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Abstract. Convection-permitting climate models have been recommended for use in projecting future changes in local-scale,

short-duration rainfall extremes that are of greatest relevance to engineering and infrastructure design, e.g., as commonly

summarized in Intensity-Duration-Frequency (IDF) curves. Based on thermodynamic arguments, it is expected that rainfall ex-

tremes will become more intense in the future. Recent evidence also suggests that shorter-duration extremes may intensify more

than longer durations and that changes may depend on event rarity. Based on these general trends, will IDF curves shift upward5

and steepen under global warming? Will long return period extremes experience greater intensification than more common

events? Projected changes in IDF curve characteristics are assessed based on sub-daily and daily outputs from historical and

late 21st century pseudo-global warming convection-permitting climate model simulations over North America. To make more

efficient use of the short model integrations, a parsimonious Generalized Extreme Value Simple Scaling (GEVSS) model is

used to estimate historical and future IDF curves (1-hr to 24-hr durations). Simulated historical sub-daily rainfall extremes are10

first evaluated against in situ observations and compared with two high-resolution observationally-constrained gridded prod-

ucts. The climate model performs well, matching or exceeding performance of the gridded datasets. Next, inferences about

future changes in GEVSS parameters are made using a Bayesian False Discovery Rate approach. Large portions of the domain

experience significant increases in GEVSS location (>99% of grid points), scale (>88%), and scaling exponent (>39%) pa-

rameters, whereas almost no significant decreases are projected to occur (<1%,<5%, and<5% respectively). The result is that15

IDF curves tend to shift upward (increases in location and scale), and, with the exception of the eastern United States, steepen

(increases in scaling exponent), which leads to the largest increases in return levels for short duration extremes. The projected

increase in the GEVSS scaling exponent calls into question stationarity assumptions that form the basis for existing IDF curve

projections that rely exclusively on simulations at the daily time scale. When changes in return levels are scaled according

to local temperature change, median scaling rates, e.g., for the 10-yr return level, are consistent with the Clausius-Clapeyron20

(CC) relation at 1-hr to 6-hr durations, with sub-CC scaling at longer durations and modest super-CC scaling at sub-hourly

durations. Further, spatially coherent but small increases in dispersion – the ratio of scale and location parameters – of the
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GEVSS distribution are found over more than half of the domain, providing some evidence for return period dependence of

future changes in extreme rainfall.

1 Introduction

The design of some civil infrastructure – culverts, storm drains, sewers, bridges, etc. – is based on information about local flood

extremes with specified low annual probabilities of occurrence (or, equivalently, long return periods). When gauged streamflow5

data are not available, information about rainfall extremes can instead be used by engineers to infer flood magnitudes for the

return periods of interest. The necessary information on the frequency of occurrence, duration, and intensity of rainstorms

is compactly summarized in rainfall Intensity-Duration-Frequency (IDF) curves, and hence IDF curves are a key source of

information for water resource and engineering design applications (Canadian Standards Association, 2012). Typical IDF

curves summarize the relationship between the intensity and occurrence frequency of extreme rainfall over averaging durations10

ranging from minutes to a day, usually at local gauging sites. Sub-daily and daily rainfall extremes found in IDF curves are

also featured in building codes (e.g., 15-min and 1-day extreme rainfall is used to estimate roof drainage and loading; National

Research Council, 2015).

For the purpose of water resource management and engineering design, it has been stated that “stationarity is dead” (Milly

et al., 2008). Increases in atmospheric moisture are expected with anthropogenic global warming as saturation vapour pressure15

– loosely, the moisture holding capacity of the atmosphere – scales approximately exponentially with temperature following the

Clausius-Clapeyron (CC) relation (~7% per ◦C). In the absence of other influences, e.g., changes in large-scale circulation, soil

moisture availability, etc., the intensity of extreme rainfall should therefore also increase as the atmosphere warms (Trenberth,

2011). While historical increases in local extreme rainfall are difficult to detect due to the relatively small forced signal relative

to natural variability, as well as uncertainties due to measurement errors and series length, evidence from observations over large20

regions and from climate model simulations is largely consistent with widespread thermodynamically-driven intensification of

rainfall extremes (Min et al., 2011; Westra et al., 2013a; Zhang et al., 2013; Pfahl et al., 2017). Moving into the future, even

with aggressive mitigation strategies, warming will likely continue over typical design lifetimes due to continued emissions of

short- and long-lived greenhouse gases and climate forcing agents (Millar et al., 2017). Attendant changes in rainfall extremes

are thus also expected to persist with continued warming.25

The reality of climate change, in combination with the long service life of infrastructure, has prompted the incorporation of

future climate projections into the engineering design process. Despite the general expectation that short-duration rainfall ex-

tremes will become more intense in the future, there is still substantial uncertainty about the sensitivity of local rainfall extremes

to warming (Westra et al., 2014; Pendergrass, 2018). For example, evidence from some idealized convection-permitting model

experiments suggests that sub-daily extremes may intensify more than longer durations (O’Gorman, 2015), but the conditions30

under which this occurs (e.g., sensitivity to microphysics parameterization) are not fully understood. Furthermore, results from

CMIP5 GCMs indicate that more rare extreme daily precipitation events intensify more than less rare events (Kharin et al.,

2018), with some indication of return period dependence in sub-daily convection-permitting simulations over small midlatitude
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domains as well (e.g., Evans and Argueso, 2015; Kuo et al., 2015; Tabari et al., 2016). What will this mean for future IDF

curves in North America? Will they shift upward and steepen and will changes in risk depend on return period?

Complicating the transfer of information from climate model simulations to future IDF curves is the historical reliance on

(1) climate models with parameterized convection and (2) extrapolation of information on simulated daily extremes to sub-

daily extremes. In the first case, short-duration, local-scale rainfall extremes are mostly generated by convective storm systems5

that are not resolved by most climate models (e.g., those with parameterized convection). Credible projections of localized

sub-daily extreme rainfall may require high-resolution convection-permitting climate models (Kendon et al., 2017) in which

the convective parameterization scheme is turned off and the model is capable of simulating convective clouds explicitly (Prein

et al., 2015). In the second case, prior unavailability of short-duration precipitation outputs from climate models has meant

that observed relationships between long and short durations have been used to extrapolate changes at the daily time scale10

to sub-daily time scales. For instance, Srivastav et al. (2014) used equidistant quantile mapping to statistically downscale

and temporally disaggregate daily global climate model outputs to IDF curves at station locations. Assuming a stationary

relationship between durations necessarily constrains relative changes in shorter duration extremes to largely match those at

longer durations.

Direct investigation of sub-daily rainfall extremes, and hence IDF curves, from convection-permitting climate models may15

therefore provide an avenue forward for the water resource management and engineering community. However, integrations of

such computationally expensive models are typically short, at most between one to two decades, which makes robust estimation

of rare extremes difficult; the high computational expense has also limited their application to small domains. Zhang et al.

(2017) suggested that the use of convection-permitting models, in combination with advanced statistical methods that make

better use of short records, may be required to reliably project future changes in short-duration rainfall extremes. Based on this20

recommendation, the current study links projected changes in sub-daily rainfall extremes from a convection-permitting climate

model with changes in specific characteristics of IDF curves using a parsimonious statistical model. Unlike previous studies,

which have focused on relatively small domains and/or very short integrations (e.g., Evans and Argueso, 2015; Kuo et al.,

2015; Tabari et al., 2016), the focus here is on decadal simulations for a continental domain covering most of North America.

The main goals of the study are to (1) assess whether there is evidence for a shift upward and steepening of IDF curves under25

global warming; (2) determine whether changes depend on return period; and finally (3) to link projected changes in IDF curve

return levels to the magnitude of local warming.

To this end, hourly 4-km rainfall outputs from historical and end-of-century pseudo-global warming convection-permitting

simulations by the Weather Research and Forecasting (WRF) model (Rasmussen et al., 2017; Liu et al., 2017) are used in

conjunction with a parsimonious Generalized Extreme Value Simple Scaling (GEVSS) model (Nguyen et al., 1998; Van de30

Vyver, 2015; Blanchet et al., 2016; Mélèse et al., 2018) to estimate historical and future IDF curves (1-hr to 24-hr durations)

over a domain covering northern Mexico, the conterminous United States, and southern Canada. The pseudo-global warming

simulation perturbs historical boundary conditions with the climate change signal obtained from an ensemble of global climate

models. The GEVSS model leverages information from multiple durations to characterize relationships between the frequency

of occurrence and duration of extreme rainfall intensities. Assuming that the underlying model assumptions are met, “borrow-35
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ing strength” by pooling data from different durations provides more robust estimates of GEV distribution parameters than

standard unpooled estimates (Innocenti et al., 2017). Furthermore, the GEVSS model parameterization provides a straightfor-

ward framework to make inferences about future changes in IDF curve characteristics. For example, projected increases in

the GEVSS temporal scaling exponent lead to greater intensification of shorter duration extremes relative to longer durations,

whereas increases in the dispersion of the GEVSS distribution lead to greater intensification of long return period extremes5

relative to shorter return periods. Statistical model assumptions and simulated historical sub-daily rainfall extremes are eval-

uated using two high-resolution gridded observational products and in situ station observations. Projected changes in GEVSS

parameters, and hence IDF curve characteristics, are obtained under a Bayesian framework, with inferences made using a False

Discovery Rate (FDR) approach to multiple comparisons. Finally, return level projections are expressed as relative changes

with respect to local warming – so called “temperature scaling” – to assess adherence to the theoretical CC relation.10

The remainder of the paper is structured as follows. Observational data and model simulations are described in Section 2.

The GEVSS approach to IDF curve estimation is provided in Section 3 and the Bayesian framework for parameter inference

is summarized in Section 4. Simulated short-duration rainfall extremes and goodness-of-fit of the GEVSS model are evaluated

in Section 5. Projected changes in GEVSS parameters and IDF curves are summarized in Section 6 along with estimates

of temperature scaling of extreme rainfall return levels. Finally, Section 7 provides a discussion of results, conclusions, and15

suggestions for future research.

2 Observations and simulations

Climate model simulations and observational data used in this study are summarized in Table 1. To investigate future changes

in extreme short-duration rainfall and associated IDF curves over North America, precipitation outputs from convection-

permitting climate model simulations performed by the National Center for Atmospheric Research (NCAR) using WRF model20

version 3.4.1 (Liu et al., 2017; Rasmussen et al., 2017) are used at their 1-hr archived time step. Outputs from two sets of

WRF simulations – a historical control run (CTRL) and a pseudo global warming (PGW) simulation for the end of the 21st

century – each on the same 1360 × 1016 4-km grid, are provided over a domain (referred to as HRCONUS) spanning north-

ern Mexico, the conterminous United States, and southern Canada (Figure 1). In both cases, spectral nudging of geopotential

height, horizontal wind, and temperature (5 model layers above the top of the boundary layer) is applied at spatial scales greater25

than ~2000 km and with an e-folding time of ~6-hr. Boundary conditions for the CTRL simulation are given by the European

Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis (Dee et al., 2011) for the period 1 October 2000 to 30

September 2013. The PGW simulation uses the same ERA-Interim boundary conditions, but with all variables perturbed with

the climate change signal from an ensemble of Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012)

global climate models taken between 1976-2005 and 2071-2100 under the Representative Concentration Pathway (RCP8.5)30

scenario (Meinshausen et al., 2011).

Importantly, the experimental design – including PGW and spectral nudging – suppresses the influence of internal variability,

which would otherwise make detection of forced changes more difficult. It is thus mainly able to isolate the thermodynamic
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Table 1. Summary of observational data and climate model simulations used in the study.

Dataset Years Durations Spatial Notes

ECCC IDF v2.30; Variable 5-min, 10-min, 15-min, 488 stations Canada-wide TBRG

ECCC (2014) 30-min, 60-min, 2-hr,

6-hr, 12-hr, 24-hr

CMORPH CRT V1.0; 1998-2015 1-hr, 3-hr, 6-hr, 0.073◦ Merged satellite/gauge

Xie et al. (2017) 12-hr, 24-hr

MSWEP V2; 1979-2016 3-, 6-, 12-, 24-hr 0.1◦ Merged satellite/gauge/reanalysis

Beck et al. (2017a, b)

WRF CTRL; 2001-2013 1-hr, 3-hr, 6-hr, 4-km ERA-Interim boundary

Liu et al. (2017) 12-hr, 24-hr

WRF PGW; 2001-2013* 1-hr, 3-hr, 6-hr, 4-km * Perturbed ERA-Interim boundary

Liu et al. (2017); 12-hr, 24-hr (CMIP5 RCP8.5 2071-2100 - 1976-2005)

Rasmussen et al. (2017)

climate change response over the domain. While vertical temperature structure and baroclinicity can be modified by the PGW

perturbation, substantive changes in large-scale circulation are not considered (Liu et al., 2017; Prein et al., 2017c). However,

decomposition of the forced response of daily-scale extreme rainfall in CMIP5 models into thermodynamic and dynamic

components suggests that the dynamic contribution over Canada and the United States is small (Pfahl et al., 2017). Furthermore,

by focusing on the late 21st century and RCP8.5 forcings, the PGW experiment is exposed to a relatively large warming signal5

relative to the CTRL simulation (global mean temperature change of +3.5◦C), which will also tend to enhance detectability of

local-scale changes. Further details on the simulations are provided by Liu et al. (2017) and Rasmussen et al. (2017).

Precipitation outputs from the WRF CTRL simulations over the United States have been evaluated against observations in

several studies (e.g., Liu et al., 2017; Dai et al., 2017; Prein et al., 2017c, a; Raghavendra et al., 2018). To extend these results,

the focus here is instead on the Canadian portion of the domain and the range of sub-daily to daily extremes communicated in10

IDF curves. Annual precipitation maxima at short durations are driven by rainfall, and hence the evaluation deals exclusively

with extremes generated by rainstorms. In Canada, national IDF curves are disseminated by Environment and Climate Change

Canada (ECCC, 2014) at more than 500 locations with long tipping bucket rain gauge (TBRG) records; 488 stations fall within

the WRF HRCONUS domain (Figure 1) and are used in this study. TBRG record lengths range from 10-yr to 81-yr, with a mean

length of 25-yr. Information on the observing program, quality control, and quality assurance methods is provided in detail by15

Shephard et al. (2014). IDF curves are derived from annual maximum rainfall extremes for accumulation durations ranging

from 5-min to 24-hr; model evaluation in this study will also focus on these data. For the WRF CTRL and PGW simulations,

annual maximum rainfall intensities are calculated at land grid points for accumulation durations from 1-hr to 24-hr. The first

partial calendar year of the CTRL and PGW simulations is treated as spin-up and is not used in any calculations.
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Figure 1. Map showing the NCAR HRCONUS WRF land mask and locations (rectangles) of the 488 IDF curve TBRG stations in Canada.

The inset plot shows a histogram of mean record length (all IDF curve durations) at the stations; the median (vertical dashed line) is 25 years.
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As a complement to the in situ observations, data from two observationally-constrained gridded precipitation products are

also considered. CMORPH CRT V1.0 is a near-global, reprocessed and bias corrected satellite precipitation product with 30-

min temporal and ~8-km spatial resolution (1998-2015) (Xie et al., 2017). Over land, CMORPH CRT adjusts raw CMORPH

satellite precipitation estimates towards gauge analyses using a probability density function matching algorithm. MSWEP V2

is a global merged product that combines information from satellite, reanalysis, and gauge precipitation estimates at a 3-hr5

temporal and 0.1◦ spatial resolution (1979-2016) (Beck et al., 2017a, b). For consistency with the WRF CTRL simulations,

annual maximum rainfall intensities are calculated for accumulation durations ranging from 1-hr to 24-hr for CMORPH and

from 3-hr to 24-hr for MSWEP.

3 IDF curves and the GEVSS distribution

IDF curves provided by ECCC (2014) summarize the relationship between observed annual maximum rainfall intensity for10

specified frequencies of occurrence (2-yr, 5-yr, 10-yr, 25-yr, 50-yr, and 100-yr return periods, i.e., 0.5, 0.8, 0.9, 0.96, 0.98, and

0.99-quantiles) and durations (5-min, 10-min, 15-min, 30-min, 60-min, 2-hr, 6-hr, 12-hr, and 24-hr). Because TBRG records

rarely exceed 50 years in length (Figure 1), return value estimates at long return periods rely on statistical extrapolation guided

by extreme value theory (Coles, 2001). In Canada, official IDF curves are constructed by first fitting the Gumbel distribution,

i.e., the extreme value type I form of the GEV distribution, to annual maximum rainfall intensity series at each site for each15

duration (Hogg et al., 1989). At the majority of stations, the actual curves are then based on best fit linear interpolation equations

between log-transformed duration and log-transformed quantiles for each of the specified return periods. To illustrate, IDF

curves for Victoria Intl A, a station on the southwest coast of British Columbia, Canada, are shown in Figure 2. Points indicate

return values of rainfall intensity obtained from the fitted Gumbel distribution for each combination of return period and

duration. IDF curves for each return period are based on log-log interpolating equations through these points, and hence plot20

as straight lines. While IDF curves produced in other national and sub-national jurisdictions may be based on slightly different

procedures and assumptions (Svensson and Jones, 2010), results are typically presented in similar fashion and, broadly, share

common characteristics.

For simplicity, the study starts with the ECCC IDF curve methodology as its basis. However, modifications to the standard

approach are made to accommodate (1) the relatively short 13-yr record lengths provided by the WRF CTRL and PGW25

simulations, (2) the underlying goal of assessing changes in general IDF curve characteristics (i.e., shifts and/or changes in

IDF curve slope), and (3) the current state-of-the-art around the analysis of rainfall extremes. More specifically, the two-step

Gumbel/log-log interpolating equation approach is replaced with single-step estimation of IDF curves using a GEV simple

scaling (GEVSS) distribution. Observational evidence suggests that daily rainfall extremes follow an extreme value distribution

with a heavy upper tail (Papalexiou and Koutsoyiannis, 2013). Hence, a three-parameter GEV distribution, which includes the30

heavy-tailed type II extreme value or Fréchet form of the GEV distribution, is used rather than artificially restricting the GEV

shape parameter to be zero (i.e., by using the two-parameter extreme value type I or Gumbel distribution). Separate GEV

distribution parameters for each duration of interest, combined with separate interpolating equations for each quantile, leads
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Figure 2. Example ECCC IDF data for Victoria Intl A (station 1018621) in British Columbia, Canada. Points (×) show quantiles associated

with 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, and 100-yr (from bottom to top) return period intensities estimated by fitting the Gumbel form of the GEV

distribution by the method of moments to annual maximum rainfall rate data for 5-min, 10-min, 15-min, 30-min, 60-min, 2-hr, 6-hr, 12-hr,

and 24-hr durations (left to right). Lines are from best fit linear interpolation equations between log-transformed duration and log-transformed

Gumbel quantiles for each return period.
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to a very large number of statistical parameters that need to be estimated from relatively short WRF simulations. Despite the

large forced signal and PGW experimental design, the limited sample size necessitates making efficient use of the available

data. Hence, to reduce the overall number of distributional and regression parameters that need to be estimated, an aggregated

GEVSS distribution is instead fitted to pooled annual maxima for all durations. The GEVSS model is based on the application

of the simple scaling hypothesis – an empirical power-law relation that links the distributions of rainfall intensities at different5

durations – to the GEV distribution.

Use of the GEV distribution is motivated by the extreme value theorem, which states that the GEV is the only possible limit

distribution for the maxima of a sequence of independent and identically distributed random variables (Coles, 2001). Defining

ID0
as the random variable of annual maximum rainfall intensity (mm/hr) for an arbitrary reference duration, in this case

D0 =24-hr, it is assumed that samples of annual maxima are distributed according to the GEV distribution10

Pr(ID0
≤ x) =


exp

{
−
(

1 + ξ0
x−µ0

σ0

)−1/ξ0
}

if ξ0 6= 0

exp
{
−exp

(
−x−µ0

σ0

)}
if ξ0 = 0

(1)

where µ0, σ0 > 0, and ξ0 are, respectively, the GEV location, scale, and shape parameters; ξ0 = 0 corresponds to the type

I extreme value distribution (Gumbel form), ξ0 > 0 to the type II (Fréchet form), and ξ0 < 0 to the type III (Weibull form).

Quantiles associated with the T -yr return period T = 1/ [1−Pr(ID0
≤ x)] are determined by inverting the GEV cumulative

distribution function given by equation 1.15

To incorporate other durations, simple scaling makes the assumption that

ID
dist
=

(
D

D0

)−H

ID0 (2)

where 0<H < 1 is a scaling exponent and dist
= means equality of distributions (Gupta and Waymire, 1990); for the GEV

distribution (Nguyen et al., 1998), simple scaling implies that

µD =

(
D

D0

)−H

µ0; σD =

(
D

D0

)−H

σ0; ξD = ξ0 = ξ. (3)20

The resulting GEVSS distribution for annual maximum rainfall intensities at different durations can be described by four

parameters: location µ0 and scale σ0 parameters associated with the reference duration, a temporal scaling exponent H used

to scale the reference location and scale parameters to other durations, and a shared shape parameter ξ for all durations. This

leads to a simple expression for IDF curves at any duration and return period

iD,T =

(
D

D0

)−H
{
µ0−

σ0
ξ

[
1−

(
− log

[
1− 1

T

])−ξ
]}

(4)25
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Figure 3. (a) Observed GEVSS IDF curves at Victoria Intl A (1018621) (cf. Figure 2). Hypothetical IDF curves resulting from (b) increases of

∆µ0 = +23% and ∆σ0 = +23% (i.e., no change in dispersion σ0/µ0); (c) increases of ∆µ0 = +23% and ∆σ0 = +30% (i.e., an increase

in dispersion σ0/µ0); (d) increases of ∆µ0 = +23%, ∆σ0 = +23%, and ∆H = +0.03; and (d) increases of ∆µ0 = +23%, ∆σ0 = +30%,

and ∆H = +0.03. The matrix plots that accompany (b) - (d) show the associated % changes in return levels for each duration: (b) with

constant H , increasing µ0 and σ0 without changing the dispersion leads to relative increases in return levels for all durations that match the

relative changes in the underlying parameters; (c) increasing dispersion leads to return period-dependence of changes, with larger relative

increases evident at longer return periods; (d) increasing H steepens the IDF curves, which leads to duration-dependence of changes; and

(e) increases in both H and dispersion result in greater intensification at longer return periods and shorter durations. Note: values in (e) are

based on domain mean values from Section 6. 10



where iD,T is the return level estimate for duration D and the T -yr return period (Mélèse et al., 2018). In addition, changes

in each parameter can be linked to changes in specific characteristics of IDF curves. For reference, hypothetical examples,

based on the data shown in Figure 2, are provided in Figure 3. The scaling exponent H controls the common slope, in log-log

space, of linear IDF curves for each quantile. Larger values lead to steeper IDF curves. Hence, increases in H provide direct

evidence for stronger intensification of shorter duration rainfall extremes than longer durations. The location µ0 and scale σ05

parameters control the vertical positioning (and hence changes lead to shifts) of the IDF curves. Furthermore, with constant ξ,

changes in the non-dimensional dispersion coefficient σ0/µ0 of the GEV distribution result in relative changes in return level

that depend on return period, i.e., for a given duration, an increase in dispersion means that relative changes of more rare events

will increase more than less rare events.

4 Parameter inference10

Inferences about GEVSS parameters are made using a Bayesian framework (Van de Vyver, 2015; Mélèse et al., 2018). Posterior

parameter distributions are obtained at each grid point from pooled 1-hr, 3-hr, 6-hr, 12-hr, and 24-hr annual maximum rainfall

intensities using the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm (Kruschke, 2015). The Bayesian

GEVSS model for CTRL and PGW rainfall intensities is defined as

IDCTRL
∼GEV SS (µ0CTRL

, σ0CTRL
, ξ, H

CTRL
)

IDPGW
∼GEV SS (µ0PGW

, σ0PGW
, ξ, H

PGW
)

D0 = 24-hr, D = {1-hr, 3-hr, 6-hr, 12-hr, 24-hr}

(5)15

µ0CTRL,PGW
∼ U (0.01 ī0CTRL

, 4 ī0CTRL
)

σ0CTRL,PGW
∼ U (0.01 ī0CTRL

,4 ī0CTRL
)

ξ ∼N (0.114, 0.045)

HCTRL,PGW ∼ U (0, 1)

(6)

where GEV SS, U , and N refer to the GEVSS, normal, and uniform distributions with specified parameters, respectively,

and ī0CTRL is the sample mean 24-hr annual maximum rainfall intensity for the WRF CTRL simulation. A relatively broad

uniform prior distribution, with limits constrained to be positive multiples of ī0CTRL , is used for both the location µ0 and scale

σ0 parameters of the CTRL and PGW simulations. This choice is informed by past work showing (1) that end-of-century20

projected changes in annual rainfall extremes by CMIP5 models, which scale similarly to µ0 and σ0, are expected to be less

than half the upper limit of the prior (Kharin et al., 2013; Toreti et al., 2013; Cannon et al., 2015) and (2) that observational

estimates of the dispersion σ0/µ0 for daily rainfall extremes in North America is on the order of ~0.2 (Koutsoyiannis, 2004).

While this implies that a narrower prior could be used for σ0, a more conservative choice is adopted here. Following, Kharin

et al. (2013) and related work, it is assumed that the shape parameter ξ is the same in the CTRL and PGW periods (see below25

for more details). The normal prior distribution used for ξ follows from an analysis of daily station observations by Papalexiou
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and Koutsoyiannis (2013), who found that ξ varies globally in a narrow range 0< ξ < 0.23. Finally, the uniform distribution

between 0 and 1 for H follows from Van de Vyver (2015).

Posterior distributions for GEVSS parameters at each grid point are estimated from 100,000 MCMC samples taken following

a burn-in period of 10,000 samples. Standard diagnostics (e.g., Geweke, Ratery-Lewis, and Heidelberg-Welch tests; Plummer

et al., 2006) are used to assess convergence of the chain; these are complemented by spot visual inspections at randomly selected5

grid points. Because of the high model resolution, large domain, and associated storage cost, the MCMC chain is thinned

to 1,000 samples by saving every 100th sample. All subsequent results are based on the thinned chain. The independence

likelihood is used for the GEVSS model. Hence, the model is, from a strict standpoint, misspecified as simulated annual

rainfall extremes for different durations can be generated by the same storm system. Implications of this lack of independence

on the posterior distributions are examined via Monte Carlo simulation in the supplemental material (Figure S1). Results10

suggest that posterior distributions for µ0 and σ0 are slightly too narrow when the independence assumption is violated, but

those for ξ and H are reliable. To test the stationarity assumption for ξ, separate models in which ξ was free to differ between

the CTRL and PGW simulations are also considered. Modified deviance information criterion DIC∗ differences between the

nonstationary and stationary models (Spiegelhalter et al., 2014) and posterior distributions of the ξPGW− ξCTRL differences

for the nonstationary model (Figure S2) confirm that the assumption of constant shape is reasonable. Subsequent results are15

thus reported for the stationary ξ model; unless noted otherwise, results are based on posterior means.

5 Historical model evaluation

Prior to assessing projected changes in extreme rainfall and IDF curve characteristics, evaluations are first conducted to as-

sess whether (1) extreme rainfall in the WRF CTRL simulation is well-simulated; (2) whether the GEVSS statistical model

assumptions are met; and, finally, whether (3) WRF CTRL IDF curve estimates based on the GEVSS statistical model are20

consistent with those from observations. As noted above, simulated rainfall extremes from the WRF CTRL simulation have

already been evaluated against station data over the United States (e.g., Figures S2-S4 in Prein et al., 2017c, which led the

authors to conclude that “The control simulation is able to reproduce the observed intensity and frequency of extreme hourly

precipitation in most parts of CONUS”). The focus here is thus on the Canadian portion of the domain.

Annual maxima from in situ observations arguably represent the most accurate and reliable estimates of extreme rainfall, de-25

spite instrumental uncertainty and limited spatiotemporal coverage. For this reason, extremes from the WRF CTRL simulation

are first assessed against 488 IDF curves derived from data at TBRG stations; the station locations are shown in Figure 1. Be-

cause extreme rainfall is a non-negative quantity with substantial spatial variation over the domain, model performance statistics

used for evaluation are based on the accuracy ratio ARi = ŷi/yi or, equivalently, relative error (or bias) REi = ARi−1, where

12



yi and ŷi are observed and modelled values for i= 1 . . .N locations. Grid points in each dataset are matched with the nearest

neighboring station. Statistics include the mean logarithmic accuracy ratio, which summarizes relative bias,

MLAR =
1

N

N∑
i=1

log10 (ARi) , (7)

and mean absolute logarithmic accuracy ratio, which summarizes overall magnitude of relative error,

MALAR =
1

N

∑
i

|log10 (ARi)| . (8)5

Notably, LAR-based statistics, unlike those based on untransformed RE, are symmetric measures of relative error, i.e., pro-

portional errors of 1/10 and 10 are assigned equal magnitudes (-1 and +1 respectively).

For comparison, results are also provided for the CMORPH and MSWEP observationally-constrained gridded datasets

(Table 1), bearing in mind that both products are directly informed by station observations within the WRF domain and are

thus not strictly independent from the verification data. Also, it is assumed that the 4-km WRF, 0.073◦ CMORPH, and 0.1◦10

MSWEP grids are of sufficiently high resolution that they can be meaningfully compared against in situ data, notwithstanding

differences in interpolation/gridding methods, grid area (nominally 16 km2 to ~85 km2 at the median station latitude), and

inherent issues with area-to-point comparisons. To investigate the latter issue, MLAR and MALAR performance statistics

are also calculated after rescaling quantiles from the gridded datasets based on empirical areal reduction factors (ARFs) from

Kjeldsen (2007); these corrected values are reported in supplemental Figures S3-S5. Values in the main text are based on raw,15

uncorrected quantile estimates.

Before summarizing performance in terms of MLAR and MALAR, maps of RE for the empirical 90th percentile (10-

yr return level) of annual maximum rainfall between the gridded datasets and station observations are shown in Figure 4

for 1-hr, 6-hr, and 24-hr durations. A permutation test is used to estimate the statistical significance of the RE values. The

permutation test considers a null hypothesis of equal quantiles between station and grid box distributions. Under this null20

hypothesis, station and grid box annual maxima at a given location are combined into a single sample. The combined data are

then randomly reassigned to two permutation resamples (i.e., two series of shuffled annual maxima) having equal length as

the original, unpermuted station and grid box samples. For each station-grid box pair, the distribution of the RE statistics is

approximated using 5000 random permutation resamples and the p-value is computed as the fraction of resamples generating

RE absolute values equal to or larger than those observed on the original annual maxima samples.25

Due to the short WRF record length, empirical return levels for return periods longer than 10-years are not considered. For

all stations and grid points, empirical quantiles are calculated based on the entire period of record, which differs in length at

each station and product. While this will result in some level of unknown, station-dependent bias, there is limited evidence to

suggest that historical trends in annual maximum short-duration rainfall intensity are detectable at individual stations (Shephard

et al., 2014; Barbero et al., 2017); an argument can thus be made in favour of using as much data as possible for estimation,30

rather than harmonizing the periods of record.
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Figure 4. Relative error (RE) in the empirical 90th percentile (10-yr return level) of annual maximum rainfall intensities between each of

MSWEP (top row), CMORPH (middle row), and WRF CTRL (bottom row) gridded datasets and station observations for 1-hr (left column),

6-hr (middle column), and 24-hr (right column) accumulation durations. Summary statistics reported in each figure include the median (med),

interquartile range (IQR), and interdecile range (IDR) of RE, as well as the percentage of locations exhibiting statistically significant values

of RE. Statistical testing is performed at the 0.05 significance level.

Figure 4 indicates that performance of WRF in terms of RE reaches or, in some cases, exceeds that of the best observationally-

constrained product. Spatially, RE for WRF and the two gridded observational products is generally low over the interior of

the domain for 6-hr and 24-hr durations. Bias is largest over coastal regions and the western Cordillera, where both the simu-

lations and gridded observations tend to overestimate the 10-yr return level. Notably, MSWEP and WRF perform better than

CMORPH at these two durations. For the 24-hr (6-hr) duration, significant RE values are found at 14% (12%) of stations for5

MSWEP, 14% (11%) for WRF, and 22% (27%) for CMORPH. Performance at the shortest 1-hr duration degrades for both

CMORPH and WRF – the two gridded products with a sampling frequency < 3-hr – with significant RE found at 48% and 32%

of stations, respectively. In both cases, 10-yr return levels tend to be underestimated, except in the west for CMORPH, with

median RE values of -0.14 and -0.18 for CMORPH and WRF, respectively. Note, however, that results are more consistent for

WRF (interquartile and interdecile ranges of 0.27 and 0.55 versus 0.41 and 1.16 for CMORPH).10

MLAR and MALAR, which provide aggregated measures of performance over the in situ station network, are shown in

Figure 5 for quantiles associated with the 2-yr and 10-yr return levels for each of the 1-hr, 2-hr, 6-hr, and 24-hr durations.

Values are accompanied by 95% confidence intervals estimated based on 1000 bootstrap samples drawn from the series of

14



●

●
●

●

●

M
ea

n 
lo

g1
0 

ac
cu

ra
cy

 r
at

io

(a) 2−yr MLAR

●

●

●

●

●

CMORPH

MSWEP

WRF CTRL

1 2 6 12−hr

−
0.

3
−

0.
1

0
0.

1
0.

2
0.

3
0.

4

●

●
●

●
●

(b) 10−yr MLAR

●

●
●

1 2 6 12−hr

0.
5

0.
63

1
1.

26
2

2.
51

[A
cc

ur
ac

y 
ra

tio
]

●

●
●

● ●

Duration

M
ea

n 
ab

s.
 lo

g1
0 

ac
cu

ra
cy

 r
at

io

(c) 2−yr MALAR

●

● ●

1 2 6 12−hr

0
0.

1
0.

2
0.

3
0.

4

●

●

●

●
●

Duration

(d) 10−yr MALAR

●

● ●

1 2 6 12 24−hr

Figure 5. Summaries of MLAR and MALAR for the empirical 50th (2-yr return level) and 90th percentile (10-yr return level) of annual

maximum rainfall intensities between each of MSWEP, CMORPH, and WRF CTRL gridded datasets and station observations for 1-hr to

24-hr accumulation durations. Solid lines indicate the 95% confidence interval. Perfect performance is indicated by the horizontal dashed

lines.
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Figure 6. Posterior predictive checks for sub-hourly durations extrapolated from GEVSS distributions fitted to observed annual maxima for

durations ≥60-min. Values are relative deviations from nominal exceedance rates for 2-yr to 100-yr return level estimates (i.e., 50% to 1%

chance of exceedance, respectively). Perfect reliability is indicated by the horizontal black dashed line; deviations of ±20% are indicated by

horizontal red dotted lines.

annual maxima at each location. The pattern of relative bias across durations for WRF and the two sets of gridded observations,

expressed in terms of MLAR, is similar for the 2-yr and 10-yr return levels. All datasets show similar values of MLAR at the

24-hr duration, whereas WRF outperforms CMORPH for durations from 2-hr to 12-hr, and MSWEP at the 6-hr duration. WRF

underestimates more than CMORPH at the shortest 1-hr duration, but the overall level of bias is still modest for both datasets.

However, when contributions from both systematic and unsystematic errors are taken into consideration via MALAR, WRF5

is found to outperform CMORPH for both return levels and all durations. MSWEP performs best for the 12-hr and 24-hr

durations, but is matched by WRF at the 6-hr duration.

When empirical quantiles of the gridded data are adjusted to account for area-to-point comparisons, i.e., by rescaling by

inverse ARFs from Kjeldsen (2007), performance of WRF relative to CMORPH improves, especially at the shortest durations

(Figure S3). While WRF performs better at 1-hr and 2-hr durations following adjustment, the performance of CMORPH de-10

grades at all durations, which suggests that it may be overpredicting extreme rainfall at its nominal native resolution. Significant

improvements in performance of MSWEP are also noted at the 6-hr duration. Results must, however, be treated with caution,

given that ARFs are empirical and are an imperfect, approximate way to harmonize area and point extremes.

In addition to verifying that WRF can reliably simulate sub-daily rainfall extremes, the ability of the GEVSS statistical model

to describe the distribution of annual rainfall maxima must also be checked. One of the advantages of the GEVSS model is that15
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it can be used to extrapolate from available durations to shorter durations, e.g., from simulated 1-hr data to sub-hourly durations

needed in IDF curves or building codes. However, the ability to extrapolate depends strongly on the GEVSS goodness-of-fit,

especially for the shortest durations where the simple scaling hypothesis may no longer hold (Innocenti et al., 2017). If the

GEVSS model is consistent with observations, then observed exceedance probabilities of the predicted quantiles should match

nominal values. For example, 10% of station observations should exceed the predicted 10-yr return levels (the 90th percentiles),5

and so forth. Results from posterior predictive checks of the GEVSS distribution for observed annual maxima are shown in

Figure 6. In this case, the GEVSS distribution is fitted to pooled 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr duration observations at each

station, and predictive quantiles are computed and compared against observations for sub-hourly data not used to fit the model.

As expected, results are consistent with observations for the 1-hr and 2-hr durations used to fit the GEVSS model. The model

continues to perform reliably when extrapolating to the 30-min and 15-min durations, but begins to deviate from the nominal10

exceedance probabilities for the 10-min duration. Expected exceedance probabilities are underestimated by ~20-55% at the

5-min duration, suggesting that predicted GEVSS return levels are overpredicted; results for the shortest durations should thus

either not be used or be treated with caution.

Given findings above that (1) daily and sub-daily rainfall extremes from the WRF model are generally well-simulated

and (2) that the GEVSS distribution provides an acceptable fit to station observations for durations >10-min, GEVSS IDF15

curves derived from WRF outputs should resemble those calculated directly from in situ observations. To verify that this is

indeed the case, IDF curve return levels estimated from WRF (and, for reference, CMORPH and MSWEP) are compared

with those calculated from station observations. (A separate intercomparison is presented for GEVSS parameters in Figures

S6-S8.) The observational reference in this case is the set of return level estimates from IDF curves disseminated by ECCC

(i.e., calculated using the two-step Gumbel/log-log regression methodology outlined in Section 3). Furthermore, uncertainty20

due to differences in estimation methodology is examined by comparing the ECCC IDF curves with those obtained by fitting

the GEVSS distribution to station data. This is done for GEVSS-based estimates from the full set of observed durations (5-min

to 24-hr) and a restricted set of durations (1-hr to 24-hr) to match the sampling frequency of the WRF outputs. Results are

shown for relative bias (MLAR) in Figure 7 and for relative error magnitude (MALAR) in Figure 8. In all cases, posterior

means and 95% credible intervals for the MLAR and MALAR statistics are estimated from the posterior distributions of the25

GEVSS parameters and the resulting return levels.

Fitting the GEVSS distribution to station data results in IDF curves that are largely similar to the official ECCC IDF curves.

When fitting to all observed durations, differences are small, even for sub-hourly durations. When the set of fitted durations

is restricted to be ≥ 1-hr and the GEVSS distribution is used to extrapolate to sub-hourly durations, estimates are consistent

with the ECCC IDF curves down to the 15-min duration; overprediction is evident at the shortest 5-min and 10-min durations.30

Turning now to GEVSS IDF curves estimated from WRF CTRL outputs, results indicate that WRF is generally equally con-

sistent or more consistent than CMORPH to ECCC IDF curves for all durations and return levels. The same is true when WRF

is compared with MSWEP for durations ≤ 6-hr.

Values of MLAR and MALAR calculated following ARF-adjustment of gridded data are shown in Figures S4 and S5,

respectively. For WRF, area-to-point correction improves the level of consistency with GEVSS estimates based on in situ35

17



●

●

● ●
● ● ●

●

●

M
ea

n 
lo

g1
0 

ac
cu

ra
cy

 r
at

io

(a) 2−yr

●

● ●

●

●

●

●

●

●

●

●

GEVSS IDF v2.30 (5−min − 24−hr)

GEVSS IDF v2.30 (60−min − 24−hr)

CMORPH (60−min − 24−hr)

MSWEP (3−hr − 24−hr)

WRF CTRL (60−min − 24−hr)

5 10 15 30 60−min 2 6 12−hr

−
0.

3
−

0.
1

0
0.

1
0.

2
0.

3
0.

4

●

●

● ●
● ● ●

●

●

(b) 5−yr

●
● ●

●

●

●

●

●

●

5 10 15 30 60−min 2 6 12−hr

0.
5

0.
63

1
1.

26
2

2.
51

[A
cc

ur
ac

y 
ra

tio
]

●

●

●
●

●
●

●
●

●

Duration

M
ea

n 
lo

g1
0 

ac
cu

ra
cy

 r
at

io

(c) 10−yr

●
● ●

●

●

●

●

●

●

5 10 15 30 60−min 2 6 12 24−hr

−
0.

4
−

0.
2

0
0.

1
0.

2
0.

3

●

●

●
●

●
●

●
●

●

Duration

(d) 25−yr

●
● ●

●

●

●

●

●

●

5 10 15 30 60−min 2 6 12 24−hr

0.
4

0.
5

0.
63

1
1.

26
2

[A
cc

ur
ac

y 
ra

tio
]

Figure 7. Summaries of MLAR for the GEVSS (a) 50th (2-yr return level), (b) 80th (5-yr return level), (c) 90th (10-yr return level), and 96th

(25-yr return level) percentile estimates of annual maximum rainfall intensities for each of MSWEP, CMORPH, and WRF CTRL gridded

datasets. Results are compared with ECCC IDF curves v2.30 estimates for 5-min to 24-hr accumulation durations at 488 TBRG stations.

For reference, values are shown for GEVSS IDF curve estimates based on 5-min to 24-hr TBRG data and a restricted set of 60-min to 24-hr

durations. Solid lines indicate the 95% credible interval. Perfect performance is indicated by the horizontal dashed lines.
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Figure 8. As in Figure 7, but for MALAR. For reference, the horizontal gray line indicates the expected MALAR for empirical quantile

estimates, based on 25-yr samples (the median record length of TBRG station observations), from a true GEV (µ= 1.93, σ = 0.64, ξ =

0.10) distribution; parameters correspond to median estimates at the 488 IDF curve TBRG stations.
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station data. In particular, no statistically significant differences in MLAR are found for 5-min to 6-hr IDF curves between

WRF and GEVSS-based estimates from the restricted set of durations; minimal bias is found for durations from 15-min to

6-hr. This is accompanied by reductions in MALAR and, hence, overall relative error. For CMORPH and MSWEP, area-

to-point correction leads to opposite changes in performance. Relative bias and error become worse for CMORPH, whereas

performance of MSWEP is improved substantially for durations less than 12-hr.5

6 Future projections

The main goal of this study is to investigate how IDF curve characteristics are projected to change in convection-permitting

climate model simulations. From a statistical perspective, this is achieved by making inferences about changes in the parameters

of the GEVSS distribution. Inference is based on posterior distributions of differences in parameters between the CTRL and

PGW simulation periods.10

For example, if the goal is to assess whether there is evidence for a steepening of IDF curves in the future

∆HPGW−CTRL > 0 (9)

then values of the posterior error probability (PEP), defined as Pr(∆HPGW−CTRL ≤ 0), are determined from the posterior

parameter distributions at each grid point. To account for the multiple comparisons problem, the PEP values are evaluated

under a Bayesian FDR framework – a Bayesian analogue of the approach recommended by Wilks (2016) – using a global FDR15

of 10% following Storey et al. (2003), Käll et al. (2008), and as summarized by Robinson (2017). Based on the PEP, grid points

with sufficient evidence for an increase are identified such that no more than 10% are included by mistake, i.e., the probability

of correctly identifying an increase in a given parameter at a grid point is at least 90%. Conversely, one can evaluate evidence

for decreases in GEVSS parameters by reversing the definition of PEP.

Projected PGW-CTRL changes over the domain are shown in Figure 9. Significant increases in GEVSS location (>99% of20

grid points), scale (>88%), and scaling exponent (>39%) parameters are projected over large portions of the domain, whereas

almost no significant decreases in the GEVSS parameters are projected to occur (<1%, <5%, and <5% respectively). The

result is that IDF curves tend to shift upward and, with the exception of the eastern US, steepen, which leads to the largest

increases in return values for short duration extremes at the end of the 21st century. For example, at the 1-hr duration, the

median projected increase in the 10-yr return value (Figure 9d) is +38% (+29% lower quartile, +49% upper quartile), versus25

+25% (+18%, +33%) for the 10-yr return level of the 24-hr duration. The projected increase in the GEVSS scaling exponent

calls into question stationarity assumptions (i.e., that daily to sub-daily scaling remains the same) that form the basis for existing

IDF curve projections that rely exclusively on simulations at the daily time scale.

These findings are for a strong +3.5◦C global warming signal that corresponds to end of century conditions under the RCP8.5

scenario, which limits their general usefulness. Given that there is little evidence to suggest that changes in precipitation30

extremes for a given temperature change depend on RCP forcing scenario over North America (Pendergrass et al., 2015),
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Figure 9. Projected changes in GEVSS (a) location µ0, (b) scale σ0, and (c) scaling exponent H parameters, as well as changes in (d) 10-yr

return level 1-hr duration rainfall extremes I60−min,10−yr. For ease of visualization, results are aggregated to a 100-km × 100-km grid.

Values shown are aggregated grid box means; boxes where more than half of the 4-km WRF grids show significant increases (decreases) are

marked with a ∗ (/).

results are reframed in terms of local scaling with annual mean temperature change. Assuming that the temperature scaling

relationship holds, which may depend on the relative composition of aerosol vs. greenhouse gas forcings (Lin et al., 2016),

future projections of local temperature can then be used to gain information about future return levels of extreme rainfall.

Temperature scaling results for the 1-hr and 24-hr 10-yr return levels are shown in Figures 10a and b, respectively, with

summaries for the other durations shown in Figure 10c. Based on the model evaluation presented in Section 5, results are not5

shown for the 5-min and 10-min durations. Median temperature scaling values for 1-hr (7.6%/◦C) to 6-hr (6.2%/◦C) durations

are consistent with the CC relation (~6%/◦C to 8%/◦C over the range of temperatures simulated by WRF), although with some

regional variation. Notably, larger scaling magnitudes are found over coastal regions and a region extending northward from

the Baja peninsula into the Great Basin. Scaling rates in the interior of the continent – the Great Plains and Central Lowland

– tend to be smaller. Sub-hourly durations share the same spatial pattern, but with overall enhancement of temperature scaling10
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Figure 10. Temperature scaling of 10-yr return levels of (a) 1-hr and (b) 24-hr extreme rainfall; values shown are aggregated 100-km ×

100-km grid box means. (c) Boxplots summarizing the distribution of temperature scaling values for 10-yr return levels of 15-min to 24-hr

duration extreme rainfall. The horizontal line in the middle of each box indicates the median, boxes extend from the lower quartile to the

upper quartile, and the whiskers to 1.5 times the IQR. The horizontal cyan (blue) line indicates temperature scaling of 7%/◦C (14%/◦C.)

The red dashed (dotted) lines and the secondary vertical axis indicate the spatial correlation between maps of temperature scaling for each

duration and the 1-hr (24-hr) maps.

(median values of 8.7%/◦C at 15-min and 8.2%/◦C at 30-min). Given the form of the GEVSS model, however, note that results

at sub-daily durations are strongly influenced by projected changes in the scaling exponent parameter H (cf. Figure 9c). At

longer durations, median scaling rates are lower (5.6%/◦C at 12-hr and 5.0%/◦C at 24-hr) and are more spatially uniform,

without as strong a gradient between coastal and interior regions. For reference, temperature scaling of GEVSS parameters,

rather than return levels, are provided in Figure S9.5

Given a constant shape ξ parameter between the CTRL and PGW simulations, relative changes in return levels from the

GEVSS distribution can vary across return periods only if the dispersion σ0/µ0 is projected to change. Over North America,

Kharin et al. (2018) found that CMIP5 models with parameterized convection project greater intensification of more rare, more

intense extreme daily precipitation events than less rare, less intense events. Results from the convection-permitting WRF

simulations are shown in Figure 11. Projected changes in σ0/µ0 are predominantly positive; spatially coherent regions with10
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Figure 11. Projected changes in (a) GEVSS dispersion σ0/µ0. Values shown are aggregated 100-km × 100-km grid box means; boxes

where more than half of the 4-km WRF grids show significant increases (decreases) are marked with a ∗ (/). (b) Boxplots summarizing the

distribution of temperature scaling values for 2-yr to 100-yr return levels of 24-hr duration extreme rainfall; the horizontal cyan line indicates

temperature scaling of 7%/◦C.

significant increases are found over 50% of the domain. This leads to a modest dependence of relative changes in return levels

on return period. When expressed in terms of temperature scaling, median values for the 24-hr duration – the reference duration

in the GEVSS model – increase from 4.6%/◦C for the 2-yr return period to 5.3%/◦C for the 100-yr return period.

7 Discussion and conclusions

Annual maximum sub-daily and daily rainfall outputs from continental-scale, decadal simulations of WRF are combined5

with a parsimonious GEVSS model, which “borrows strength” from multiple durations to improve parameter estimation, to

assess changes in IDF curve characteristics over North America. The GEVSS model allows for nonzero shape parameter, but

constrains all quantile curves to share the same slope. This reduces the number of parameters relative to the official ECCC

IDF curves, while keeping the main characteristics of the conventional approach, but also allowing some flexibility in terms

of the ability to model heavy tailed distributions. Comparisons of model performance statistics between GEVSS estimates and10

23



official ECCC IDF v2.30 values indicate that systematic and unsystematic errors are, in general, very low, which suggests that

the two methodologies provide similar quantile estimates. In particular, for durations≥15-min, the GEVSS model leads to IDF

curve estimates that are consistent with official ECCC IDF curves at TBRG stations in Canada, mirroring findings of Innocenti

et al. (2017). In agreement with previous climate model evaluations that have focused on the US (e.g., Prein et al., 2017c),

WRF is found to provide credible simulations of historical annual maximum short-duration rainfall and associated IDF curves5

over the Canadian portion of the domain.

Projected changes in GEVSS parameters are evaluated using a Bayesian FDR framework. Large portions of the domain

experience significant increases in GEVSS location µ0 (>99% of grid points), scale σ0 (>88%), and scaling exponent H

(>39%) parameters in the PGW simulation (+3.5◦C global warming signal). Increases in each GEVSS parameter are linked

to changes in specific characteristics of IDF curves. In particular, IDF curves tend to shift upward (increases in µ0 and σ0),10

and, with the exception of the eastern US, steepen (increases in H). This leads to the largest increases in return levels for short

duration extremes. In addition, spatially coherent but small increases in dispersion of the GEVSS distribution are found over

more than half of the domain, providing some evidence for return period dependence of future changes in extreme rainfall.

When changes in extremes are scaled according to projected regional temperature change, median scaling rates follow the CC

relation at 1-hr to 6-hr durations, which is consistent with CC scaling found by Prein et al. (2017c) for hourly extremes. Spatial15

patterns and dependence of the temperature scaling relationships on duration are also consistent with results found for station

records in Canada (Panthou et al., 2014), although care must be taken due to differences in scaling definitions (e.g., Zhang

et al., 2017). Modest sub-CC scaling at longer durations and modest super-CC scaling at sub-hourly durations are found for

other time scales. In general, however, results are consistent with the statement by Pendergrass (2018) that “[s]caling changes

of extreme precipitation to the rate of atmospheric moisture increase remains the default null hypothesis”, with, as they point20

out, additional complexity that modifies this default hypothesis. Given that more confidence can be placed on temperature

projections, guidance on future changes in IDF curves that is based on regional temperature scaling relationships may provide

a simple, actionable path forward for the water resource management and engineering community.

From a statistical perspective, the projected increase in the GEVSS scaling exponent calls into question stationarity as-

sumptions that form the basis for IDF curve projections that rely exclusively on daily model outputs, for example those that25

statistically disaggregate from the daily to sub-daily time scale using historical temporal scaling relationships (Srivastav et al.,

2014). While it is possible that statistical disaggregation methods may have utility for IDF curve projections, those that explic-

itly condition temporal scaling relationships on atmospheric covariates may be required (Westra et al., 2013b). However, given

short historical records and the small forced change relative to natural variability, developing robust statistical relationships

may be difficult.30

The parsimony of the GEVSS model used in this study comes at a potential cost; it imposes strong constraints on the

form of the IDF curve relationships – and their changes – that can be represented. Checks on GEVSS model assumptions

and goodness-of-fit indicate acceptable performance. However, it is possible that less restrictive forms of statistical model

might reveal different future changes. For example, regional quantile regression models for IDF curves (Ouali and Cannon,

2018), including those that explicitly incorporate temporal scaling relationships (Cannon, 2018), are free from the parametric35
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assumptions of the GEVSS model and may provide additional insight into dependence of changes on event rarity and duration.

On the other hand, a more flexible model requires estimation of more parameters that may not be as easily interpreted. Trade-

offs between model expressiveness and estimation uncertainty are left for future study.

In addition, this study only considered “borrowing strength” over multiple durations at a single site. It is also possible to

reduce estimation uncertainty by pooling data from neighboring locations in space, via regional frequency analysis methods.5

As a recent example, Li et al. (2018) found that spatial pooling noticeably improved parameter estimates in a nonstationary

GEV model applied to extreme precipitation simulations from a regional climate model over North America. Future work

could explore the combination temporal and spatial pooling of data.

Given differences in model structure, boundary conditions, and domains, it is difficult to directly compare results from the

continental-scale convection permitting simulations investigated here with those from other midlatitude locations or smaller10

North American sub-regions. Results are, however, at least qualitatively similar to other studies that have explicitly considered

future projections of IDF curves in convection-permitting models. For example, Tabari et al. (2016) found both duration and

return period dependence of changes in summer season IDF curves in the CCLM model over central Belgium; similar to

the results from this study, larger intensification was found for shorter durations and longer return periods. Evans and Argueso

(2015) found greater increases in WRF simulations of extreme rainfall over the greater Sydney region for longer return periods,15

but did not identify a clear dependence on duration. Finally, warm season IDF curves based on MM5 simulations over central

Alberta by Kuo et al. (2012) were generally projected to shift upward, although dependence on return period and duration was

found to be complicated and subject to large uncertainty.

The findings of this study are based on simulations from a single convection-permitting model run over a continental-scale

North American domain. While the WRF runs are relatively long for a large, high-resolution domain, the ability to robustly20

estimate parameters of the GEV distribution, and hence return levels, from 13-yr records is somewhat limited. However, the

large warming signal, PGW experimental design, and pooling of durations by the GEVSS model allows changes in IDF curve

characteristics – those driven primarily by thermal effects – to be detected, but raises questions about whether results would

be the same under lower levels of warming. Larger samples are needed to reduce sampling uncertainty. In this regard, efforts

to run larger multi-model and initial condition ensembles of high-resolution simulations (Gutowski Jr. et al., 2016), including25

those by convection-permitting models in multiple regions of the world, will lead to more robust characterization of short-

duration extremes, sampling of structural uncertainty (e.g., due to differences in microphysics schemes; Singh and O’Gorman,

2014), and regional intercomparisons. Furthermore, including simulations with boundary conditions supplied by global climate

models, rather than PGW perturbations of historical data, will allow changes in large-scale dynamics and sensitivity to scenario

(e.g., rate of transient warming, role of aerosol emissions as in Lin et al., 2016, etc.) to be assessed. The availability of sub-30

hourly simulations could also help in investigating the influence of other physical processes on very intense extremes.

Finally, this study did not attempt to link changes in IDF curve characteristics to physical processes. Results using the same

set of WRF simulations by Prein et al. (2017b) indicate large increases in the frequency of mesoscale convective systems

(MCSs) and attendant increases in MCS size, total rainfall, and extreme rainfall over much of the domain. A notable exception

is central US, a region coincident with the area of lower temperature scaling rates and non-significant changes inH found in this35
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study, which experienced modest decreases in overall MCS frequency, especially for events with low maximum rainfall rates,

despite increases in more rare, high rainfall intensity events. Further research investigating changes in storm characteristics

associated with the annual maximum rainfall events that contribute to IDF curve estimates is warranted.

Data availability. High-resolution HRCONUS WRF simulations are available for download from Rasmussen and Liu (2017). ECCC IDF

v2.30 data can be obtained from http://climate.weather.gc.ca/prods_servs/engineering_e.html. The CMORPH v1.0 CRT bias corrected5

dataset is available online at http://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/CRT/. The MSWEP v2 dataset is freely available for down-

load via the http://www.gloh2o.org website.
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