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Abstract. In regions with distinct seasons, soil salinity usually varies greatly
between seasons. Thus, the seasonal dynamics of soil salinization must be
monitored for the prevention and control of soil salt hazard and the reduction of
ecological risk. This article took the Kenli district in the Yellow River Delta
(YRD) of China as the experimental area. Based on Landsat data from spring and
autumn, improved vegetation indices (IV1Is) were created and then applied to
inversion modeling of the soil salinity content (SSC) by employing the stepwise
multiple linear regression, back propagation neural network and support
vector machine methods. Finally, the optimal SSC model in each season was
extracted, and the spatial distributions and seasonal dynamics of SSC within a
year were analyzed. The results indicated that the SSC varied obviously between
seasons in the YRD, and the support vector machine method resulted in the best
inversion models for the precision of the calibration set (R>>0.72, RMSE <6.34
g/kg) and the validation set (R>>0.71, RMSE<6.00 g/kg, and RPD>1.66). The
best SSC inversion model for spring could be applied to the SSC inversion in
winter (R” of 0.66); similarly, the best model for autumn could also be applied to
SSC inversion in summer (R” of 0.65). The SSC exhibited a gradually increasing
trend from southwest to northeast in the Kenli district. The SSC also underwent
the following seasonal dynamics: soil salinity accumulated in spring, decreased
in summer, increased in autumn, and reached its peak in the end of winter. This
work provides data support for the control of soil salt hazards and utilization of

saline-alkali soil in the YRD.
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1. Introduction

Saline soils are widespread throughout the world, especially in arid, semiarid and some
subhumid regions, and they cause severe environmental degradation that can impede
crop growth and overall regional production (Metternicht and Zinck 2003). Moreover,
as a form of land degradation and an ecological environment hazard, soil salinization
can degrade soil quality and lead to ecosystem risks (Huang et al. 2015; Zhao et al.
2018). Therefore, the scientific treatment and utilization of saline soil are of great
significance to regional agricultural production and ecological risk reduction. Thus, the
degree, geographical distribution and dynamics of soil salinization must be determined
in real time for the prevention and control of saline soil hazards and the management

and utilization of saline soil (Melendez-Pastor et al. 2012; Yang et al. 2018).

Remote sensing technology provides an important and rapid approach for the
quantitative monitoring and mapping of soil salinization (Dehni and Lounis 2012;
Tayebi et al. 2013; Shoshany et al. 2013; Sidike et al. 2014; Wu et al. 2014; Guo et al.
2015; Sturari et al. 2017). Multispectral satellite data, such as Landsat, SPOT, IKONOS,
QuickBird, and the Indian Remote Sensing (IRS) series of satellites, have often been
used to map and monitor soil salinity and other properties due to the low cost and the
ability to map extreme surface expressions of salinity (Dwivedi et al. 2008; Abbas et al.
2013; Allbed et al. 2014; Mahyou et al. 2016; Mehrjardi et al. 2008; Yu et al. 2010;

Ahmed and Igbal 2014; Rahmati and Hamzehpour 2016). Extensive studies have shown
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that models based on multispectral satellite data are still the preferred soil salinity
mapping method over large spatial domains (Allbed and Kumar 2013; Scudiero et al.

2015; Taghizadeh-Mehrjardi et al. 2014).

To a certain extent, information on the damage to vegetation caused by soil
salinization can help identify the degree and trend of soil salinization. Therefore,
traditional vegetation indices (VIs), such as the normalized difference vegetation index
(NDVI), ratio vegetation index (RVI), and difference vegetation index (DVI), can be
used as indicators to determine the degree of soil salinization (EImetwalli et al. 2012; Li
et al. 2013; Goto et al. 2015). However, the accuracy of the models based on traditional
VIs must be improved (Igbal 2011). Traditional VIs involve data from only the bands in
the visible and near-infrared regions and do not consider other bands (such as shortwave
infrared band, which has a large amount of information), and performing
comprehensive analyses with these indices is difficult. Significant correlations often
occur between traditional Vs that only use the data from two bands, which can distort
the model results (USGS, 2013). Therefore, it is worth studying whether the addition of
data from the shortwave infrared band, which has long wavelengths and contains
considerable information, can improve the accuracy and stability of inversion models of

the soil salinity content (SSC).

Existing studies primarily focus on SSC inversion models for a single study area at
a specific time (Herrero and Castareda 2015; He et al. 2014). Nevertheless, in regions
with distinct seasons, applying the same inversion model to quantitatively analyze the
SSC in different seasons is not adequate. For one thing, the changes in soil moisture are

obvious due to the great differences in rainfall and evaporation between different
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seasons, thus, because being closely related to soil moisture, soil salinity varies usually
greatly between seasons. Moreover, considerable differences occur in the coverage and
growth of vegetation between different seasons, which has a great influence on VIs.
Therefore, seasonal SSC inversion models are necessary to improve the accuracy of
SSC modeling and enhance our ability to monitor regional soil salinization continuously

and in real time.

The Yellow River Delta (YRD) is located at the junction of the Beijing-Tianjin-
Hebei metropolitan area and Shandong Peninsula and lies within the efficient ecological
economic zone of China, which has obvious geographical advantages. With nearly
550,000 ha of unused land, the land resources in this area are rich. However, soil
salinization is a widespread and serious concern in this region (Mao et al. 2014).
Approximately 85.7% of the area in the region is covered by saline soil, and the amount
of coastal saline soil has exhibited an increasing trend in recent years. As the main risk
to farmland ecosystems in this region, soil salinization can result in large reductions in
agricultural and fragile ecological environments, which could influence the
development of the regional economy and society (Yang et al. 2015; Weng et al. 2010).
Therefore, it is particularly necessary to monitor the seasonal dynamics of soil

salinization in this region.

The objectives of this paper are to (1) build optimal SSC inversion models for
different seasons according to the soil salinity conditions; and (2) map the spatial

distribution and seasonal dynamics of SSC in the YRD of China. Specifically, the Vs
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were constructed by introducing data from the shortwave infrared band (SWIR) of
Landsat data. The SSC inversion models in spring and autumn were built using
stepwise multiple linear regression (SMLR), back propagation neural network
(BPNN) and support vector machine (SVM) methods, and the best models for spring
and autumn were selected and applied to the other seasons. Once the optimal soil
salinity inversion model was determined for each season, it was then applied to map

the SSC distribution and analyze the seasonal SSC dynamics.

2. Materials and methods

2.1 Study area
The study area is the Kenli district in the YRD region (37°24'~38°06'N,

118°14'~119°11'E), which is located in Dongying City, Shandong Province, China and
on the southern shore of the Bohai Sea (Fig. 1). This area has a characteristic plain
landscape and coastal saline soil type, and three types of soil subgroups are observed:
tidal soil, salinized tidal soil and coastal tidal saline soil. The soil parent material is
Yellow River alluvial material, and the soil texture is light. The salt in groundwater can
easily reach the soil surface with the evaporation of water from the soil; thus, salt
accumulates on the soil surface while it is relatively rare in the middle and lower parts
of the soil profile (below the core soil). The main types of land use in this area are
cultivated land, unused land and grassland. The main crops are wheat, corn, rice and
cotton. The main natural vegetation includes white grass, reed, horse trip grass, tamarix
and suaeda. Because of the low and flat terrain, high groundwater table, high
mineralization rate, poor drainage conditions and the infiltration and mounting of

seawater associated with the Yellow River in this region, soil salinization at the surface
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is generally severe and widespread, and the associated ecological risk is very serious
(Yang et al. 2015; Weng et al. 2010). Due to the temperate climate and the occurrence
of four distinct seasons, the soil salt content exhibits obvious seasonal dynamics. The

soil salinization process in the region is shown in Fig. 2.

2.2 Soil sampling and chemical analyses

To achieve an accurate representation of the seasonality, we selected April, August,
November and February (in the following year) to represent the spring, summer,
autumn, and winter seasons, respectively. According to the climate characteristics and
soil salinization conditions in the different seasons, the samples collected in spring and
autumn were used to develop the SSC inversion models while the samples from winter
and summer were used to validate the inversion models. Overall, 92 spring samples
were collected from April 27-May 2, 2013; 30 summer samples were collected from
August 14-15, 2013; 110 autumn samples were collected from November 9-13, 2013;
and 56 winter samples were collected from February 26-29, 2014. Sample points were
designated by considering the degree of soil salinization, morphology and
microtopography of the soil surface, and uniformity of the sample distribution (Fig. 1).
Topsoil samples were collected at each sample point at a depth <20 cm, and GPS
coordinates were recorded. In situ environmental information was also recorded. The
collected soil samples were naturally air dried, crushed, purified, passed through a 2
mm sieve, and mixed evenly. The concentrations of CI', 50,7, COgZ', HCO;, K, Na*,
Ca®*, and Mg?* were measured in the extracted solutions with a 1:5 soil-water mixture.

The SSC was defined as the combined concentration of the eight ions mentioned above.
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2.3 Acquisition and pretreatment of imaging data

Multispectral Landsat data were acquired in line with the sample collection time. We
employed Landsat 7 ETM+ data from May 6, 2013, and Landsat 8 OLI data from
August 18, 2013, November 6, 2013, and February 26, 2014. Landsat 7 ETM+ data
include one panchromatic band (520-900 nm), four multispectral bands in the visible
and near-infrared wavelength range (blue (450-515 nm), green (525-605 nm), red
(630-690 nm) and NIR (775-900 nm)), and two shortwave infrared (SWIR) bands
(1550-1750 nm, 2090-2350 nm). The Landsat 8 OLI data have the same bands as
ETM+, although the band ranges are slightly different. Image pretreatment, including
geometric rectification, radiation calibration, and atmospheric correction, was
conducted in ENVI1 5.1 software from Exelis Visual Information Solutions. Geometric
rectification was completed in reference to the 1:10000 terrain map of the study area;
and then radiation calibration and Fast Line-of-Sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) atmospheric correction were subsequently applied. The output
images were projected to the Gauss—Kruger coordinate system and cropped to the study
area. Then, the water body, building and traffic land areas were masked according to the
current land use situation. Finally, the reflectance of the samples was extracted from the

processed images using ArcGIS 10.1 software.

2.4 Calculation and improvement of vegetation indices

The extended vegetation indices (EVIs) were all calculated based on Landsat data by
adding the SWIR band data to the traditional VIs. These EVIs included the extended
normalized difference vegetation index (ENDVI, (NIR+SWIR-R)/(NIR+SWIR+R)),
extended difference vegetation index (EDVI, NIR+SWIR-R), and extended ratio

vegetation index (ERVI, (NIR+SWIR)/R). The SWIR band refers to either of the two
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SWIR bands in Landsat data. The correlations between the SSC and EVIs were
analyzed, and the EVIs with significant correlation coefficients were selected as the
improved vegetation indices (IVIs). Finally, the 1VVIs were used as the inputs to the

SSC inversion models.

2.5 Inversion model construction and optimization

First, the soil samples collected in spring and autumn were sorted and separated
according to the SSC. Two-thirds of the samples were chosen for the calibration set, and
the remaining samples were used as the validation set. Therefore, of the 92 samples
collected during spring, 62 were used for calibration and the other 30 were used for
validation. Similarly, of the 110 samples collected during autumn, 74 were used for
calibration and the other 36 were used for validation. Second, the SSC inversion model
for spring was built by employing the SMLR, BPNN and SVM methods based on the
VIs and corresponding 1VIs. The performance of the SSC inversion models was
evaluated by the coefficient of determination (R?), root-mean-square error (RMSE) and
ratio of performance to deviation (RPD). Using the same procedures, the SSC models
for autumn were built using the IVIs, and the best model was selected. Finally, the best
models for spring and autumn were selected and applied to the summer and winter data,
and then the optimal SSC inversion models according to the soil salinization conditions

in different seasons were selected.

For the SMLR method, the variance inflation factor (VIF) was set to less than 5 to
control for multicollinearity. The BPNN method was conducted using the MATLAB

R2012a program. During the calculation, the transfer functions of the hidden layer and
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the output layer were set to tansig and logsig, respectively. The network training
function was traingdx, and the learning rate, maximum training time, and model
expectation error were set to 0.01, 15000, and 0.01, respectively. The SVM models
were built in the Libsvm 3.11 toolbox in MATLAB R2012a. In this model, we selected
the 4th SVM type (v-SVR) and the 2nd kernel function (RBF). The penalty parameter C
and the kernel parameter g of the RBF were determined according to the minimum

mean-squared deviation by using the cross-validation and grid search methods.

2.6 SSC distribution mapping and year-round dynamics analysis

The reflectance spectra were extracted from the Landsat data from the four seasons in
the study area, and the seasonal 1VIs were calculated. Then, the SSC distribution maps
of the four seasons were obtained via calculations based on the corresponding optimal
models. The spatial distribution characteristics and seasonal dynamics of soil salinity in

the YRD were analyzed and compared.

The methodological flow of this article is shown in Fig. 3.

3. Results

3.1 Soil sample data

The statistical results of the SSC samples from the four seasons (the upper half of Table
1) showed that the SSC in the study area remained high with a mean >5.32 g/kg
throughout the year. As determined from the minimum, maximum, and mean values,

the SSC reached its maximum concentration in winter (mean=9.50 g/kg) and varied
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obviously between seasons. Because the coefficients of variation for all four seasons

were greater than 1.00, the overall SSC gradient was obvious, especially in winter and

spring.

3.2 Improved vegetation indices (1VIs)

In spring, the correlation coefficients between the EVIs and the SSC of the soil samples
were -0.52 for ENDVI, -0.69 for ERVI and -0.70 for EDVI. Similarly, in autumn, the
correlation coefficients between the EV s and the SSC of the soil samples were -0.73

for ENDVI, -0.69 for ERVI and -0.69 for EDVI.

The results showed that the correlation coefficients between the ERVI or EDVI
and SSC were very significant (R>>0.69; P<0.01) in spring. Based on these findings,
ERVI and EDVI were selected as the 1VIs for spring, while ENDVI and ERVI were
selected as the IVIs for autumn. For each season, the chosen IVIs and their

corresponding Vs were used to build the SSC inversion models.

3.3 Best SSC inversion models and their application to different seasons

3.3.1 SSC inversion models with VIs and 1VIs

The results of the SSC inversion models in spring based on the IVIs are shown in
Table 2. The performances of the three modeling methods were compared, which
indicated that the SVM models had the highest prediction accuracy, followed by the

BPNN models, and the SMLR models had the lowest accuracy. In terms of the

10
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calibration values, the SVM models based on the I1VIs had the best and most stable SSC
inversion accuracies for both the calibration set (R*>>0.72, RMSE<6.34 g/kg) and the
validation set (R>>0.71, RMSE<6.00 g/kg, and RPD>1.66). These models were then

selected as the best SSC inversion models for the SSC in spring and autumn.

The calibration and validation precision of the SSC inversion models in spring and

autumn are shown in Fig. 4.

3.3.2 Application of the best SSC inversion models with IVIs in different seasons

The best SSC inversion models for spring and autumn were applied to estimate the SSC
in summer and winter, respectively. Based on the estimation accuracy (Table 3), the
best SSC inversion model for spring could be applied to estimate the SSC in winter,
with R? of 0.66 and RMSE of 7.57 g/kg. Meanwhile, the best SSC inversion model for
autumn could also be applied to estimate the SSC in summer, resulting in R? of 0.65 and
RMSE of 3.60 g/kg. In response to the soil salinity conditions, the SSC inversion
model for spring based on the IVIs in combination with the SVM method was
selected as the optimal SSC model for spring and winter, while the SSC inversion
model for autumn based on the IVIs in combination with the SVM method was

selected as the optimal SSC model for autumn and summer in the YRD.

11
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3.4 Distribution and seasonal dynamics of SSC in the YRD region

3.4.1 Distribution of SSC in four seasons

Based on the processed Landsat data and the optimal SSC inversion model for each
season, the SSC inversion maps in the four seasons were obtained. The descriptive
statistics of the inversed SSC in four seasons are shown in the lower half of Table 1,
which are close to the values from the collected samples (the upper half of Table 1). The
inversion results also showed that the SSC was highest in winter, followed by that in
spring, and the SSC in autumn and summer were relatively low, therefore, the
ecological risk in winter and spring was high while that in autumn and summer was

relatively low.

According to the classification standard of coastal saline soil in the semihumid area
of China, the study area was divided into 5 grades: nonsaline soil, mild saline soil,
moderate saline soil, severe saline soil, and solonchak. The distributions of the soil
salinity grades in the four seasons were mapped (Fig. 5) and showed similar
characteristics. There was a gradually increasing trend in soil salinity from southwest to
northeast in the study region. The main reason for this gradual increase in SSC is that
the terrain in the southwest part of the study area is high and flat and the land is used for
agricultural production with relatively less soil salt hazards; the central part of the
region near the banks of the Yellow River has alternating hillocks, slopes and
depressions, which were formed by the repeated diversion of the Yellow River, thus,
each grade of soil salinization was also alternately distributed; the northeast part of the
region, which has low terrain and is closest to the sea, exhibited the most severe soil

salinization and hazards.

12



10

15

20

3.4.2 Seasonal dynamics of SSC

The number of pixels and proportion of pixels per SSC grade were calculated for each
season (Table 4). Fig. 5 and Table 4 demonstrate that the SSC in the study area clearly
differed among the four seasons. The SSC in spring consisted primarily of moderate
saline soil, severe saline soil, and solonchak (combined proportion of 90.05%). In
summer, the areas of the four grades from mild saline soil to solonchak were relatively
uniform (each grade accounting for 22-28%). The SSC during autumn was largely
dominated by severe saline soil and solonchak (combined proportion of 77.75%). In
winter, the SSC was principally severely saline and solonchak, with a combined

proportion of 99.19%, of which severe saline soil accounted for 80.71%.

The seasonal SSC inversion values and the proportion of pixels per SSC grade
indicated that the change in SSC between different seasons was relatively apparent. The
degree of soil salinization was lowest in summer, and the SSC in autumn was relatively
low except for the solonchak in coastal areas. In spring, the soil salinization became
more obvious, with most of the study area belonging to the moderate to severe saline
soil and solonchak groups. Meanwhile, soil salinization was the most severe in winter.
In summary, soil salinity in the study area usually accumulated in spring, decreased in

summer, increased in autumn, and reached its peak in the end of winter.

4. Discussion

In this work, spatial distribution maps of SSC in the study region in four seasons were
obtained, soil salinity exhibited a gradually increasing trend from southwest to northeast,

soil salinization at the surface is generally severe and widespread, soil salt hazards are

13
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obvious and the ecological ecosystem is fragile. These conditions can lead to a high
ecological risk, especially in winter and spring. The results can provide data support for
soil ecological risk assessments to promote the prevention and control of soil salt
hazards and improve agricultural production and the sustainable development of the
ecological environment. Moreover, it is suggested that different measures for the
treatment and utilization of saline soil should be implemented according to the different

regions and seasons.

In this experiment, we introduced the SWIR band and proposed an improved
vegetation index to increase the accuracy of SSC inversion models. The spatial
distributions of SSC in the four seasons showed similar characteristics. The soil salinity
exhibited a gradually increasing trend from southwest to northeast in the study region,
and this distribution pattern is consistent with the results of other studies (Weng et al.
2010; Yang et al. 2015). Weng et al. (2010) also established a SSC remote sensing
revision model using the data from 2153~2254 nm and 1941~2092 nm in the YRD

region and achieved good results, with a validation RMSE of 0.986 and R? of 0.873.

The best SSC inversion models for spring and autumn were based on different 1VIs.
In spring, the weather is characteristically dry and windy, strong evaporation occurs,
and the coverage of natural vegetation is low; however, certain crops, such as wheat and
corn are in a vigorous growth stage, which results in strong vegetation reflectance.
Generally, the RVI1 and DVI are sensitive to vegetation, especially when vegetation
coverage is high; thus, the inversion accuracies based on the ERVI and EDVI were

higher than those based on the other vegetation indices. In autumn, rainfall and

14
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temperature are reduced and there is little natural vegetation coverage. Moreover, in
autumn, cotton has been collected and only withered cotton leaves and rods remain in
the field, while wheat has just begun to emerge out of the soil; thus, there is limited crop
coverage. Therefore, the reflectance spectra of vegetation are relatively weak in autumn.
NDVI has low sensitivity to high vegetation areas and is suitable for monitoring in low
and moderate vegetation coverage areas; therefore, the inversion accuracies based on
ENDVI and ERVI were higher than those based on the other vegetation indices.
Without considering the influence of some factors (e.g., soil moisture and temperature),
the models can be used for the regional remote sensing inversion of SSC in the study
area, however the prediction accuracy still needs to be improved. Therefore, in future
studies the influence of certain key factors and the uncertainty of the quantization will

be further studied to improve the SSC prediction accuracy.

The seasonal dynamics of SSC are closely related to the climate of the study area.
Under the drought, windy weather, and strong evaporation conditions in spring from
March to May, soil salts aggregate at the soil surface as the soil moisture increases,
thereby forming the first peak of salt accumulation. At this time, 90.05% of the area is
covered by moderate saline soil, severe saline soil, and solonchak. Rainfall and floods
occur in the summer from June to August, and as precipitation infiltrates into the soil,
the soil surface is desalinated, with uniform proportions of mild saline soil to solonchak.
In autumn from September to November, rainfall decreases and SSC increases slightly,
and the area is largely dominated by severe saline soil and solonchak (combined
proportion of 77.75%). Due to drought in winter from December to February and

combined with decreased evaporation, soil salinization is relatively severe and remains
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latent at the soil surface, with 99.19% of the area covered by severe saline and
solonchak. By the end of the winter season, the SSC reaches its peak. Lu et al. (2016)
indicated that SSC exhibits seasonal variations in the YRD and the SSC in spring was

higher than that in autumn in the Kenli district, which is consistent with our results.

Based on the time point data, the results indicated that the SSC inversion model for
spring could be applied to the SSC inversion in winter, while the SSC inversion model
for autumn could also be applied to the SSC inversion in summer in the YRD. These
model selection results may be due to the short time intervals and the similar soil salt
contents and climatic conditions between February and April and between August and
November in the YRD. To respond more accurately to the dynamic changes in soil salt,
a period of SSC data should be selected as the seasonal salt data, which will be further

studied in future research.

5. Conclusions

In this experiment, the results showed that the ERVI and EDVI were the IVIs for spring
while the ENDVI and ERVI were the 1VIs for autumn. These models based on the IVIs
that utilized the SVM method were selected as the best SSC inversion models for spring
and autumn. The experimental results contribute to the quantitative and accurate
monitoring of soil salinization via multispectral imaging and provide data and
technical support for the management and utilization of saline soil and the protection

of the ecological environment.
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This experiment indicated that the best inversion model for spring could be applied
for the SSC inversion in winter; thus, the optimal SSC model for spring and winter was
selected in response to the soil salinity conditions. At the same time, the best inversion
model for autumn could also be applied for the SSC inversion in summer, and it was

selected as the optimal SSC model for autumn and summer in the study region.

In the YRD region, the spatial distribution of SSC showed a gradually increasing
trend from southwest to northeast. The seasonal dynamics of SSC indicated that soil
salts accumulated in spring, decreased in summer, increased in autumn, and reached its
peak in the end of winter. These results were consistent with the results of field
sampling, which showed that the SSC was highest in winter, followed by spring and

autumn, and lowest in summer.
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Tables

Table 1. SSC descriptive statistics of samples and inversion

Standard
Minimum Maximum Mean Coefficient Sample
Seasons deviation
(9/kg) (9/kg) (9/kg) of variation points
(9/kg)
Spring 1.10 46.70 8.60 11.50 1.34 92
Soil
Summer 1.34 29.20 5.32 5.95 1.12 30
samples
Autumn 0.90 36.70 7.80 8.20 1.05 110
SSC
Winter 2.00 61.50 9.50 12.00 1.26 56
Spring 0.86 53.44 8.79 10.26 1.17
Inversion Summer 1.00 35.50 7.00 4.18 0.60
SSC Autumn 0.82 35.15 8.28 9.21 1.11
Winter 1.12 58.10 9.21 13.78 1.50

Table 2. Inversion models of SSC with IVIs from Landsat data

Spring Autumn
Modeling  Calibration set Validation set Calibration set Validation set
methods RMSE RMSE RPD RMSE RMSE RPD
R? R? R? R?
(9/kg) (9/kg) (9/kg) (9/kg)
SMLR 0.42 9.03 0.62** 6.83 136 0.65** 3.42 0.56 3.81 2.01

BPNN 0.60** 756 057** 730 147 0.72** 3.39 0.68** 3.38 2.15

SVM 0.72** 634 071** 6.00 166 O0.75** 3.48 0.78** 3.02 2.56

Significance levels: [**] 0.01

Table 3. Application of the best SSC inversion models

The best inversion model for spring The best inversion model for autumn

R? RMSE (g/kg) R? RMSE (g/kg)
Summer samples (30) 0.23 5.31 0.65** 3.60
Winter samples (56) 0.66** 7.57 0.28 10.98

Significance levels: [**] 0.01
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Table 4. The number of pixels and proportion of pixels per SSC grade in the four

seasons
Grades Spring Summer Autumn Winter
Number  Proporti  Number  Proporti  Number  Proporti ~ Number  Proporti
of pixels on % of pixels on % of pixels on % of pixels on %
Nonsaline soil
10705 0.67 16 0 46439 2.89 3 0
(<2.0 g/kg)
Mild saline soil
84805 5.29 450331 28.07 127262 7.93 12 0
(2.0~4.0 g/kg)
Moderate saline soil
451291 28.13 427216 26.63 182589 11.37 13045 0.81
(4.0~6.0 g/kg)
Severe saline soil
597607 37.25 371641 23.16 305762 19.05 1294867 80.71
(6.0~10.0 g/kg)
Solonchak
459989 28.67 355193 22.14 942345 58.70 296470 18.48
(>10.0 g/kg)
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