) 

40 (0.,0.44,0.27,0.

27) 

(0.,0.44,0.56,0.

67) 

(0.,0.89,1.,1.) (0.,0.89,1.,1.) (0.,0.89,1.,1.) (0.,0.89,1.,1.) 

50 (0.,0.33,0.66,0.

50) 

(0.,0.33,0.67,0.

67) 

(0.,0.67,1.,1.) (0.,0.67,1.,1.) (0.,0.66,1.,1.) (0.,0.67,1.,1.) 
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 1074 

 1075 

Table 6 ETS and POD scores for three different neighbourhood radii. Scores are computed over the 1076 

domain D2. 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 

 1086 

 1087 

Thresh

old 

(mm/3

h) 

ETS nearest 

neighboorhood 

(CTRL, RAD, 

LIGHT, RADLI) 

POD nearest 

neighbourhood 

(CTRL, RAD, 

LIGHT, RADLI) 

ETS 25 km 

(CTRL, RAD, 

LIGHT, RADLI) 

POD 25 km 

(CTRL, RAD, 

LIGHT, RADLI) 

ETS 50 km 

(CTRL, RAD, 

LIGHT, RADLI) 

POD 50 km 

(CTRL, RAD, 

LIGHT, RADLI) 

1 (0.41,0.63,0.61,

0.65) 

(0.66,0.89,0.89,

0.93) 

(0.79,0.83,0.82,

0.83) 

(0.89,0.95,0.95,

0.96) 

(0.88,0.92,0.93,

0.94) 

(0.93,0.97,0.98,

0.98) 

6 (0.2,0.4,0.39,0.

47) 

(0.43,0.82,0.77,

0.88) 

(0.45,0.63,0.71,

0.76) 

(0.63,0.90,0.95,

0.96) 

(0.72,0.86,0.88,

0.92) 

(0.82,0.96,0.97,

0.96) 

10 (0.,0.24,0.18,0.

28) 

(0.14,0.78,0.55,

0.80) 

(0.14,0.47,0.58,

0.62) 

(0.24,0.86,0.82,

0.93) 

(0.32,0.91,0.96,

0.95) 

(0.35,0.95,0.97,

0.97) 

20 (-

0.03,0.18,0.13,

0.22) 

(0.01,0.81,0.30,

0.80) 

(0.09,0.46,0.57,

0.61) 

(0.11,0.86,0.59,

0.90) 

(0.15,0.84,0.91,

0.96) 

(0.15,0.90,0.92,

0.97) 

30 (-

0.02,0.22,0.13,

0.28) 

(0.,0.90,0.23,0.

88) 

(0.01,0.79,0.46,

0.80) 

(0.01,0.93,0.47,

0.94) 

(0.02,0.95,0.93,

0.99) 

(0.02,0.95,0.93,

0.99) 

40 (-

0.1,0.24,0.08,0.

36) 

(0.,0.83,0.12,0.

89) 

(0.01,0.83,0.37,

0.83) 

(0.02,0.97,0.38,

0.97) 

(0.1,0.97,0.95,0

.98) 

(0.02,0.98,0.95,

0.98) 

50 (-

0.01,0.27,0.,0.4

3) 

(0.,0.67,0.,0.92) (0.,0.90,0.,0.90) (0.,0.94,0.,0.96) (0.,0.96,0.,0.96) (0.,0.96,0.,0.96) 



 

37 

FIGURES 1088 

 1089 

 1090 
Figure 1: Daily precipitation (P) [mm] over Italy on 16 September 2017. Only raingauges observing at least 0.2 mm/day 1091 
are shown. The first number in the figure title within brackets represents the available raingauges, while the second 1092 
number represents raingauges observing at least 0.2 mm/3h. The lowest precipitation class is represented by smaller 1093 
dots, the largest by a red square. The locations of Città di Castello and Mount Serano are indicated. 1094 
 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 

 1105 

 1106 
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a) 1107 

 1108 
b) 1109 
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  1110 
Figure 2: a) Geopotential height (filled contours), temperature (contours) and wind vectors at 500 hPa on 16 1111 
September 2017 at 00 UTC. Maximum velocity is 31 m/s; b) equivalent potential temperature (filled contours), sea-1112 
level pressure (contours) and wind vectors at 24 m above the surface (first vertical level of RAMS@ISAC, maximum 1113 
value 13 m/s). A low-pressure patter is forming over northern Italy, with a front in the western Mediterranean. 1114 
 1115 
 1116 

a)                                                 b)                                           c)  1117 

   
                   00UTC 16 sep               12UTC 16 sep                       00UTC 17 sep 1118 

Figure 3: a) Satellite images (METEOSAT second generation) of the infrared channel, 10.8 micron, at 00 UTC and 12 1119 
UTC on 16 September, and at 00 UTC on 17 September 2017. A well-defined cloud system is apparent inside the red 1120 
circle of the image at 00 UTC on 16 September 2017. 1121 

 1122 
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 1123 

Figure 4: National radar mosaic at 3 km above the sea level observed at 02 UTC on 16 September 2017. 1124 

 1125 

 1126 

Figure 5: Lightning density (number of lighting per 16 km2 for the whole day) recorded on 16 September 2017. The 1127 
total number of flashes recorded is shown in the title.  1128 
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 1129 

 1130 

 1131 

 1132 

 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 

a)                                                                                                     1145 

 1146 
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b) 1147 

 1148 

Figure 6: a) As in Figure 1 but for a) 9 September 2017 and b) 10 September 2017. 1149 
 1150 
 1151 
a) 1152 

 1153 

b)  1154 
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 1155 

Figure 7: a) Geopotential height (filled contours), temperature (contours) and wind vectors at 500 hPa at 00 UTC on 10 1156 
September 2017. Maximum velocity is 37 m/s; b) equivalent potential temperature (filled contours), sea-level 1157 
pressure (contours) and wind vectors at 24 m above the surface (first vertical level, maximum value 15 m/s). 1158 
 1159 

a)                                                               1160 

 1161 

 1162 

 1163 

b)  1164 
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 1165 

Figure 8: a) Lightning density (lightning number per 16 km2 for the whole day) recorded on 09 September 2017; b) as 1166 
in a) for 9 September 2017. The number of flashes recorded on each day is shown in the title.  1167 

 1168 

 1169 

 1170 

 1171 
a)                                                 b)                                        c)  1172 

   
                   12UTC 09 sep               00UTC 10 sep                       12UTC 10 sep 1173 

Figure 9: a) Satellite images (METEOSAT second generation) of the infrared channel, 10.8 micron, at 12 UTC on 9 1174 
September 2017, at 00 UTC  00 UTC and 12 UTC on 10 September 2017. The red circle in Figure 9b and the orange 1175 
circle in Figure 9c show the Livorno and Lazio area, respectively. 1176 

 1177 

 1178 

 1179 

 1180 

 1181 

 1182 
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a)                                                                       1183 

 1184 

b) 1185 

 1186 

Figure 10: a) National radar mosaic at 3 km above the sea level observed at 00 UTC on 10 September 2017; b) as in a) 1187 
at 06 UTC. 1188 

 1189 
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 1190 
Figure 11: The three domains used in RAMS@ISAC. The model grid over domain D1 has 301 grid points in the NS and 1191 
WE directions and has 10 km horizontal resolution, the model grid over domain D2 has 401 grid points in the NS and 1192 
WE directions and has 4 km horizontal resolution. The model grid over domain D3 has 203 grid points in the NS and 1193 
WE directions and has 4/3 km horizontal resolution. All grids have the same thirty-six vertical levels spanning the 0-1194 
22.4 km vertical layer. 1195 

 1196 
Figure 12: The implementation of RAMS@ISAC very short-term forecast. 1197 

 1198 
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 1199 
Figure 13: The radar network of the Department of Civil Protection. Green radars operate with dual-polarisation, blue 1200 
radars have single polarisation. 1201 
 1202 
 1203 
 1204 
 1205 
 1206 
 1207 
 1208 
 1209 
 1210 
 1211 
 1212 
 1213 
 1214 
 1215 
 1216 
 1217 
 1218 
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a) 1219 

 1220 
b) 1221 

 1222 
Figure 14: a) RAMS@ISAC reflectivity factor simulated 3 km above sea level at 06 UTC on 10 1223 

September 2017; b) relative humidity difference between the analysis and the background at 06 1224 

UTC at 3.2 km level in the terrain following vertical coordinate of RAMS@ISAC. 1225 

 1226 
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a)                                                                          1227 

 1228 
 1229 

b) 1230 

 1231 
 1232 
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c)                                                            1233 

 1234 

 1235 
 1236 

 1237 

d) 1238 

 1239 

 1240 
 1241 
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e)                                                                         1242 

 1243 
Figure 15: a) rainfall reported by raingauges between 03 and 06 UTC on 16 September 2017. Only raingauges 1244 
observing at least 0.2 mm/day are shown. The first number in the title within brackets represents the available 1245 
raingauges, while the second number represents those observing at least 0.2 mm/3h; b) rainfall  VSF of CTRL for the 1246 
same time interval as in a); c) as in b) for RAD forecast; d) as in b) for LIGHT forecast; e) as in b) for RADLI forecast. 1247 
 1248 

 1249 

 1250 
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 1252 

 1253 
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 1257 

 1258 

 1259 
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a)                                                                                  1264 

 1265 
b)    1266 

 1267 
   1268 

 1269 
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c)                                                                             1270 

 1271 
 1272 

d) 1273 

 1274 
 1275 

 1276 

 1277 

 1278 
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 1279 

e)                                                                                1280 

  1281 

 1282 
 1283 

Figure 16: a) rainfall reported by raingauges between 00 and 03 UTC on 10 September 2017. Only stations reporting at 1284 
least 0.2 mm/3h are shown. The first number in the title within brackets represents the number of raingauges 1285 
available over the domain, while the second number shows those observing at least 0.2 mm/3h; b) rainfall VSF of CTRL 1286 
for the same time interval as in a); c) as in b) for RAD forecast; d) as in b) for LIGHT forecast; e) as in b) for RADLI 1287 
forecast. Labels A and B help to identify the positions of two rainfall maxima discussed into the text. 1288 
 1289 
 1290 
 1291 
 1292 
 1293 
 1294 
 1295 
 1296 
 1297 
 1298 
 1299 
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 1301 
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 1310 
a)                                                                           1311 

 1312 
b) 1313 

 1314 

 1315 
 1316 

 1317 
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 1318 

c)                                                                          1319 

 1320 
 1321 

d) 1322 

 1323 
 1324 

 1325 

 1326 
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 1327 

  e) 1328 

 1329 
Figure 17: a) rainfall reported by raingauges between 06 - 09 UTC on 10 September 2017. For this time period 2695 1330 
raingauges reported valid observations in the domain, however only stations reporting at least 0.2 mm/3h are shown 1331 
The first number in the title within brackets represents the number of raingauges available over the domain, while the 1332 
second number shows those observing at least 0.2 mm/3h; b) rainfall VSF  of CTRL in the same time interval as a); c) as 1333 
in b) for RAD forecast; d) as in b) for LIGHT forecast; g) as in b) for  RADLI forecast. 1334 
 1335 
 1336 


