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Abstract.

This article investigates the potential of W-band radar reflectivity to improve the quality of analyses and forecasts of heavy

precipitation events in the Mediterranean area. The 1D+3DVar assimilation method, operationally employed to assimilate

ground-based precipitation radar data in the Météo-France kilometre-scale NWP model AROME, has been adapted to assimi-

late the W-band reflectivity measured by the airborne cloud radar RASTA during a two-month period over the Mediterranean5

area. After applying a bias correction, vertical profiles of relative humidity are first derived via a 1D Bayesian retrieval, and

then used as relative humidity pseudo-observations in the 3DVar assimilation system of AROME. The efficiency of the 1D

Bayesian method in retrieving humidity fields is assessed using independent in-flight humidity measurements. To complement

this study, the benefit brought by consistent thermodynamic and dynamic cloud conditions has been investigated by assim-

ilating separately and jointly in the 3h 3DVar assimilation system of AROME the W-band reflectivity and horizontal wind10

measurements collected by RASTA.

The data assimilation experiments are conducted for a single heavy precipitation event, and then for 32 cases. Results indicate

that the W-band reflectivity has a larger impact on the humidity, temperature and pressure fields in the analyses, compared to

the assimilation of RASTA wind data alone. Besides, the analyses get closer to independent humidity observations if the W-

band reflectivity is assimilated alone or jointly with RASTA wind data. Nonetheless, the impact of the W-band reflectivity15

decreases more rapidly as the forecast range increases, compared to the assimilation of RASTA wind data alone. Generally,

the assimilation of the W-band reflectivity jointly with wind data results in the best improvement of the rainfall precipitation

forecasts. Consequently, results of this study indicate that consistent thermodynamic and dynamic cloud conditions in the

analysis leads to an improvement of both model initial conditions and forecasts. Even though to a less extent, the assimilation

of the W-band reflectivity alone also results in a slight improvement of the rainfall precipitation forecasts.20
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1 Introduction

Kilometre-scale NWP models are now able to explicitly resolve the convection and to represent with a reasonable degree of

realism clouds and precipitation (Gustafsson et al., 2018). Doppler radar observations are particularly well suited to initialise

these NWP models because they provide wind and reflectivity measurements at a comparable spatial and temporal resolu-

tion. Consequently, observations from ground-based precipitation radars are operationally assimilated in many km-scale NWP5

models to initialise precipitation areas (Gustafsson et al., 2018). However, ground-based precipitation radars have a very poor

sensitivity to clouds. Hence, the increased number of Doppler cloud-profiling radar (Wolde and Pazmany, 2005; Delanoë et al.,

2013; Illingworth et al., 2015; Chahat et al., 2016; Delanoë et al., 2016) is extremely appealing in data assimilation to initialise

km-scale NWP models in cloudy areas. Indeed, cloud-profiling radars, either operating in the Ka-band (≈ 35 GHz), or in the

W-band (≈ 95 GHz), provide valuable observations about cloud microphysical properties and light to moderate precipitation10

(Kollias et al., 2007). In addition, compared to lower-frequency radars, they require small antennas to provide high spatial

resolution measurements, which makes them more easily deployable aboard moving platforms such as spacecraft or aircraft

(Kollias et al., 2007). In addition, recent technological breakthroughs might lead to a deployment of lower-cost ground-based

W-band radar networks (Delanoë et al., 2016).

15

Over the last few years, cloud radar data have been used several times for kilometre-scale NWP model validation (Di Michele

et al., 2012; Iguchi et al., 2012; Hashino et al., 2013; Borderies et al., 2018), but only a few studies were devoted to evaluate

their potential in data assimilation. In particular, within the JMA’s nonhydrostatic model (JMA-NHM) with an ensemble vari-

ational method (Aonashi and Eito, 2011), Okamoto et al. (2016) performed a direct assimilation of vertical reflectivity profiles

of the Dual frequency Precipitation Radar (DPR) reflectivity observations from the GPM core observatory (Hou et al., 2014)20

for the case of Typhoon Halong in July 2014. The assimilation of DPR data resulted in an improvement in the rain mixing

ratio and updraft. However, because of negative model biases in the ice regions, observations were discarded in and above the

melting layer. Therefore, Okamoto et al. (2016) did not take advantage of the cloud-affected observations measured by the Ka

band radar, which are very sensitive to clouds. In addition, ensemble variational methods are costly in terms of computing time,

which hampers their use in most current operational systems.25

Assimilating reflectivity with traditional variational assimilation techniques (3DVar and 4DVar) remains challenging. Indeed,

the linearisation of the observation forward operator is not straightforward. In addition, it is necessary to add hydrometeor con-

tents in the control variables, which requires to specify the associated forecast error covariances. Besides, the assimilation of

humidity, wind and temperature variables have a larger impact on the forecasts, compared to hydrometeor observations (Fabry30

and Sun, 2010). Consequently, several studies used indirect assimilation methods to assimilate cloud radar reflectivity mea-

surements (Storto and Tveter, 2009; Janiskovà et al., 2012; Janisková, 2015). The reflectivity profiles are first inverted into

pseudo-observations that are closer to the control variables of the NWP model (for instance temperature or humidity) through

the use of either a 1D-variational assimilation technique (Janiskovà et al., 2012; Janisková, 2015) or a 1D Bayesian retrieval
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(Storto and Tveter, 2009). These pseudo-observations are then assimilated into the variational assimilation system like any

other conventional observation. In most of these studies, Cloud Profiling Radar data on board the CloudSat (Stephens, 2005)

satellite were assimilated in NWP models running at coarse horizontal resolutions (larger than 10 km). For example, using a

technique combining a one dimensional variational (1DVar) followed by a four dimentional variational (4DVar) assimilation

method, Janisková (2015) performed several assimilation experiments with the global scale NWP model IFS. To take fully5

advantage of the W-band reflectivity in cloudy areas, Janisková (2015) applied an appropriate bias correction scheme which

depends on the altitude and on the temperature. Results suggest a slight positive impact on the subsequent forecasts when

appropriate bias correction, error estimates and quality controls are performed. However, because of the inability of the reflec-

tivity forward operator (Di Michele et al., 2012) to simulate the multiple scattering effects, observations of the most convective

situations were rejected from the assimilation process. Storto and Tveter (2009) also employed a two-step method consisting10

of a one-dimensional Bayesian retrieval of relative humidity pseudo-observations, followed by a 3DVar assimilation method in

the ALADIN NWP model (Fischer et al., 2005). Results show that, despite the small number of assimilated observations, the

impact of relative humidity pseudo-observations is greater in areas poorly covered by the conventional observation networks,

such as over the oceans. However, Storto and Tveter (2009) failed to identify a case study for which the humidity pseudo-

observations led to a significant impact on the analysis and on the subsequent forecasts.15

So far, the impact of the assimilation of W-band radar reflectivity in a kilometre-scale NWP model, with horizontal resolu-

tions of less than 3 km, has never been investigated. Therefore, the primary objective of this article is to investigate the benefits

brought by the assimilation of W-band radar reflectivity measurements to improve the forecasts of the heavy precipitation

events that regularly occur in the Mediterranean area. Indeed, the accurate forecasting of the timing, position and intensity of20

such mesoscale convective systems remains a challenge (Duffourg et al., 2016; Martinet et al., 2017). In addition, Doppler

cloud radar data also provide valuable informations on dynamical cloud properties. Borderies et al. (in review) highlighted

a positive impact of the assimilation of such data in a km-scale NWP model. The assimilation of W-band reflectivity mea-

surements jointly with wind data measured by Doppler cloud radar is expected to provide more consistent thermodynamic

and dynamic cloud conditions in the initial state. Nonetheless, Bachmann et al. (2018) suggested that the joint assimilation25

leads to skill which are comparable to the experiments in which reflectivity and Doppler velocity observations are assimilated

independently. However, their data assimilation experiments were conducted in an idealized setup, and the observations were

provided by ground-based precipitation radar data. Therefore, to investigate the benefit brought by consistent thermodynamic

and dynamic cloud conditions in the initial state, the W-band reflectivity will be assimilated separately and jointly with hori-

zontal wind data measured by a Doppler W-band radar.30

To assess the potential of Doppler W-band radar data to improve short term forecasts of heavy precipitation events, we

take advantage of the data collected by the airborne Doppler W-band radar RASTA (Radar Airborne System Tool for Atmo-

sphere Delanoë et al., 2013) in 2012 over the Western Mediterranean area during the HyMeX first Special Observing Period

(HyMeX-SOP1 Ducrocq et al., 2014) dedicated to heavy precipitation events. The W-band reflectivity and wind measurements35
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collected by RASTA are assimilated separately and jointly into the 3DVar assimilation system of a special version, named

AROME-WMed (Fourrié et al., 2015), of the Météo-France operational convective scale model AROME (Seity et al., 2011).

The impact of the assimilation of RASTA data in synergy with all other conventional assimilated data is first evaluated for one

of the most significant rainfall events which occurred during the Intensive Observing Period 7a (Hally et al., 2014, IOP7a) of

the HyMeX-SOP1. Next, the experiments are run for 32 case studies of the HyMeX-SOP1 in which RASTA data are available.5

The 1D+ 3DVar assimilation method of Caumont et al. (2010), used operationally to assimilate ground-based precipitation

radars in AROME (Wattrelot et al., 2014), is particularly well suited for vertically pointing radars and is thus employed to as-

similate the W-band reflectivity observed by RASTA. Vertical profiles of relative humidity are first derived via a 1D Bayesian

retrieval, and then used as pseudo-observations in the 3D-Var assimilation system of AROME. For the first time, a validation

of the 1D Bayesian retrieval with humidity in-situ measurement is performed in this study.10

This article is organised as follows. In section 2, the data collected by the airborne Doppler W-band radar RASTA are

presented, followed by a brief description of the NWP model AROME-WMed with its 3h-3DVar assimilation system. Section 3

provides a full description of the 1D+3DVar assimilation method used to assimilate the W-band radar reflectivity. The different

data assimilation experiments are presented in section 4. These different experiments are evaluated in section 5, followed in15

section 6 by an evaluation over the 32 assimilation cases of the SOP1. Conclusions are drawn in section 7.

2 NWP model and radar data

This study takes advantage of the data collected by the Doppler W-band radar RASTA during the HyMeX first special ob-

serving period (HyMeX-SOP1), which took place from 5 September to 5 November 2012 over the western Mediterranean

(Ducrocq et al., 2014). The main goal of the HyMeX-SOP1 was to document the heavy rainfall events that regularly affect the20

Mediterranean area.

2.1 The Doppler W-band radar RASTA during the HyMeX-SOP1

The airborne cloud radar RASTA is a monostatic Doppler multi-beam antenna system operating in the W-band at 95 GHz

(Bouniol et al., 2008, Protat et al., 2009, Delanoë et al., 2013). The aircraft platform used is the French Falcon 20 research

aircraft from the SAFIRE unit (Service des Avions Français Instrumentés pour la Recherche en Environnement). RASTA has25

six Cassegrain antennas to measure the reflectivity and the radial velocity in three non-collinear directions above and below

the aircraft. The maximum unambiguous distance is 15 km with an unambiguous velocity of 7.8 m s−1 (the Pulse Repetition

Frequency equals 10 kHz).

After processing, the Doppler velocities of the three upward-looking and downward-looking antennas are combined to re-30

trieve the three components of the wind field above and below the aircraft (Bousquet et al., 2016). The measurements are

collected at a time resolution of 250 ms (i.e. 1.5 s between two measurements of the same antenna) and at a vertical resolution

4



33.7°N

35.7°N

37.7°N

39.7°N

41.7°N

43.7°N

45.7°N

7.7°W 5.7°W 3.7°W 1.7°W 0.3°E 2.3°E 4.3°E 6.3°E 8.3°E 10.3°E 12.3°E 14.3°E 16.3°E

France

Spain

Italy

Mediterranean Sea

0

500

1000

1500

2000

2500

3000

3500

A
lt
it
u
d
e
 a
b
o
v
e
 s
e
a
 l
e
v
e
l 
(m

)

Figure 1. The Falcon 20 flight tracks (black lines) during the HyMeX first Special Observing Period over the AROME-WMed domain. The

Falcon 20 flight track during IOP7a (Flight 15) is indicated by the red line. IOP7a case study is delimited by the red box. The altitude of

ground above sea level (in metres) is represented by the colour shades. Rain-gauges are represented by the blue markers. The black box

shows the domain used for the impact study in subsection 6.1.

of 60 m. In addition, this study takes advantage of the reflectivity measurements collected by the nadir- and zenith-pointing

antennas. The zenith-pointing antenna is slightly less sensitive than the nadir-pointing antenna (-26 dBZ versus -27 dBZ at

1 km).

Therefore, this unique instrument allows the documentation of the microphysical and dynamic properties of clouds in the5

vertical at a high resolution of 60 m and quasi-continuously in time (≈ 1.5 s) during the flights. In particular, during the HyMeX-

SOP1, RASTA collected data during 18 flights in stratiform (72.6%), convective (14.3%) and clear sky (13.1%) columns over

land, sea and complex terrains (Borderies et al., 2018). RASTA flight tracks during the HyMeX-SOP1 are represented by the

black lines in Figure 1. Further details about RASTA configuration during the HyMeX-SOP1 are given by Bousquet et al.

(2016).10
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2.2 The AROME-WMed NWP model

This study is performed with a special version of the Météo-France operational kilometre-scale NWP model AROME (Seity

et al., 2011), named AROME-WMed (Fourrié et al., 2015). AROME-WMed, which covers the entire northwestern Mediter-

ranean Basin, was specially designed for the HyMeX-SOP1 and ran in real time to plan the airborne operations, especially

in the mesoscale convective systems. The AROME-WMed domain is displayed in Figure 1. AROME-WMed runs at a hori-5

zontal resolution of 2.5 km with 60 vertical levels ranging from approximately 10 m above ground level to 1 hPa. The deep

convection is explicitly resolved and the microphysical processes are governed by the ICE3 one-moment bulk microphysi-

cal scheme (Pinty and Jabouille, 1998). Six water species are predicted by AROME-WMed (water vapour, rain, cloud liquid

droplets, snow, pristine ice and graupel). The Particle Size Distributions (PSDs) are expressed as generalized gamma distri-

butions multiplied by the total number concentrations. PSDs are reduced to exponential distributions for snow, graupel and rain.10

The analyses of the global operational NWP model ARPEGE are used to provide boundary conditions. AROME-WMed has

a 3-h 3D Variational (3DVar) data assimilation system (Brousseau et al., 2014) based on an incremental formulation (Fischer

et al., 2005). The control variables of this system are temperature, specific humidity, surface pressure, vorticity and divergence.

The resolution of the analysis grid is the same as that of AROME-WMed. Following the results of Brousseau (2012),15

the Incremental Analysis Update (IAU, Bloom et al., 1996) is not used for the 3DVar assimilation scheme. Background

error covariances were computed using a period characterized by convective systems in October 2010 over the northwestern

Mediterranean region (Fourrié et al., 2015). Every three hours an analysis is computed by using all observations available

within a ± 1 h 30 min assimilation window and a 3-h forecast is produced to provide a background for the next cycle. The

assimilation system ingests a wide variety of observations from satellite, ground-based GPS, aircraft, radiosondes, drifting20

buoys, balloons and wind profilers, automatic land and ship weather stations, and ground-based precipitation radars of the

French network ARAMIS (reflectivity and radial velocity). The purpose of this study is to assess the impact of the assimilation

of RASTA data in addition to this already dense observing network.

2.3 RASTA data pre-processing

RASTA data are discarded between 250 m above and 250 m below the aircraft, which is the minimal measuring range of25

the zenith- and nadir-pointing antennas. Ground clutter is also removed. To reduce observation and representativeness errors,

RASTA data are interpolated in the model vertical and horizontal resolutions. For the reflectivity measurements, this interpo-

lation is done by taking the average value (in mm6 m−3) of all data available along the aircraft track within a box of 2.5 km

length between the two half model levels surrounding each model level. From a given range from the radar, when the aircraft

roll and/or pitch angles are greater than a threshold (|roll| > 7° at 10 km range), some measurements might come out of the30

grid box of interest. Therefore, these data are removed from the interpolation. The same interpolation is done for the retrieved

horizontal wind component except that a median filter is employed. Indeed, applying a median filter instead of averaging allows

to reduce the influence of outliers, due to the difficulty of having high quality measurements for airborne Doppler radar (Bosart
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et al., 2002).

After this pre-processing, a thinning is applied to RASTA data to decrease observation density and satisfy assumptions

about observation error covariances, which are supposed to be 0 dB2. It is particularly true for measurements made by different

instruments, which have independent physical errors. However, this hypothesis might be no more valid if the observations5

are collected very close to each other by the same instrument. Applying a thinning to the observations is therefore necessary

for having satisfactory assumptions about observation error covariances (Rohn et al., 2001; Liu and Rabier, 2002). Therefore,

RASTA data are assimilated every 3 time steps, which is equivalent to a distance of approximately 5 km to 9 km depending

on the aircraft speed. The data are not thinned vertically because the vertical forecast error covariances are less marked

than the horizontal ones (Brousseau et al., 2011) and it is thus not useful to apply any thinning in that case (Jacques and10

Zawadzki, 2014).

3 Assimilation method

3.1 The 1D+3DVar assimilation method

Here, we employ the 1D+3DVar assimilation method (Caumont et al., 2010; Wattrelot et al., 2014) used operationally to assim-

ilate ground-based precipitation radar data in AROME. This data assimilation technique allows to shift a pattern that was well15

simulated by the model but at a wrong location. It relies on the ability of the model to create consistent moisture and reflectivity

profiles. Indeed, cloudy areas are generally associated with relative humidity close to the saturation and high reflectivity values.

This method is particularly well suited for vertically pointing radar because the first step of the assimilation method is based

on the differences between different vertical profiles of reflectivities. For instance, since March 2016, this assimilation method

is operationally employed to assimilate vertical profiles of Dual-frequency Precipitation Radar (DPR) reflectivity data in the20

Japanese kilometer-scale NWP model (JMA-NHM) (Ikuta, 2016).

The first step consists of a 1D Bayesian retrieval of the best estimate of relative humidity (RH) profiles, named hereafter

pseudo-observations (PO), given the observed vertical profile of reflectivity Zo. For each observed column of reflectivity Zo,

the corresponding vertical profile of RH pseudo-observation yRH
PO is given by25

yRH
PO =

∑
i

xRH
i

exp

(
−1

2
JPO (xi)

)
∑
j

exp

(
−1

2
JPO (xj)

) , (1)
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with

JPO =
1

no

no∑
k

(Zok −Hz (xk)− bk)
2

σ2
o

, (2)

where

– subscript i denotes the index of the model profile in the vicinity of the observed profile of reflectivity

– xRH
i is the vertical column of relative humidity from the model background;

– Hz (xk) is the simulated reflectivity (in dBZ) at the model level k, given the model state xk; Hz being the forward5

operator

– no is the number of valid observed reflectivity data in the column,

– bk is the bias correction value used at the altitude k (in dB), described in subsection 3.2,

– σo is the standard deviation of observation and forward operator errors (in dB).

The W-band reflectivity forward operator Hz described by Borderies et al. (2018) is used to simulate the reflectivity. It is10

consistent with the ICE3 one-moment microphysical scheme of AROME and takes as input parameters the hydrometeor con-

tents of the five hydrometeor species (rain, snow, graupel, cloud liquid water and pristine ice), temperature, pressure, relative

humidity. The T-matrix method (Mishchenko et al., 1996) is employed to compute the single scattering properties. Following

the results of Borderies et al. (2018), graupel axis ratio is set to 0.8, snow axis ratio to 0.7 and pristine ice axis ratio to 1. The

forward operator returns the simulated reflectivity at each range gate from the radar and accounts for hydrometeors and water15

vapour attenuation.

According to Equation 1, for each observed vertical profile Zo, the vertical column of RH pseudo-observation is a linear

combination of the neighbouring RH profiles taken from the model background xRH
i . The xRH

i neighbouring profiles are lo-

cated in a 160-km-wide square centred on the aircraft location. For the AROME-WMed model, this size is sufficient to reduce20

the effects of spatial mismatches between model and observations (Borderies et al., 2018) and to gather a database of xRH
i

which are consistent with the meteorological situation. In addition, the xRH
i profiles would become less representative with a

larger size since meteorological environments can change over ≈ 100 km.

In Equation 1, the xRH
i profiles are weighted by a function (JPO) of the difference between the observed Zo and simulated25

Hz (xi) column of reflectivities (cf Equation 2). Thus, larger weights are given to the neighbouring columns that most closely

resemble the observations. To ensure equivalent weights regardless of the number of altitude levels used for each neighbour-

hood profile, the square difference in Equation 2 is divided by the number of valid data over the observed column of reflectivity.
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The square difference is also divided by the observation error variance σ2
o . A small σo will favour the neighbouring columns

that most closely resemble the observation. However, if there is no simulated profile of reflectivity which is close enough to

the observed one, there will be no retrieval since the weight tends towards a value close to 0. Hence, a small σo either leads to

an accurate retrieval or to no retrieval at all. On the other hand, a large σo would give similar weights and smooth the neigh-

bourhood xRH
i profiles, regardless of which extent they resemble the observed profile of reflectivity (Caumont et al., 2010).5

Therefore, a sensitivity study is performed in subsection 3.3 to σo values.

The Bayesian retrieval is not applied in case of clear sky, ie when all the reflectivities over the whole vertical column are

below the radar sensitivity in both the simulations and the observations. However, if the simulations indicate cloud or precipi-

tation, the closest "clear-sky" profile in the vicinity of the radar is selected for the retrieval.10

In the second step of the 1D+3DVar assimilation approach, the retrieved vertical profiles of relative humidity pseudo-

observations yRH
PO are assimilated in the 3DVar assimilation system of AROME-WMed, like any other conventional obser-

vations.

3.2 Bias correction15

The Bayesian retrieval can also be applied to other variables using the same weights as those from the retrieval of RH profiles

(in Equation 2), for example to retrieve reflectivity pseudo-observations yZPO:

yZPO =
∑
i

Hz (xi)

exp

(
−1

2
JPO (xi)

)
∑
j

exp

(
−1

2
JPO (xj)

) . (3)

The reflectivity pseudo-observation yZPO can be used as an indicator to evaluate the quality of the 1D Bayesian retrieval and

to estimate the biases that can arise between observations and simulations. Indeed, in data assimilation it is necessary to have20

unbiased quantities and to remove these systematic errors (Janisková, 2015; Okamoto et al., 2016). These biases can arise from

the observations, the ICE3 microphysical scheme and/or the forward operator formulations. Janisková (2015) showed that the

biases between observations and simulations depend on the temperature and on the altitude. Since this study is focused on one

specific area of interest during the same season, the bias is mainly a function of the altitude. The bias is also a function of the

error standard deviation σo. Indeed, while a small value of σo favours the simulated columns that most closely resemble the25

observations, a larger value of σo smooths the simulated reflectivity profiles.

Therefore, a bias bwas determined from the statistics between Zo and yZPO using the altitude and the error standard deviation

σo as predictors. Calculations were performed over all flights during the HyMeX-SOP1 every 4 time steps. The background

states of a CTRL experiment were used as a reference to simulate the reflectivity pseudo-observations and to estimate the30

biases. The CTRL experiment was run during a 45-day cycled period from 00 UTC 24 September 2012, which is the day when
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the Falcon 20 first flew during HyMeX-SOP1, to 5 November 2012, after the last flight. It includes all the observations that are

operationally assimilated (see subsection 2.2).

The bias between RASTA observations and the reflectivity pseudo-observations is depicted in Figure 2 as a function of the

altitude for different values of σo (see legend). Calculations were only performed if both the observation and the reflectivity5

pseudo-observation are above the radar sensitivity. The number of observations used for the calculations is also shown in the

right panel. This number is smaller for small values of σo (red curve), because it constrains the amount of retrieved profile of

reflectivity pseudo-observations to only those which most closely resemble the observations.

Figure 2 shows that the bias increases with the altitude, which is consistent with the existence of model biases in cloudy10

areas in the ICE3 microphysical scheme of AROME-WMed (Borderies et al., 2018; Taufour et al., 2018). Figure 2 highlights

the fact that, because of the smoothing effect, the bias increases with the error standard deviation σo. Indeed, at approximately

6 km of altitude, the bias can reach a value up to 6 dB if σo equals 9 dB, and only ≈ 1.5 dB if σo equals 2 dB.

The effect of the bias correction is shown in Figure 3, in which Contoured Frequency by Altitude Diagram (CFAD) of15

the differences between the observed reflectivity and the bias-corrected reflectivity pseudo-observations are shown for a σo
of 2 dB. The residual bias is indicated by the black line. Figure 3 demonstrates that, after applying the bias correction in

Equation 2, the residual bias is close to 0 dB except above an altitude of approximately 10 km, which is probably due to

the smaller number of points used to calculate the bias correction. As explained by Janisková (2015), the use of additional

predictors, such as temperature or hydrometeor contents, could lead to an improvement in the bias correction at higher20

altitude.

3.3 Observation error within the Bayesian inversion

As explained in Equation 2, the quality of the 1D Bayesian retrieval relies on the specification of standard deviation of ob-

servation and forward operator errors σo (in dB). In-flight water vapour mixing ratio measurements ro are available at flight

level and can be used to estimate σo and to evaluate the quality of the retrieval. These data present the advantage of being25

completely independent from the retrieval and they allow the evaluation of the humidity pseudo-observations which will then

be assimilated in the 3DVar assimilation system of AROME-WMed.

The 1D-Bayesian retrieval is applied to the CTRL background states for error standard deviations σo ranging from 0.6 dB

to 9 dB. The bias correction, which has been calculated for each σo in subsection 3.2, is applied in Equation 2. The retrieved30

pseudo-observations rm of water vapour mixing ratio at the flight level are then compared with the in-flight measurements

ro over 32 flights of the HyMeX SOP1. The comparison is done as follows. First, a manual data quality control is applied to

in-situ humidity observations in order to remove the poor quality measurements that can arise from instabilities or period of

malfunctioning during the flights. After this quality control, it remains 24 flights out of 32. Second, water vapour mixing ratio

10



Figure 2. Bias (left panel) between RASTA reflectivity and the reflectivity pseudo-observation as a function of the altitude for different

values of error standard deviation σo (see legend box). The right panel shows the number of observations used for the calculations as a

function of the altitude for the different values of error standard deviation σo.

measurements are averaged over 12 time steps to reduce observation noise and representation errors. Figure 4 shows the stan-

dard deviations (right panel) and biases (left panel) between the observed in-flight water vapour mixing ratio and the retrieved

ones (red curve) as a function of the error standard deviations σo. The standard deviations between in-flight measurements and

the background water vapour mixing ratio are also represented by the black data points.

5
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Figure 3. Contoured Frequency by Altitude Diagram (CFAD) of the differences between the observed reflectivity and the bias-corrected

reflectivity pseudo-observations. The residual bias after applying the bias correction is indicated by the black line.

The standard deviation values in Figure 4 demonstrate that the retrieved water vapour mixing ratios are always in better

agreement with the in-flight measurements, compared to the background state. This improvement highlights the ability of

the 1D Bayesian method to retrieve humidity fields that are closer to independent observations. The variation of the standard

deviation indicates the existence of an optimal value of σo of approximately 2 dB. Indeed, below 2 dB, the standard deviation

increases with decreasing σo. This is due to the tendency of the retrieval to be more selective for small values of σo, which5

results in using the background state instead of applying the retrieval. On the contrary, above 2 dB, the standard deviation

increases with σo. Indeed, a large σo increases the number of successful inversions, but smooths them to produce the resulting
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Figure 4. Standard deviations (right panel, in g/kg) and biases (left panel, in g/kg) of the water vapour mixing ratio differences between in-

flight measurements rq and the retrieved ones rm (red) as a function of the error standard deviations σo (in dB). The standard deviations

and biases before applying the 1D-Bayesian retrieval are represented by the black data points.

humidity pseudo-observations. Finally, it should be noted that the bias is also improved with a σo of 2 dB (left panel). Hence,

we decided to use an error standard deviation σo of 2 dB for the rest of this study.
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4 Data assimilation experiments

To assess the potential of RASTA data to improve analyses and forecasts of heavy precipitation events, a total of 4 experiments

is conducted. The CTRL experiment includes all the observations that are operationally assimilated (see subsection 2.2). Three

additional RASTA experimental designs (Z, V, ZV) share the same configuration as CTRL, except that they also include the

assimilation of RASTA data. The reflectivity observed by RASTA is assimilated alone in the Z experiment, and jointly with5

RASTA horizontal wind components in the ZV experiment. The 1D+3DVar assimilation method described in subsection 3.1 is

employed to assimilate RASTA reflectivity observations in the Z and ZV experiments. In addition, the V experiment includes

the assimilation of RASTA wind data alone. As explained by Borderies et al. (in review), the assimilation of RASTA wind data

is straightforward and does not require the use of a radial wind observation operator. Indeed, the Doppler multi-beam antenna

system of RASTA allows the retrieval of the horizontal wind components (u, v), which are directly linked to two control vari-10

ables of the AROME model (vorticity and divergence).

RASTA data are not measured simultaneously, but over the flight leg. Consequently, at each assimilation cycle, the 3DVar

assimilation system of AROME-WMed ingests all the RH pseudo-observations and/or RASTA wind data available during a

2-hour assimilation window centred on the assimilation time T , as if they were valid at the time T . A larger assimilation15

window increases the number of observations and results in larger coverage. However, since RH pseudo-observations vary

with convective systems, which can evolve quickly in time, a larger assimilation window would result in assimilating data that

are no longer valid at the current assimilation time T . Besides, Borderies et al. (in review) conducted a sensitivity study to

the length of the assimilation window, by assimilating airborne Doppler wind radar data in the 3DVar assimilation system of

AROME-WMed. Results indicated that, even though the best scores were reached with a 1 hour assimilation window, a slight20

positive improvement of the 6-hour precipitation forecasts was also evidenced with a 2-hour assimilation window. Therefore, a

2-hour assimilation window is a good compromise to assimilate a larger number of observations, which are nearly valid at the

assimilation time, without adding any detrimental observation in the assimilation system. Hence, the length of the assimilation

window has been set to 2 hours in this study.

25

The observation errors for the RH pseudo-observations yRH
PO and RASTA wind data are the same as the one used for the

radiosonde measurements. It is set to 12% for the RH pseudo-observations. RASTA wind observation error increases with

the altitude from approximately 1.8 m s−1 at 900 hPa to approximately 2.5 m s−1 at 200 hPa. Finally, in addition to the

pre-processing described in subsection 2.3, a quality control is also performed prior to the assimilation: observations with

innovation (Observations - Background) greater than a threshold are rejected. This threshold depends on both the observation30

and background errors. It has a constant value of approximately 55% for the RH pseudo–observations. It increases with the

altitude for RASTA wind data because the error standard deviation is a function of the altitude (approximately 25 m s−1 at the

maximum).
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The four different experiments are first conducted for a heavy precipitation event which occurred during the Intensive

Observing Period 7a (IOP7a) over South-Eastern France on 26 September 2012. During this case study, RASTA data were

collected during Flight 15 between 06:10 UTC and 09:45 UTC (red line in Figure 1). Therefore, RASTA data are assimilated

for the first time at the 06:00 UTC analysis. The different experiments are named CTRLIOP7, ZIOP7, VIOP7 and ZVIOP7. They

share the same background field to compute the 06:00 UTC analysis. They start at 00 UTC 26 September 2012 and end at 125

UTC 26 September 2012. Next, in order to study the impact of the assimilation of RASTA data in various conditions during

the whole HyMeX-SOP1, the four experiments are run for the 32 analysis cases in which RASTA data are available. For this

configuration, the CTRL experiment is the same as the one used in subsection 3.2, which was run during a 45-day cycled period

from 00 UTC 24 September 2012 to 5 November 2012. For the sake of simplicity, the CTRL experiment is named CTRLSOP1.

The three RASTA experiments are respectively named ZSOP1, VSOP1 and ZVSOP1. In order to disentangle the cycling effect10

from the impact of the assimilation of RASTA data on the analyses, the ZSOP1, VSOP1 and ZVSOP1 experiments are not cycled

and share the same background fields as the CTRLSOP1 experiment ones.

5 Impact on the IOP7a case study

To assess the potential of RASTA observations to improve short-term forecasts, focus is first made on one of the most significant

precipitation events which occurred during IOP7a. More than 100 mm of rain were observed between 00:00 UTC on 2615

September and 00:00 UTC on 27 September in the area delimited by the red box in Figure 1 (Hally et al., 2014). As mentioned

in section 4, RASTA data are assimilated for the first time at the 06:00 UTC analysis in the ZIOP7, VIOP7 and ZVIOP7 experiments.

Most of these data are located upwind of where the rainfall event took place later in the morning at approximately 08:00 UTC.

Such a configuration is required to evaluate the impact of the assimilation of RASTA data to improve heavy precipitation

events.20

5.1 1D Bayesian retrieval

As explained in subsection 3.1, the first step to assimilate the reflectivity consists of a 1D-Bayesian retrieval of Relative Hu-

midity (RH) pseudo-observation profiles, given the vertical profile of reflectivity observed by RASTA. Since no direct RH

observations are available with such a high vertical resolution as the one of RASTA data, the method is validated by comparing

the reflectivity pseudo-observations yZPO with RASTA Zo observations. Figure 5 shows RASTA observations (interpolated on25

the vertical grid model, A), the simulated profile of reflectivities from the background (B) and the retrieved reflectivity pseudo-

observations (C). The differences between the RH pseudo-observations and the background RH profiles are also shown in the

bottom panel (D). Differences are displayed in red (blue) if RH pseudo-observations are larger (smaller) than the background.

Figure 5 highlights the capability of the 1D-Bayesian method to retrieve profiles which are in better agreement with the30

observations than the background. For example, at approximately 06:30 UTC, the observation profiles indicate clouds below

an altitude of 6 km, as opposed to the simulated profiles from the background which only indicate clear sky profiles. This
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has been rectified in the reflectivity pseudo-observation profiles, and in the corresponding RH pseudo-observations profiles.

Indeed, the RH pseudo-observations values are larger than the background RH values (red values in D), and are thus more

representative of the presence of a cloud. Inversely, at approximately 06:25 UTC, the Bayesian retrieval has been able to remove

the low level clouds present in the background, and to add clouds above an altitude of about 4 km. Between 06:50 UTC and

07:00 UTC, the reflectivity pseudo-observations are also in much better agreement with the observations than the background.5

The corresponding RH pseudo-observations values are also larger than the background, which is consistent with the fact that

larger RH values are usually associated with larger reflectivity values. Hence, Figure 5 demonstrates the ability of the Bayesian

retrieval to pick-up vertical profiles in the neighbourhood which are more consistent with the observations. Indeed, this retrieval

successfully dried areas associated with low reflectivity values, and moistened areas associated with high reflectivity values.

These retrieved RH pseudo-observation profiles are then assimilated in the 3DVar assimilation system of AROME-WMed in10

the ZIOP7 and ZVIOP7 experiments.

5.2 Impact on analyses

Figure 6 shows (from the top to the bottom), the relative humidity for the pseudo-observations, the CTRLIOP7, the ZIOP7, the

VIOP7 and the ZVIOP7 analyses. Similarly, Figure 7 represents the wind speed for the observations and the different experiments.

The four different analyses were computed using the same background state.15

As shown in Figures 6 and 7 (top panel), the number of RH pseudo-observations which have been assimilated is larger than

the number of RASTA wind data. Indeed, contrary to RASTA wind data, the reflectivity is also assimilated in case of clear

sky. Besides, airborne Doppler velocity measurements are contaminated by the aircraft motion (roll/pitch/drift angles, ground

speed, etc.). Therefore, because of the difficulty to have high quality measurements (Bosart et al., 2002), RASTA wind data20

have been more frequently rejected (Cf between 06:42 UTC and 06:50 UTC in Figure 7). In addition, contrary to the W-band

reflectivity measurements, RASTA horizontal wind components are obtained through a retrieval, which might also explain the

smaller number of assimilated horizontal wind data. Finally, since RH pseudo-observations are assimilated in the same way as

radiosonde observations are (Cf section 4), they are rejected above an altitude of approximately 9 km because the values are

very small.25

Compared to the RH pseudo-observations in Figure 6, RH is overestimated in the CTRLIOP7 and in the VIOP7 analyses.

Except at approximately 8 km of altitude, the RH profiles are much more similar to the RH pseudo-observations in the ZIOP7

and ZVIOP7 analyses. Conversely, in Figure 7, the VIOP7 and ZVIOP7 analyses are in much better agreement with RASTA wind

observations compared to the CTRLIOP7 and the ZIOP7 analyses. Figure 6 shows that the VIOP7 analysis is very similar to the30

CTRLIOP7 one in terms of humidity. Similarly, in Figure 7, the ZIOP7 analysis is very similar to the CTRLIOP7 one in terms of

wind speed. Therefore, the assimilation of RASTA wind data (resp. RH pseudo-observations) does not impact the humidity

(resp. wind) field in the analysis, probably because wind and humidity are not highly correlated in the assimilation process
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through the background error covariances. However, the assimilation of the RH pseudo-observations jointly with RASTA wind

data (ZVIOP7 experiment) results in a positive impact in terms of both the wind and the humidity fields.

5.3 Impact on rainfall forecasts

Figure 8 shows the 12-hour accumulated rainfall between 06:00 UTC and 18:00 UTC 26 September 2012 (IOP7a) for radar

observations, the CTRLIOP7, the ZIOP7, the VIOP7 and the ZVIOP7 experiments.5

First, the predicted rainfall pattern is well reproduced in the four different experiments. As shown by Borderies et al. (in

review), the maximum rainfall accumulation is overestimated in the CTRLIOP7 experiment (≈ 142 mm versus 93 mm in the

radar observations), but is better reproduced in the ZIOP7 experiment (130 mm). In addition, the assimilation of RH pseudo-

observations jointly with RASTA wind data in the ZVIOP7 experiment also results in a decrease (133.5 mm) of the predicted

maximum rainfall accumulation. Finally, the experiment in which RASTA wind data are assimilated alone in the VIOP7 leads10

to the better agreement with the radar observations. Indeed, the maximum rainfall forecast accumulation has been reduced to

only 118 mm.
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Figure 5. Time-height cross section of the reflectivity observed by Rasta (A), simulated from the background (B), and pseudo-observations

(C). The differences between the Relative Humidity pseudo-observations and the relative humidity from the background state are shown in

Figure D. Aircraft altitude is indicated by the black line. 18



Figure 6. Relative Humidity (RH, in%) for (from the top to the bottom) the pseudo-observations, the CTRLIOP7, the ZIOP7, the VIOP7 and the

ZVIOP7 experiments.
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Figure 7. Wind speed (m/s) for (from the top to the bottom) the observations, the CTRLIOP7, the ZIOP7, the VIOP7 and the ZVIOP7 experiments.
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Figure 8. 12-hour accumulated rainfall between 06:00 UTC and 18:00 UTC 26 September 2012 (IOP7a) for radar observations, the

CTRLIOP7, the ZIOP7, the VIOP7 and the ZVIOP7 experiments.
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6 Results on the HyMeX SOP1

The impact of the assimilation of RASTA data is now assessed over the 32 cases in which RASTA data were assimilated during

the HyMeX-SOP1. In order to use the same background fields, we use the ZSOP1 , VSOP1 and ZVSOP1 experiments, which are

not cycled. An exergy distance-based approach (Marquet et al., 2019) is first employed to measure the relative impact of the

assimilation of RASTA observations on the analysis and forecast fields. Then, the added value of the assimilation of RASTA5

data on the analyses is evidenced by using independent humidity measurements. Finally, the subsequent forecasts are validated

against rain-gauge measurements.

6.1 Impact study using an exergy distance-based approach

The moist-air available-enthalpy (exergy) distance (Marquet et al., 2019) is first briefly described, and then calculated to

measure the relative impact of the assimilation of RASTA data on analyses and short-term forecasts.10

6.1.1 The moist-air available-enthalpy (exergy) distance

Traditionally, the impact of the assimilation of a new observation type and its synergistic effect with other observations are

assessed through verification scores of a long data-denial assimilation experiment (Storto and Randriamampianina, 2010).

These approaches are very expensive from a numerical point of view. The new type of observation needs to be assimilated

in a large number of analysis cases, which can not be affordable for airborne radar measurements since the availability of15

the new observation depends on the aircraft flights. By contrast, energy-based approaches (Ehrendorfer et al., 1999; Marquet

et al., 2019) are cost effective methods for evaluating the impact of the assimilation of a new observing system in a NWP

model. The idea is to combine thermodynamic variables of the atmosphere into a model space-based measure (Storto and

Randriamampianina, 2010), which avoids the use of long data-denial experiments and adjoint-based methods, that rely on

strong linearity assumptions which are not valid at the convective scale. These approaches provide a measure of the relative20

impact of the observations on the analysis and forecast fields. For example, Storto and Randriamampianina (2010) employed the

Moist Total Energy Norm (Ehrendorfer et al., 1999, MTEN) to evaluate the loss of quality in the forecasts when an observation

type is not assimilated. A similar methodology was employed by Fabry and Sun (2010) to characterize model errors in winds,

temperature, humidity, and precipitation.

Based on results of (Marquet, 1993), Marquet et al. (2019) defined a moist-air available-enthalpy (exergy) distance, which25

provides a more general and comprehensive metric between a perturbed thermodynamic state (here: the RASTA experiments),

and a reference one (here: the CTRL experiment). It is defined by the integration over the 2D domain of the sum of four

quadratic terms in horizontal wind components U,V (Ns), temperature T (NT ), surface pressure ps (Np) and water vapour
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mixing ratio rv (Nv). The four contribution terms of the exergy distance are then given by

NT =

∫
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(
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)2
TCTRL
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dD, (7)5

where the superscript i denotes the RASTA experiments (ZSOP1 , VSOP1 or ZVSOP1), Cpd is the specific heat of dry air, Rd is

the dry air constant, Rv is the water vapour gas constant, and Tr is the reference temperature (taken to 300 K). The total exergy

distance is then given by the sum of the four quadratic terms NT , Np, Nv and Ns.

In equations 4, 5 and 6, the contribution terms of the exergy distance are divided by the weighting factors TCTRL, pCTRL
s

and rCTRL
v , which correspond to the average values over the 2D domain of TCTRL, pCTRL

s and rCTRL
v , respectively. Hence, as10

defined by Ehrendorfer et al. (1999), the weighting factors TCTRL and rCTRL
v are a function of the altitude, where an arbitrary

factor "ε" was introduced however with unknown values between 0.1 and 10. This arbitrariness is removed by Marquet et al.

(2019) where rCTRL
v varies significantly with height, since the water vapour mixing ratio decreases by 3 orders of magnitude

between the surface and the stratosphere. Therefore, moisture analysis and forecast impacts between the different atmospheric

levels are fully taken into account through the use of these altitude-dependent weighting factors. Hence, the use of the exergy15

distance is expected to more fairly rank the different observing systems through the use of more balanced contributions between

wind, temperature and water vapour.

In this study, the four different contribution terms of the exergy distance will be studied independently in order to evaluate

the respective impact of the assimilation of the RH pseudo-observations and/or RASTA wind components on temperature

(Equation 4), surface pressure (Equation 5), water vapour mixing ratio (Equation 6) and wind (Equation 7) fields.20

6.1.2 Impact on analyses

The temperatureNT , surface pressureNp, humidityNv and kineticNs contribution terms of the exergy distance are calculated

over the domain defined by the black box in Figure 1. Figure 9 represents NT (A), Np (B), Nv (C) and Ns (D) as a function of

the altitude for the ZSOP1 (red curve), VSOP1 (blue curve) and ZVSOP1 (black curve) analyses. The different contribution terms

are averaged over the 32 analyses in which RASTA data have been assimilated.25

First, Figure 9 demonstrates that the assimilation of RH pseudo-observations and/or RASTA wind data has a small impact

on the temperature NT (A) and surface pressure Np (B) contribution terms of the exergy distance. Indeed, even though there

is a correlation between the different variables through the background error covariance matrix (Fabry and Sun, 2010), there
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is a larger impact on the contribution terms (Nv and/or Ns) that are associated to the variables (wind and/or humidity) directly

linked to the assimilated observations. On the analyses, the experiment which has the smallest impact on NT (A) and Np (B) is

the VSOP1 experiment (blue curve), followed by the ZSOP1 experiment. However, this rank order is reversed after only one-hour

forecast (not shown). The larger impact on NT and Np is obtained if RH pseudo-observations are assimilated jointly with

RASTA wind data (ZVSOP1 experiment, black curve).5

As expected, since RH pseudo-observations are linked to the humidity fields, the impact of the assimilation of RH pseudo-

observations (ZSOP1) is larger onNv than on the other contribution terms. Similarly, since RASTA wind observations are linked

to the horizontal wind components, their assimilation (VSOP1) result in a larger impact on Ns. Next, the assimilation of RH

pseudo-observations (resp. RASTA wind data) does not impact significantlyNs (resp.Nv). Therefore, humidity and horizontal

wind data do not seem to be highly correlated with one another, which is consistent with the results of subsection 5.2. A larger10

impact on both theNv andNs contribution terms is obtained if RH pseudo-observations and RASTA wind data are assimilated

jointly (ZVSOP1, black curve), along with a larger impact on all the contribution terms. Consequently, this result indicates that

the joint assimilation is required to have an impact on both the wind and humidity fields in the analyses.

6.1.3 Impact on short-term forecasts

Equations 4 and 6 are now integrated over the two dimensional domain and the vertical levels for different forecast terms.15

Results are only shown for the kinetic (Ns) and humidity (Nv) contribution terms of the exergy distances because the major

differences have mainly been evidenced on these two terms (see Figure 9). Figure 10 represents Ns (C and D) and Nv (A and

B) as a function of the forecast term over land (left panels) and over sea (right panels) for the ZSOP1 (red curve), VSOP1 (blue

curve) and ZVSOP1 (black curve) experiments.

Generally, Figure 9 shows that the impact is larger over sea (right panels) than over land (left panels). Indeed, ground-based20

precipitation radar data (reflectivity and Doppler velocity) are also assimilated over land. Therefore, there is a lack of wind and

humidity observations over sea, which is partly compensated by the assimilation of RASTA data. This is particularly evidenced

for the humidity contribution term Nv of the exergy distance (A and B panels). However, after 2-hour forecast term, the impact

of the VSOP1 and ZVSOP1 experiments on Ns is of the same order of magnitude over land and over sea.

Except at the analysis time on the humidity contribution term Nv , the impact of the assimilation of RH pseudo-observations25

(ZSOP1 experiment) is always smaller than the impact of RASTA wind data (VSOP1 experiment). This can be attributed to the

fact that the forecast system seems to have a short memory of RH pseudo-observations, which is consistent with the findings

of Storto and Tveter (2009). The impact of the assimilation of RASTA wind data has a larger impact on the humidity forecasts,

probably by adjusting large structures, and by modifying in return the frontal and/or convective features. In addition, the impact

is always larger when RH pseudo-observations are assimilated jointly with RASTA wind data (ZVSOP1 experiment, black30

curve). This result was expected because the number of assimilated observations has been increased in the ZVSOP1 experiment.

Besides, the ZVSOP1 experiment seems to take the benefits (or disadvantages) of both the ZSOP1 and the VSOP1 experiments.

The small impact of the ZSOP1 experiment seems to indicate that it is pointless to assimilate RH pseudo-observations without

modifying in a consistent way the wind field. Finally, the ZVSOP1 experiment leads to a larger impact on the kinetic contribution
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Figure 9. Temperature NT (A), surface pressure Np (B), humidity Nv (C) and kinetic Ns (D) contribution terms of the exergy distance as a

function of the altitude for the ZSOP1 (red curve), VSOP1 (blue curve) and ZVSOP1 (black curve) experiments.
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Figure 10. Temperature (Ns) (C and D) and humidity (Nv) (A and B) contribution terms of the exergy distances as a function of the forecast

term over land (left panels) and over sea (right panels) for the ZSOP1 (red curve), VSOP1 (blue curve) and ZVSOP1 (black curve) experiments.
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term Ns than on the humidity contribution term Nv . This is can be explained by the fact that the VSOP1 experiment has more

impact on Ns than the ZSOP1 experiment has on Nv .

To conclude, the relative impact of the assimilation of RASTA data on the analysis and forecasts fields has been evidenced

using the exergy distance. This impact study highlighted that RH pseudo-observations have a modest impact on the analyses

on the humidity field, which vanishes soon as the forecast term increases compared to the experiment in which RASTA wind5

data are assimilated alone. The impact on the subsequent forecasts is more important if both data are assimilated jointly. The

benefit brought by this impact will be evaluated in the next sections.

6.2 Analyses evaluation: comparisons against in situ measurements

The aim of this section is to assess the added value of the assimilation of RASTA data on the analyses. The evaluation is

not shown against other conventional assimilated observations, because, as expected, the fit to observations is always better10

in CTRLSOP1 than in the RASTA experimental analyses. However, in-flight humidity measurements at flight level are not

assimilated in any of the experiments, and are used as independent observations to assess the impact of the assimilation

of RASTA data on the humidity analyses. As explained in subsection 3.3, poor quality measurements are removed for the

comparisons. Hence, after the manual quality control, it only remains 24 analysis cases. Figure 11 shows the standard deviation

between humidity mixing ratio measurements and the analysed ones for the different experiments (ZSOP1 , VSOP1 and ZVSOP1)15

during the 24 analysis cases. The standard deviation between the measurements and the water vapour mixing ratios from the

background state is also represented by the black data points, which is a constant value because the same background states

are used in all the different experiments.

First, it should be noted that the analysed water vapour mixing ratios are always in better agreement with the observations

compared to the background field, which is quite reassuring. Next, the standard deviation is slightly larger for the VSOP1 than20

for the CTRLSOP1 experiment. Hence, the assimilation of RASTA wind data alone (VSOP1) does not improve the analysis in

terms of humidity, which was expected because RASTA wind data are only slightly related to humidity, so it is likely that the

humidity analysis field moves away from humidity observations. The experiment that reduces the most the standard deviation

is the ZSOP1 experiment, which indicates that the assimilation of RH pseudo-observations alone impacts positively the analysis

in terms of humidity.25

Even though slightly less pronounced, the assimilation of RH pseudo-observations jointly with RASTA wind data (ZVSOP1

experiment) also leads to an improvement of the analysed humidity field. The respective impacts of the ZSOP1 and VSOP1

experiments are both present in the ZVSOP1 experiment. Therefore, since the standard deviation is slightly larger for the VSOP1

experiment, it seems logical that the standard deviation in Figure 11 is larger for the ZVSOP1 experiment than for the ZSOP1.

In addition, it has been demonstrated in Figure 9 that the humidity field in the analysis is more impacted by the assimilation30

of RH pseudo-observations (ZSOP1) than RASTA wind data (VSOP1). Consequently, the ZVSOP1 experiment inherits more from

the benefits of the ZSOP1 experiment than from the disadvantages of the VSOP1 experiment in the humidity analysis.
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Figure 11. Standard deviation (g/kg) of the water vapour mixing ratio differences between in-flight humidity measurements ro and the

analyses rm for the different experiments (CTRLSOP1, ZSOP1, VSOP1 and ZVSOP1) over the 24 analyses. The standard deviation differences

between the measurements and the background state is also shown by the black data points (N=6307).

6.3 Rainfall forecast evaluation

Forecast scores are now validated using the rain-gauge network available from the HyMeX database (doi: 10.6096/MISTRALS-

HyMeX.904). The rain-gauge measurement locations are indicated by the blue markers in Figure 1. For the comparisons, model

outputs are interpolated to the rain-gauge station locations using a linear interpolation. Heidke Skill Score (HSS) is calculated

for the 6-h accumulated rainfall forecasts for the CTRLSOP1 and the three RASTA experiments (ZSOP1, VSOP1 and ZVSOP1).5

HSS is calculated for the 32 assimilation cases in which RASTA data have been assimilated. Figure 12 represents the mean

HSS differences of the 6-h accumulated rainfall forecasts between the RASTA and the CTRLSOP1 experiment, as a function of

the rainfall accumulation threshold (mm). The bootstrap confidence intervals are also shown for each threshold. They are quite

large because HSS has only been calculated over 32 cases. The impact of the assimilation of RASTA wind data is positive if

the differences are above 0.10
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Figure 12. Differences in the average HSS of the 6-h cumulated precipitation forecasts versus rain gauge measurements, between the three

RASTA experiments and the CTRLSOP1 experiment (from left to right: ZSOP1, VSOP1 and ZVSOP1). Calculations were performed over the 32

runs in which RASTA data were assimilated. The error bars represent the 95% bias-corrected and accelerated (BCa) bootstrap confidence

intervals (see Efron and Tibshirani, 1993).

Figure 12 indicates that the benefit of the RH pseudo-observations (ZSOP1) is neutral to slightly positive above approximately

the threshold 25 mm. Besides, the impact of the assimilation of wind vertical profiles (VSOP1) is larger than that of RH pseudo-

observations (ZSOP1), especially for the larger rainfall accumulation thresholds. This is consistent with the fact that the impact

of the RH pseudo-observations is less pronounced than the impact of RASTA wind data as the forecast term increases (see

section 6). Similar results were also obtained in prior studies (Pu et al., 2009; Zhao and Jin, 2008; Zhang et al., 2012). Finally,5

the best results are obtained for the ZVSOP1 experiment, which suggests that the accumulated rainfall forecasts benefit more

from the assimilation of the W-band reflectivity jointly with RASTA wind data. Similar results were also obtained with other

categorical scores (FAR and POD), and for the 9- and 12- rainfall accumulation forecasts.

7 Discussions and conclusions

The primary objective of this article was to assess the impact of the assimilation of W-band radar reflectivity in a kilometre-10

scale NWP model, specifically to improve analyses and short-term forecasts of heavy precipitation events in the Mediterranean

area. The W-band reflectivity measurements collected by the airborne Doppler W-band radar RASTA during the HyMeX-SOP1

were assimilated into the 3h 3DVar assimilation system of the NWP model AROME. To complement this study, the benefit

brought by consistent thermodynamic and dynamic cloud conditions has also been investigated by assimilating separately and

jointly the horizontal wind measurements retrieved by RASTA. Results of this study will provide guidance for future observing15

systems by assessing whether it is more relevant to improve the current technologies towards cloud radars measuring horizon-

tal wind profiles, or only reflectivity profiles. The data assimilation experiments were first conducted for one of the most
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significant heavy precipitation events of the HyMeX-SOP1 (IOP7a). Then, to cover a larger number of meteorological situ-

ations, the different experiments have been run for the 32 cases in which RASTA data were available during the HyMeX SOP1.

The 1D+3DVar assimilation method, operationally employed to assimilate ground-based precipitation radar data in AROME,

has been adapted to assimilate the W-band reflectivity. Vertical profiles of relative humidity are first derived via a 1D Bayesian5

retrieval, and then used as pseudo-observations in the 3DVar assimilation system of AROME. In order to fully take advantage

of the W-band reflectivity in cloudy areas, a bias correction scheme was applied. The error standard deviation σo was estimated

by minimising the standard deviation between the retrieved humidity fields and independent in-situ humidity measurements.

Results indicate that the best estimate of the error standard deviation is close to 2 dB. The comparison with in-situ humidity

measurements highlighted the ability of the 1D Bayesian method to retrieve humidity field which are in better agreement with10

completely independent humidity measurements.

After validating the first step of the 1D+3DVar assimilation method, the exergy distance was calculated for each experiment

to measure the relative impact of the assimilation of RASTA data on the analyses and the subsequent forecasts. This method

allows one to assess the impact of the new observation type on the temperature, surface pressure, kinetic and humidity fields,15

independently. In particular, this impact study demonstrated that RH pseudo-observations have a larger impact on the humidity,

temperature and pressure variables on the analyses, compared to the assimilation of RASTA wind data alone. However, after

1 hour forecast, this rank order is reversed, probably because the forecast system has a short memory of the changes made by

the RH pseudo-observations on the humidity in the analysis. This result is consistent with the findings of Storto and Tveter

(2009), who employed a similar method to assimilate CPR data on-board the satellite CloudSat in the ALADIN NWP model.20

The impact on the analyses and forecasts is always larger if the W-band reflectivity is assimilated jointly with RASTA wind

data, probably because the two observations complement each other and lead to more consistent thermodynamic and dynamic

of cloud or frontal conditions in the initial state. In addition, it has been demonstrated that the impact of the assimilation of

RH pseudo-observations and/or RASTA wind data is more important over sea than over land, probably because these areas are

poorly covered by the conventional network.25

To evaluate the benefits brought by these impacts on the analyses, all assimilation experiments have been compared by

calculating the standard deviation between the humidity analysis fields and in-situ humidity measurements. The comparisons

demonstrated that the experiment in which RH pseudo-observations are assimilated alone improves the most the analyses in

terms of humidity, slightly followed by the experiment in which RASTA wind data are also assimilated jointly.30

Generally, results of this study indicate that the W-band reflectivity leads to a slight positive improvement of the rainfall

precipitation forecasts. Nonetheless, the impact is even more positive if RASTA wind data are assimilated alone. Finally, the

best scores are reached if the W-band reflectivity is assimilated jointly with RASTA wind data. Even though for precipitation

Doppler radars and for cyclone studies, similar results were also obtained in prior studies (Zhao and Jin, 2008; Pu et al., 2009;35
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Zhang et al., 2012; Dong and Xue, 2012). Consequently, the results suggest that the assimilation of the two observations jointly

leads to a slight improvement of both moisture initial conditions and precipitation forecasts.

In the future, the impact of the assimilation of the W-band reflectivity will also be investigated for other meteorological

situations, such as fog. Indeed, since W-band radar are very sensitive to cloud liquid water, their assimilation in km-scale NWP5

model should improve fog forecasts. In particular, the lower-cost W-band radar BASTA (Delanoë et al., 2016) will be employed

during dedicated field campaigns.

The current 1D+3DVar assimilation method requires to define the error standard deviation for the retrieved RH pseudo-

observations. One perspective might be to prescribe observation errors that vary in space. In addition, it is possible that the10

limited impact of RH pseudo-observations as the forecast term increases is due to the fact that hydrometeors are not initialised:

the condensation consumes the moisture which has just been injected in the analysis. In a near future, it will be possible

to add the hydrometeor specific contents in the control variables with a flow-dependent component in the background-error

covariances. Indeed, an EnVar data assimilation system is currently being developed for the AROME model (Montmerle et al.,

2018). The direct assimilation of the W-band reflectivity should be favoured by this future implementation.15
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