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Abstract. In regions with distinct seasons, soil salinity usually varies greatly by 

season. Thus, the seasonal dynamics of soil salinization must be monitored to 

prevent and control soil salinity hazards and to reduce ecological risk. This article 

took the Kenli District in the Yellow River Delta (YRD) of China as the 

experimental area. Based on Landsat data from spring and autumn, improved 15 

vegetation indices (IVIs) were created and then applied to inversion modeling of 

the soil salinity content (SSC) by employing stepwise multiple linear regression, 

back propagation neural network and support vector machine methods. Finally, 

the optimal SSC model in each season was extracted, and the spatial distributions 

and seasonal dynamics of SSC within a year were analyzed. The results indicated 20 

that the SSC varied by season in the YRD, and the support vector machine 

method offered the best SSC inversion models for the precision of the calibration 

set (R
2
>0.72, RMSE <6.34 g/kg) and the validation set (R

2
>0.71, RMSE<6.00 

g/kg, and RPD>1.66). The best SSC inversion model for spring could be applied 

to the SSC inversion in winter (R
2
 of 0.66), and the best model for autumn could 25 

be applied to the SSC inversion in summer (R
2
 of 0.65). The SSC exhibited a 

gradual increasing trend from the southwest to northeast in the Kenli District. 

The SSC also underwent the following seasonal dynamics: soil salinity 

accumulated in spring, decreased in summer, increased in autumn, and reached 

its peak at the end of winter. This work provides data support for the control of 30 

soil salinity hazards and utilization of saline-alkali soil in the YRD. 
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1. Introduction 

Saline soils are widespread throughout the world, especially in arid, semiarid and some 5 

subhumid regions, and they cause severe environmental degradation that can impede 

crop growth and overall regional production (Metternicht and Zinck 2003). Moreover, 

as a form of land degradation and an ecological environment hazard, soil salinization 

can degrade soil quality and lead to ecosystem risks (Huang et al. 2015; Zhao et al. 

2018). Therefore, the scientific treatment and utilization of saline soil are of great 10 

significance to regional agricultural production and ecological risk reduction. Thus, the 

degree, geographical distribution and dynamics of soil salinization must be determined 

in real time for the prevention and control of soil salinity hazards and the management 

and utilization of saline soil (Melendez-Pastor et al. 2012; Yang et al. 2018).  

 15 

Remote sensing technology provides an important and rapid approach for the 

quantitative monitoring and mapping of soil salinization (Dehni and Lounis 2012; 

Tayebi et al. 2013; Shoshany et al. 2013; Sidike et al. 2014; Wu et al. 2014; Guo et al. 

2015; Sturari et al. 2017). Multispectral satellite data, such as Landsat, SPOT, IKONOS, 

QuickBird and the Indian Remote Sensing (IRS) series of satellites, have often been 20 

used to map and monitor soil salinity and other properties due to the low cost and the 

ability to map extreme surface expressions of salinity (Dwivedi et al. 2008; Abbas et al. 

2013; Allbed et al. 2014; Mahyou et al. 2016; Mehrjardi et al. 2008; Yu et al. 2010; 

Ahmed and Iqbal 2014; Rahmati and Hamzehpour 2016). Extensive studies have shown 
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that models based on multispectral satellite data are still the preferred soil salinity 

mapping method over large spatial domains (Allbed and Kumar 2013; Scudiero et al. 

2015; Taghizadeh-Mehrjardi et al. 2014). 

To a certain extent, information on the damage to vegetation caused by soil 

salinization can help identify the degree and trend of soil salinization. Therefore, 5 

traditional vegetation indices (VIs), such as the normalized difference vegetation index 

(NDVI), ratio vegetation index (RVI) and difference vegetation index (DVI), can be 

used as indicators to determine the degree of soil salinization (Elmetwalli et al. 2012; Li 

et al. 2013; Goto et al. 2015). However, the accuracy of the models based on traditional 

VIs must be improved (Iqbal 2011). Traditional VIs involve data from only the bands in 10 

the visible and near-infrared regions and do not consider other bands (such as shortwave 

infrared band, which has a large amount of information), and performing 

comprehensive analyses with these indices is difficult. Significant correlations often 

occur between traditional VIs that only take advantage of the data from two bands, 

which can distort the model results (USGS, 2013). Therefore, whether the addition of 15 

data from the shortwave infrared band which has long wavelengths and contains 

considerable information, can improve the accuracy and stability of inversion models of 

the soil salinity content (SSC) warrants further study. 

 

Existing studies have primarily focused on SSC inversion models for a single study 20 

area at a specific time (Herrero and Castañeda 2015; He et al. 2014). Nevertheless, in 

regions with distinct seasons, applying the same inversion model to quantitatively 

analyze the SSC in different seasons is not adequate. For one thing, the changes in soil 

moisture are obvious due to the great differences in rainfall and evaporation between 
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different seasons, thus, because being closely related to soil moisture, soil salinity varies 

usually greatly by season. Moreover, considerable differences occur in the coverage and 

growth of vegetation between different seasons, which have a great influence on VIs. 

Therefore, seasonal SSC inversion models are necessary to improve the accuracy of 

SSC modeling and enhance our ability to monitor regional soil salinization continuously 5 

and in real time. 

 

The Yellow River Delta (YRD) is located at the junction of the Beijing-Tianjin-

Hebei metropolitan area and Shandong Peninsula, and it lies within the efficient 

ecological economic zone of China, which has obvious geographical advantages. In this 10 

region, the land resources are rich with nearly 550,000 ha of unused land, but soil 

salinization is a widespread and serious concern (Mao et al. 2014). Approximately 85.7% 

of the region is covered by saline soil, and the amount of coastal saline soil has 

exhibited an increasing trend in recent years. As the main risk to farmland ecosystems 

in this region, soil salinization can result in large reductions in agricultural and fragile 15 

ecological environments, which may influence the development of the regional 

economy and society (Yang et al. 2015; Weng et al. 2010). Therefore, it is particularly 

necessary to monitor the seasonal dynamics of soil salinization in this region.  

 

The objectives of this paper were (1) to build optimal SSC inversion models for 20 

different seasons according to the soil salinity conditions and (2) to map the spatial 

distribution and seasonal dynamics of SSC in the YRD of China. Specifically, VIs were 

generated by introducing data from the shortwave infrared band (SWIR) of Landsat 
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data. The SSC inversion models in spring and autumn were built using stepwise 

multiple linear regression (SMLR), back propagation neural network (BPNN) and 

support vector machine (SVM) methods, and the best models for spring and autumn 

were selected and applied to the other seasons. Once the optimal soil salinity 

inversion model was determined for each season, it was then applied to map the SSC 5 

distribution and analyze the seasonal SSC dynamics. 

 

2. Materials and methods 

2.1 Study area 

The study area was the Kenli District in the YRD region (37°24′~38°06′N, 10 

118°14′~119°11′E) located in Dongying City, Shandong Province, China, and on the 

southern shore of the Bohai Sea (Figure 1). This area has a characteristic plain 

landscape and coastal saline soil type, and the following three types of soil subgroups 

are present in this area: tidal soil, salinized tidal soil and coastal tidal saline soil. The 

soil parent material is Yellow River alluvial material, and the soil texture is light. The 15 

salt in groundwater can easily reach the soil surface with the evaporation of water from 

the soil. Thus, salt accumulates on the soil surface, while it is relatively rare in the 

middle and lower parts of the soil profile (below the core soil). The main types of land 

use in this area are cultivated land, unused land and grassland. The main crops are 

wheat, corn, rice and cotton. The main natural vegetation includes white grass, reed, 20 

horse trip grass, tamarix and suaeda. Because of the low and flat terrain, high 

groundwater table, high mineralization rate, poor drainage conditions and the 

infiltration and mounting of seawater associated with the Yellow River in this region, 

soil salinization at the surface is generally severe and widespread, and the associated 
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ecological risk is profound (Yang et al. 2015; Weng et al. 2010). Due to the temperate 

climate and the occurrence of four distinct seasons, the soil salt content exhibits 

seasonal dynamics. The soil salinization process in the region is shown in Figure 2. 

 

2.2 Soil sampling and chemical analyses 5 

To achieve an accurate representation of the seasonality, we selected April, August, 

November and February (in the following year) to represent the spring, summer, 

autumn, and winter seasons, respectively. According to the climate characteristics and 

soil salinization conditions in the different seasons, the samples collected in spring and 

autumn were used to develop the SSC inversion models, while the samples from winter 10 

and summer were used to validate the inversion models. The following soil samples 

were collected: 92 spring samples were collected from April 27-May 2, 2013; 30 

summer samples were collected from August 14-15, 2013; 110 autumn samples were 

collected from November 9-13, 2013; and 56 winter samples were collected from 

February 26-29, 2014. Sample points were designated by considering the degree of soil 15 

salinization, morphology and microtopography of the soil surface, and uniformity of the 

sample distribution (Figure 1). Topsoil samples were collected at each sample point at a 

depth <20 cm, and GPS coordinates were recorded. In situ environmental information 

was also recorded. The collected soil samples were naturally air dried, crushed, purified, 

passed through a 2 mm sieve and mixed evenly. The concentrations of Cl
-
, SO4

2-
, CO3

2-
, 20 

HCO3
-
, K

+
, Na

+
, Ca

2+
 and Mg

2+
 in extracted solutions of a 1:5 soil-water mixture were 

measured. The SSC was defined as the combined concentration of the eight ions 

mentioned above. 
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2.3 Acquisition and pretreatment of imaging data 

Multispectral Landsat data were acquired in line with the sample collection time. We 

employed Landsat 7 ETM+ data from May 6, 2013 and Landsat 8 OLI data from 

August 18, 2013, November 6, 2013, and February 26, 2014. The Landsat 7 ETM+ data 

included the following bands: one panchromatic band (520–900 nm); four multispectral 5 

bands in the visible and near-infrared wavelength range (blue, 450–515 nm; green, 525–

605 nm; red, 630–690 nm; and NIR, 775–900 nm); and two shortwave infrared (SWIR) 

bands (1550–1750 nm and 2090–2350 nm). The Landsat 8 OLI data had the same bands 

as ETM+, but the band ranges were slightly different. Image pretreatment, including 

geometric rectification, radiation calibration and atmospheric correction, was conducted 10 

in ENVI 5.1 software from Exelis Visual Information Solutions. Geometric rectification 

was completed in reference to the 1:10000 terrain map of the study area. The radiation 

calibration and Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes 

(FLAASH) atmospheric correction were subsequently applied. The output images were 

projected to the Gauss–Kruger coordinate system and cropped to the study area. The 15 

water body, building and traffic land areas were then masked according to the current 

land use situation. Finally, the reflectance of the samples was extracted from the 

processed images using ArcGIS 10.1 software. 

 

2.4 Calculation and improvement of vegetation indices 20 

The extended vegetation indices (EVIs) were all calculated based on Landsat data by 

adding the SWIR band data to the traditional VIs. These EVIs included the extended 

normalized difference vegetation index (ENDVI, (NIR+SWIR-R)/(NIR+SWIR+R)), 

extended difference vegetation index (EDVI, NIR+SWIR-R) and extended ratio 

vegetation index (ERVI, (NIR+SWIR)/R). The SWIR band refers to either of the two 25 
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SWIR bands in Landsat data. The correlations between the SSC and EVIs were 

analyzed, and the EVIs with significant correlation coefficients were selected as the 

improved vegetation indices (IVIs). Finally, the IVIs were used as inputs to the SSC 

inversion models. 

 5 

2.5 Inversion model construction and optimization 

First, the soil samples collected in spring and autumn were sorted and separated 

according to the SSC. Two-thirds of the samples were selected for the calibration set, 

and the remaining samples were used as the validation set. Of the 92 samples collected 

in spring, 62 were used for calibration, and the other 30 were used for validation. Of the 10 

110 samples collected in autumn, 74 were used for calibration, and the other 36 were 

used for validation. Second, the SSC inversion models for spring were built by 

employing the SMLR, BPNN and SVM methods based on the VIs and corresponding 

IVIs. The performance of the SSC inversion models was evaluated by the coefficient of 

determination (R
2
), root-mean-square error (RMSE) and ratio of performance to 15 

deviation (RPD). Using the same procedures, the SSC models for autumn were built 

using the IVIs, and the best model was selected. Finally, the best models for spring and 

autumn were selected and applied to the summer and winter data, and the optimal SSC 

inversion models according to the soil salinization conditions in different seasons were 

then selected. 20 

 

For the SMLR method, the variance inflation factor (VIF) was set to less than 5 to 

control for multicollinearity. The BPNN method was conducted using the MATLAB 

R2012a program. During the calculation, the transfer functions of the hidden layer and 
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the output layer were set to tansig and logsig, respectively. The network training 

function was traingdx, and the learning rate, maximum training time and model 

expectation error were set to 0.01, 15000 and 0.01, respectively. The SVM models were 

built in the Libsvm 3.11 toolbox in MATLAB R2012a, and the 4th SVM type (v-SVR) 

and 2nd kernel function (RBF) were selected. The penalty parameter C and the kernel 5 

parameter g of the RBF were determined according to the minimum mean-squared 

deviation by using the cross-validation and grid search methods. 

 

2.6 SSC distribution mapping and year-round dynamics analysis 

The reflectance spectra were extracted from the Landsat data of four seasons in the 10 

study area, and the seasonal IVIs were calculated. The SSC distribution maps of four 

seasons were then obtained via calculations based on the corresponding optimal models. 

The spatial distribution characteristics and seasonal dynamics of soil salinity in the 

YRD were analyzed and compared. 

 15 

The methodological flow of this article is shown in Figure 3. 

 

3. Results 

3.1 Soil sample data 

The statistical results of the SSC samples from the four seasons (the upper half of Table 20 

1) showed that the SSC in the study area remained high with a mean >5.32 g/kg 

throughout the year. As determined from the minimum, maximum and mean values, the 

SSC reached its maximum concentration in winter (mean=9.50 g/kg) and varied by 



10 

 

season. Because the coefficients of variation for all four seasons were greater than 1.00, 

the overall SSC gradient was obvious, especially in winter and spring. 

 

3.2 Improved vegetation indices (IVIs) 

In spring, the correlation coefficients between the EVIs and the SSC of the soil samples 5 

were -0.52 for ENDVI, -0.69 for ERVI and -0.70 for EDVI. Similarly, in autumn, the 

correlation coefficients between the EVIs and the SSC of the soil samples were -0.73 

for ENDVI, -0.69 for ERVI and -0.69 for EDVI. 

 

The results showed that the correlation coefficients between the ERVI or EDVI 10 

and SSC were significant (R
2
>0.69; P<0.01) in spring. Based on these findings, 

ERVI and EDVI were selected as the IVIs for spring, while ENDVI and ERVI were 

selected as the IVIs for autumn. For each season, the chosen IVIs and their 

corresponding VIs were used to build the SSC inversion models. 

 15 

3.3 Best SSC inversion models and their application to different seasons in the 

YRD region 

3.3.1 SSC inversion models with VIs and IVIs 

The results of the SSC inversion models in spring based on IVIs are shown in 

Table 2. The performances of the three modeling methods were compared, which 20 

indicated that the SVM models had the highest prediction accuracy, followed by the 

BPNN models, and the SMLR models had the lowest accuracy. In terms of the 
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calibration values, the SVM models based on the IVIs had the best and most stable SSC 

inversion accuracies for both the calibration set (R
2
>0.72, RMSE<6.34 g/kg) and the 

validation set (R
2
>0.71, RMSE<6.00 g/kg, and RPD>1.66). These models were then 

selected as the best SSC inversion models for the SSC in spring and autumn. 

 5 

The calibration and validation precision of the SSC inversion models in spring and 

autumn are shown in Figure 4. 

 

3.3.2 Application of the best SSC inversion models with IVIs in different seasons 

The best SSC inversion models for spring and autumn were applied to estimate the SSC 10 

in summer and winter, respectively. Based on the estimation accuracy (Table 3), the 

best SSC inversion model for spring could be applied to estimate the SSC in winter with 

R
2
 of 0.66 and RMSE of 7.57 g/kg. Meanwhile, the best SSC inversion model for 

autumn could also be applied to estimate the SSC in summer, resulting in R
2
 of 0.65 and 

RMSE of 3.60 g/kg. In response to the soil salinity conditions, the SSC inversion 15 

model for spring based on the IVIs in combination with the SVM method was 

selected as the optimal SSC model for spring and winter, while the SSC inversion 

model for autumn based on the IVIs in combination with the SVM method was 

selected as the optimal SSC model for autumn and summer. 

 20 
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3.4 Distribution and seasonal dynamics of SSC in the YRD region 

3.4.1 Distribution of SSC across the four seasons 

Based on the processed Landsat data and the optimal SSC inversion model for each 

season, SSC inversion maps were obtained for all four seasons. The descriptive 

statistics of the inversed SSC are shown in the lower half of Table 1, and these values 5 

were close to those from the collected samples (the upper half of Table 1). The 

inversion results also showed that the SSC was highest in winter, followed by the SSC 

in spring, and the SSCs in autumn and summer were relatively low. Therefore, the 

ecological risk in winter and spring was high, while the ecological risk in autumn and 

summer was relatively low.  10 

 

According to the classification standard of coastal saline soil in the semihumid area 

of China, the study area was divided into five grades as follows: nonsaline soil, mild 

saline soil, moderate saline soil, severe saline soil and solonchak. The distributions of 

the soil salinity grades in the four seasons were mapped (Figure 5) and showed similar 15 

characteristics. There was a gradual increasing trend in soil salinity from the southwest 

to northeast in the study region. The main reason for this gradual increase in SSC is that 

the terrain in the southwest part of the study area is high and flat and the land is used for 

agricultural production with relatively less soil salinity hazards, while the central part of 

the region near the banks of the Yellow River has alternating hillocks, slopes and 20 

depressions, which were formed by the repeated diversion of the Yellow River, thus, 

each grade of soil salinization was also alternately distributed. The northeast part of the 

region, which has low terrain and is closest to the sea, exhibited the most severe soil 

salinization and hazards. 

 25 
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3.4.2 Seasonal dynamics of SSC 

The number and proportion of pixels per SSC grade were calculated for each season 

(Table 4). Figure 5 and Table 4 demonstrate that the SSC in the study area clearly 

differed among the four seasons. The SSC in spring consisted primarily of moderate 

saline soil, severe saline soil and solonchak (combined proportion of 90.05%). In 5 

summer, the areas of the four grades from mild saline soil to solonchak were relatively 

uniform (each grade accounting for 22–28%). The SSC during autumn was largely 

dominated by severe saline soil and solonchak (combined proportion of 77.75%). In 

winter, the SSC was principally severely saline and solonchak (combined proportion of 

99.19%, of which severe saline soil accounted for 80.71%). 10 

 

The seasonal SSC inversion values and the proportion of pixels per SSC grade 

indicated that the change in SSC between different seasons was relatively apparent. The 

degree of soil salinization was lowest in summer, and the SSC in autumn was relatively 

low except for the solonchak in coastal areas. In spring, soil salinization became more 15 

obvious, as most of the study area belongs to the moderate to severe saline soil and 

solonchak groups. Meanwhile, soil salinization was the most severe in winter. In 

summary, soil salinity in the study area usually accumulated in spring, decreased in 

summer, increased in autumn and reached its peak at the end of winter. 

 20 

4. Discussion 

In this work, spatial distribution maps of SSC in the study region in four seasons were 

obtained. Soil salinity exhibited a gradually increasing trend from the southwest to 

northeast. Soil salinization at the surface was generally severe and widespread, and soil 
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salinity hazards were obvious, indicating that the ecological ecosystem was fragile. 

These conditions can lead to a high ecological risk, especially in winter and spring. The 

results provide data support for soil ecological risk assessments to promote the 

prevention and control of soil salinity hazards and improve agricultural production and 

the sustainable development of the ecological environment. Moreover, different 5 

measures for the treatment and utilization of saline soil should be implemented 

according to the different regions and seasons.           

 

In this experiment, we introduced the SWIR band and proposed an improved 

vegetation index to increase the accuracy of SSC inversion models. The spatial 10 

distributions of SSC in the four seasons showed similar characteristics. The soil salinity 

exhibited a gradual increasing trend from the southwest to northeast in the study region, 

and this distribution pattern was consistent with the results of other studies (Weng et al. 

2010; Yang et al. 2015). Weng et al. (2010) also established a SSC remote sensing 

revision model using the data from 2153~2254 nm and 1941~2092 nm in the YRD 15 

region and achieved good results with a validation RMSE of 0.986 and R
2
 of 0.873. 

 

The best SSC inversion models for spring and autumn were based on different IVIs. 

In spring, the weather is characteristically dry and windy, and strong evaporation occurs. 

Moreover, the coverage of natural vegetation is low, but certain crops, such as wheat 20 

and corn, are in a vigorous growth stage, which results in strong vegetation reflectance. 

Generally, the RVI and DVI are sensitive to vegetation, especially when vegetation 

coverage is high. Thus, the inversion accuracies based on the ERVI and EDVI were 

higher than those based on the other vegetation indices. In autumn, rainfall and 
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temperature are reduced, and there is little natural vegetation coverage. Moreover, in 

autumn, cotton is collected, and only withered cotton leaves and rods remain in the field. 

As wheat is only beginning to emerge out of the soil in autumn, there is limited crop 

coverage. Therefore, the reflectance spectra of vegetation are relatively weak in autumn. 

NDVI has low sensitivity to high vegetation areas and is thus more suitable for the 5 

monitoring of low and moderate vegetation coverage areas. Accordingly, the inversion 

accuracies based on ENDVI and ERVI were higher than those based on the other 

vegetation indices. Without considering the influence of some factors (e.g., soil 

moisture and temperature), the models can be used for the regional remote sensing 

inversion of SSC in the study area, but the prediction accuracy still needs to be 10 

improved. Therefore, the influence of certain key factors and the uncertainty of the 

quantization will be further studied in the future to improve the SSC prediction accuracy. 

 

The seasonal dynamics of SSC are closely related to the climate of the study area. 

Under drought, windy weather and strong evaporation conditions in spring from March 15 

to May, soil salt aggregates at the soil surface as the soil moisture increases, thereby 

forming the first peak of salt accumulation. At this time, 90.05% of the area is covered 

by moderate saline soil, severe saline soil and solonchak. Rainfall and floods occur in 

the summer from June to August, and as precipitation infiltrates into the soil, the soil 

surface is desalinated with uniform proportions of mild saline soil to solonchak. In 20 

autumn from September to November, rainfall decreases, and SSC increases slightly. In 

addition, the area is largely dominated by severe saline soil and solonchak (combined 

proportion of 77.75%). Due to drought in winter from December to February and 

combined with decreased evaporation, soil salinization is relatively severe and remains 
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latent at the soil surface, with 99.19% of the area covered by severe saline and 

solonchak. By the end of winter, the SSC reaches its peak. The study by Lu et al. (2016) 

indicated that SSC exhibits seasonal variations in the YRD and that the SSC in spring is 

higher than that in autumn in the Kenli District, which is consistent with our results. 

 5 

Based on the time point data, the results indicated that the SSC inversion model for 

spring could be applied to the SSC inversion in winter, while the SSC inversion model 

for autumn could be applied to the SSC inversion in summer in the YRD. These model 

selection results may be due to the short time intervals and the similar soil salt contents 

and climatic conditions between February and April as well as between August and 10 

November in the YRD. For more accurate responses to the dynamic changes in soil 

salinity, a period of SSC data should be selected as the seasonal salt data, which will be 

studied further in the future. 

 

5. Conclusions 15 

In this experiment, the ERVI and EDVI were the IVIs for spring, while the ENDVI and 

ERVI were the IVIs for autumn. These models based on the IVIs and the SVM method 

were selected as the best SSC inversion models for spring and autumn. The 

experimental results contribute to the quantitative and accurate monitoring of soil 

salinization via multispectral imaging and provide data and technical support for the 20 

management and utilization of saline soil and the protection of the ecological 

environment. 

 



17 

 

This experiment indicated that the best inversion model for spring could be applied 

for the SSC inversion in winter. Thus, the optimal SSC model for spring and winter was 

selected in response to the soil salinity conditions. At the same time, the best inversion 

model for autumn could also be applied for the SSC inversion in summer, and it was 

selected as the optimal SSC model for autumn and summer in the study region.  5 

 

In the YRD region, the spatial distribution of SSC showed a gradual increasing 

trend from the southwest to northeast. The seasonal dynamics of SSC indicated that soil 

salinity accumulated in spring, decreased in summer, increased in autumn and reached 

its peak at the end of winter. These results were consistent with the results of field 10 

sampling, which showed that the SSC was highest in winter followed by spring and 

autumn, and the lowest SSC occurred in summer. 
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Tables 

Table 1. SSC descriptive statistics of samples and inversion  

 

Seasons 
Minimum 

(g/kg) 

Maximum 

(g/kg) 

Mean 

(g/kg) 

Standard 

deviation 

(g/kg) 

Coefficient 

of variation 

Sample 

points 

Soil 

samples 

SSC 

Spring 1.10 46.70 8.60 11.50 1.34 92 

Summer 1.34 29.20 5.32 5.95 1.12 30 

Autumn 0.90 36.70 7.80 8.20 1.05 110 

Winter 2.00 61.50 9.50 12.00 1.26 56 

Inversion 

SSC 

Spring 0.86 53.44 8.79 10.26 1.17  

Summer 1.00 35.50 7.00 4.18 0.60  

Autumn 0.82 35.15 8.28 9.21 1.11  

Winter 1.12 58.10 9.21 13.78 1.50  

 

Table 2. Inversion models of SSC with IVIs from Landsat data 

Modeling 

methods 

Spring Autumn 

Calibration set Validation set Calibration set Validation set 

R2 
RMSE 

(g/kg) 
R2 

RMSE 

(g/kg) 

RPD 
R2 

RMSE 

(g/kg) 
R2 

RMSE 

(g/kg) 

RPD 

SMLR 0.42  9.03  0.62**  6.83  1.36  0.65** 3.42 0.56 3.81 2.01 

BPNN 0.60**  7.56  0.57**  7.30  1.47  0.72** 3.39 0.68** 3.38 2.15 

SVM 0.72**  6.34  0.71**  6.00  1.66  0.75** 3.48 0.78** 3.02 2.56 

Significance levels: [**] 0.01 5 

 

Table 3. Application of the best SSC inversion models 

 The best inversion model for spring The best inversion model for autumn 

 R2 RMSE (g/kg) R2 RMSE (g/kg) 

Summer samples (30) 0.23 5.31 0.65** 3.60 

Winter samples (56) 0.66** 7.57 0.28 10.98 

Significance levels: [**] 0.01 
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Table 4. The number and proportion of pixels per SSC grade across four seasons 

Grades Spring Summer Autumn Winter 

 
Number 

of pixels 

Proporti

on % 

Number 

of pixels 

Proporti

on % 

Number 

of pixels 

Proporti

on % 

Number 

of pixels 

Proporti

on % 

Nonsaline soil 

(<2.0 g/kg) 
10705 0.67 16 0 46439 2.89 3 0 

Mild saline soil 

(2.0~4.0 g/kg) 
84805 5.29 450331 28.07 127262 7.93 12 0 

Moderate saline soil 

(4.0~6.0 g/kg) 
451291 28.13 427216 26.63 182589 11.37 13045 0.81 

Severe saline soil 

(6.0~10.0 g/kg) 
597607 37.25 371641 23.16 305762 19.05 1294867 80.71 

Solonchak 

(>10.0 g/kg) 
459989 28.67 355193 22.14 942345 58.70 296470 18.48 

 

Figures 

 

 5 
Figure 1. Location of the study area and sampling points 
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Figure 2. Soil salinization process in the study area 

 

 
Figure 3. Methodological flow chart 5 
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Spring (2013.4)                                           Autumn (2013.11) 

Figure 4. Calibration and validation precision of SSC inversion models in spring and 

autumn 5 

 
Spring (2013.4)                                       Summer (2013.8) 

 
Autumn (2013.11)                                       Winter (2014.2) 

 10 

Figure 5. Inversion and distribution of SSC in four seasons 

 


