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Abstract.
This article investigates the potential of W-band radar re-

flectivity to improve the quality of analyses and forecasts
of heavy precipitation events in the Mediterranean area.
The 1D+3DVar assimilation method, operationally employed5

to assimilate ground-based precipitation radar data in the
Météo-France kilometre-scale NWP model AROME, has
been adapted to assimilate the W-band reflectivity measured
by the airborne cloud radar RASTA during a two-month pe-
riod over the Mediterranean area. After applying a bias cor-10

rection, vertical profiles of relative humidity are first derived
via a 1D Bayesian retrieval, and then used as relative hu-
midity pseudo-observations in the 3DVar assimilation sys-
tem of AROME. The efficiency of the 1D Bayesian method
in retrieving humidity fields is assessed using independent in-15

flight humidity measurements. To complement this study, the
benefit brought by consistent thermodynamic and dynamic
cloud conditions has been investigated by assimilating sep-
arately and jointly in the 3h 3DVar assimilation system of
AROME the W-band reflectivity and horizontal wind mea-20

surements collected by RASTA.
The data assimilation experiments are conducted for a sin-

gle heavy precipitation event, and then for 32 cases. Results
indicate that the W-band reflectivity has a larger impact on
the humidity, temperature and pressure fields in the analy-25

ses, compared to the assimilation of RASTA wind data alone.
Besides, the analyses get closer to independent humidity ob-
servations if the W-band reflectivity is assimilated alone or
jointly with RASTA wind data. Nonetheless, the impact of
the W-band reflectivity decreases more rapidly as the fore-30

cast range increases, compared to the assimilation of RASTA
wind data alone. Generally, the assimilation of the W-band
reflectivity jointly with wind data results in the best improve-

ment of the rainfall precipitation forecasts. Consequently, re-
sults of this study indicate that consistent thermodynamic 35

and dynamic cloud conditions in the analysis leads to an
improvement of both model initial conditions and forecasts.
Even though to a less extent, the assimilation of the W-band
reflectivity alone also results in a slight improvement of the
rainfall precipitation forecasts. 40

1 Introduction

Kilometre-scale NWP models are now able to explicitly
resolve the convection and to represent with a reason-
able degree of realism clouds and precipitation (Gustafs-
son et al., 2018). Doppler radar observations are particu- 45

larly well suited to initialise these NWP models because
they provide wind and reflectivity measurements at a com-
parable spatial and temporal resolution. Consequently, ob-
servations from ground-based precipitation radars are oper-
ationally assimilated in many km-scale NWP models to ini- 50

tialise precipitation areas (Gustafsson et al., 2018). However,
ground-based precipitation radars have a very poor sensi-
tivity to clouds. Hence, the increased number of Doppler
cloud-profiling radar (Wolde and Pazmany, 2005; Delanoë
et al., 2013; Illingworth et al., 2015; Chahat et al., 2016; De- 55

lanoë et al., 2016) is extremely appealing in data assimila-
tion to initialise km-scale NWP models in cloudy areas. In-
deed, cloud-profiling radars, either operating in the Ka-band
(≈ 35 GHz), or in the W-band (≈ 95 GHz), provide valu-
able observations about cloud microphysical properties and 60

light to moderate precipitation (Kollias et al., 2007). In addi-
tion, compared to lower-frequency radars, they require small



2 Borderies et al.: Impact of the assimilation of W-band radar reflectivity

antennas to provide high spatial resolution measurements,
which makes them more easily deployable aboard moving
platforms such as spacecraft or aircraft (Kollias et al., 2007).
Besides, recent technological breakthroughs might lead to a
deployment of lower-cost ground-based W-band radar net-5

works (Delanoë et al., 2016).
Over the last few years, cloud radar data have been used

several times for kilometre-scale NWP model validation
(Di Michele et al., 2012; Iguchi et al., 2012; Hashino et al.,
2013; Borderies et al., 2018), but only a few studies were10

devoted to evaluate their potential in data assimilation. In
particular, within the JMA’s nonhydrostatic model (JMA-
NHM) with an ensemble variational method (Aonashi and
Eito, 2011), Okamoto et al. (2016) performed a direct assim-
ilation of vertical reflectivity profiles of the Dual frequency15

Precipitation Radar (DPR) reflectivity observations from the
GPM core observatory (Hou et al., 2014) for the case of Ty-
phoon Halong in July 2014. The assimilation of DPR data
resulted in an improvement in the rain mixing ratio and up-
draft. However, because of negative model biases in the ice20

regions, observations were discarded in and above the melt-
ing layer. Therefore, Okamoto et al. (2016) did not take ad-
vantage of the cloud-affected observations measured by the
Ka band radar, which are very sensitive to clouds. In addition,
ensemble variational methods are costly in terms of comput-25

ing time, which hampers their use in most current operational
systems.

Assimilating reflectivity with traditional variational assim-
ilation techniques (3DVar and 4DVar) remains challenging.
Indeed, the linearisation of the observation forward operator30

is not straightforward. In addition, it is necessary to add hy-
drometeor contents in the control variables, which requires
to specify the associated forecast error covariances. Besides,
the assimilation of humidity, wind and temperature variables
have a larger impact on the forecasts, compared to hydrome-35

teor observations (Fabry and Sun, 2010). Consequently, sev-
eral studies used indirect assimilation methods to assimi-
late cloud radar reflectivity measurements (Storto and Tveter,
2009; Janiskovà et al., 2012; Janisková, 2015). The reflec-
tivity profiles are first inverted into pseudo-observations that40

are closer to the control variables of the NWP model (such
as temperature or humidity) through the use of either a 1D-
variational assimilation technique (Janiskovà et al., 2012;
Janisková, 2015) or a 1D Bayesian retrieval (Storto and
Tveter, 2009). These pseudo-observations are then assimi-45

lated into the variational assimilation system like any other
conventional observation. In most of these studies, Cloud
Profiling Radar data on board the CloudSat (Stephens, 2005)
satellite were assimilated in NWP models running at coarse
horizontal resolutions (larger than 10 km). For example, us-50

ing a technique combining a one dimensional variational
(1DVar) followed by a four dimentional variational (4DVar)
assimilation method, Janisková (2015) performed several as-
similation experiments with the global scale NWP model
IFS. To take fully advantage of the W-band reflectivity in55

cloudy areas, Janisková (2015) applied an appropriate bias
correction scheme which depends on the altitude and on the
temperature. Results suggest a slight positive impact on the
subsequent forecasts when appropriate bias correction, er-
ror estimates and quality controls are performed. However, 60

because of the inability of the reflectivity forward operator
(Di Michele et al., 2012) to simulate the multiple scattering
effects, observations of the most convective situations were
rejected from the assimilation process. Storto and Tveter
(2009) also employed a two-step method consisting of a one- 65

dimensional Bayesian retrieval of relative humidity pseudo-
observations, followed by a 3DVar assimilation method in
the ALADIN NWP model (Fischer et al., 2005). Results
show that, despite the small number of assimilated observa-
tions, the impact of relative humidity pseudo-observations is 70

greater in areas poorly covered by the conventional observa-
tion networks, such as over the oceans. However, Storto and
Tveter (2009) failed to identify a case study for which the
humidity pseudo-observations led to a significant impact on
the analysis and on the subsequent forecasts. 75

So far, the impact of the assimilation of W-band radar re-
flectivity in a kilometre-scale NWP model, with horizontal
resolutions of less than 3 km, has never been investigated.
Therefore, the primary objective of this article is to inves-
tigate the benefits brought by the assimilation of W-band 80

radar reflectivity measurements to improve the forecasts of
the heavy precipitation events that regularly occur in the
Mediterranean area. Indeed, the accurate forecasting of the
timing, position and intensity of such mesoscale convective
systems remains a challenge (Duffourg et al., 2016; Martinet 85

et al., 2017). Doppler cloud radar data also provide valuable
information on dynamical cloud properties. Borderies et al.
(Accepted) highlighted a positive impact of the assimilation
of such data in a km-scale NWP model. The assimilation
of W-band reflectivity measurements jointly with wind data 90

measured by Doppler cloud radar is expected to provide more
consistent thermodynamic and dynamic cloud conditions in
the initial state. Nonetheless, Bachmann et al. (2018) sug-
gested that the joint assimilation leads to skill which are com-
parable to the experiments in which reflectivity and Doppler 95

velocity observations are assimilated independently. How-
ever, their data assimilation experiments were conducted in
an idealized setup, and the observations were provided by
ground-based precipitation radar data. Therefore, to investi-
gate the benefit brought by consistent thermodynamic and 100

dynamic cloud conditions in the initial state, the W-band re-
flectivity will be assimilated separately and jointly with hor-
izontal wind data measured by a Doppler W-band radar.

To assess the potential of Doppler W-band radar data to
improve short term forecasts of heavy precipitation events, 105

we take advantage of the data collected by the airborne
Doppler W-band radar RASTA (Radar Airborne System Tool
for Atmosphere Delanoë et al., 2013) in 2012 over the West-
ern Mediterranean area during the HyMeX first Special Ob-
serving Period (HyMeX-SOP1 Ducrocq et al., 2014) dedi- 110
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cated to heavy precipitation events. The W-band reflectiv-
ity and wind measurements collected by RASTA are as-
similated separately and jointly into the 3DVar assimilation
system of a special version, named AROME-WMed (Four-
rié et al., 2015), of the Météo-France operational convective5

scale model AROME (Seity et al., 2011). The impact of the
assimilation of RASTA data in synergy with all other con-
ventional assimilated data is first evaluated for one of the
most significant rainfall events which occurred during the
Intensive Observing Period 7a (Hally et al., 2014, IOP7a)10

of the HyMeX-SOP1. Next, the experiments are run for 32
case studies of the HyMeX-SOP1 in which RASTA data are
available. The 1D+ 3DVar assimilation method of Caumont
et al. (2010), used operationally to assimilate ground-based
precipitation radars in AROME (Wattrelot et al., 2014), is15

particularly well suited for vertically pointing radars and is
thus employed to assimilate the W-band reflectivity observed
by RASTA. Vertical profiles of relative humidity are first de-
rived via a 1D Bayesian retrieval, and then used as pseudo-
observations in the 3D-Var assimilation system of AROME.20

For the first time, a validation of the 1D Bayesian retrieval
with humidity in situ measurements is performed in this
study.

This article is organised as follows. In section 2, the data
collected by the airborne Doppler W-band radar RASTA are25

presented, followed by a brief description of the NWP model
AROME-WMed with its 3h-3DVar assimilation system. Sec-
tion 3 provides a full description of the 1D+3DVar assimila-
tion method used to assimilate the W-band radar reflectivity.
The different data assimilation experiments are presented in30

section 4. These different experiments are evaluated in sec-
tion 5, followed in section 6 by an evaluation over the 32
assimilation cases of the SOP1. Conclusions are drawn in
section 7.

2 NWP model and radar data35

This study takes advantage of the data collected by the
Doppler W-band radar RASTA during the HyMeX first spe-
cial observing period (HyMeX-SOP1), which took place
from 5 September to 5 November 2012 over the western
Mediterranean (Ducrocq et al., 2014). The main goal of the40

HyMeX-SOP1 was to document the heavy rainfall events
that regularly affect the Mediterranean area.

2.1 The Doppler W-band radar RASTA during the
HyMeX-SOP1

The airborne cloud radar RASTA is a monostatic Doppler45

multi-beam antenna system operating in the W-band at 95
GHz (Bouniol et al., 2008, Protat et al., 2009, Delanoë et al.,
2013). The aircraft platform used is the French Falcon 20
research aircraft from the SAFIRE unit (Service des Avions
Français Instrumentés pour la Recherche en Environnement).50

RASTA has six Cassegrain antennas to measure the reflec-
tivity and the radial velocity in three non-collinear directions
above and below the aircraft. The maximum unambiguous
distance is 15 km with an unambiguous velocity of 7.8 m s−1

(the Pulse Repetition Frequency equals 10 kHz). 55

After processing, the Doppler velocities of the three
upward-looking and downward-looking antennas are com-
bined to retrieve the three components of the wind field above
and below the aircraft (Bousquet et al., 2016). The mea-
surements are collected at a time resolution of 250 ms (i.e. 60

1.5 s between two measurements of the same antenna) and
at a vertical resolution of 60 m. In addition, this study takes
advantage of the reflectivity measurements collected by the
nadir- and zenith-pointing antennas. The zenith-pointing an-
tenna is slightly less sensitive than the nadir-pointing antenna 65

(-26 dBZ versus -27 dBZ at 1 km).
Therefore, this unique instrument allows the documenta-

tion of the microphysical and dynamic properties of clouds
in the vertical at a high resolution of 60 m and quasi-
continuously in time (≈ 1.5 s) during the flights. In partic- 70

ular, during the HyMeX-SOP1, RASTA collected data dur-
ing 18 flights in stratiform (72.6%), convective (14.3%) and
clear sky (13.1%) columns over land, sea and complex ter-
rains (Borderies et al., 2018). RASTA flight tracks during
the HyMeX-SOP1 are represented by the black lines in Fig- 75

ure 1. Further details about RASTA configuration during the
HyMeX-SOP1 are given by Bousquet et al. (2016).

2.2 The AROME-WMed NWP model

This study is performed with a special version of the Météo-
France operational kilometre-scale NWP model AROME 80

(Seity et al., 2011), named AROME-WMed (Fourrié et al.,
2015). AROME-WMed, which covers the entire northwest-
ern Mediterranean Basin, was specially designed for the
HyMeX-SOP1 and ran in real time to plan the airborne oper-
ations, especially in the mesoscale convective systems. The 85

AROME-WMed domain is displayed in Figure 1. AROME-
WMed runs at a horizontal resolution of 2.5 km with 60 ver-
tical levels ranging from approximately 10 m above ground
level to 1 hPa. The deep convection is explicitly resolved and
the microphysical processes are governed by the ICE3 one- 90

moment bulk microphysical scheme (Pinty and Jabouille,
1998). Six water species are predicted by AROME-WMed
(water vapour, rain, cloud liquid droplets, snow, pristine ice
and graupel). The Particle Size Distributions (PSDs) are ex-
pressed as generalized gamma distributions multiplied by the 95

total number concentrations. PSDs are reduced to exponen-
tial distributions for snow, graupel and rain.

The analyses of the global operational NWP model
ARPEGE are used to provide boundary conditions.
AROME-WMed has a 3-h 3D Variational (3DVar) data as- 100

similation system (Brousseau et al., 2014) based on an incre-
mental formulation (Fischer et al., 2005). The control vari-
ables of this system are temperature, specific humidity, sur-
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Figure 1. The Falcon 20 flight tracks (black lines) during the HyMeX first Special Observing Period over the AROME-WMed domain. The
Falcon 20 flight track during IOP7a (Flight 15) is indicated by the red line. IOP7a case study is delimited by the red box. The altitude of
ground above sea level (in metres) is represented by the colour shades. Rain-gauges are represented by the blue markers. The black box
shows the domain used for the impact study in subsection 6.1.

face pressure, vorticity and divergence. The resolution of the
analysis grid is the same as that of AROME-WMed. Follow-
ing the results of Brousseau (2012), the Incremental Analysis
Update (IAU, Bloom et al., 1996) is not used for the 3DVar
assimilation scheme. Background error covariances were5

computed using a period characterized by convective sys-
tems in October 2010 over the northwestern Mediterranean
region (Fourrié et al., 2015). Every three hours an analysis is
computed by using all observations available within a ± 1 h
30 min assimilation window and a 3-h forecast is produced10

to provide a background for the next cycle. The assimilation
system ingests a wide variety of observations from satellite,
ground-based GPS, aircraft, radiosondes, drifting buoys, bal-
loons and wind profilers, automatic land and ship weather
stations, and ground-based precipitation radars of the French15

network ARAMIS (reflectivity and radial velocity). The pur-
pose of this study is to assess the impact of the assimilation
of RASTA data in addition to this already dense observing
network.

2.3 RASTA data pre-processing20

RASTA data are discarded between 250 m above and 250 m
below the aircraft, which is the minimal measuring range
of the zenith- and nadir-pointing antennas. Ground clutter is
also removed. To reduce observation and representativeness
errors, RASTA data are interpolated in the model vertical25

and horizontal resolutions. For the reflectivity measurements,
this interpolation is done by taking the average value (in
mm6 m−3) of all data available along the aircraft track within

a box of 2.5 km length between the two half model levels
surrounding each model level. From a given range from the 30

radar, when the aircraft roll and/or pitch angles are greater
than a threshold (|roll| > 7° at 10 km range), some measure-
ments might come out of the grid box of interest (Borderies
et al., Accepted). Therefore, these data are removed from the
interpolation. The same interpolation is done for the retrieved 35

horizontal wind component except that a median filter is em-
ployed. Indeed, applying a median filter instead of averaging
allows to reduce the influence of outliers, due to the difficulty
of having high quality measurements for airborne Doppler
radar (Bosart et al., 2002). 40

After this pre-processing, a thinning is applied to RASTA
data to decrease observation density and satisfy assumptions
about observation error covariances, which are supposed to
be 0 dB2. It is particularly true for measurements made by
different instruments, which have independent physical er- 45

rors. However, this hypothesis might be no more valid if
the observations are collected very close to each other by
the same instrument. Applying a thinning to the observa-
tions is therefore necessary for having satisfactory assump-
tions about observation error covariances (Rohn et al., 2001; 50

Liu and Rabier, 2002). Therefore, RASTA data are assim-
ilated every 3 time steps, which is equivalent to a distance
of approximately 5 km to 9 km depending on the aircraft
speed. The data are not thinned vertically because the vertical
forecast error covariances are less marked than the horizontal 55

ones (Brousseau et al., 2011) and it is thus not useful to apply
any thinning in that case (Jacques and Zawadzki, 2014).
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3 Assimilation method

3.1 The 1D+3DVar assimilation method

Here, we employ the 1D+3DVar assimilation method (Cau-
mont et al., 2010; Wattrelot et al., 2014) used operationally to
assimilate ground-based precipitation radar data in AROME.5

This data assimilation technique allows to shift a pattern that
was well simulated by the model but at a wrong location. It
relies on the ability of the model to create consistent mois-
ture and reflectivity profiles. Indeed, cloudy areas are gen-
erally associated with relative humidity close to the satura-10

tion and high reflectivity values. This method is particularly
well suited for vertically pointing radar because the first step
of the assimilation method is based on the differences be-
tween different vertical profiles of reflectivities. For instance,
since March 2016, this assimilation method is operationally15

employed to assimilate vertical profiles of Dual-frequency
Precipitation Radar (DPR) reflectivity data in the Japanese
kilometer-scale NWP model (JMA-NHM) (Ikuta, 2016).

The first step consists of a 1D Bayesian retrieval of the best
estimate of relative humidity (RH) profiles, named hereafter20

pseudo-observations (PO), given the observed vertical pro-
file of reflectivity Zo. For each observed column of reflec-
tivity Zo, the corresponding vertical profile of RH pseudo-
observation yRH

PO is given by

yRH
PO =

∑
i

xRH
i

exp

(
−1

2
JPO (xi)

)
∑
j

exp

(
−1

2
JPO (xj)

) , (1)25

with

JPO =
1

no

no∑
k

(Zok −Hz (xk)− bk)
2

σ2
o

, (2)

where

– subscript i denotes the index of the model profile in the
vicinity of the observed profile of reflectivity

– xRH
i is the vertical column of relative humidity from the30

model background;

– Hz (xk) is the simulated reflectivity (in dBZ) at the
model level k, given the model state xk; Hz being the
forward operator

– no is the number of valid observed reflectivity data in35

the column,

– bk is the bias correction value used at the altitude k (in
dB), described in subsection 3.2,

– σo is the standard deviation of observation and forward
operator errors (in dB). 40

The W-band reflectivity forward operatorHz described by
Borderies et al. (2018) is used to simulate the reflectivity. It is
consistent with the ICE3 one-moment microphysical scheme
of AROME and takes as input parameters the hydrometeor
contents of the five hydrometeor species (rain, snow, graupel, 45

cloud liquid water and pristine ice), temperature, pressure,
relative humidity. The T-matrix method (Mishchenko et al.,
1996) is employed to compute the single scattering proper-
ties. Following the results of Borderies et al. (2018), graupel
axis ratio is set to 0.8, snow axis ratio to 0.7 and pristine ice 50

axis ratio to 1. The forward operator returns the simulated re-
flectivity at each range gate from the radar and accounts for
hydrometeors and water vapour attenuation.

According to Equation 1, for each observed vertical profile
Zo, the vertical column of RH pseudo-observation is a linear 55

combination of the neighbouring RH profiles taken from the
model background xRH

i . The xRH
i neighbouring profiles are

located in a 160-km-wide square centred on the aircraft loca-
tion. For the AROME-WMed model, this size is sufficient to
reduce the effects of spatial mismatches between model and 60

observations (Borderies et al., 2018) and to gather a database
of xRH

i which are consistent with the meteorological situa-
tion. In addition, the xRH

i profiles would become less rep-
resentative with a larger size since meteorological environ-
ments can change over ≈ 100 km. 65

In Equation 1, the xRH
i profiles are weighted by a function

(JPO) of the difference between the observed Zo and simu-
lated Hz (xi) column of reflectivities (cf Equation 2). Thus,
larger weights are given to the neighbouring columns that
most closely resemble the observations. To ensure equivalent 70

weights regardless of the number of altitude levels used for
each neighbourhood profile, the square difference in Equa-
tion 2 is divided by the number of valid data over the ob-
served column of reflectivity.

The square difference is also divided by the observation 75

error variance σ2
o . A small σo will favour the neighbouring

columns that most closely resemble the observation. How-
ever, if there is no simulated profile of reflectivity which is
close enough to the observed one, there will be no retrieval
since the weight tends towards a value close to 0. Hence, 80

a small σo either leads to an accurate retrieval or to no re-
trieval at all. On the other hand, a large σo would give simi-
lar weights and smooth the neighbourhood xRH

i profiles, re-
gardless of which extent they resemble the observed profile
of reflectivity (Caumont et al., 2010). Therefore, a sensitivity 85

study is performed in subsection 3.3 to σo values.
The Bayesian retrieval is not applied in case of clear sky,

ie when all the reflectivities over the whole vertical column
are below the radar sensitivity in both the simulations and
the observations. However, if the simulations indicate cloud 90

or precipitation, the closest "clear-sky" profile in the vicinity
of the radar is selected for the retrieval.
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In the second step of the 1D+3DVar assimilation approach,
the retrieved vertical profiles of relative humidity pseudo-
observations yRH

PO are assimilated in the 3DVar assimilation
system of AROME-WMed, like any other conventional ob-
servations.5

3.2 Bias correction

The Bayesian retrieval can also be applied to other variables
using the same weights as those from the retrieval of RH
profiles (in Equation 2), for example to retrieve reflectivity
pseudo-observations yZPO:10

yZPO =
∑
i

Hz (xi)

exp

(
−1

2
JPO (xi)

)
∑
j

exp

(
−1

2
JPO (xj)

) . (3)

The reflectivity pseudo-observation yZPO can be used as an
indicator to evaluate the quality of the 1D Bayesian retrieval
and to estimate the biases that can arise between observations
and simulations. Indeed, in data assimilation it is necessary15

to have unbiased quantities and to remove these systematic
errors (Janisková, 2015; Okamoto et al., 2016). These bi-
ases can arise from the observations, the ICE3 microphysical
scheme and/or the forward operator formulations. Janisková
(2015) showed that the biases between observations and sim-20

ulations depend on the temperature and on the altitude. Since
this study is focused on one specific area of interest during
the same season, the bias is mainly a function of the altitude.
The bias is also a function of the error standard deviation
σo. Indeed, while a small value of σo favours the simulated25

columns that most closely resemble the observations, a larger
value of σo smooths the simulated reflectivity profiles.

Therefore, a bias b was determined from the statistics be-
tween Zo and yZPO using the altitude and the error stan-
dard deviation σo as predictors. Calculations were performed30

over all flights during the HyMeX-SOP1 every 4 time steps.
The background states of a CTRL experiment were used as
a reference to simulate the reflectivity pseudo-observations
and to estimate the biases. The CTRL experiment was run
during a 45-day cycled period from 00 UTC 24 September35

2012, which is the day when the Falcon 20 first flew dur-
ing HyMeX-SOP1, to 5 November 2012, after the last flight.
It includes all the observations that are operationally assimi-
lated (see subsection 2.2).

The bias between RASTA observations and the reflectivity40

pseudo-observations is depicted in Figure 2 as a function of
the altitude for different values of σo (see legend). Calcula-
tions were only performed if both the observation and the re-
flectivity pseudo-observation are above the radar sensitivity.
The number of observations used for the calculations is also45

shown in the right panel. This number is smaller for small
values of σo (red curve), because it constrains the amount of

retrieved profile of reflectivity pseudo-observations to only
those which most closely resemble the observations.

Figure 2 shows that the bias increases with the altitude, 50

which is consistent with the existence of model biases in
cloudy areas in the ICE3 microphysical scheme of AROME-
WMed (Borderies et al., 2018; Taufour et al., 2018). Figure 2
highlights the fact that, because of the smoothing effect, the
bias increases with the error standard deviation σo. Indeed, 55

at approximately 6 km of altitude, the bias can reach a value
up to 6 dB if σo equals 9 dB, and only ≈ 1.5 dB if σo equals
2 dB.

The effect of the bias correction is shown in Figure 3, in
which Contoured Frequency by Altitude Diagram (CFAD) 60

of the differences between the observed reflectivity and the
bias-corrected reflectivity pseudo-observations are shown for
a σo of 2 dB. The residual bias is indicated by the black line.
Figure 3 demonstrates that, after applying the bias correc-
tion in Equation 2, the residual bias is close to 0 dB except 65

above an altitude of approximately 10 km, which is proba-
bly due to the smaller number of points used to calculate the
bias correction. As explained by Janisková (2015), the use
of additional predictors, such as temperature or hydrometeor
contents, could lead to an improvement in the bias correction 70

at higher altitude.

3.3 Observation error within the Bayesian inversion

As explained in Equation 2, the quality of the 1D Bayesian
retrieval relies on the specification of standard deviation of
observation and forward operator errors σo (in dB). In-flight 75

water vapour mixing ratio measurements ro are available at
flight level and can be used to estimate σo and to evaluate
the quality of the retrieval. These data present the advantage
of being completely independent from the retrieval and they
allow the evaluation of the humidity pseudo-observations 80

which will then be assimilated in the 3DVar assimilation sys-
tem of AROME-WMed.

The 1D-Bayesian retrieval is applied to the CTRL back-
ground states for error standard deviations σo ranging from
0.6 dB to 9 dB. The bias correction, which has been calcu- 85

lated for each σo in subsection 3.2, is applied in Equation 2.
The retrieved pseudo-observations rm of water vapour mix-
ing ratio at the flight level are then compared with the in-
flight measurements ro over 32 flights of the HyMeX SOP1.
The comparison is done as follows. First, a manual data qual- 90

ity control is applied to in-situ humidity observations in order
to remove the poor quality measurements that can arise from
instabilities or period of malfunctioning during the flights.
After this quality control, it remains 24 flights out of 32.
Second, water vapour mixing ratio measurements are aver- 95

aged over 12 time steps to reduce observation noise and rep-
resentation errors. Figure 4 shows the standard deviations
(right panel) and biases (left panel) between the observed in-
flight water vapour mixing ratio and the retrieved ones (red
curve) as a function of the error standard deviations σo. The 100
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Figure 2. Bias (left panel) between RASTA reflectivity and the reflectivity pseudo-observation as a function of the altitude for different
values of error standard deviation σo (see legend box). The right panel shows the number of observations used for the calculations as a
function of the altitude for the different values of error standard deviation σo.

−10 −5 0 5 10

Zo − ZPO(dB)

0

2

4

6

8

10

12

A
lt
it
u
d
e(
k
m
)

80

160

240

320

400

480

560

N
um

be
ro

fp
oi

nt
s

Figure 3. Contoured Frequency by Altitude Diagram (CFAD) of the
differences between the observed reflectivity and the bias-corrected
reflectivity pseudo-observations. The residual bias after applying
the bias correction is indicated by the black line.

standard deviations between in-flight measurements and the
background water vapour mixing ratio are also represented
by the black data points.

The standard deviation values in Figure 4 demonstrate that
the retrieved water vapour mixing ratios are always in better 5

agreement with the in-flight measurements, compared to the
background state. This improvement highlights the ability of
the 1D Bayesian method to retrieve humidity fields that are
closer to independent observations. The variation of the stan-
dard deviation indicates the existence of an optimal value of 10

σo of approximately 2 dB. Indeed, below 2 dB, the standard
deviation increases with decreasing σo. This is due to the ten-
dency of the retrieval to be more selective for small values of
σo, which results in using the background state instead of ap-
plying the retrieval. On the contrary, above 2 dB, the standard 15

deviation increases with σo. Indeed, a large σo increases the
number of successful inversions, but smooths them to pro-
duce the resulting humidity pseudo-observations. Finally, it
should be noted that the bias is also improved with a σo of
2 dB (left panel). Hence, we decided to use an error standard 20

deviation σo of 2 dB for the rest of this study.

4 Data assimilation experiments

To assess the potential of RASTA data to improve analyses
and forecasts of heavy precipitation events, a total of 4 exper-
iments is conducted. The CTRL experiment includes all the 25

observations that are operationally assimilated (see subsec-
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Figure 4. Standard deviations (right panel, in g/kg) and biases (left panel, in g/kg) of the water vapour mixing ratio differences between
in-flight measurements rq and the retrieved ones rm (red) as a function of the error standard deviations σo (in dB). The standard deviations
and biases before applying the 1D-Bayesian retrieval are represented by the black data points.

tion 2.2). Three additional RASTA experimental designs (Z,
V, ZV) share the same configuration as CTRL, except that
they also include the assimilation of RASTA data. The re-
flectivity observed by RASTA is assimilated alone in the Z
experiment, and jointly with RASTA horizontal wind com-5

ponents in the ZV experiment. The 1D+3DVar assimilation
method described in subsection 3.1 is employed to assim-
ilate RASTA reflectivity observations in the Z and ZV ex-
periments. In addition, the V experiment includes the assim-
ilation of RASTA wind data alone. As explained by Bor-10

deries et al. (Accepted), the assimilation of RASTA wind
data is straightforward and does not require the use of a radial
wind observation operator. Indeed, the Doppler multi-beam
antenna system of RASTA allows the retrieval of the hori-
zontal wind components (u, v), which are directly linked to15

two control variables of the AROME model (vorticity and
divergence).

RASTA data are not measured simultaneously, but over
the flight leg. Consequently, at each assimilation cycle, the
3DVar assimilation system of AROME-WMed ingests all the20

RH pseudo-observations and/or RASTA wind data available
during a 2-hour assimilation window centred on the assimi-
lation time T , as if they were valid at the time T . A larger
assimilation window increases the number of observations
and results in larger coverage. However, since RH pseudo-25

observations vary with convective systems, which can evolve
quickly in time, a larger assimilation window would result in
assimilating data that are no longer valid at the current as-
similation time T . Besides, Borderies et al. (Accepted) con-
ducted a sensitivity study to the length of the assimilation 30

window, by assimilating airborne Doppler wind radar data in
the 3DVar assimilation system of AROME-WMed. Results
indicated that, even though the best scores were reached with
a 3 hour assimilation window, a slight positive improvement
of the 8-hour precipitation forecasts was also evidenced with 35

a 2-hour assimilation window. Therefore, a 2-hour assimi-
lation window is a good compromise to assimilate a larger
number of observations, which are nearly valid at the assim-
ilation time, without adding any detrimental observation in
the assimilation system. Hence, the length of the assimila- 40

tion window has been set to 2 hours in this study.
The observation errors for the RH pseudo-observations

yRH
PO and RASTA wind data are the same as the one used

for the radiosonde measurements. It is set to 12% for the
RH pseudo-observations. RASTA wind observation error in- 45

creases with the altitude from approximately 1.8 m s−1 at
900 hPa to approximately 2.5 m s−1 at 200 hPa. Finally, in
addition to the pre-processing described in subsection 2.3, a
quality control is also performed prior to the assimilation:
observations with innovation (Observations - Background) 50
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greater than a threshold are rejected. This threshold depends
on both the observation and background errors. It has a
constant value of approximately 55% for the RH pseudo–
observations. It increases with the altitude for RASTA wind
data because the error standard deviation is a function of the5

altitude (approximately 25 m s−1 at the maximum).
The four different experiments are first conducted for a

heavy precipitation event which occurred during the Inten-
sive Observing Period 7a (IOP7a) over South-Eastern France
on 26 September 2012. During this case study, RASTA data10

were collected during Flight 15 between 06:10 UTC and
09:45 UTC (red line in Figure 1). Therefore, RASTA data are
assimilated for the first time at the 06:00 UTC analysis. The
different experiments are named CTRLIOP7, ZIOP7, VIOP7 and
ZVIOP7. They share the same background field to compute15

the 06:00 UTC analysis. They start at 00 UTC 26 Septem-
ber 2012 and end at 12 UTC 26 September 2012. Next, in
order to study the impact of the assimilation of RASTA data
in various conditions during the whole HyMeX-SOP1, the
four experiments are run for the 32 analysis cases in which20

RASTA data are available. For this configuration, the CTRL
experiment is the same as the one used in subsection 3.2,
which was run during a 45-day cycled period from 00 UTC
24 September 2012 to 5 November 2012. For the sake of sim-
plicity, the CTRL experiment is named CTRLSOP1. The three25

RASTA experiments are respectively named ZSOP1, VSOP1

and ZVSOP1. In order to disentangle the cycling effect from
the impact of the assimilation of RASTA data on the analy-
ses, the ZSOP1, VSOP1 and ZVSOP1 experiments are not cycled
and share the same background fields as the CTRLSOP1 ex-30

periment ones.

5 Impact on the IOP7a case study

To assess the potential of RASTA observations to improve
short-term forecasts, focus is first made on one of the
most significant precipitation events which occurred during35

IOP7a. More than 100 mm of rain were observed between
00:00 UTC on 26 September and 00:00 UTC on 27 Septem-
ber in the area delimited by the red box in Figure 1 (Hally
et al., 2014). As mentioned in section 4, RASTA data are as-
similated for the first time at the 06:00 UTC analysis in the40

ZIOP7, VIOP7 and ZVIOP7 experiments. Most of these data are
located upwind of where the rainfall event took place later in
the morning at approximately 08:00 UTC. Such a configura-
tion is required to evaluate the impact of the assimilation of
RASTA data to improve heavy precipitation events.45

5.1 1D Bayesian retrieval

As explained in subsection 3.1, the first step to assimilate
the reflectivity consists of a 1D-Bayesian retrieval of Rel-
ative Humidity (RH) pseudo-observation profiles, given the
vertical profile of reflectivity observed by RASTA. Since no50

Figure 5. Time-height cross section of the reflectivity observed
by Rasta (A), simulated from the background (B), and pseudo-
observations (C). The differences between the Relative Humidity
pseudo-observations and the relative humidity from the background
state are shown in Figure D. Aircraft altitude is indicated by the
black line.

direct RH observations are available with such a high ver-
tical resolution as the one of RASTA data, the method is
validated by comparing the reflectivity pseudo-observations
yZPO with RASTA Zo observations. Figure 5 shows RASTA
observations (interpolated on the vertical grid model, A), 55

the simulated profile of reflectivities from the background
(B) and the retrieved reflectivity pseudo-observations (C).
The differences between the RH pseudo-observations and the
background RH profiles are also shown in the bottom panel
(D). Differences are displayed in red (blue) if RH pseudo- 60

observations are larger (smaller) than the background.
Figure 5 highlights the capability of the 1D-Bayesian

method to retrieve profiles which are in better agreement
with the observations than the background. For example, at
approximately 06:30 UTC, the observation profiles indicate 65

clouds below an altitude of 6 km, as opposed to the simulated
profiles from the background which only indicate clear sky
profiles. This has been rectified in the reflectivity pseudo-
observation profiles, and in the corresponding RH pseudo-
observations profiles. Indeed, the RH pseudo-observations 70

values are larger than the background RH values (red values
in D), and are thus more representative of the presence of a
cloud. Inversely, at approximately 06:25 UTC, the Bayesian
retrieval has been able to remove the low level clouds present
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in the background, and to add clouds above an altitude of
about 4 km. Between 06:50 UTC and 07:00 UTC, the re-
flectivity pseudo-observations are also in much better agree-
ment with the observations than the background. The corre-
sponding RH pseudo-observations values are also larger than5

the background, which is consistent with the fact that larger
RH values are usually associated with larger reflectivity val-
ues. Hence, Figure 5 demonstrates the ability of the Bayesian
retrieval to pick-up vertical profiles in the neighbourhood
which are more consistent with the observations. Indeed,10

this retrieval successfully dried areas associated with low re-
flectivity values, and moistened areas associated with high
reflectivity values. These retrieved RH pseudo-observation
profiles are then assimilated in the 3DVar assimilation system
of AROME-WMed in the ZIOP7 and ZVIOP7 experiments.15

5.2 Impact on analyses

Figure 6 shows (from the top to the bottom), the relative hu-
midity for the pseudo-observations, the CTRLIOP7, the ZIOP7,
the VIOP7 and the ZVIOP7 analyses. Similarly, Figure 7 rep-
resents the wind speed for the observations and the different20

experiments. The four different analyses were computed us-
ing the same background state.

As shown in Figures 6 and 7 (top panel), the number
of RH pseudo-observations which have been assimilated is
larger than the number of RASTA wind data. Indeed, con-25

trary to RASTA wind data, the reflectivity is also assimi-
lated in case of clear sky. Besides, airborne Doppler veloc-
ity measurements are contaminated by the aircraft motion
(roll/pitch/drift angles, ground speed, etc.). Therefore, be-
cause of the difficulty to have high quality measurements30

(Bosart et al., 2002), RASTA wind data have been more fre-
quently rejected (Cf between 06:42 UTC and 06:50 UTC
in Figure 7). In addition, contrary to the W-band reflectiv-
ity measurements, RASTA horizontal wind components are
obtained through a retrieval, which might also explain the35

smaller number of assimilated horizontal wind data. Finally,
since RH pseudo-observations are assimilated in the same
way as radiosonde observations are (Cf section 4), they are
rejected above an altitude of approximately 9 km because the
values are very small.40

Compared to the RH pseudo-observations in Figure 6, RH
is overestimated in the CTRLIOP7 and in the VIOP7 analy-
ses. Except at approximately 8 km of altitude, the RH pro-
files are much more similar to the RH pseudo-observations
in the ZIOP7 and ZVIOP7 analyses. Conversely, in Figure 7,45

the VIOP7 and ZVIOP7 analyses are in much better agreement
with RASTA wind observations compared to the CTRLIOP7

and the ZIOP7 analyses. Figure 6 shows that the VIOP7 analy-
sis is very similar to the CTRLIOP7 one in terms of humid-
ity. Similarly, in Figure 7, the ZIOP7 analysis is very sim-50

ilar to the CTRLIOP7 one in terms of wind speed. There-
fore, the assimilation of RASTA wind data (resp. RH pseudo-
observations) does not impact the humidity (resp. wind) field

in the analysis, probably because wind and humidity are
not highly correlated in the assimilation process through the 55

background error covariances. However, the assimilation of
the RH pseudo-observations jointly with RASTA wind data
(ZVIOP7 experiment) results in a positive impact in terms of
both the wind and the humidity fields.

5.3 Impact on rainfall forecasts 60

Figure 8 shows the 12-hour accumulated rainfall between
06:00 UTC and 18:00 UTC 26 September 2012 (IOP7a) for
radar observations, the CTRLIOP7, the ZIOP7, the VIOP7 and
the ZVIOP7 experiments.

First, the predicted rainfall pattern is well reproduced in 65

the four different experiments. As shown by Borderies et al.
(Accepted), the maximum rainfall accumulation is overesti-
mated in the CTRLIOP7 experiment (≈ 142 mm versus 93 mm
in the radar observations), but is better reproduced in the
ZIOP7 experiment (130 mm). In addition, the assimilation of 70

RH pseudo-observations jointly with RASTA wind data in
the ZVIOP7 experiment also results in a decrease (133.5 mm)
of the predicted maximum rainfall accumulation. Finally, the
experiment in which RASTA wind data are assimilated alone
in the VIOP7 leads to the better agreement with the radar ob- 75

servations. Indeed, the maximum rainfall forecast accumula-
tion has been reduced to only 118 mm.

6 Results on the HyMeX SOP1

The impact of the assimilation of RASTA data is now as-
sessed over the 32 cases in which RASTA data were assim- 80

ilated during the HyMeX-SOP1. In order to use the same
background fields, we use the ZSOP1 , VSOP1 and ZVSOP1 ex-
periments, which are not cycled. An exergy distance-based
approach (Marquet et al., 2019) is first employed to mea-
sure the relative impact of the assimilation of RASTA obser- 85

vations on the analysis and forecast fields. Then, the added
value of the assimilation of RASTA data on the analyses
is evidenced by using independent humidity measurements.
Finally, the subsequent forecasts are validated against rain-
gauge measurements. 90

6.1 Impact study using an exergy distance-based
approach

The moist-air available-enthalpy (exergy) distance (Marquet
et al., 2019) is first briefly described, and then calculated to
measure the relative impact of the assimilation of RASTA 95

data on analyses and short-term forecasts.

6.1.1 The moist-air available-enthalpy (exergy)
distance

Traditionally, the impact of the assimilation of a new ob-
servation type and its synergistic effect with other obser- 100
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Figure 6. Relative Humidity (RH, in%) for (from the top to the bottom) the pseudo-observations, the CTRLIOP7, the ZIOP7, the VIOP7 and the
ZVIOP7 experiments.

vations are assessed through verification scores of a long
data-denial assimilation experiment (Storto and Randria-
mampianina, 2010). These approaches are very expensive
from a numerical point of view. The new type of observa-
tion needs to be assimilated in a large number of analysis5

cases, which can not be affordable for airborne radar mea-
surements since the availability of the new observation de-
pends on the aircraft flights. By contrast, energy-based ap-
proaches (Ehrendorfer et al., 1999; Marquet et al., 2019) are
cost effective methods for evaluating the impact of the as-10

similation of a new observing system in a NWP model. The
idea is to combine thermodynamic variables of the atmo-
sphere into a model space-based measure (Storto and Ran-
driamampianina, 2010), which avoids the use of long data-
denial experiments and adjoint-based methods, that rely on15

strong linearity assumptions which are not valid at the con-
vective scale. These approaches provide a measure of the rel-
ative impact of the observations on the analysis and forecast

fields. For example, Storto and Randriamampianina (2010)
employed the Moist Total Energy Norm (Ehrendorfer et al., 20

1999, MTEN) to evaluate the loss of quality in the fore-
casts when an observation type is not assimilated. A simi-
lar methodology was employed by Fabry and Sun (2010) to
characterize model errors in winds, temperature, humidity,
and precipitation. 25

Based on results of (Marquet, 1993), Marquet et al.
(2019) defined a moist-air available-enthalpy (exergy) dis-
tance, which provides a more general and comprehensive
metric between a perturbed thermodynamic state (here: the
RASTA experiments), and a reference one (here: the CTRL 30

experiment). It is defined by the integration over the 2D do-
main of the sum of four quadratic terms in horizontal wind
components U,V (Ns), temperature T (NT ), surface pres-
sure ps (Np) and water vapour mixing ratio rv (Nv). The
four contribution terms of the exergy distance are then given 35
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Figure 7. Wind speed (m/s) for (from the top to the bottom) the observations, the CTRLIOP7, the ZIOP7, the VIOP7 and the ZVIOP7 experiments.
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where the superscript i denotes the RASTA experiments
(ZSOP1 , VSOP1 or ZVSOP1), Cpd is the specific heat of dry air,
Rd is the dry air constant, Rv is the water vapour gas con-
stant, and Tr is the reference temperature (taken to 300 K).

The total exergy distance is then given by the sum of the four 10

quadratic terms NT , Np, Nv and Ns.
In equations 4, 5 and 6, the contribution terms of the ex-

ergy distance are divided by the weighting factors TCTRL,
pCTRL
s and rCTRL

v , which correspond to the average values
over the 2D domain of TCTRL, pCTRL

s and rCTRL
v , respec- 15

tively. Hence, as defined by Ehrendorfer et al. (1999), the
weighting factors TCTRL and rCTRL

v are a function of the
altitude, where an arbitrary factor "ε" was introduced how-
ever with unknown values between 0.1 and 10. This arbi-
trariness is removed by Marquet et al. (2019) where rCTRL

v 20

varies significantly with height, since the water vapour mix-
ing ratio decreases by 3 orders of magnitude between the sur-
face and the stratosphere. Therefore, moisture analysis and
forecast impacts between the different atmospheric levels are
fully taken into account through the use of these altitude- 25

dependent weighting factors. Hence, the use of the exergy
distance is expected to more fairly rank the different observ-
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Figure 8. 12-hour accumulated rainfall between 06:00 UTC and 18:00 UTC 26 September 2012 (IOP7a) for radar observations, the
CTRLIOP7, the ZIOP7, the VIOP7 and the ZVIOP7 experiments.

ing systems through the use of more balanced contributions
between wind, temperature and water vapour.

In this study, the four different contribution terms of the
exergy distance will be studied independently in order to
evaluate the respective impact of the assimilation of the RH5

pseudo-observations and/or RASTA wind components on
temperature (Equation 4), surface pressure (Equation 5), wa-
ter vapour mixing ratio (Equation 6) and wind (Equation 7)
fields.

6.1.2 Impact on analyses10

The temperature NT , surface pressure Np, humidity Nv and
kinetic Ns contribution terms of the exergy distance are cal-
culated over the domain defined by the black box in Figure 1.
Figure 9 represents NT (A), Np (B), Nv (C) and Ns (D) as a
function of the altitude for the ZSOP1 (red curve), VSOP1 (blue15

curve) and ZVSOP1 (black curve) analyses. The different con-
tribution terms are averaged over the 32 analyses in which
RASTA data have been assimilated.

First, Figure 9 demonstrates that the assimilation of RH
pseudo-observations and/or RASTA wind data has a small20

impact on the temperature NT (A) and surface pressure Np

(B) contribution terms of the exergy distance. Indeed, even
though there is a correlation between the different variables
through the background error covariance matrix (Fabry and

Sun, 2010), there is a larger impact on the contribution terms 25

(Nv and/or Ns) that are associated to the variables (wind
and/or humidity) directly linked to the assimilated observa-
tions. On the analyses, the experiment which has the smallest
impact on NT (A) and Np (B) is the VSOP1 experiment (blue
curve), followed by the ZSOP1 experiment. However, this rank 30

order is reversed after only one-hour forecast (not shown).
The larger impact on NT and Np is obtained if RH pseudo-
observations are assimilated jointly with RASTA wind data
(ZVSOP1 experiment, black curve).

As expected, since RH pseudo-observations are linked to 35

the humidity fields, the impact of the assimilation of RH
pseudo-observations (ZSOP1) is larger onNv than on the other
contribution terms. Similarly, since RASTA wind observa-
tions are linked to the horizontal wind components, their as-
similation (VSOP1) result in a larger impact on Ns. Next, the 40

assimilation of RH pseudo-observations (resp. RASTA wind
data) does not impact significantly Ns (resp. Nv). Therefore,
humidity and horizontal wind data do not seem to be highly
correlated with one another, which is consistent with the re-
sults of subsection 5.2. A larger impact on both the Nv and 45

Ns contribution terms is obtained if RH pseudo-observations
and RASTA wind data are assimilated jointly (ZVSOP1, black
curve), along with a larger impact on all the contribution
terms. Consequently, this result indicates that the joint as-
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similation is required to have an impact on both the wind and
humidity fields in the analyses.

6.1.3 Impact on short-term forecasts

Equations 4 and 6 are now integrated over the two dimen-
sional domain and the vertical levels for different forecast5

terms. Results are only shown for the kinetic (Ns) and hu-
midity (Nv) contribution terms of the exergy distances be-
cause the major differences have mainly been evidenced on
these two terms (see Figure 9). Figure 10 represents Ns (C
and D) and Nv (A and B) as a function of the forecast term10

over land (left panels) and over sea (right panels) for the
ZSOP1 (red curve), VSOP1 (blue curve) and ZVSOP1 (black
curve) experiments.

Generally, Figure 9 shows that the impact is larger over sea
(right panels) than over land (left panels). Indeed, ground-15

based precipitation radar data (reflectivity and Doppler ve-
locity) are also assimilated over land. Therefore, there is a
lack of wind and humidity observations over sea, which is
partly compensated by the assimilation of RASTA data. This
is particularly evidenced for the humidity contribution term20

Nv of the exergy distance (A and B panels). However, after
2-hour forecast term, the impact of the VSOP1 and ZVSOP1 ex-
periments on Ns is of the same order of magnitude over land
and over sea.

Except at the analysis time on the humidity contribu-25

tion term Nv , the impact of the assimilation of RH pseudo-
observations (ZSOP1 experiment) is always smaller than the
impact of RASTA wind data (VSOP1 experiment). This can
be attributed to the fact that the forecast system seems to
have a short memory of RH pseudo-observations, which is30

consistent with the findings of Storto and Tveter (2009).
The impact of the assimilation of RASTA wind data has a
larger impact on the humidity forecasts, probably by adjust-
ing large structures, and by modifying in return the frontal
and/or convective features. In addition, the impact is always35

larger when RH pseudo-observations are assimilated jointly
with RASTA wind data (ZVSOP1 experiment, black curve).
This result was expected because the number of assimilated
observations has been increased in the ZVSOP1 experiment.
Besides, the ZVSOP1 experiment seems to take the benefits (or40

disadvantages) of both the ZSOP1 and the VSOP1 experiments.
The small impact of the ZSOP1 experiment seems to indi-
cate that it is pointless to assimilate RH pseudo-observations
without modifying in a consistent way the wind field. Finally,
the ZVSOP1 experiment leads to a larger impact on the kinetic45

contribution term Ns than on the humidity contribution term
Nv . This is can be explained by the fact that the VSOP1 exper-
iment has more impact on Ns than the ZSOP1 experiment has
on Nv .

To conclude, the relative impact of the assimilation of50

RASTA data on the analysis and forecasts fields has been
evidenced using the exergy distance. This impact study high-
lighted that RH pseudo-observations have a modest impact

on the analyses on the humidity field, which vanishes soon
as the forecast term increases compared to the experiment in 55

which RASTA wind data are assimilated alone. The impact
on the subsequent forecasts is more important if both data are
assimilated jointly. The benefit brought by this impact will be
evaluated in the next sections.

6.2 Analyses evaluation: comparisons against in situ 60

measurements

The aim of this section is to assess the added value of the
assimilation of RASTA data on the analyses. The evaluation
is not shown against other conventional assimilated observa-
tions, because, as expected, the fit to observations is always 65

better in CTRLSOP1 than in the RASTA experimental analy-
ses. However, in-flight humidity measurements at flight level
are not assimilated in any of the experiments, and are used as
independent observations to assess the impact of the assimi-
lation of RASTA data on the humidity analyses. As explained 70

in subsection 3.3, poor quality measurements are removed
for the comparisons. Hence, after the manual quality con-
trol, it only remains 24 analysis cases. Figure 11 shows the
standard deviation between humidity mixing ratio measure-
ments and the analysed ones for the different experiments 75

(ZSOP1 , VSOP1 and ZVSOP1) during the 24 analysis cases. The
standard deviation between the measurements and the water
vapour mixing ratios from the background state is also rep-
resented by the black data points, which is a constant value
because the same background states are used in all the differ- 80

ent experiments.
First, it should be noted that the analysed water vapour

mixing ratios are always in better agreement with the ob-
servations compared to the background field, which is quite
reassuring. Next, the standard deviation is slightly larger for 85

the VSOP1 than for the CTRLSOP1 experiment. Hence, the as-
similation of RASTA wind data alone (VSOP1) does not im-
prove the analysis in terms of humidity, which was expected
because RASTA wind data are only slightly related to hu-
midity, so it is likely that the humidity analysis field moves 90

away from humidity observations. The experiment that re-
duces the most the standard deviation is the ZSOP1 experi-
ment, which indicates that the assimilation of RH pseudo-
observations alone impacts positively the analysis in terms
of humidity. 95

Even though slightly less pronounced, the assimilation
of RH pseudo-observations jointly with RASTA wind data
(ZVSOP1 experiment) also leads to an improvement of the
analysed humidity field. The respective impacts of the ZSOP1

and VSOP1 experiments are both present in the ZVSOP1 ex- 100

periment. Therefore, since the standard deviation is slightly
larger for the VSOP1 experiment, it seems logical that the stan-
dard deviation in Figure 11 is larger for the ZVSOP1 experi-
ment than for the ZSOP1. In addition, it has been demonstrated
in Figure 9 that the humidity field in the analysis is more 105

impacted by the assimilation of RH pseudo-observations
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Figure 9. Temperature NT (A), surface pressure Np (B), humidity Nv (C) and kinetic Ns (D) contribution terms of the exergy distance as a
function of the altitude for the ZSOP1 (red curve), VSOP1 (blue curve) and ZVSOP1 (black curve) analyses.
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also shown by the black data points (N=6307).

(ZSOP1) than RASTA wind data (VSOP1). Consequently, the
ZVSOP1 experiment inherits more from the benefits of the
ZSOP1 experiment than from the disadvantages of the VSOP1

experiment in the humidity analysis.

6.3 Rainfall forecast evaluation5

Forecast scores are now validated using the rain-gauge
network available from the HyMeX database (doi:
10.6096/MISTRALS-HyMeX.904). The rain-gauge mea-
surement locations are indicated by the blue markers in
Figure 1. For the comparisons, model outputs are inter-10

polated to the rain-gauge station locations using a linear
interpolation. Heidke Skill Score (HSS) is calculated for the
6-h accumulated rainfall forecasts for the CTRLSOP1 and the
three RASTA experiments (ZSOP1, VSOP1 and ZVSOP1). HSS
is calculated for the 32 assimilation cases in which RASTA15

data have been assimilated. Figure 12 represents the mean
HSS differences of the 6-h accumulated rainfall forecasts
between the RASTA and the CTRLSOP1 experiment, as
a function of the rainfall accumulation threshold (mm).
The bootstrap confidence intervals are also shown for each20

threshold. They are quite large because HSS has only been
calculated over 32 cases. The impact of the assimilation of
RASTA wind data is positive if the differences are above 0.

Figure 12 indicates that the benefit of the RH pseudo-
observations (ZSOP1) is neutral to slightly positive above ap- 25

proximately the threshold 25 mm. Besides, the impact of
the assimilation of wind vertical profiles (VSOP1) is larger
than that of RH pseudo-observations (ZSOP1), especially for
the larger rainfall accumulation thresholds. This is consistent
with the fact that the impact of the RH pseudo-observations is 30

less pronounced than the impact of RASTA wind data as the
forecast term increases (see section 6). Similar results were
also obtained in prior studies (Pu et al., 2009; Zhao and Jin,
2008; Zhang et al., 2012). Finally, the best results are ob-
tained for the ZVSOP1 experiment, which suggests that the 35

accumulated rainfall forecasts benefit more from the assim-
ilation of the W-band reflectivity jointly with RASTA wind
data. Similar results were also obtained with other categor-
ical scores (FAR and POD), and for the 9- and 12- rainfall
accumulation forecasts. 40

7 Discussions and conclusions

The primary objective of this article was to assess the im-
pact of the assimilation of W-band radar reflectivity in a
kilometre-scale NWP model, specifically to improve anal-
yses and short-term forecasts of heavy precipitation events 45

in the Mediterranean area. The W-band reflectivity mea-
surements collected by the airborne Doppler W-band radar
RASTA during the HyMeX-SOP1 were assimilated into the
3h 3DVar assimilation system of the NWP model AROME.
To complement this study, the benefit brought by consistent 50

thermodynamic and dynamic cloud conditions has also been
investigated by assimilating separately and jointly the hor-
izontal wind measurements retrieved by RASTA. Results of
this study will provide guidance for future observing systems
by assessing whether it is more relevant to improve the cur- 55

rent technologies towards cloud radars measuring horizontal
wind profiles, or only reflectivity profiles. The data assimi-
lation experiments were first conducted for one of the most
significant heavy precipitation events of the HyMeX-SOP1
(IOP7a). Then, to cover a larger number of meteorological 60

situations, the different experiments have been run for the
32 cases in which RASTA data were available during the
HyMeX SOP1.

The 1D+3DVar assimilation method, operationally em-
ployed to assimilate ground-based precipitation radar data 65

in AROME, has been adapted to assimilate the W-band re-
flectivity. Vertical profiles of relative humidity are first de-
rived via a 1D Bayesian retrieval, and then used as pseudo-
observations in the 3DVar assimilation system of AROME.
In order to fully take advantage of the W-band reflectivity in 70

cloudy areas, a bias correction scheme was applied. The er-
ror standard deviation σo was estimated by minimising the
standard deviation between the retrieved humidity fields and
independent in-situ humidity measurements. Results indicate
that the best estimate of the error standard deviation is close 75
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Figure 12. Differences in the average HSS of the 6-h cumulated precipitation forecasts versus rain gauge measurements, between the three
RASTA experiments and the CTRLSOP1 experiment (from left to right: ZSOP1, VSOP1 and ZVSOP1). Calculations were performed over the 32
runs in which RASTA data were assimilated. The error bars represent the 95% bias-corrected and accelerated (BCa) bootstrap confidence
intervals (see Efron and Tibshirani, 1993).

to 2 dB. The comparison with in-situ humidity measurements
highlighted the ability of the 1D Bayesian method to retrieve
humidity field which are in better agreement with completely
independent humidity measurements.

After validating the first step of the 1D+3DVar assimila-5

tion method, the exergy distance was calculated for each ex-
periment to measure the relative impact of the assimilation
of RASTA data on the analyses and the subsequent forecasts.
This method allows one to assess the impact of the new ob-
servation type on the temperature, surface pressure, kinetic10

and humidity fields, independently. In particular, this im-
pact study demonstrated that RH pseudo-observations have
a larger impact on the humidity, temperature and pressure
variables on the analyses, compared to the assimilation of
RASTA wind data alone. However, after one hour forecast,15

this rank order is reversed, probably because the forecast sys-
tem has a short memory of the changes made by the RH
pseudo-observations on the humidity in the analysis. This
result is consistent with the findings of Storto and Tveter
(2009), who employed a similar method to assimilate CPR20

data on-board the satellite CloudSat in the ALADIN NWP
model. The impact on the analyses and forecasts is always
larger if the W-band reflectivity is assimilated jointly with
RASTA wind data, probably because the two observations
complement each other and lead to more consistent thermo-25

dynamic and dynamic of cloud or frontal conditions in the
initial state. In addition, it has been demonstrated that the
impact of the assimilation of RH pseudo-observations and/or
RASTA wind data is more important over sea than over land,
probably because these areas are poorly covered by the con-30

ventional network.
To evaluate the benefits brought by these impacts on the

analyses, all assimilation experiments have been compared

by calculating the standard deviation between the humid-
ity analysis fields and in-situ humidity measurements. The 35

comparisons demonstrated that the experiment in which RH
pseudo-observations are assimilated alone improves the most
the analyses in terms of humidity, slightly followed by the
experiment in which RASTA wind data are also assimilated
jointly. 40

Generally, results of this study indicate that the W-band re-
flectivity leads to a slight positive improvement of the rainfall
precipitation forecasts. Nonetheless, the impact is even more
positive if RASTA wind data are assimilated alone. Finally,
the best scores are reached if the W-band reflectivity is assim- 45

ilated jointly with RASTA wind data. Even though for pre-
cipitation Doppler radars and for cyclone studies, similar re-
sults were also obtained in prior studies (Zhao and Jin, 2008;
Pu et al., 2009; Zhang et al., 2012; Dong and Xue, 2012).
Consequently, the results suggest that the assimilation of the 50

two observations jointly leads to a slight improvement of
both moisture initial conditions and precipitation forecasts.

In the future, the impact of the assimilation of the W-band
reflectivity will also be investigated for other meteorological
situations, such as fog. Indeed, since W-band radar are very 55

sensitive to cloud liquid water, their assimilation in km-scale
NWP model should improve fog forecasts. In particular, the
lower-cost W-band radar BASTA (Delanoë et al., 2016) will
be employed during dedicated field campaigns.

The current 1D+3DVar assimilation method requires to de- 60

fine the error standard deviation for the retrieved RH pseudo-
observations. One perspective might be to prescribe observa-
tion errors that vary in space. In addition, it is possible that
the limited impact of RH pseudo-observations as the forecast
term increases is due to the fact that hydrometeors are not 65

initialised: the condensation consumes the moisture which
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has just been injected in the analysis. In a near future, it will
be possible to add the hydrometeor specific contents in the
control variables with a flow-dependent component in the
background-error covariances. Indeed, an EnVar data assim-
ilation system is currently being developed for the AROME5

model (Montmerle et al., 2018). The direct assimilation of
the W-band reflectivity should be favoured by this future im-
plementation.
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