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Abstract. Rainfall threshold determination is a pressing issue in the landslide scientific community. While main 

improvements have been made towards more reproducible techniques for the identification of triggering conditions for 

landsliding, the now well-established rainfall intensity or event – duration thresholds for landsliding suffer from several 10 

limitations. Here, we propose a new approach of the frequentist method for threshold definition based on satellite-derived 

antecedent rainfall estimates directly coupled with landslide susceptibility data. Adopting a bootstrap statistical technique for 

the identification of threshold uncertainties at different exceedance probability levels, it results in thresholds expressed as 

𝐴𝑅 = (𝛼 ± ∆𝛼) ∗ 𝑆(𝛽 ± ∆𝛽) , where AR is antecedent rainfall (mm), S is landslide susceptibility, α and β are scaling 

parameters, and ∆α and ∆β are their uncertainties. The main improvements of this approach consist in: (1) using spatially 15 

continuous satellite rainfall data, (2) giving equal weight to rainfall characteristics and ground susceptibility factors in the 

definition of spatially varying rainfall thresholds, (3) proposing an exponential antecedent rainfall function that involves past 

daily rainfall in the exponent to account for the different lasting effect of large versus small rainfall, (4) quantitatively 

exploiting the lower parts of the cloud of data points, most meaningful for threshold estimation, and (5) merging the 

uncertainty on landslide date with the fit uncertainty in a single error estimation. We apply our approach in the western 20 

branch of the East African Rift based on landslides that occurred between 2001 and 2018, satellite rainfall estimates from the 

Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TMPA 3B42 RT), and the continental-scale 

map of landslide susceptibility of Broeckx et al. (2018) and provide first regional rainfall thresholds for landsliding in 

tropical Africa. 

1 Introduction 25 

Rainfall is widely recognized as an important trigger for landslides (Sidle and Bogaard, 2016), posing an increased threat to 

people and economies worldwide under climate change conditions (Gariano and Guzzetti, 2016). Rainfall thresholds, 

defined as the best separators for triggering and non-triggering known rainfall conditions (Crozier, 1997), are the most used 

instrument in landslide hazard assessment and early warning tools (Segoni et al., 2018). Whereas physically-based models 
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require detailed geotechnical, hydrological, and environmental parameters, which is achievable only on hillslope to small-

basin scale, the empirical approach is adopted for local to global scales (Guzzetti et al., 2007). 

 

The most common parameters used to define empirical thresholds are the combinations of rainfall intensity - duration, 

rainfall event - duration, and antecedent rainfall conditions (Guzzetti et al., 2007). Standard approaches for the definition of 5 

the first two combinations of parameters are in a rise (e.g., Segoni et al., 2014; Vessia et al., 2014, 2016; Robbins, 2016; 

Rossi et al., 2017; Melillo et al., 2018) as substitutes for the former used subjective expert-judgement approaches (Aleotti, 

2004; Brunetti et al., 2010). On the other hand, no unanimous definition of triggering antecedent rainfall (AR) conditions is 

currently achieved. This is related to the complexity and process-dependence of environmental factors that influence the 

impact of AR on a slope (Sidle and Bogaard, 2016), yet regrettable because of AR physical relation with soil shear strength 10 

and thus landslide potential (Ma et al., 2014; Hong et al., 2018). AR has been taken into account by combining the rainfall 

accumulation periods identified as most significant for landslide triggering in the study area, varying up to 120 days 

depending on landslide type (Guzzetti et al., 2007). In some cases, an AR function convoluting rainfall over the selected 

period is defined with the aim of reflecting the decaying effect of rainfall on soil moisture status (e.g., Crozier, 1999; Glade 

et al., 2000; Capparelli and Versace, 2011; Ma et al., 2014).  15 

 

Once the triggering rainfall conditions of landslides have been quantitatively described, thresholds are determined through 

more and more refined techniques claiming objectivity and reproducibility (Segoni et al., 2018). Because the transition 

between triggering and non-triggering conditions for landslides cannot be sharply devised (Berti et al., 2012; Nikolopoulos et 

al., 2014), statistical approaches including probabilistic and frequentist methods have replaced a deterministic approach of 20 

the threshold definition. Probabilistic methods such as Bayesian inference (Guzzetti et al., 2007; Berti et al., 2012; Robbins, 

2016) are based on relative frequencies, considering information on triggering and non-triggering rainfall conditions. Critics 

to this method are the biased prior and marginal probabilities related to the incompleteness of the landslide input data (Berti 

et al., 2012). Brunetti et al. (2010) proposed a frequentist method allowing threshold definition at different exceedance 

probability levels, a method improved by Peruccacci et al. (2012) for the estimation of uncertainties associated with the 25 

threshold through a bootstrap statistical technique (Gariano et al., 2015; Melillo et al., 2016, 2018; Piciullo et al., 2017). A 

limitation of the frequentist approach is the dependency on a large and well-spread dataset in order to attain significant 

results (Brunetti et al., 2010; Peruccacci et al., 2012). Other, less influential, threshold identification approaches are reviewed 

by Segoni et al. (2018).  

 30 

Regional ground conditions, but also the progressive adjustment of landscapes to the governing climatic parameters affect 

the meteorological conditions required for landsliding (Ritter, 1988; Guzzetti et al., 2008; Peruccacci et al., 2012; Parker et 

al., 2016). For this reason, thresholds gain in efficiency when rainfall regimes are accounted for through rainfall 

normalization (e.g., Guzzetti et al., 2008; Postance et al., 2018) and when the input data are partitioned according to 
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homogeneous predisposing ground conditions or failure processes (Crosta, 1998; Crosta and Frattini, 2001; Peruccacci et al., 

2012; Sidle and Bogaard, 2016). Yet, to the authors’ knowledge no threshold mapping involving landslide susceptibility as a 

proxy integrating the causative ground factors has been proposed to date beyond local-scale physically-based models (e.g., 

Aristizábal et al., 2015; Napolitano et al., 2016). On the other hand, landslide early warning tools aim at coupling primary 

landslide susceptibility data and thresholds based on rainfall characteristics, demonstrating the importance of their 5 

combination for landslide prediction at regional to global scales (Piciullo et al., 2017; Kirschbaum and Stanley, 2018). 

 

Though being identified as a pressing issue in the scientific community, rainfall threshold research is almost inexistent in 

Africa (Segoni et al., 2018) despite high levels of landslide susceptibility and hazard, especially in mountainous tropical 

Africa, characterized by intense rainfall, deep weathering profiles and high demographic pressure on the environment 10 

(Aristizábal et al., 2015; Jacobs et al., 2018; Migoń and Alcántara-Ayala, 2008; Monsieurs et al., 2018a). The lack of 

scientific investigation in this area is most likely related to the dearth of data on timing and location of landslides 

(Kirschbaum and Stanley, 2018). However, the other fundamental data for threshold analysis, namely rainfall data, is 

globally freely available through satellite rainfall estimates (SRE) since the 1990s. Even if their use in threshold analysis 

remains limited (Brunetti et al., 2018; Segoni et al., 2018), SRE have many advantages in sparsely gauged areas such as 15 

tropical Africa. A review paper by Brunetti et al. (2018) reveals that, to date, the most recurring SRE products used for 

research on landslide triggering conditions come from the Tropical Rainfall Measuring Mission (TRMM) (e.g., Liao et al., 

2010; Kirschbaum et al., 2015; Cullen et al., 2016; Robbins, 2016; Nikolopoulos et al., 2017; Rossi et al., 2017). 

 

The main objective of this paper is to devise an improved version of the frequentist method of rainfall threshold definition 20 

that goes beyond the sole aspect of rainfall characteristics and will be applicable in regions with limited rainfall gauge data 

such as, e.g., tropical Africa. Consequently, it will rely on the use of TRMM satellite rainfall data. Directly operational 

thresholds and threshold maps are expected from several methodological improvements regarding the definition of an 

elaborate AR function, the integration of climatic and ground characteristics (through landslide susceptibility) into a 2D 

trigger-cause graph, and a better focus on the information delivered by landslide events associated to low AR values. The 25 

western branch of the East African Rift (WEAR, Fig. 1) serves as a suitable study area prone to landsliding (Maki Mateso 

and Dewitte, 2014; Jacobs et al., 2016; Monsieurs et al., 2018a; Nobile et al., 2018), in which recent efforts have been made 

to collect information on landslide occurrence (Monsieurs et al., 2018a) and validate TRMM products (Monsieurs et al., 

2018b). 
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2 Setting and data 

2.1 Landslides in the WEAR 

The study area extends over ~350,000 km² in the WEAR (Fig. 1). High seismicity (Delvaux et al., 2017), intense rainfall 

(Monsieurs et al., 2018b), deeply weathered substrates (e.g., Moeyersons et al., 2004), and steep slopes with an elevation 

range of 600 m at Lake Albert to 5109 m in the Rwenzori Mountains (Jacobs et al., 2016) are all predisposing factors 5 

rendering the area highly prone to landsliding (Maki Mateso and Dewitte, 2014; Broeckx et al., 2018; Monsieurs et al., 

2018a; Nobile et al., 2018).  

 

We updated the currently most extensive database existing over the WEAR from Monsieurs et al. (2018a), which formerly 

contained information on the location and date of 143 landslide events that occurred between 1968 and 2016. New 10 

information on landslide occurrence was added through an extensive search of online media reports and to a lesser extent 

information from local partners. Only landslides with location accuracy better than 25 km and for which the date of 

occurrence is known with daily accuracy are included, Monsieurs et al. (2018a) stressing that a residual uncertainty on 

landslide date especially affects landslides having occurred overnight. Information on the timing of the landslide within the 

day of occurrence is rarely reported. Omitting pre-2000 events so as to adjust to the temporal coverage of the satellite rainfall 15 

data, the updated inventory comprises a total of 174 landslide events occurred between 2001 and 2018 and located with a 

mean accuracy of 6.7 km. Their spatial distribution is limited in the longitude axis (Fig. 1) because of data collection 

constraints related to the remote and unstable security conditions (Monsieurs et al., 2017). The landslide temporal pattern 

shows that most of them occurred after the second rainy season from March to May, almost no landslides being reported in 

the following dry season (June–August) (Fig. 2). Daily rainfall distributions per month are provided as Supplementary 20 

Material. 

 

A distinction is made for landslides mapped in mining areas, counting 29 out of the 174 events. As media reports generally 

lack scientific background and insights into the landslide process, we discard these events because of the possibility of 

anthropogenic interference in their occurrence. We also acknowledge that the rest of the inventory may encompass a wide 25 

range of landslide processes, from shallow to deep-seated landsliding (Monsieurs et al., 2018a), and that another important 

bias in the WEAR dataset highlighted by field observations is the non-recording of many landslide events (Monsieurs et al., 

2017, 2018a). Therefore we claim neither catalogue completeness nor ascertained identification of the conditions 

determinant for landsliding. 

2.2 Rainfall data 30 

Owing to the absence of a dense rain gauge network in the WEAR over the study period (Monsieurs et al., 2018b), we use 

SRE from the TRMM Multisatellite Precipitation Analysis 3B42 Real-Time product, version 7 (hereafter spelled TMPA-
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RT). While the TRMM satellite is no longer operating, the multisatellite TMPA product is continued to be produced by 

combining both passive microwave and infrared sensor data (Huffman et al., 2007). TMPA-RT is available at a spatio-

temporal resolution of 0.25° x 0.25° and 3 h for the period 2000 to present, over 50°N – 50°S, provided by NASA with 8 h 

latency. Compared to the TMPA Research Version product, TMPA-RT shows lower absolute errors and was found to 

overall perform better in the WEAR for higher rainfall intensities (Monsieurs et al., 2018b). Yet, average rainfall 5 

underestimations in the order of ~40% and a low probability of detecting high rainfall intensities as such have to be taken 

into account. We maintain TMPA-RT’s native spatial resolution, while aggregating the 3-hourly data to daily resolution, in 

accordance with the landslide inventory temporal resolution. Based on 18 years (2000–2018) of TMPA-RT data, Fig. 1 

shows the spatial pattern of mean annual precipitation in the study area, which results from a complex system of climate 

drivers in equatorial Africa (Dezfuli, 2017). 10 

2.3 Susceptibility data 

As we want to introduce ground factors directly within the frequentist estimation of rainfall thresholds, we make use of 

susceptibility data as a proxy for the joint effect of ground characteristics on spatial variations of thresholds. We adopt here 

the landslide susceptibility model from Broeckx et al. (2018). Calibrated for all landslides regardless of type and covering 

the African continent at a spatial resolution of 0.0033°, this model has been produced through logistic regression based on 15 

three environmental factors, namely topography, lithology, and peak ground acceleration. Susceptibility is expressed as the 

spatial probability of landslide occurrence in each pixel. As the values of these probability estimates scale with the ratio 

between the numbers of landslide (L) and no-landslide (NL) pixels used in the model calibration (King and Zeng, 2001), we 

stress that Broeckx et al. (2018) applied a ~4:1 L/NL ratio. Interestingly, as their susceptibility map covers the whole Africa, 

this model characteristic will not contribute to mar potential extrapolations of our calculated thresholds to similar analyses 20 

elsewhere in the continent. Finally, when resampling the susceptibility data to the coarser 0.25° resolution of the SRE used in 

the threshold analyses, we assigned to each TMPA pixel a value corresponding to the 95th percentile of the original values in 

order to reflect the behaviour of the most landslide-prone sub-areas within the pixel.  

3 A novel approach of the frequentist method 

3.1 Conceptual framework 25 

In order to overcome the limitations of the current frequentist approach of rainfall thresholds related to, e.g., the variable 

definition of triggering rainfall events and non-consideration of ground conditions, we feel that the generally used rainfall 

characteristics (intensity-duration or cumulative rainfall event-duration) should be lumped into a single metric, thus allowing 

space for introducing other parameters in the frequentist analysis. This has been suggested also by Bogaard and Greco 

(2018), who advocate a combination of meteorological and hydrological conditions into a 'trigger-cause' framework of 30 

threshold definition where short-term rainfall intensity would represent the meteorological trigger. The main limitation 
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thereof is however the limited availability of information about the other variable, namely the causative hydrological status 

of slopes. Here, we propose an alternative concept where an AR function describes the progressive build-up of the landslide 

trigger, and the set of determining causes, mostly related to ground conditions, is accounted for by landslide susceptibility. 

Said otherwise, we substitute for the ‘trigger-cause’ framework proposed by Bogaard and Greco (2018) the coupling of a 

dynamic meteorologically-based variable ("trigger") and a static indicator of the spatially-varying predisposing ground 5 

conditions ("cause"). In this way, we obtain rainfall (AR) thresholds as functions of susceptibility, which enables us to 

associate threshold mapping with susceptibility maps. We show below how this new approach furthermore includes the 

definition of a more meaningful AR function and the use of subsets of the landslide data set in the threshold function 

estimation. Analyses are performed in the R open-source software, release 3.4.3 (http://www.r-project.org). The source code 

is provided as Supplementary Material. 10 

3.2 A new antecedent rainfall function 

Though various expressions of the AR function have been proposed (see an overview in Capparelli and Versace, 2011), most 

authors calculate AR for any day i by convolving the time series of daily (or any other length) rainfall rk with a filter function 

in the form of an exponential function of time t, over a period empirically fixed to the preceding n days (e.g., Langbein et al., 

1990; Crozier, 1999; Glade et al., 2000; Melillo et al., 2018):  15 

𝐴𝑅𝑖 = ∑ 𝑒−𝑎∗(𝑡𝑖−𝑡𝑘) ∗ 𝑟𝑘
𝑖−𝑛 
𝑘=𝑖                                                                                                                                      (1) 

Such a function, which attempts to reflect the time-decaying effect of past rainfall on the soil water status, has two 

weaknesses. A first one is that, a being a constant, AR does not vary the time constant for decay with daily rainfall amount. 

Yet, one may expect that, even though higher percentages are drained for larger rainfall (Dunne and Dietrich, 1980), the 

quantity of water infiltrating deeper and remaining in the soil from a large rainfall will most frequently be higher than that 20 

from a small rainfall. Observation that interception by the canopy, transpiration and evaporation rapidly increase with 

diminishing rainfall intensity, especially in equatorial areas, also supports this assumption (Schellekens et al., 2000). We take 

this into account by introducing also daily rainfall rk in the filter function and expressing AR as: 

𝐴𝑅𝑖 = ∑ 𝑒

−𝑎∗(𝑡𝑖−𝑡𝑘)

𝑟𝑘
𝑏

∗ 𝑟𝑘
𝑖−𝑛 
𝑘=𝑖 ,                  (2) 

 25 

where the dimension of a is T
-(1+b)

L
b
, with T here expressed in days and L in mm. The b power of rk in the exponential 

function allows tuning the gradient of decay time with daily rainfall. We empirically determined that a = 1.2 and b = 1.2 

provide decay curves that realistically contrast the decay rate of different rainfall in the soil and comply with the duration of 

their effect on soil moisture expected in the WEAR (e.g., McGuire et al., 2002) (Fig. 3).  

 30 

http://www.r-project.org/
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As for the second weakness of the usual AR formulation, related to the length of the period of time to be used for AR 

calculation, we stick so far to the simplest solution of relying on expert knowledge to select it depending on the regional 

environmental conditions. Two observations from the landslide temporal distribution are taken into account for the choice of 

an appropriate accumulation period: (1) landslide frequency progressively increases during the long rainy season (hardly 

interrupted by a short drier period centred on January) and peaks at its end in May, suggesting that the length of the 5 

preceding period of wet conditions indeed controls landslide frequency, and (2) the abruptly decreasing number of landslides 

as soon as the dry season starts in June indicates that the period of useful AR should not exceed a few weeks (Fig. 2). As a 

trade-off, we choose to calculate AR over a period of six weeks, or 42 days. Using such a fairly long period is also required 

because all landslide types are included in the data set, including large-scale and deep rotational slope failures that often 

occur only after a long rainy period (Zêzere et al., 2005; Fuhrmann et al., 2008; Robbins, 2016). A six-week period is also 10 

consistent with studies having estimated the soil water mean residence time to about two months for two watersheds in the 

Mid-Appalachians of central Pennsylvania, USA (McGuire et al., 2002), and shown that the best fit between creep rate on 

the Parkfield segment of the San Andreas Fault (California, USA) and rainfall is obtained for a time constant of about one 

month (Roeloffs, 2001), the latter being however probably affected by specific conditions of infiltration in the damage zone 

of the fault. Finally, we note in passing that another advantage of basing AR on a long period of time is that the effect of 15 

rainfall events missed by the satellite TMPA-RT data due to time gaps between satellite microwave observations (Monsieurs 

et al., 2018b), is reduced. 

3.3 Definition of AR thresholds for landslides 

Owing to the variables we employ to construct the frequentist graph, the rainfall thresholds will be given as AR values in 

function of susceptibility, or landslide-predisposing ground factors. Hereby we avoid regionalizing the input data according 20 

to individual variables such as lithology, land cover, or topography, and getting into problems of data subsetting in regions 

with limited data (Peruccacci et al., 2012). However, the use of these variables brings us to change the statistical way of 

threshold calculation, which leads to conceptual improvements in the threshold definition and might also be fruitfully 

applied to threshold estimation based on rainfall intensity-duration or event-duration data. 

 25 

The first steps of the analysis follow the procedure devised by Brunetti et al. (2010) and Peruccacci et al. (2012). We first 

plot the landslide data points in the 2D AR-susceptibility (S) space (Fig. 4). Only the 145 landslides unrelated to mining 

conditions are considered, from which two landslides associated with AR < 5 mm are further discarded, as they barely can be 

said to have been triggered by rainfall in such conditions. While such low AR values cannot be ascribed to errors in the 

TMPA-RT rainfall estimates, due to the length of the period of AR calculation, they might result from gross errors of 30 

landslide location or date identification, or possibly the intrinsic evolution of hillslopes with time-dependent strength 

degradation of the slope material resulting in slope failures without apparent trigger (Dille et al., 2019). The retained 143 

landslides occurred between 2001 and 2018 and are located in 58 different TMPA/susceptibility pixels. 
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The threshold function is then approached through a power-law regression of AR against S (equivalent to a linear regression 

in the log-log space) in the form 

𝐴𝑅 = (𝛼 ± ∆𝛼) ∗ 𝑆(𝛽 ± ∆𝛽)                   (3) 

appeared to work best. 5 

 

The uncertainties ∆α and ∆β associated with the α and β scaling parameters are obtained by a bootstrap statistical technique 

(Efron, 1979) where we generate 5000 series of randomly selected events (with replacement) from the dataset. The 

parameter values and their uncertainties correspond to the mean and the standard deviation, respectively, of their 5000 

estimates. Peruccacci et al. (2012) applied this technique in order to get the fit uncertainty on the estimated parameters α and 10 

β. Here, we first produce a derived dataset that must allow merging the fit uncertainties with those upon the data themselves 

into the error estimates provided by the bootstrap process. Data uncertainties relate to the accuracy of landslide location and 

date identification. As the mean location accuracy of 6.7 km is much better than the ~28 km pixel size, we decided to neglect 

this type of uncertainty. However, the dating uncertainty is more of an issue. Uncertainty on the date most frequently arises 

from landslides having occurred during the night. Beyond the fact that reports do not always mention it, it is also generally 15 

unsure whether any nightly landslide has been assigned to the day before or after the night. In terms of uncertainty, this 

implies that a reported landslide may have occurred randomly at any time over a 36-hour period centred on the reported day. 

To account for this randomness, we associate each landslide with three weighted dates, the reported day having a weight of 

24/36 (~0.67) and the previous and next days each a weight of 6/36 (~0.17) corresponding to the first half of the preceding 

night and the second half of the following night, respectively. We then simply expand, according to the day weights, the 20 

original 143-event data set to a set of 858 derived events of same 0.17 probability (in which, for each landslide, day 0 is 

represented four times whereas only one occurrence of days -1 and +1 is present). The date uncertainty is therefore 

incorporated in the expanded data set and thus will be also included in the ∆α and ∆β uncertainty estimates from the 

bootstrapping, each bootstrap iteration randomly sampling 858 independent events out of this data set, for a probability sum 

of (~0.17)*858 = 143. Note that a close but less practical alternative might have consisted in using the intermediate data set 25 

of 429 (=3*143) weighted events and requiring every bootstrap iteration to randomly sample a variable number of events for 

a total sum of weights of 143. In order to satisfy the requirement of the frequentist method for the largest possible data set, 

we used the entire set of landslide events for the calibration of the new method, leaving aside a validation of our results 

based on updates of the WEAR data set or on landslide sets of neighbouring regions for the near future. 

 30 

In each iteration of the bootstrap procedure, once the best fit parameters of equation (3) have been obtained by least square 

approximation, the residuals of the regression are calculated and subsets of their largest negative values are selected 

according to the exceedance probabilities of the thresholds we want to calculate. Brunetti et al. (2010) use for this a Gaussian 

fit to the probability density function of the population of residuals and take the residual value  that limits the lowest x% of 
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this fit to define the x% exceedance probability threshold as a line parallel to the global regression line (in the log(AR)-log(S) 

space), i.e., with an unchanged  parameter, and simply translated toward lower  by a distance  (see their figure 2). Here, 

we prefer to put more weight on the distribution of the data points in the lower part of the cloud of points as the most 

meaningful part of the data set for threshold identification. Once the residuals have been computed, we take the subset of 

their x% largest negative values and regress AR against S only for the corresponding data points, obtaining a new regression 5 

line with not only a lower  but also a modified  parameter that better follows the lower limit of the cloud of points. 

Running through the middle of the x% lowest data points, this new curve is thus taken as the threshold curve for the (x/2)% 

exceedance probability. In this way, the whole data set is used to calculate the trend that allows meaningful sampling of 

subsets of low-AR points before the emphasis is put on the subsets to get curves better reflecting the actual threshold 

information contained in the data set. Note also that we select a subset of actual data points to estimate the threshold, 10 

whereas the approach of Brunetti et al. (2010) relies on a Gaussian approximation of the residual distribution. 

4 AR threshold estimates 

The range of AR values associated with the landslide events extends from 5.7 mm to 164.4 mm for landslides that occurred 

in areas displaying a range of susceptibility (expressed as probabilities) from 0.38 to 0.97. As a first result, the fit to the (AR, 

S) pairs of the whole set of landslide events was expressed as (Fig. 4): 15 

𝐴𝑅 = (36.5 ±  1.2) ∗ 𝑆(−0.41 ± 0.09)                                                                   (4) 

showing a stable solution of the bootstrap with fairly small (date + fit) uncertainties on α and β but a rather small β value 

indicating a weak dependence of AR on S, confirmed by the very low determination coefficient R² = 0.02 even though the 

fitted trend is significant (df = 856, r = 0.14 > rcrit(95%) = 0.08). We then selected two subsets of 10% and 20% of all data 

points with the most negative residuals with respect to the above calculated trend in order to obtain the threshold curves for 20 

the 5% and 10% probabilities of exceedance, respectively, on which power-law regressions yielded (Fig. 4): 

𝐴𝑅 (5%) = (9.2 ±  0.6) ∗ 𝑆(−0.95 ± 0.14)                                            (5) 

𝐴𝑅 (10%) = (13.1 ±  0.7) ∗ 𝑆(−0.66 ± 0.15)                                                  (6) 

 

A 5% exceedance probability, for instance, means that any landslide occurring in the field has a 0.05 probability of being 25 

triggered by an antecedent rainfall AR lower than that defined by the threshold curve, with about weighted 5% of the data 

points effectively lying below the curve. A first observation is that the two threshold curves present significantly higher β 

values than the previously calculated general trend, thus enhancing the susceptibility-dependent gradient of AR threshold. 

Maximum β value is obtained for the lowest threshold, which targets most sharply the data points of interest, while larger 

subsets yield values progressively closer to that of the general trend and thus less meaningful. Again, the bootstrap-derived 30 

uncertainties are rather low, even though the β uncertainties appear slightly higher than previously, owing to smaller sample 

size and narrower range of represented S values. At the 5% exceedance probability, the AR threshold amounts to 22 mm and 
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9.2 mm for susceptibilities of 0.4 and 1, respectively, making an AR difference of ~13 mm between weakly and highly 

susceptible ground conditions. In the same time, the goodness of fit of the regressions on the subsets of data significantly 

increases, with average R
2
 = 0.27 (r = 0.52 > rcrit(95%) = 0.18) for the 5% curve and 0.13 (r = 0.36 > rcrit(95%) = 0.12) for the 

10% curve and with quasi all single bootstrap iterations providing significant α and β parameters for both thresholds, 

showing that there exists a true correlation between susceptibility and rainfall threshold as soon as one focuses on the data 5 

points really pointing to the minimum AR required for landsliding to start. Though fairly small, these R
2
 values have proved 

best among not very different linear, exponential, and power law fits. Better coefficients are probably hampered mainly by 

inhomogeneities in the subset data distribution within the susceptibility range, with very poor information for S < 0.7 (Fig. 

4). This is also why the threshold curves of Fig. 4 have not been extrapolated over the entire possible range of susceptibility, 

because the relation between susceptibility lower than 0.38 and triggering AR conditions is uncertain as long as it cannot be 10 

empirically tested. At the continental scale, pixels with a susceptibility  0.38 are ranked in any case as low- and very low-

susceptibility areas (Broeckx, oral communication). In the WEAR, the only landslides that were recorded in areas with S < 

0.38 are all related to mining activity. 

5 Discussion 

Having proposed a new approach of the frequentist method of rainfall threshold determination for landsliding, we have 15 

applied it with encouraging results in the WEAR despite the difficulties of the context (limited size of the landslide set, 

heterogeneity of the study area with respect to ground conditions, coarse spatial resolution of the rainfall data, coarse 

temporal resolution of the landslide inventory). We want now to review every new element of the method and have a look at 

their advantages, implications, and limitations, especially from the point of view of the added value for the landslide 

scientific community. 20 

 

5.1 A key point of our approach is the introduction of ground characteristics as one variable of the 2D frequentist graph, with 

the aim of directly associating the climatic trigger of landslides and the determining (static) ground conditions in the 

threshold analysis. Indeed, in the current way of treating this problem, examining separately the effect on thresholds of 

various ground variables (e.g., lithology, topography) has the drawbacks that (1) partitioning the study area on the basis of 25 

categories of any variable may entail that some subsets of data become too small for a significant analysis (Peruccacci et al., 

2012) and (2) the combined effect of the variables cannot be investigated. In order to put everything at once in the frequentist 

graph, we thus needed to use two variables synthesizing the climatic and ground characteristics, respectively. While the 

climatic trigger issue was fixed by proposing a refined AR function (see point 5.2 below), we found that susceptibility to 

landsliding is an ideal single indicator integrating all ground characteristics that significantly determine the hillslope 30 

sensitivity to rainfall accumulation. As the other side of the coin, we could cite the fact that no single raw variable is 

explicitly stated in this approach, and especially the soil water status of slopes. But the main point is that using susceptibility 
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values from pre-existing studies implies to know how they were estimated. This is not a real issue for a regional study but 

becomes relevant if thresholds obtained somewhere were to be compared with those of other regions where the susceptibility 

data would have been calculated in a different way. In the frequent case that susceptibility is modelled through logistic 

regression for example, the probabilities that quantify susceptibility have no absolute meaning, depending on the ratio 

between the landslide and no-landslide sample sizes used in the modelling. Such information should thus always be specified 5 

when susceptibility data are exploited for threshold determination.  

 

5.2 AR functions are a common tool to lump daily rainfall and antecedent rainfall into a single measure. In general, they 

either simply use cumulated rainfall over empirically-determined significant periods or take into account the decaying effect 

of rainfall on the soil water status. With respect to the intensity- or cumulated rainfall event-duration descriptions of rain 10 

characteristics, they replace the difficulty of objectively defining rainfall events by that of choosing a relevant period of 

meaningful antecedent rainfall and, if a filter function is used, of parameterizing it. The latter also offers a better proxy for 

the time-varying soil moisture content (Hong et al., 2018; Melillo et al., 2018). However, no AR function has so far 

considered a nonlinear dependence of the decay time constant on daily rainfall and, thus, soil wetting. Here, we have applied 

this idea by introducing daily rainfall in the filter function of AR as a scaling factor of the time constant (Eq. 2). In addition 15 

to the usual virtue of this AR function type of assigning full weight to the rainfall of the current day, this allows a better 

contrast between the intensity-dependent lasting effect of different past rainfall, with more weight put on high-intensity 

rainfall. 

 

Another facet of the AR issue is that we used remotely sensed rainfall data from the TMPA-RT products (e.g., Hong et al., 20 

2006; Robbins, 2016). In the WEAR case, this was anyway required because the existing rain gauge network in the area is 

neither dense nor was installed soon enough to adequately cover the study area and period. Moreover, using TMPA-RT data 

is advantageous in that the information is spatially continuous (Rossi et al., 2017; Postance et al., 2018) and freely available 

with a global coverage in near-real time (Hong et al., 2006; Kirschbaum and Stanley, 2018). The rather coarse spatial 

resolution of TMPA-RT data may also turn into an advantage because of their higher spatial representativeness compared to 25 

gauge point-observations of very local meaning in areas with pronounced topography (Marra et al., 2017; Monsieurs et al., 

2018b). However, one has to cope with the typical bias of SRE, which systematically underestimate rainfall amounts with 

respect to ground observations (Brunetti et al., 2018; Monsieurs et al., 2018b). As stated by Brunetti et al. (2018), this does 

not affect the performance of threshold determination as long as the bias is spatially and temporally homogeneous, which is 

to some extent the case in the WEAR. Based on the estimation by Monsieurs et al. (2018b) that average SRE 30 

underestimation amounts to ~40% in this area, we calculate an approximate first-order correction of the AR thresholds. For 

instance the calculated ~13 mm difference in 5% AR threshold between low- and very high-susceptibility areas of the WEAR 

becomes ~21 mm after correction for SRE underestimation, with corrected 5% AR thresholds of 36.6 mm and 15.3 mm in 

areas with S = 0.4 and 1, respectively. However, Monsieurs et al. (2018b) also highlight how SRE underestimation increases 
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with rainfall intensity, reaching, e.g., an average 80% for daily rainfall around 30 mm. This means that, even after correction, 

the thresholds, in which high daily rainfall have highest weight, are still underestimated, and thus only indicative. 

 

5.3 Another characteristic of our approach lies in the fashion of determining thresholds by focusing on the data points with 

lowest AR. Though this is not quite new (Althuwaynee et al., 2015; Lainas et al., 2016; Segoni et al., 2018), it is carried out 5 

here in a statistically rigorous manner so as to exploit the part of the data most meaningful for threshold appreciation. This 

methodological change was needed initially because, contrary to the obvious strong relation between rainfall intensity or 

event rainfall and duration (Guzzetti et al., 2007), the intuitively expected relation between ground susceptibility and rainfall 

threshold was hardly expressed in the data, with a bare 2% of the variance of landslide-triggering AR explained by 

susceptibility. Many reasons potentially contribute to the noise that obscures such a relation among the (AR, S) landslide 10 

data, relating to: (i) probably chiefly, the mixing of all types of landslides in our data set (Flageollet et al., 1999; Sidle and 

Bogaard, 2016; Monsieurs et al., 2018a); (ii) the spatial, temporal, and rain-intensity dependent inhomogeneity of TMPA-RT 

underestimation, with local bias caused, e.g., by high percentages of water areas within a pixel or by topographic rainfall 

(Monsieurs et al., 2018b); (iii) determining factors of landsliding important in the WEAR region but not accounted for in the 

continental-scale prediction of susceptibility by Broeckx et al. (2018), such as slope aspect, thickness of the weathering 15 

mantle, deforestation and other human-related factors; (iv) the occurrence of landslides in less susceptible areas of a pixel 

classified as highly susceptible; (v) the probability of landslides having occurred in the very first hours of a day with 24-h-

long high rainfall, inducing artificially swollen pre-landslide AR. By contrast, focusing on subsets of landslides with low-AR 

residuals leads to a better data fit and thresholds with higher  values more closely reflecting the visually outstanding lower 

bound of the cloud of data points and the AR threshold dependence on susceptibility. Working with independent regressions 20 

on subsets strongly reduces the data noise and thus better captures the true threshold shape. In this scheme, many of the 

actual landslide events associated with AR much higher than the calculated threshold might be viewed as 'quasi false-

positives' that, for any reason, required much more rainfall than predicted before at last occurring. 

  

5.4. Another issue of this new method (and of most studies based on the frequentist approach) is that it explicitly deals only 25 

with 'false negatives' (hereafter FN, i.e., landslides having occurred for AR values below the defined threshold) and thus 

evaluates only the type II error. However, using thresholds that minimize this error, the amplitude of the type I error ('false 

positives' – FP, i.e. AR values above the threshold that nevertheless did not lead to landsliding) is proportionately increased. 

For example, for a randomly chosen pixel of the study area, which underwent 6 landslide events during the 2000-2018 

period, the 5% and 10% thresholds involve no FN but cause 4715 (70% of the AR time series of the pixel) and  4242 (63%) 30 

FPs, respectively. There are however several reasons why these high numbers of FPs are neither reliable nor really 

problematic. Firstly, it is important to note that the landslide data set used for threshold calculation is far from complete and 

that a lot of landslides occurring in remote areas are de facto unreported and may even get easily unnoticed on satellite 

imagery if they occurred in regions with fast vegetation regrowth, land reclamation, or in places with poor temporal satellite 
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coverage. Most of these unreported events, if associated with above-threshold AR values, imply as many "false false-

positives", i.e., ignored true positives. Moreover, once one or several consecutive high daily rainfalls have occurred and AR 

has jumped to values largely above the threshold, causing one landslide event, the subsequent construction-dependent slow 

return of the index to below-threshold values frequently last for days or weeks without further landsliding. Said otherwise, 

the tail of a period of above-threshold AR (after a landslide event) is generally much longer than its head (before the event) 5 

and one can barely call false positives all these days with high AR that follow the event. The true rate of FPs is therefore 

much lower than it may seem at first glance. Furthermore, the even then large number of remaining FPs should not 

necessarily be deemed an issue because it actually constitutes the essence of early warning. By definition, flagging a day as 

hazardous does not mean that a landslide will occur on that day but only that there is an increased probability of an event and 

people should be prepared to face it. Even more, when a landslide prediction turns into a true positive, with a few landslides 10 

occurred in the pixel, most people living in this ~2828 km area may nonetheless consider it a false positive because the 

landslides have affected only a tiny part of the total pixel area. Finally, it is also worth noting that, in contrast with most 

other methods, this susceptibility-based approach allows distributing the warnings (and possible false alarms) temporally and 

spatially, thus reducing the number of warnings in any individual pixel. 

 15 

5.5 A main requirement for a widely usable method of threshold calculation is an automated threshold procedure, ideally 

made available online, in order to enhance reproducibility of analysis and promote worldwide comparison of results (Segoni 

et al., 2018). Steps towards this goal are achieved through: 

 

(1) using TMPA-RT data, a freely available, spatially homogeneous product covering the 50°N-S latitude range: this ensures 20 

that the results of other regional analyses using the same data may be safely compared with ours. The RT (real-time) version 

of the product has intentionally been preferred to the more elaborated Research Version calibrated against gauge-based 

GPCC rainfall data (Huffman et al., 2007) because the inhomogeneous distribution of the reference gauges worldwide, and 

especially in the tropics, introduces a spatially variable bias into the residual underestimation of the latter data (Monsieurs et 

al., 2018b); 25 

 

(2) reduction of the number of adjustable parameters in the definition of the climatic characteristics leading to landsliding: 

here, only the constant coefficient and the exponent on daily rainfall in the filter function have to be fixed, along with the 

length of the period over which AR is calculated. A dedicated statistical study of their best values (e.g., Stewart and 

McDonnell, 1991; McGuire et al., 2002) might perhaps improve somewhat those we empirically defined but, in any case, the 30 

AR time series calculated from our empirical tests have shown that this formulation of AR is not much sensitive to moderate 

changes in the parameter values; 

 



14 

 

(3) drawing attention onto the effect on the calculated thresholds of the way the used susceptibility data have been obtained: 

in particular, it is possible to correct the threshold results for differences in the ratio between the landslide and no-landslide 

sample sizes used with the widely recognized logistic regression model of susceptibility; 

 

(4) improving the evaluation of uncertainty: all sources of uncertainties (here, date and fit uncertainties but location 5 

uncertainty, e.g., may be treated alike) are merged into a single error estimation in a bootstrap procedure randomly taking 

from a weighted data set samples that have the same size in terms of sum of the weights (or probabilities) of the selected 

events rather than in the number of events; 

 

(5) providing our source code as Supplementary Material. 10 

 

5.6 Beside method development, this study has yielded valuable new regional information in the form of AR threshold-

susceptibility relations and a threshold map at 0.25°  0.25° resolution (Fig. 5). These results are immediately usable for 

early warning of landslide hazard in the WEAR. Depending on the local susceptibility, thresholds at 5% exceedance 

probability, which we consider the best operational measure, range from AR = ~15.3 mm (corrected for SRE 15 

underestimation) in the highest-susceptibility areas to 38.4 mm in the least susceptible pixels (S = 0.38) having recorded 

landslides during the 2001-2018 period. While this, as a matter of fact, is unquestionable, its geomorphic meaning is hard to 

discuss, in first instance because a single AR value may cover very different 6-week long time series of daily rainfall, from 

more or less continuous moderate- to high-intensity rainfall over weeks causing deep rotational landslides to very high-

intensity rainfall of short duration just before the occurrence of extended shallow landsliding and debris flow. We also 20 

observed that a significant percentage (~40%) of the landslide events did not occur on the day when highest rainfall was 

recorded but one or two days later. As it seems unlikely that all of these landslides would have been wrongly dated, this fact 

might betray a particular hydrological behaviour of slopes or be related to specific landslide processes (Montgomery and 

William, 2002; Lollino et al., 2006). Meaningful hypotheses about the interplay between slope physics and rainfall 

characteristics in this setting will however require in-depth analysis of the 6-week rainfall time series associated with the 25 

landslide events. Meanwhile, although this is not straightforward, we can at least attempt a comparison with the results of the 

many studies based on intensity-duration (ID) or event-duration (ED) analysis of rain gauge data. Extrapolating their ED or 

ID curves towards a duration of 42 days, many published 5% exceedance probability thresholds fall in the range 75-150 mm 

over this time length in, e.g., NW Italy (Melillo et al., 2018), NE Italy (Marra et al., 2017), central Italy (Perucacci et al., 

2012; Rossi et al., 2017), Sicily (Gariano et al., 2015), NW USA (Seattle area, Chleborad et al., 2006). Moreover, many 30 

landslides that actually occurred after rainfall events of shorter duration were associated with lower cumulated rainfall. The 

75-150 mm range is thus an upper bound in these areas and we tentatively suggest an average 50-75 mm cumulated rainfall 

as representative for antecedent rainfall of landslide events. The reasons why these figures are still significantly, though not 

irreducibly, higher than those we obtained in the WEAR are on one hand the fact that most of these studies (except that of 
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Melillo et al., 2018) do not apply a decay function to past rainfall but, on the other hand, might also be related to the poor 

approximation of SRE underestimation in the WEAR by Monsieurs et al. (2018b) due to the non-linear dependence of 

underestimation on rainfall intensity and the weak representativeness of limited gauge data of very local significance with 

respect to ~28 28 km pixels. Another reason might be related to the specific conditions of this tropical climate that could 

influence the weathering conditions of the hillslope material and increase the sensitivity to failure; this however remains 5 

hypothetical at this stage and calls for further analysis (beyond the scope of this research). Interestingly, in a tropical region 

similar to the WEAR, namely Papua New Guinea, Robbins (2016) used cumulative rainfall to calculate thresholds based on 

TMPA data and selected event durations. For an antecedent time length of 40 days, she derived thresholds amounting to ~25 

and ~175 mm for short- and long-duration landslide events, respectively. Taking into account that no decay function was 

involved in her antecedent rainfall calculation, these values are fully consistent with our data, where short-duration events of 10 

shallow landsliding probably prevail in determining the 5% threshold of ~9-22 mm (uncorrected for SRE underestimation) in 

the WEAR whereas long-duration events triggering larger and deeper landslides would make the bulk of noisy high-AR 

(~40-120 mm) data points. Likewise, 5% thresholds estimated in central Italy by Rossi et al. (2017) based on SRE data are in 

the order of 30 mm cumulative rainfall over an extrapolated duration of 42 days, again fairly similar to our uncorrected ~9-

22 mm 5 % thresholds if we take account of the absence of decay function in their calculations. We also note that our AR 15 

values are in the range of observed values compiled by Bogaard and Greco (2018), while Guzzetti et al. (2007) even reported 

extreme values as low as <10 mm. However, Bogaard and Greco (2018) point to the difficulty of interpreting long-duration 

rainfall measures in terms of average rainfall intensity and their trigger role for shallow landslides and debris flows. To this 

extent, another added value of our approach lies in the complex decay filter function used in AR, which mixes triggering 

recent rain and predisposing rain of the past weeks in such a way that the index is meaningful for both shallow and deep-20 

seated landslides. 

 

Although our results offer first insights into rainfall thresholds in the WEAR, they still need refinement before becoming 

transposable into an operational early warning system. Significant improvement is expected in the near future from more 

regionally-focused susceptibility maps and higher resolution SRE coming soon with the IMERG product, which shows better 25 

performance for rainfall detection (Gebregiorgis et al., 2018; Xu et al., 2017). Together, higher-resolution, better-quality 

rainfall and susceptibility data should produce a more robust correlation between both variables for landslide events and, as a 

corollary, predictions should involve less false positives. In parallel, the number of false positives will have to be further 

reduced through appropriate filtering of above-threshold AR data following landslide events. A larger database of correctly 

described and dated landslide events will also allow threshold validation and, once sufficiently large subsets of data will be 30 

available for particular landslide types, the calculation of adapted thresholds. 
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6 Conclusion 

In this study, we propose a new rainfall threshold approach fundamentally different from previous research and based on the 

relation between antecedent rainfall and landslide susceptibility through a modified frequentist approach with bootstrapping. 

This method has the main advantage of directly mappable susceptibility-dependent rainfall thresholds. Six-week long 

antecedent rainfall is calculated based on satellite rainfall estimates from TMPA 3B42 RT. It uses an exponential filter 5 

function with a time constant scaled by a power of daily rainfall accounting for the dependence on rainfall intensity of the 

decaying effect of rain water in the soil. Susceptibility data comes from a study by Broeckx et al. (2018) based on logistic 

regression and a continental-scale data set of landslides in Africa. Using this method, we identify the first rainfall thresholds 

for landsliding in the western branch of the East African Rift, based on a landslide inventory of 143 landslide events over the 

2001-2018 period. The obtained AR thresholds are physically meaningful and range, without correction for SRE 10 

underestimation, from 9.5 mm for the most susceptible areas of the WEAR (S = 0.97) to 23.1 mm in the least susceptible 

areas (S = 0.38) where landslides have been reported, for an exceedance probability of 5%. We conclude that the proposed 

new threshold approach forms an added value to the landslide scientific community, while future improvements are expected 

from applying the method to larger data sets and using satellite rainfall estimates with higher spatial (and temporal) 

resolution and increased rain detection efficiency. 15 
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Figure 1. Left: Landslide susceptibility at 0.25° resolution, derived from the map of Broeckx et al. (2018), and distribution of 

landslides in the western branch of the East African Rift, comprising 29 landslides in mining areas (triangles), and 145 landslides 

outside mining areas (dots) of which the red dots are landslides associated with antecedent rainfall less than 5 mm. Only the black 

dots (143 landslides) are used for calibrating the rainfall thresholds. Right: Spatial pattern of mean annual precipitation (MAP) 5 
based on 18 years (2000–2018) of TMPA (3B42-RT) data, and thus affected by significant underestimation (Monsieurs et al. 

2018b). Numbers in the lakes: 1 = Lake Albert, 2 = Lake Edward, 3 = Lake Kivu, 4 = Lake Tanganyika. Background hillshade 

SRTM (90m). 
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Figure 2. Monthly distribution of 174 landslide events (LS) in the WEAR and mean monthly rainfall based on 20 years (1998–

2018) of TMPA (3B42-RT) daily data, downloaded from http://giovanni.sci.gsfc.nasa.gov. 

 

http://giovanni.sci.gsfc.nasa.gov/
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Figure 3. Decay curves for three daily rainfall of 1 mm, 10 mm, and 25 mm according to the expression of the exponential filter 

function in equation 2, with a = 1.2 and b = 1.2. The black dotted lines show that 0%, 4.2%, and 34.7% of the respective original 

rainfall values are still contributing to the accumulated antecedent rainfall function (Eq. 2) after 42 days (6 weeks).  

 5 



26 

 

 

Figure 4. Log-log plot of antecedent rain (mm) vs ground susceptibility to landsliding for the recorded landslides, with their 

associated sampling probability: 0.67 at the reported landslide date; 0.17 at the days prior to and after the reported landslide date. 

The black curve is the regression curve obtained from the whole dataset; the green and red curves are the AR thresholds at 5% 

and 10% exceedance probability levels respectively, along with their uncertainties shown as shaded areas. 5 
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Figure 5. Antecedent rainfall (AR) threshold map (0.25° resolution) at 5% exceedance probability (see Eq. 5). Depending on the 

local landslide susceptibility (from Broeckx et al. 2018, Fig. 1) threshold values range from AR = 9.5 mm in the highest-

susceptibility areas (S = 0.97) to AR = 23.1 mm in the least susceptible pixels (S = 0.38) having recorded landslides during the 2001-

2018 period. Numbers in the lakes: 1 = Lake Albert, 2 = Lake Edward, 3 = Lake Kivu, 4 = Lake Tanganyika. Background 5 
hillshade SRTM (90m). 

 


