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Dr. Kai Schröter and two anonymous referees 
Natural Hazards and Earth System Sciences 
 
Dear Dr. Schröter and Referees, 
 
Please find enclosed our resubmission containing suggested revisions from two anonymous referees for 
our article entitled “Pre-disaster mapping with drones: an urban case study in Victoria, BC, Canada” by 
Maja Kucharczyk and Chris Hugenholtz. 
 
We would like to thank the two anonymous referees for their constructive, helpful, and thorough 
reviews that have improved this paper. The referee comments mainly pertained to the transferability of 
the methodology to different urban areas, and the methods used in the vertical accuracy assessment. 
We believe that we have sufficiently addressed the comments and provided additional clarification 
where necessary. 
 
A record of all changes to the manuscript can be found in the attached marked-up manuscript. Below, 
we address each referee comment. Each referee comment is in BOLD and our response directly below. 
Page/line numbers in referee comments refer to the original submission. Page/line numbers in 
responses refer to lines in the marked-up manuscript showing tracked changes. 
 
Thank you for your continued consideration of our article for publication in Natural Hazards and Earth 
System Sciences. 
 
Sincerely, 
 
Maja Kucharczyk and Chris Hugenholtz 
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Comments from Anonymous Referee #1: 
 
GENERAL COMMENTS 

1. The manuscript presents an interesting study about the potential of terrain elevation data 
sets and façade images generated from unmanned aerial vehicles (UAVs, also known as 
drones) to support post-disaster rescue decision making. The study has also a strong practical 
relevance. 
 

2. In my opinion, a discussion on the applicability of the proposed data acquisition methods in 
different conditions from those in Victoria (Canada), e.g. different types of buildings or 
different city layouts, and also the limitations related to building destruction and weather 
conditions can impose on the fly-ability of UAVs, should be included in the manuscript. 

• We thank the referee for this important consideration. We added the following 
paragraph to the end of Section 4.2: “The data acquisition methods used in this study 
will need to be adapted to fit the conditions of different urban areas. For example, flight 
altitude will need to be adjusted to give a safe vertical clearance from the tallest 
building. If the terrain in the area is sloped, elevation data should be input to the flight 
planning software to keep the flight altitude constant. A grid of flight lines is 
recommended, although its orientation and image overlap will vary depending on 
factors such as building layout and density. In a post-disaster context, a takeoff and 
landing location may be difficult to locate and access due to widespread destruction. 
Weather conditions such as high winds and rain following storm events may pose 
challenges to the flying ability of lightweight drones. Atmospheric conditions such as 
haze and smoke limit optical sensors in imaging destruction. These factors are examples 
of considerations that should be made when adapting the data acquisition methodology 
in this study”. 
 

3. In general, the manuscript is well written and clear, and the figures and tables are informative 
and of good quality. Below I suggest a few minor points that the authors may consider to 
improve the quality of the manuscript 

 
SPECIFIC COMMENTS 

4. Page 1, Lines 14-15. This sentence should be rephrased/improved as it is too general and not 
completely correct, as it ignores many factors that may minimise the impact of natural 
hazards in cities (increased quality of construction, alarm systems, proximity to rescue 
services, . . .). 

• We thank the referee for this important point. On page 1, lines 14-17, we revised the 
sentence and the proceeding sentence as such: “Increasing global population and 
urbanization (particularly in vulnerable areas) are factors that can contribute to 
increased death and destruction by natural hazards like earthquakes and tropical 
cyclones. In addition to initiatives such as increased quality of construction, alarm 
systems, and proximity to rescue services, pre-disaster mapping can help increase a 
city’s resilience against disasters (Pu, 2017)”. 

5. Page 3, Line 4: according to many guidelines the % symbol should not be preceded by a space. 
This happens in many other parts of the manuscript. Please consider to revise 

• We followed the NHESS manuscript preparation guidelines (link below) when we 
decided to include spaces between numbers and units (e.g., %, m, °). The specific 
guideline is listed under the section “Manuscript composition”, subsection “Figure 
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content guidelines”, item 4: “Spaces must be included between number and unit (e.g. 1 
%, 1 m)”. The description for “Figure content guidelines” reads “In order to facilitate 
consistency with our language and typesetting guidelines applied to the text of the 
manuscript, please keep the following in mind when producing your figures”. Therefore, 
we interpreted these figure guidelines to be applicable to the text. However, if our 
interpretation is incorrect, we will remove the spaces between numbers and the % 
symbol. 

• NHESS manuscript preparation guidelines we consulted: https://www.natural-hazards-
and-earth-system-sciences.net/for_authors/manuscript_preparation.html 
 

6. Page 3, Line 5: “. . . report. . . conducted. . .”. I believe reports do not conduct assessments. 
Perhaps “present”. Please consider to adjust the sentence. 

• On page 3, line 6, we replaced “conducted” with “presented”: “A 2016 report on the 
seismic vulnerability of Victoria conducted presented a risk assessment…”. 
 

7. Page 5, Line 2: “GNSS” all acronyms should be defined when they are used for the 1st time in 
the text to avoid ambiguity. Is GNSS the acronym for “Global Navigation Satellite System”? 
Please check other acronyms that are not defined in the manuscript. 

• Page 5, lines 10-11: we defined GNSS 
• We also defined SODA (page 4, line 17), RGB (page 4, line 17), NRCan (page 4, line 26), 

and CGG2013 (page 6, line 5). 
 

8. Page 6, Line 13: a reference to the software should be added. 
• Page 7, line 18: We added an in-text citation to CloudCompare software. We added the 

citation to the reference list. 
• For consistency, we also added in-text citations for senseFly eMotion (page 4, line 28), 

Pix4D Pix4Dmapper (page 5, line 12), and ESRI ArcMap (page 7, line 9), and added them 
to the reference list. 
 

9. Page 6, Line 16: “to” seems to be missing in the sentence 
• Page 6, line 14: We added “to” to the following: “ASPRS (2015) recommend vertical 

checkpoints to be…”. 
 

10. Page 8, Line 1: a “that” seems to be missing in this sentence 
• Page 8, line 18: We added “that” to the following: “With a 0.31 m average point spacing, 

it is possible that the LiDAR point cloud…”. 
 

11. Page 8, Line 24: “was assessed going forward”? what do the authors mean with this? Please 
consider to rephrase the sentence. 

• Page 9, lines 8-9: After considering this comment, we realized this sentence is 
unnecessary, and have removed it from the text. 
 

12. Page 9, Line 27: “single story building” instead? 
• We would like to retain “single building story” because the use of DSMs to detect 

building collapse can include partial collapses such as single-story collapse (Fig. 1) and 
roof collapse (Fig. 2) within a multi-story building. We believe “single building story” is 
the more general term, as it includes single-story buildings and partial collapses. 

https://www.natural-hazards-and-earth-system-sciences.net/for_authors/manuscript_preparation.html
https://www.natural-hazards-and-earth-system-sciences.net/for_authors/manuscript_preparation.html
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Fig. 1. Single-story collapse. Copied from So (2016). 

 
Fig. 2. Roof collapse. Copied from So (2016). 

 
So, E. (2016). Estimating Fatality Rates for Earthquake Loss Models. London: Springer. 

 
13. Page 9, Line 32: should read “. . . sub-meter LoDs. . .” instead of sub-decimeter? 

• We thank the referee for identifying this error. On page 10, line 19, we changed “sub-
decimeter” to “sub-meter”. 
 

14. Page 10, Line 25: “, . . . but achieve a fraction of time. . .”. This part of the sentence is not 
clear. Please revise. 

• Page 11, lines 15-16: We revised the sentence as follows: “Lightweight RTK/PPK-enabled 
multi-rotors may be more affordable than the senseFly eBee X with SODA 3D camera, 
but typically have a shorter battery life and subsequently lower areal coverage than 
fixed wings.” 
 

15. Figure 2: the font of the 3D point density images legend/scale is very small and difficult to 
read. 

• In Figure 2, we increased the size of the text in the legend and scale. 
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Comments from Anonymous Referee #2: 
 

1. The use of drones for natural hazards damages evaluation is a well-known topic. It is 
important to point out that there is a special issue published on NHESS dedicated to UAV and 
natural hazards, I think that authors can find several interesting suggestions considering the 
published revision paper or the others. Another revision paper has been published by Gomez, 
C. and Purdie, H.: UAV- based Photogrammetry and Geocomputing for Hazards and Disaster 
Risk Monitoring – A Review, Geoenvironmental Disasters, 3, 1–11, 2016. 

• We thank the referee for recommending these publications. We performed an extensive 
review of the literature and referenced what we believe to be the most relevant and 
applicable papers to our study. 

 
2. Page 3 line 20: the use of nadiral acquisition (both by drones or planes) can be critical in 

urbanized areas. In Giordan et al 2018, (see comment on chapter 4.2) the effect of damages 
caused by a flood was defined using a mixed approach based on drone and terrestrial 
acquisitions. 

• We thank the referee for providing this context. In Section 4.2 of the original 
submission, we acknowledged that the addition of terrestrial images to drone-based 
aerial imagery has been shown to improve the 3D textured mesh model in urban study 
areas, and referred to Wu et al. (2018) as a demonstrative study. The scope of our study 
was to investigate the sole use of drone-based aerial imagery, and this imagery set was 
not nadir. As noted in Section 2.3, the 828 images were collected at an average pitch 
angle of 7 degrees off nadir.  

• To provide more detail about the obliquity of the imagery set, we modified the last 
sentence of Section 2.3 as such: “A total of 828 oblique images were captured. The 
median image pitch angle was 7.35 ° off nadir (3.55 ° interquartile range), with a 
minimum and maximum of 1.22 ° and 11.83 °, respectively”. 

 
3. Page 4 line 15 “The RTK/PPK image georeferencing capabilities of the drone replaced the need 

for ground control points (GCPs), which are not practical to distribute and survey in an 
emergency mapping context.” This is not correct. The RTK/PPk correction improves the 
accuracy of images acquisition points. The number and the needs of GCPs depend on the 
required accuracy of the SFM results. During the mission planning, it is possible to have an 
estimation of final accuracy and decide if GCPs are required or not. For fast acquisitions, often 
GCPs are not required, but for a pre-event acquisition, the required accuracy should be high, 
and I do not think that it is possible to avoid GCPs. 

• We agree with the referee that GCPs can and should be used for pre-disaster mapping 
to maximize the geospatial accuracy of the data. We retain our position that GCPs are 
not practical to use for emergency (i.e., post-disaster) mapping. We used PPK 
corrections instead of GCPs because of the applicability of this georeferencing method 
to both pre- and post-disaster mapping. 

• To communicate the important point the referee has made, we modified this paragraph 
in Section 2.2 as such: “A senseFly eBee Plus drone with real-time kinematic (RTK)/post-
processed kinematic (PPK) functionality and senseFly Sensor Optimised for Drone 



6 
 

Applications (SODA) red-green-blue (RGB) 20-megapixel camera were used to collect 
imagery. The RTK/PPK image georeferencing capabilities of the drone replaced the need 
for ground control points (GCPs), which are not practical to distribute and survey in an 
emergency (i.e., post-disaster) mapping context. It is important to note that, for pre-
disaster mapping, GCPs should be used to maximize geospatial accuracy. Hugenholtz et 
al. (2016) demonstrate the improvement in DSM vertical accuracy when using a non-
RTK senseFly eBee with GCPs compared to an RTK-enabled senseFly eBee without GCPs. 
For this pre-disaster mapping exercise in downtown Victoria, we chose to use RTK/PPK 
image georeferencing because this method is also applicable to post-disaster mapping. 
One of our objectives was to assess the geospatial accuracy of the pre-disaster data, 
which has implications for the use of RTK/PPK-enabled drones for post-disaster mapping 
and change detection applications.” 
 

4. Page 6 line 10: In my experience, this is not the correct way to operate. The first step is the 
check of the right alignment of surveys. This can be done in particular using large plane areas 
(like car parking). Then you can compare buildings or other structures. The validation of the 
right position of DTM is mandatory to be sure that all used DSM are correct form the geodetic 
point of view. In an exercise like the one presented by authors, they could easily use as a 
sequence of Ground checkpoints to assure the accuracy of the obtained DSM. These 
checkpoints can be acquired using natural or artificial elements like (manholes) also after the 
UAV acquisition. To be rigorous, authors should present a more detailed study of the accuracy 
of the obtained DSM. This is a crucial point because the accuracy of the DSMs comparison is a 
function of the accuracy of used DSMs. 

• We thank the referee for making this critical suggestion. We modified the vertical 
accuracy assessment by replacing the LiDAR checkpoints with 47 ground-surveyed (total 
station) checkpoints located on sewer manhole covers throughout the study area. These 
ground checkpoints follow the guidelines for vertical checkpoints as outlined in the 2015 
ASPRS Positional Accuracy Standards for Digital Geospatial Data (ASPRS, 2015). 

• The modifications to the vertical accuracy assessment are reflected in changes to 
Section 2.5, Section 3.1, Section 4.1, Figure 1, Table 1, and Table 2. 

 
5. Chapter 2.6 it is not clear which is the goal of this chapter. Using nadiral images for facades is 

not correct, and this is not a novelty. Authors should clarify better if the final goal is the 
identification of damages comparing the geometry of roofs or the study of facades. 

• To clarify our goal, we added the following text to the beginning of Section 2.6: “In 
addition to geospatial accuracy, we wanted to assess the quality of building 
representation in the drone-derived 3D data. This assessment would have implications 
on the usability of the 3D data for identifying damages to building roofs and facades”. 

• As described in our response to Comment #2, the imagery set was not nadir. 
 

6. Authors should present the metadata of 2013 LiDAR before using it as a benchmark like the 
number of acquired points per meters, the accuracy of the survey, and the density of DSM 
point cloud. In particular, the DSM density is an important data. If the LiDAR density is not 
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adequate, how authors can be sure that they comparing two points acquired in the same 
position or they are comparing a surveyed point and an artifact? 

• Please refer to our response to Comment #4, where we modified the vertical accuracy 
assessment by using 47 ground checkpoints instead of the LiDAR checkpoints. 
 

7. Chapter 4.1 the presented “key lesson 1” is quite trivial. Authors presented obvious data for 
people familiar with LiDAR and drones DSM. Several critical issues are quite evident in this 
chapter: the most critical point is the a priori definition of LiDAR resolution and accuracy using 
García-Quijano et al. (2008). The final resolution of LiDAR surveys is a function of many 
parameters, like the point density, the flight velocity, the post processing accuracy, and many 
others. In this paper, authors never mentioned the characteristics of the available LiDAR 
survey. Another important element is that without the acquisition of checkpoints, authors are 
not able to define the accuracy of their UAV DSM. I think that this lack of information cannot 
be accepted in a scientific paper. 

• We thank the referee for identifying the improvement that should be made to our 
reference for piloted LiDAR vertical accuracy. We removed García-Quijano et al. (2008) 
as the reference in Section 4.1 and Table 2. Instead, we used the 47 ground checkpoints 
to calculate the RMSEz of the LiDAR DSM generated using the piloted LiDAR data from 
our study area. We then used the RMSEz of the LiDAR DSM to modify Section 4.1 and 
Table 2. Additionally, we added the LiDAR metadata to Section 4.1. 

 
8. Page 10, line 5. The presence of differences in the geometry of several houses in the studied 

area could be useful for better development of the DSM comparison methodology. Using the 
comparison of DSM an images to check the first results, authors can be able to distinguish 
damages from building modifications. An improvement of the presented approach and the 
definition of an effective methodology for the recognition of damages can be an essential add 
value for this work, and it can also reduce the need of a continuous update of the DSM, which 
can generate a strong improvement of cost with a limited benefit. The only real result 
presented in chapter 4.1 is the difference between the results obtained by pix4d using the 
“rapid” and “full” point cloud. In my opinion, this cannot be considered an adequate result. 

• If we are understanding this comment correctly, then the referee is suggesting we 
develop a methodology to distinguish between damaged buildings and modified 
buildings in the DoD. This is an excellent suggestion that would indeed contribute to 
reduced costs and time associated with continuously updating a pre-disaster DSM. If our 
interpretation of the referee’s comment is correct, then we believe we do not have 
sufficient data for the proposed analysis. As shown in Figure 1b, the changes during the 
5 years between the LiDAR (2013) and drone (2018) data acquisitions include new 
construction, structure removal, and parking lot excavation. The buildings that 
underwent new construction and structure removal could serve as examples of 
“modified buildings” in the referee’s proposed analysis. However, our data lack 
examples of “destroyed buildings”. Therefore, we believe we cannot perform what we 
interpret as the proposed analysis. However, we added the following to the end of 
Section 4.1: “To reduce costs and time associated with continuously updating a pre-
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disaster DSM, future research should focus on developing methodologies to distinguish 
between construction-modified and disaster-damaged buildings in a DoD”. 

 
9. Chapter 4.2 the presented “key lesson2” is focused on an interesting point. The nadiral 

acquisition of an urbanized area is not enough for the correct reconstruction of facades. 
Giordan et al. (Giordan, D., Notti, D., Villa, A., Zucca, F., Calò, F., Pepe, A., Dutto, F., Pari, P., 
Baldo, M., and Allasia, P.: Low cost, multiscale and multi-sensor application for flooded areas 
mapping, Nat. Hazards Earth Syst. Sci., 18, 1493-1516, 2018) published a multi-scale approach 
aimed to detect and measure damages on facades. The approach is different, but the topic is 
important for a correct estimation of damages. One of the problems of this article is the 
organization. If the authors want to analyze facades, they have to introduce this topic in 
advance and propose a possible methodology. The publication of a sequence of well-known 
limitations cannot be considered sufficient for an international scientific journal like NHESS. 

• We strongly disagree with the referee’s comment. We believe our research is novel 
because this is the first government-approved drone mapping mission over a major 
Canadian city. This was a multi-stakeholder effort that included the municipal 
emergency management office, federal aviation authority, and air traffic control. In their 
review paper concerning RPAS for natural hazards monitoring and management, 
Giordan et al. (2018) recommend that future research should “propose faster and 
automated approaches. In particular during emergencies, the time required for RPAS 
data set processing is an important element that should be carefully considered”. 
Giordan et al. (2018) also recommend that, “In the following years, it would be desirable 
to witness the transfer of best practices in the use of RPASs be then from the research 
community to government agencies (or private companies) involved in the prevention 
and reduction of impacts of natural hazards. The scientific community should contribute 
to the definition of standard methodologies that can be assumed by civil protection 
agencies for the management of emergencies”. 

• Consistent with the recommendations of Giordan et al. (2018), we present and evaluate 
a legal and plausible scenario. This is evidenced by our description of the multi-
stakeholder coordination (Section 1.2), our use of the only legally approved drone for 
urban overflight in Canada to date (Section 1.2), our gridded flight plan for efficiency (as 
opposed to circular flights around individual buildings) (Section 1, Section 2.2), our use 
of PPK image georeferencing (as opposed to GCPs) (Section 2.2), and our examination of 
“rapid” image processing (Section 2.4, Section 4.1). By constraining our study to comply 
with the legal and logistical practicalities of pre- and post-disaster mapping in a major 
Canadian city, we believe our results have implications on the usability of the 
regulatory-approved drone for assisting in rescue and damage assessment activities. 
Specifically, the results inform the federal aviation authority (Transport Canada) of the 
limitations of this drone and camera configuration, and we suggest an equally safe 
alternative for legal approval (Section 4.2, Section 5). We also provide evidence-based 
lessons/best practices for practitioners such as emergency management offices. These 
best practices pertain to drone hardware (e.g., tilting cameras for 3D mapping [Section 
4.2] and RTK/PPK georeferencing for change detection applications [Section 4.1]), data 
collection (e.g., takeoff and landing locations [Section 2.3] and up-to-date DSMs [Section 
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4.1]), and data processing (e.g., “rapid” processing for sub-meter building collapse 
detection [Section 4.1]). 

• Additionally, by revising the accuracy assessment as recommended by the referee, we 
believe we provide a more rigorous analysis of the drone and LiDAR DSM accuracies. 
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Pre-disaster mapping with drones: an urban case study in Victoria, 
BC, Canada 
Maja Kucharczyk, Chris H. Hugenholtz 
Department of Geography, University of Calgary, Calgary, AB T2N 1N4, Canada 

Correspondence to: Maja Kucharczyk (maja.kucharczyk@ucalgary.ca) 5 

Abstract. We report a case study using drone-based imagery to develop a pre-disaster 3D map of downtown Victoria, British 

Columbia, Canada. This represents the first drone mapping mission over an urban area approved by Canada’s aviation 

authority. The goal was to assess the quality of the pre-disaster 3D data in the context of geospatial accuracy and building 

representation. The images were acquired with a senseFly eBee Plus fixed-wing drone with real-time kinematic/post-processed 

kinematic functionality. Results indicate that the spatial accuracies achieved with this drone would allow for sub-meter 10 

building collapse detection, but the non-gimbaled camera was insufficient for capturing building facades. 

1 Introduction 

Currently, 55 % of the global population resides in urban areas, and this is projected to increase to 68 % by 2050 (United 

Nations, 2018). As the global population increases and a greater proportion is concentrated in urban areas,Increasing global 

population and urbanization (particularly in vulnerable areas) are factors that can contribute to increased death and destruction 15 

by natural hazards like earthquakes and tropical cyclones will rise. In addition to initiatives such as increased quality of 

construction, alarm systems, and proximity to rescue services, Prepre-disaster mapping can help increase a city’s resilience 

against disasters (Pu, 2017). Combining vector layers, digital elevation models, and aerial/satellite imagery, maps are powerful 

tools for mitigation and preparedness before a disaster strikes (Pu, 2017). Copernicus Emergency Management Service 

(Copernicus EMS), one of the main contributors of disaster management maps globally, has used pre-disaster data to produce 20 

thousands of reference maps (showing territories and assets), pre-disaster situation maps (showing hazard levels, evacuation 

plans, and modeling scenarios), and damage grading maps (showing distribution and level of damage to buildings and 

infrastructure). Copernicus EMS generates damage grading maps by visually comparing pre- and post-disaster satellite 

imagery (Copernicus EMS, 2017). Nearby debris is used as a proxy for building structural damage, as building facades cannot 

be directly examined (Copernicus EMS, 2017). 25 

The leading cause of death in an earthquake is building collapse (Moya et al., 2018). Remote sensing can potentially 

assist first responders in rapidly locating collapsed buildings to prioritize search and rescue efforts (Moya et al., 2018). 

However, clouds and access to satellite imagery can cause delays in analysis and preclude the traditional 2D approach from 

being useful for search and rescue. Furthermore, partial building collapse, which can trap and kill victims, generates lower 
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amounts of debris than complete collapse, so the dependence on debris as a proxy for collapse becomes less reliable. Research 

has shown that 2.5D data can build upon the traditional 2D approach and increase the reliability of collapse detection by 

observing elevation changes over buildings. Following the 2016 Kumamoto earthquake in Japan, Moya et al. (2018) detected 

collapsed buildings using pre- and post-earthquake light detection and ranging (LiDAR) digital surface models (DSMs). For 

each building, they calculated the average height difference between the DSMs and manually set a threshold value to detect 5 

collapse – this technique had a Cohen’s kappa coefficient and overall accuracy of 0.80 and 93 %, respectively (Moya et al., 

2018). Pre-event LiDAR data, however, can often be outdated, leading to false detections, or unavailable, especially in less-

developed parts of the world. Post-event LiDAR data may be difficult to rapidly obtain. To address these operational 

challenges, drones are an alternative platform for acquiring 2.5D and 3D data, and when stored locally for emergency mapping, 

can be used to rapidly acquire data. Drone-derived aerial imagery, when paired with structure-from-motion (SfM)multiview-10 

stereo image processing software, can be used to generate sub-decimeter resolution orthomosaics, DSMs, and photorealistic 

3D models in the form of colorized point clouds and textured meshes. 

Drone-based mapping can also potentially support longer-term needs assessments and reconstruction monitoring by 

surveying building damage levels. The traditional 2D approach with satellite imagery only provides information about building 

roofs and nearby debris, and previous research has shown that oblique perspectives of building facades are valuable for 15 

discerning between lower grades of building damage (Kakooei and Baleghi, 2017; Masi et al., 2017). Previous studies have 

conducted drone-based 3D mapping of buildings following a disaster. The motivation is to complement ground-based building 

damage assessments – cataloging the exterior damages in 3D can support the planning/prioritizing of subsequent, more 

thorough ground-based assessments (Vetrivel et al., 2018), and the planning/monitoring of reconstruction. Previous studies 

(e.g., Fernandez Galarreta et al., 2015; Cusicanqui et al., 2018) have reported that damage features such as deformations, 20 

cracks, debris, inclined walls, and partially collapsed roofs are identifiable in drone-based 3D point clouds and mesh models. 

These findings demonstrate that drone 3D data are capable of supporting post-disaster activities. However, previous studies 

have been limited to drone-based 3D mapping: (i) a single building (Achille et al., 2015; Meyer et al., 2015), (ii) small, historic 

villages (Vetrivel et al., 2015; Dominici et al., 2017; Calantropio et al., 2018; Cusicanqui et al., 2018; Vetrivel et al., 2018), or 

(iii) modern cities, but without focus on the quality of building representation in the 3D data (Cusicanqui et al., 2018; Vetrivel 25 

et al., 2018). It is important to understand how drone-based 3D data would reconstruct a cityscape, particularly with a grid-

based survey to capture multiple city blocks in a single flight. This flight pattern would balance areal coverage with 3D 

reconstruction quality. The dense spacing of buildings and the presence of high-rises in an urban scene create considerable 

potential for camera occlusion and may result in 3D mesh defects such as inaccurate shapes, holes, and blurred textures (Wu 

et al., 2018). 30 

In addition to issues with photogrammetry, it is challenging to collect drone data over dense, urban areas due to 

airspace aviation regulations that were designed to protect public safety. As such, in a disaster context, drone data over cities 

have generally been collected in the post-disaster phases, when destruction is widespread and these data are in high demand. 

With historic emphasis on data collection in the post-disaster phases, it is important not to detract from pre-disaster mapping. 
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Pre-disaster mapping not only provides baseline data from which to assess changes, but is also a crucial exercise that enables 

emergency management actors to establish operational protocols to maximize the effectiveness of drones in emergencies. 

These protocols pertain to drone hardware/software, data collection, data processing, and data analysis. 

We present a case study of pre-disaster mapping with a drone in Victoria, British Columbia, Canada. Victoria has at 

least a 30 % probability of experiencing a significantly damaging earthquake in the next 50 years (AIR Worldwide, 2013). A 5 

2016 report on the seismic vulnerability of Victoria conducted presented a risk assessment for all buildings (13,330 buildings) 

in Victoria under various earthquake scenarios and levels of ground shaking (VC Structural Dynamics Ltd, 2016). The report 

concluded that 30 % of the buildings (3,936 buildings) have a high seismic risk, meaning they have at least a 5 % probability 

of complete damage in a 50-year period (VC Structural Dynamics Ltd, 2016). This pre-disaster mapping exercise was 

undertaken for City of Victoria’s Emergency Management Division and in partnership with GlobalMedic, a Canadian disaster 10 

relief charity. This was the first Transport Canada-approved drone flight mapping mission over a major Canadian city. We 

were restricted by regulations to use a specific platform, a 1.1 kg senseFly eBee fixed-wing drone. The overarching goal of 

this case study was to assess the quality of the drone data that we were able to obtain in a manner adhering to federal regulations. 

1.1 Objectives 

The first objective was to assess the geospatial accuracy of the drone data. Geospatial accuracy is important for change 15 

detection applications, as it relates to the quality of registration between pre- and post-disaster datasets. This was done by first 

assessing the vertical accuracy of the drone DSM using 339 airborne LiDAR47 ground-surveyed checkpoints. Then, a LiDAR 

DSM was subtracted from the drone DSM to visually assess the horizontal alignment of rooftops as a qualitative measure of 

horizontal accuracy. The second objective was to assess the quality of 3D building representation. The only legally approved 

drone for this flight presents challenges for 3D mapping of cities, as it is a fixed-wing drone with a non-gimbaled camera. 20 

Research has shown that high camera tilt angles, which are not achievable with the regulatory platform for this flight, will 

result in higher reconstruction density (less data gaps) and precision of points on building facades than lower camera tilt angles 

(Rupnik et al. 2015). The quality assessment of 3D building representation was done by visually assessing the drone 3D 

textured mesh, and using Google 3D (i.e., “3D Buildings” layer in Google Earth) as a reference for building appearance. 

Additionally, we applied a method previously used on post-disaster, drone-derived 3D point clouds to quantify data gaps on 25 

sample building facades. 

1.2 Regulatory background 

Transport Canada is the aviation authority that regulates drone operations in Canadian airspace. The current regulations require 

case-by-case permission for drone flights in urban areas. Permission is sought by submitting an application for a Special Flight 

Operations Certificate, where the applicant must demonstrate sufficient ground/flight training, standard operating procedures, 30 

emergency procedures, drone maintenance procedures, and more. Additionally, coordination with air traffic control (Nav 

Canada) was required to perform the flight, as downtown Victoria is within controlled airspace, with nearby airports, heliports, 
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and seaplane bases causing high-density air traffic. The only approved drone for this flight was a senseFly eBee, of which the 

“Plus” model was used for its higher georeferencing accuracy. The senseFly eBee Plus is a 1.1 kg, 1.1 m wingspan, fixed-

wing drone made of lightweight expanded polypropylene foam, carbon fiber, and composite materials. The two eBee Classic, 

SQ, and Plus models are the lightest on the list of compliant drones for Transport Canada, which includes drones meeting 

federal safety and quality standards. For this flight, the senseFly eBee drone was approved by Transport Canada due to its light 5 

weight and ability to glide to a landing. 

2 Methods 

2.1 Flight area 

The drone flight covered a 1 km2 area of downtown Victoria, BC, Canada. The western half and eastern half of the flight area 

covered parts of the Historic Commercial District (HCD) and Central Business District (CBD), respectively, resulting in image 10 

capture over a diversity of building types and heights. The HCD contains an undulating streetscape with low- to mid-rise, 

brick- and stone-facade buildings alternating between one and five stories, including boutique hotels, heritage buildings, 

businesses, and offices (CoV, 2011). The CBD contains high-density, mid- to high-rise commercial and residential buildings 

(CoV, 2011). The building heights within the flight area ranged from 2–55 m, and street widths varied between 7–24 m. 

2.2 Drone hardware and flight planning 15 

A senseFly eBee Plus drone with real-time kinematic (RTK)/post-processed kinematic (PPK) functionality and senseFly 

Sensor Optimised for Drone Applications (SODA) red-green-blue (RGB) 20-megapixel camera were used to collect imagery. 

The RTK/PPK image georeferencing capabilities of the drone replaced the need for ground control points (GCPs), which are 

not practical to distribute and survey in an emergency (i.e., post-disaster) mapping context. It is important to note that, for pre-

disaster mapping, GCPs should be used to maximize geospatial accuracy. Hugenholtz et al. (2016) demonstrate the 20 

improvement in DSM vertical accuracy when using a non-RTK senseFly eBee with GCPs compared to an RTK-enabled 

senseFly eBee without GCPs. For this pre-disaster mapping exercise in downtown Victoria, we chose to use RTK/PPK image 

georeferencing because this method is also applicable to post-disaster mapping. One of our objectives was to assess the 

geospatial accuracy of the pre-disaster data, which has implications for the use of RTK/PPK-enabled drones for post-disaster 

mapping and change detection applications. 25 

 The drone’s PPK mode was used, with correction data obtained from the Natural Resources Canada 

(NRCANNRCan) Canadian Active Control System (Albert Head reference station, 10 km from flight area). SenseFly eMotion 

(v3) software (eMotion) (senseFly, 2018) was used to plan the flight. The flight was grid-based, composed of orthogonal flight 

lines running non-parallel with streets (i.e., approximately 45 ° offset). The addition of perpendicular flight lines and the 

orientation of the grid were used to increase image coverage of building facades. The imagery frontal and lateral overlap were 30 

set to 75 %, and the flight altitude was 120 m above ground level (AGL). 
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2.3 Drone image acquisition 

The flight was conducted on June 14, 2018. The operations took place in the morning for increased safety, i.e., low air traffic. 

However, the ideal flight time would be solar noon to minimize shadows from buildings. The ground control station was set 

up on a parkade rooftop within the flight area. The parkade, surrounded by relatively low buildings and an open courtyard, 

allowed for unobstructed takeoff/landing, visual line of sight, and radio signal between the drone and ground control station. 5 

A total of 828 oblique images were captured, . with The median image pitch angle was s averaging 7.35 ° off nadir (3.55 ° 

interquartile range), with a minimum and maximum of 1.22 ° and 11.83 °, respectively. 

2.4 Image processing 

The images were processed using a high-performance computer (Intel® Core™ i9-7900X CPU @ 3.30 GHz with 64 GB RAM 

and NVIDIA GeForce GTX 1080 GPU). First, eMotion was used for PPK processing by incorporating raw global navigation 10 

satellite system (GNSS) observations from the reference station and drone to refine the image geotags. The geotagged images 

were processed using Pix4Dmapper Pro (v4.3.27) (Pix4D) (Pix4D, 2018), a structure-from-motion multiview-stereo (SfM-

MVS) software. SfM-MVS generally consists of the following steps. First, computer vision algorithms search through each 

image to identify “features” – that is, pixel sets that are robust to changes in scale, illumination, and 3D viewing angle (Westoby 

et al., 2012). Next, the features are assigned unique “descriptors”, which allow for the same features to be identified across 15 

multiple images, and for the images to be approximately aligned (Westoby et al., 2012). This initial image alignment is 

iteratively optimized via bundle adjustment algorithms, the output of which is a sparse 3D point cloud of feature 

correspondences (Westoby et al., 2012). Multiview-stereo algorithms then densify the sparse point cloud, typically by two or 

more orders of magnitude (Westoby et al., 2012). The dense point cloud is then used to generate a 3D textured mesh, which is 

a triangulated surface that is textured using the original images. The dense point cloud is also used to generate a DSM. The 20 

DSM and images are used to generate an orthomosaic. 

For the first objective of assessing the geospatial accuracy of the drone data, five DSMs were generated. Each DSM 

had increasingly computationally intensive parameters, resulting in an increasingly higher processing time. These various 

combinations were used to assess the differences in vertical accuracy achieved with “rapid” and “slow” processing, ranging in 

total processing time from 0.50–8.14 h. This comparison has important implications on the applicability of a drone-based DSM 25 

for rapid building collapse detection, where time is a major factor. Four “rapid” DSMs were generated in Pix4D using values 

of 1/8, 1/4, 1/2, and 1 for the image scale parameters (Step 1: keypoints image scale and Step 2: image scale), and low density 

for the point cloud. One “slow” DSM was generated using a value of 1 for the image scale parameters, and optimal (medium) 

density for the point cloud. All 5 DSMs were generated using 3 minimum matches, noise filtering, “sharp” surface smoothing, 

and inverse distance weighting interpolation. For the second objective of assessing 3D building representation, the 3D textured 30 

mesh was generated in Pix4D using a value of 1 for the image scale parameters, optimal (medium) density for the point cloud, 
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3 minimum number of matches, and high resolution for the textured mesh. A medium-resolution mesh was also generated for 

comparison to the high-resolution mesh. 

All Pix4D data outputs had a spatial reference of Universal Transverse Mercator (UTM) Zone 10N, North American 

Datum of 1983 (Canadian Spatial Reference System) (NAD83 [CSRS]), using the Canadian Geodetic Vertical Datum of 2013 

(CGVD2013) for orthometric heights relative to the Canadian Gravimetric Geoid model of 2013 (CGG2013 (, 2010.0 epoch) 5 

geoid model. The DSMs were assessed for geospatial accuracy, while the point cloud and textured meshes were used to assess 

3D building representation in terms of geometry and texture. 

2.5 Geospatial accuracy assessment 

To be useful for change detection, such as DSM differencing for building collapse detection (e.g., Moya et al., 2018), the drone 

data must be geospatially accurate. Otherwise, misregistration of the drone data with pre- or post-event data may cause false 10 

detections. Therefore, the geospatial accuracy of each drone DSM was assessed using a 2013 LiDAR point cloud47 ground-

surveyed checkpoints as a reference dataset. The vertical accuracy assessment was conducted using recommendations from 

the 2015 American Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital 

Geospatial Data (ASPRS, 2015). ASPRS (2015) recommend vertical checkpoints to be ground-surveyed and located on flat 

or uniformly sloped (≤ 10 % slope), open terrain, away from vertical artifacts and abrupt elevation changes. The checkpoints 15 

used in this accuracy assessment were collected using a total station, and represent sewer manhole covers located on paved 

roads throughout the study area.The vertical accuracy assessment was conducted using recommendations from the 2015 

American Society for Photogrammetry and Remote Sensing (ASPRS) Positional Accuracy Standards for Digital Geospatial 

Data (ASPRS, 2015). ASPRS (2015) note that kinematic checkpoints (surveyed from a moving platform) can be used as 

supplemental reference data, but static checkpoints should be used for the main accuracy assessment. Due to unavailability of 20 

ground survey data, the accuracy assessment used LiDAR data as the reference. The LiDAR data were acquired in 2013, had 

an average point spacing of 0.31 m, and had the same spatial reference as the drone data. The vertical error of each drone DSM 

was calculated using LiDAR checkpoints located on rooftops only, since the motivation was to assess the usability of the drone 

DSM for building collapse detection. To extract checkpoints from the LiDAR point cloud, first, 5000 points were randomly 

subsampled using CloudCompare (v2.9.1). From those 5000 points, only points corresponding to rooftops were retained. To 25 

avoid selecting checkpoints on rooftops that were not present during the 2013 LiDAR data collection, a 2013 satellite image 

was viewed in Google Earth and compared to the drone orthomosaic to determine buildings common to both datasets. ASPRS 

(2015) recommend vertical checkpoints be located on flat or uniformly sloped (≤ 10 % slope), open terrain, away from vertical 

artifacts and abrupt elevation changes. Therefore, the final selection of LiDAR checkpoints included only those on flat rooftops 

and away from edges and roof objects. A total of 339 LiDAR checkpoints were retained. Each LiDAREach  checkpoint z-30 

coordinate (zLiDARzref) was subtracted from the corresponding drone DSM value (zdrone) to calculate errors (zdrone – zLiDARzref). A 

Shapiro-Wilk test (α level of 0.05) and a visual inspection of the histogram, normal Q-Q plot, and box plot indicated that the 
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errors followed a normal distribution. Therefore, vertical accuracy was calculated as the vertical root mean squared error 

(RMSEz) following Eq. (1): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧 = �1
𝑛𝑛
∑ (𝑧𝑧𝑖𝑖(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑) − 𝑧𝑧𝑖𝑖(𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟))2𝑛𝑛
𝑖𝑖=1 ,        

 (1) 

where 𝑧𝑧𝑖𝑖(𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑) is the value of the ith cell from the drone DSM, 𝑧𝑧𝑖𝑖(𝐿𝐿𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑𝑟𝑟) is the z-coordinate of the corresponding LiDAR 5 

pointcheckpoint, and the total number of observations is represented by n (ASPRS, 2015). To visually assess the horizontal 

accuracy of the drone data, a DSM of difference (DoD) was generated by subtracting a LiDAR DSM from the drone DSM. 

The LiDAR data were collected in 2013, and had an average point spacing of 0.31 m. To generate the DoD, Firstfirst, the 

LiDAR point cloud was interpolated into a 0.31 m DSM in ESRI ArcMap (v10.5.1) (ESRI, 2018) using inverse distance 

weighting interpolation and linear void fill. The LiDAR DSM was then subtracted from the “slow” drone DSM to calculate a 10 

0.31 m DoD (DoD = DSMdrone – DSMLiDAR). The DoD was used to visually assess the horizontal alignment of roofs as a 

qualitative measure of horizontal accuracy. 

2.6 Assessment of building geometry and texture 

In addition to geospatial accuracy, we wanted to assess the quality of building representation in the drone-derived 3D data. 

This assessment would have implications on the usability of the 3D data for identifying damages to building roofs and facades. 15 

The medium- and high-resolution textured meshes were visually assessed for quality of building representation in terms of 

geometry and texture. Eight sample buildings ranging in geometrical complexity were segmented from each mesh using 

CloudCompare (v2.9.1) (CloudCompare, 2018) and were visually compared. Google 3D (i.e., Google Earth layer “3D 

Buildings”) served as a reference for building appearance. The Google 3D layer was photogrammetrically derived using nadir 

and 45 ° aerial imagery that was collected with a multi-camera system in 2014. To support the visual assessment, each sample 20 

building was segmented from the dense point cloud, and each building point cloud was colored by 3D point density using 

CloudCompare. To further investigate geometrical and textural distortions within the mesh, the dense point cloud was used to 

quantify data gaps on building facades (i.e., regions of facades without points). The procedure generally followed Cusicanqui 

et al. (2018), who assessed the completeness of drone-based point clouds of post-earthquake study areas in Taiwan and Italy. 

Using CloudCompare, six sample facades were segmented from the dense point cloud. The Rasterize tool was used to project 25 

the points of each segmented facade onto a 0.50 m grid, with the projection plane parallel to the facade. Then, a 0.50 m raster 

was generated, showing the number of 3D points in each cell. For each raster, the percentage of facade data gaps was calculated 

by dividing the number of empty cells by the total number of cells. To support the data gap assessment, the sample facades 

were also segmented from the high-resolution mesh using CloudCompare. 
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3 Results 

3.1 Geospatial accuracy of drone DSM 

The vertical error of each drone DSM was calculated using 339 randomly selected LiDAR47 ground-surveyed checkpoints 

located on flat roofs and away from edges and roof objectssewer manhole covers. For the “slow” DSM, errors ranged from -

0.0903–0.20 13 m (Fig. 1a). The mean vertical error was 0.06 08 m, with a standard deviation of 0.04 02 m (Fig. 1a), 5 

demonstrating the drone DSM tended to overestimate the elevation of rooftopsthe ground surface. Table 1 shows the RMSEz 

values of the “slow” DSM and the 4 “rapid” DSMs. RMSEz decreased as total processing time increased (Table 1). The DSM 

generated in the least amount of time, 0.50 h, had an RMSEz of 0.16 m, which is 0.09 08 m higher than the RMSEz for the 

“slow” DSM, generated in 8.14 h (Table 1). The horizontal accuracy of the “slow” DSM was visually assessed by calculating 

a DSM of difference (DoD = DSMdrone – DSMLiDAR) (Fig. 1b). The DoD shows blue tints for elevation overestimations and 10 

red tints for elevation underestimations by the drone DSM (Fig. 1b). A 2013 satellite image was viewed in Google Earth and 

compared to the drone orthomosaic to determine buildings common to both datasets. Figure 1b identifies 16 buildings with 

large regions of contiguous DSM differences. These contiguous DSM differences are due to changes that occurred between 

the 2013 LiDAR and 2018 drone data acquisitions, such as new construction, structure removal, and parking lot excavation 

(Fig. 1b). For the rest of the DoD, the red and blue cells mostly correspond to changes in vegetation, and inconsistencies in 15 

building footprint edges between the drone and LiDAR DSMs (Fig. 1b). Building outlines appear mostly blue, and don’t 

appear weighted more heavily in one direction (Fig. 1b), suggesting no major horizontal offset of the drone DSM relative to 

the LiDAR DSM. With a 0.31 m average point spacing, it is possible that the LiDAR point cloud did not sample roof edges, 

resulting in slightly smaller building footprints in the LiDAR DSM than the drone DSM. Building footprint edge differences 

could also be due to inaccurate geometry from drone-based photogrammetry. 20 

3.2 Building representation: mesh resolution and data gap assessment 

The appearance of buildings varied considerably between the medium- and high-resolution 3D meshes. Figure 2 shows eight 

sample buildings represented by the dense point cloud (colored by 3D point density), both meshes, and Google 3D as a 

reference. Both meshes were generated using the settings described in § 2.4, with only the mesh resolution setting varying. For 

each building, the point density is higher on roofs than facades, and data gaps (i.e., regions of zero points) are visible within 25 

facades (Fig. 2). The medium-resolution mesh has visibly poorer reconstruction of building geometry and, subsequently, more 

deformations in texture than the high-resolution mesh (Fig. 2). This was expected, as each medium-resolution building contains 

only 4–5 % of the vertices/faces of its high-resolution counterpart. Figures 2a–2d show heritage buildings with complex 

geometry: Victoria City Hall (Fig. 2a), St. John the Divine Anglican Church (Fig. 2b), Alix Goolden Performance Hall (Fig. 

2c), and St. Andrew’s Cathedral (Fig. 2d). Smaller architectural features common to these heritage buildings, such as gabled 30 

entrances, dormer windows, conical roofs, spires, and towers are better resolved in the high-resolution mesh (Fig. 2a–d). For 

these buildings, as well as buildings with simpler geometry (Fig. 2e–h), the high-resolution mesh shows higher linearity of 
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facade, roof, and window edges. For the high-rise buildings (Fig. 2e–h), facades with widespread data gaps in the point cloud 

appear to protrude inward and outward in the meshes, and have severe textural distortions. For generally planar facades with 

regular sampling (e.g., the front-facing facades in Fig. 2e and 2f), the apparent geometrical and textural differences between 

the medium- and high-resolution meshes are less prominent. The 95–96 % lower density of vertices/faces in the medium-

resolution mesh appears more robust to geometrical/textural distortions for buildings with simpler, planar geometry than those 5 

with complex geometry, provided there is adequate sampling. However, as demonstrated by the high-rise buildings (Fig. 2e-

h), facades with widespread data gaps have severe distortions, regardless of mesh resolution. 

Due to considerable improvements in building geometry and texture, the high-resolution textured mesh was assessed 

going forward. As demonstrated by the point-density point clouds in Fig. 2, roofs were more densely and regularly sampled 

than facades, and some facades contained widespread gaps that resulted in severe distortions in the meshes. To further assess 10 

facade data gaps, particularly partial data gaps, six facades were segmented from the dense point cloud and high-resolution 

mesh. The 0.50 m point density raster and high-resolution mesh segmentation are shown for each facade in Fig. 3. Data gaps, 

represented by red cells, encompass 9–59 % of the facades (Fig. 3). For each facade, large regions of contiguous red cells in 

the point density raster appear attributed to distortions in the mesh (i.e., stretched texture and inwardly protruding geometry). 

4 Discussion 15 

4.1 Key lessons: drone geospatial accuracy and up-to-date, pre-disaster DSMs 

For building collapse detection (e.g., Moya et al., 2018), drones can provide post-event DSMs that can be differenced with 

LiDAR or photogrammetrically derived pre-event DSMs. However, there are geospatial accuracy requirements to avoid 

artificial detections caused by the misregistration of pre- and post-event DSMs. As such, we conducted a vertical accuracy 

assessment of each drone DSM using LiDAR checkpoints located on flat roofs only, as the goal was to assess the usability of 20 

the drone DSM for building collapse detection. Based on 339 checkpoints,47 ground-surveyed checkpoints. the The RMSEz 

of the “slow” drone DSM, generated in 8.14 h, was 0.07 08 m, and the RMSEz of the most “rapid” drone DSM, generated in 

0.50 h, was 0.16 m (Table 1). To assess the implications of the vertical accuracies, a level of detection (LoD) can be calculated 

to determine the threshold elevation difference that can be detected using pre- and post-disaster DSMs with known RMSEz 

values, following Eq. (2): 25 

𝐿𝐿𝐿𝐿𝐿𝐿 = ±3 × �(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧1)2 + (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧2)2,         (2) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧1 is the RMSE of the pre-disaster DSM, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧2 is the RMSE of the post-disaster DSM, and the multiplier, 3, 

represents the extreme tails of a normal probability distribution (Hugenholtz et al., 2013). Table 2 shows hypothetical DoDs, 

each generated with a different combination of pre- and post-disaster DSMs, and their resulting LoDs from Eq. (2). In Table 

2, the RMSEz values for the “slow” and “rapid” drone DSMs were experimentally derived in this study. The RMSEz for piloted 30 

LiDAR (0.04 m) was calculated using the 2013 LiDAR DSM was experimentally derived by García-Quijano et al.and 47 
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ground-surveyed checkpoints (2008) (Table 2). The LiDAR data were acquired with a Leica ALS70-HP sensor from an 

average flight altitude and speed of 1360 m AGL and 220 knots, respectively. The field of view and average swath width were 

47 ° and 1240 m, respectively. The scan rate was 48.9 Hz, and the laser pulse rate was 370.6 kHz. Based on 71 RTK-GNSS 

vertical checkpoints from a nearly level (approximately 3 % slope) study area covered by short grass, García-Quijano et al. 

(2008) calculated an RMSEz of 0.07 m for a triangulated irregular network (TIN) interpolated using a bare-earth LiDAR point 5 

cloud with an average point spacing of 0.61 m (Table 2). The RMSEz for a non-RTK/PPK drone was experimentally derived 

by Hugenholtz et al. (2016) (Table 2). Based on 180 RTK-GNSS vertical checkpoints from a gravel pit, Hugenholtz et al. 

(2016) calculated an RMSEz of 2.144 m for a non-RTK/PPK senseFly eBee (no GCPs), and an RMSEz of 0.089 m for an 

RTK/PPK-enabled senseFly eBee (no GCPs) (similar to our RMSEz of 0.07 08 m). For each hypothetical DoD in Table 2, the 

corresponding LoD value indicates that any elevation difference between -LoD and +LoD is likely due to error and cannot be 10 

interpreted as real. DoDs generated with one or more DSMs derived from a non-RTK/PPK drone (DoD5 and DoD6) had LoDs 

of 6.44 43 m and 9.10 m (Table 2). For LoDs attributed to the use of non-RTK/PPK drones, buildings shorter than the LoDs 

cannot be assessed for collapse, and for assessable buildings, only DoD values exceeding the LoDs are likely to correspond to 

real collapse. The 6.44 43 m and 9.10 m LoDs exceed the typical height of a single building story, suggesting that DoDs 

generated with non-RTK/PPK drones cannot be reliably used to detect partial collapse. Conversely, DoDs generated with one 15 

or more DSMs from an RTK/PPK drone (DoD1–4) had LoDs of 0.30 m and 0.52 mranging from 0.27–0.54 m, suggesting that 

these DoDs can be reliably used to detect partial collapse (Table 2). This includes DoD3 and DoD4, both generated using a 

“rapid” post-event drone DSM (Table 2). The use of the lowest image scale value (1/8) and lowest point density in Pix4D to 

generate the most rapid DSM in 0.50 h (Table 1) retained sub-decimeter meter LoDs (0.49–0.54 m0.52 m) (Table 2). These 

results demonstrate that RTK/PPK-enabled drones are required for reliable building collapse detection, and rapid processing 20 

settings can be used. 

Furthermore, the DoD showed buildings with large regions of contiguous DSM differences due to changes that 

occurred between the 2013 LiDAR and 2018 drone data acquisitions, such as new construction, structure removal, and parking 

lot excavation (Fig. 1b).  This demonstrates that, for building collapse detection, it is necessary to maintain an up-to-date, pre-

disaster DSM to avoid false detections. Victoria has an ever-changing downtown core, with rezoning and new developments 25 

to help accommodate significant population growth forecasted over the next 20–30 years (CoV, 2011). With constant new 

construction throughout growing cities like Victoria, it is important for municipalities to regularly update DSMs, such that 

changes in construction are not masked as disaster-induced destruction. To reduce costs and time associated with continuously 

updating a pre-disaster DSM, future research should focus on developing methodologies to distinguish between construction-

modified and disaster-damaged buildings in a DoD. 30 

4.2 Key lessons: drone mesh resolution and imaging platform 

From an image processing standpoint, it was shown in § 3.2 that mesh geometry and texture are improved considerably from 

a medium-resolution to a high-resolution mesh (Fig. 2). This high-resolution mesh required more processing time, including 
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subsetting the project into two, but these improvements justify the added time for virtual 3D damage assessment applications. 

For image collection, the deformed geometry and texture of buildings (Fig. 2 and 3) could be improved by collecting highly 

oblique images of facades in addition to nadir images of roofs and ground features. The average 7 ° camera pitch angle used 

in this case study was likely insufficient for capturing vertical and near-vertical faces, resulting in large point cloud data gaps 

and geometrical/textural distortions in the 3D mesh (Fig. 2 and 3). Using a higher camera angle (e.g., 30–45 ° off nadir) could 5 

make important improvements, for deformations in the 3D model could be mistaken for building damage. Rupnik et al. (2015) 

found that increasing the camera tilt angle resulted in a higher point density on building facades and higher 3D precision of 

points, and that the addition of oblique images to a nadir image set increased the vertical accuracy of points. This suggests that 

different hardware is required for 3D mapping of municipalities with small drones. Options include multi-rotor drones with 

gimbaled cameras that are capable of highly oblique image capture. However, this challenges current regulations that only 10 

allow lightweight, fixed-wing drones to be flown over municipalitieswe suspect multi-rotor drones are less likely to be legally 

approved for urban overflight than fixed-wing drones. To comply with current regulations, aA potential solution is to use a 

lightweight fixed-wing drone with a camera that tilts for oblique image capture. One commercially available option is the 

senseFly eBee X drone with a senseFly SODA 3D RGB camera, which captures one nadir image and two laterally oblique 

images per waypoint. The eBee X model became available in September 2018, after the data capture in this study. Lightweight 15 

RTK/PPK-enabled multi-rotors may be more affordable than the senseFly eBee X with SODA 3D camera, but achieve a 

fraction of the flight timetypically have a shorter battery life and subsequently lower areal coverage of than fixed wings. 

It is important to note that a higher camera angle is not a panacea – higher camera tilt angles result in higher occlusions 

due to surrounding buildings, which contribute to lower point density on lower parts of facades (Rupnik et al., 2015). Moreover, 

point cloud gaps will persist on facades due to several factors: (i) occlusions caused by surrounding buildings, facade 20 

protrusions, and other objects, (ii) insufficient texture, (iii) highly reflective surfaces like glass, and (iv) poor image quality 

(Fonstad et al., 2013; Alsadik et al., 2014). Another potential solution is to obtain images of building facades from the ground. 

Wu et al. (2018) showed that drone-derived textured meshes of urban study areas in Germany and Hong Kong were improved 

with the integration of ground-based images. The meshes had increased geometric accuracy and improved texture (Wu et al., 

2018). However, potential challenges to obtaining terrestrial images include added time, safety concerns, and limited access. 25 

 The data acquisition methods used in this study will need to be adapted to fit the conditions of different urban areas. 

For example, flight altitude will need to be adjusted to give a safe vertical clearance from the tallest building. If the terrain in 

the area is sloped, elevation data should be input to the flight planning software to keep the flight altitude constant. A grid of 

flight lines is recommended, although its orientation and image overlap will vary depending on factors such as building layout 

and density. In a post-disaster context, a takeoff and landing location may be difficult to locate and access due to widespread 30 

destruction. Weather conditions such as high winds and rain following storm events may pose challenges to the flying ability 

of lightweight drones. Atmospheric conditions such as haze and smoke limit optical sensors in imaging destruction. These 

factors are examples of considerations that should be made when adapting the data acquisition methodology in this study. 
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5 Conclusions 

We presented a case study of drone-based pre-disaster mapping in downtown Victoria, BC, Canada. The objectives were to 

assess the quality of the data in terms of geospatial accuracy and 3D building representation. Using 339 airborne LiDAR 

checkpoints located on flat roofs47 ground-surveyed checkpoints, the RMSEz of the drone DSM was 0.07 08 m. The DSM of 

difference (DoD = DSMdrone – DSMLiDAR) showed complete roof overlap, suggesting adequate horizontal accuracy for change 5 

detection applications. For building collapse detection, we devise drones with RTK/PPK image georeferencing capabilities 

and up-to-date, pre-disaster DSMs are required to avoid false detections. Furthermore, image processing using “rapid” settings, 

as opposed to “slow” settings, reduced processing time from 8.14 h to 0.50 h, increased DSM RMSEz from 0.07 08 m to 0.16 

m, and increased DoD LoD from 0.30 34 m to 0.52 54 m. Though processing times were specific to our computing hardware, 

these differences demonstrate that “rapid” processing is capable of quickly generating DSMs that can reliably detect sub-meter 10 

building collapse. Conversely, theoretical hypothetical DoDs derived from one or more non-RTK/PPK drone DSMs have 

LoDs too high (i.e., > 6 m) to reliably detect partial building collapse. These results suggest that RTK/PPK-enabled drones 

and “rapid” image processing are most suitable for rapid building collapse detection with drones. 

For virtual building damage assessment with drone-derived 3D textured meshes, it was shown that a high-resolution 

mesh, containing 95–96 % more vertices/faces than a medium-resolution mesh, visually improved building geometry and 15 

texture, especially for heritage buildings with complex geometries and small architectural features. However, neither mesh 

resolution was able to cope with large point cloud gaps on building facades. These data gaps were shown to correspond with 

severely distorted geometry and texture in the mesh. Therefore, for future drone-based pre- and post-disaster 3D mapping of 

municipalities, different hardware would be required. The ability to capture highly oblique images is paramount for virtually 

reconstructing building facades. Options include a multi-rotor drone with a gimbaled camera. However, follow-up studies with 20 

lightweight multi-rotor drones will not be possible without modification to existing airspace regulationswe suspect that 

lightweight multi-rotors are less likely to be approved for mapping missions in urban areas. Therefore, we suggest a follow-

up study with a senseFly eBee X with SODA 3D camera. 
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Table 1. DSMs generated with different processing settings in Pix4D (v4.3.27), with number of minutes for each step, total time in 
hours, and resulting RMSEz. The processing was done using a high-performance computer (Intel® Core™ i9-7900X CPU @ 3.30 
GHz with 64 GB RAM and NVIDIA GeForce GTX 1080 GPU). 

 Processing settings Processing time (min)   

DSM Image 

scale 

Point 

density 

Initial 

processing 

Point cloud 

densification 

DSM 

generation 

Total processing 

time (h) 

DSM RSMEz 

(m) 

Rapid1 1/8 Low 8.97 9.78 11.15 0.50 0.16 

Rapid2 1/4 Low 13.07 13.60 10.80 0.62 0.1214 

Rapid3 1/2 Low 22.15 28.62 13.57 1.07 0.1011 

Rapid4 1 Low 25.73 105.22 28.08 2.65 0.08 

Slow 1 Medium 25.83 361.00 101.80 8.14 0.0708 

 5 

 

Table 2. Hypothetical DoDs calculated using different DSM combinations. The LoD for each DoD was calculated using Eq (2). 

DoD Pre-disaster DSM Post-disaster DSM RMSEz1 (m)a RMSEz2 (m)b LoD (m) 

DoD1 RTK/PPK drone (“Slow”) RTK/PPK drone (“Slow”) 0.07c08c 0.07c08c 0.3034 

DoD2 LiDAR RTK/PPK drone (“Slow”) 0.07d04d 0.07c08c 0.3027 

DoD3 RTK/PPK drone (“Slow”) RTK/PPK drone (“Rapid1”) 0.07c08c 0.16e 0.5254 

DoD4 LiDAR RTK/PPK drone (“Rapid1”) 0.07d04d 0.16e 0.5249 

DoD5 Non-RTK/PPK drone Non-RTK/PPK drone 2.14f 2.14f 9.10 

DoD6 LiDAR Non-RTK/PPK drone 0.07d04d 2.14f 6.4443 
aRMSEz of the pre-disaster DSM.  
bRMSEz of the post-disaster DSM. 
cRMSEz of “Slow” DSM, as shown in Table 1. 10 
dRMSEz of the a TIN generated from a bare-earth LiDAR point cloud with an average point spacing of 0.61 m, from García-

Quijano et al. (2008).LiDAR DSM. 
eRMSEz of “Rapid1” DSM, as shown in Table 1. 
fRMSEz of a DSM generated using a non-RTK/PPK senseFly eBee (no GCPs), from Hugenholtz et al. (2016). 
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Figure 1. Geospatial accuracy results for the “slow” DSM: (a) vertical error histogram with statistics and Shapiro-Wilk (S-W) p-
value, and (b) DSM of difference, calculated by subtracting DSMLiDAR from DSMdrone. Blue tints represent elevation 
overestimations and red tints represent elevation underestimations by DSMdrone. Buildings with major contiguous DSM 
differences are boxed in black. The causes of these contiguous DSM differences are due to changes during the 5 years between 
LiDAR (2013) and drone (2018) data acquisition, including new construction (1, 2, 4–10, 12, 14–16), structure removal (3, 5, 
11), and parking lot excavation (13). 
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Figure 2. Sample buildings segmented from the dense point cloud (colored by 3D point density), medium-resolution mesh, and 
high-resolution mesh. Both meshes were generated using identical input imagery and processing settings, except for the mesh 
resolution setting. Google 3D is shown as a reference for building appearance. 
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(d)

Figure 3. Sample building facades, each represented by a 0.50 m 3D point density raster, and a high-resolution mesh 
segmentation. Red cells within each raster represent data gaps (0 points per cell). 
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