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Abstract. Assessing the probability of occurrence of drought is important for improving current drought assessment, 

management and mitigation measures and strategies across Spain. This study employed two well-established drought indices, 

the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), to characterize 

drought duration and magnitude at different time scales over Spain. In order to map the drought hazard probability, we applied 

the extreme value theory and tested different thresholds to generate the peak-over-threshold drought (POT) duration and 15 

magnitude series. Our results demonstrate that the Generalized Pareto (GP) distribution performs well in estimating the 

frequencies of drought magnitude and duration. In specific, we found a good agreement between the observed and modelled 

data when using upper percentiles to generate the POT series. Spatially, our estimations suggest a higher probability of extreme 

drought events in southern and central Spain, compared to the northern and eastern regions. Also, our study found spatial 

differences in drought probability estimations, as a function of the selected drought index (i.e. SPI vs. SPEI) and timescale (i.e. 20 

1-, 3-, 6- and 12-month). Drought hazard probability maps can contribute to better management of different sectors (e.g. 

agriculture, water resources management, urban water supply, and tourism) at national, regional and even local scale in Spain. 

1 Introduction 

Drought is one of the main hydro-climatic hazards in Spain, with adverse impacts on natural and human environments (Pérez 

and Barreiro-Hurlé, 2009; UNEP, 2006). Numerous studies have analysed drought characteristics in Spain, suggesting a strong 25 

variability over both space and time (e.g. Domínguez-Castro et al., 2018; González-Hidalgo et al., 2018). In Spain, drought 

management measures are usually based on insurances and government subsidies to diminish their impacts, particularly those 

related to agricultural sector (Fernández, 2006). Alongside the existing systems for monitoring  hydrological drought 

conditions across Spain (Maia and Vicente-Serrano, 2017), there are various national legislations (e.g. Special Droughts Plans) 

that aim at improving drought adaptation strategies and practices (Garrick et al., 2017). 30 
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Although current national measures are quite useful to diminish drought risk, other improved approaches are still desired to 

reduce drought risk, particularly for real time drought monitoring (e.g. Svoboda et al., 2002) and forecasting (e.g. Mishra et 

al., 2009; Mishra and Singh, 2011). In this context, drought probabilities maps can be a promising tool to characterize drought 

risk at a detailed spatial scale. In particular, it is possible to determine the probability of drought episodes of a certain severity, 

allowing for better sectorial management strategies. Due to the availability of dense spatial climate data, there is a possibility 5 

to map drought probability at fine spatial scale. This detailed scale can be useful for different socioeconomic sectors and for 

natural ecosystems. The utility of probabilistic approaches for enhancing drought monitoring and adaptation was evidenced in 

many regions worldwide (e.g. Engeland et al., 2005; Hussain et al., 2018; She et al., 2014; Tosunoglu and Can, 2016; Zamani 

et al., 2015). 

In Spain, several studies have developed dry spells probability maps (e.g. Lana et al., 2006; Martin-Vide and Gomez, 1999; 10 

Pérez-Sánchez and Senent-Aparicio, 2018).  However, given that the probability of occurrence of dry spells is higher in arid 

regions than in humid regions, these studies did not account for the different drought hazard probabilities across Spain. It is 

well-recognized that the frequency and duration of dry spells are largely driven by the climatology of the studied area. 

Accordingly, the spatial variability of climate aridity can show similar spatial patterns to those of dry spell probability. 

However, drought probability cannot necessarily be related to the spatial patterns of climate aridity, as it can be associated 15 

more with the intrinsic characteristics of drought events. This is simply because, irrespective of the climatology, drought can 

occur in any world region when there is a negative anomaly with respect to the long-term average moisture conditions (Wilhite 

and Pulwarty, 2017). This highlights the importance of data standardization to make drought characteristics (e.g. duration, 

intensity, severity) comparable among regions with different climatic conditions. Several drought indices (e.g. Standardized 

Precipitation Index, Standardized Precipitation Evapotranspiration Index, Palmer Drought Severity Index, Self-calibrated 20 

Palmer Drought Severity Index) have been developed to characterize drought conditions across regions with different climatic 

conditions (Redmond, 2002). Also, irrespective of climatic conditions, these indices can identify drought episodes according 

to their duration and magnitude (Dracup et al., 1980) Overall, based on these drought indices, the probability of occurrence of 

drought duration and magnitude can be characterized at a detailed spatial resolution. In their assessment of drought 

characteristics in Serbia, Tošić and Unkašević (2014) analysed the probability of occurrence of drought using the SPI between 25 

1949 and 2011, concluding that  the  Generalized Pareto (GP) distribution fits well with the series at 1- and 12- month 

timescales. Similarly, Yusof et al. (2013) analysed the probability of drought duration and magnitude using the SPI and rainfall 

data from 30 rain gauges distributed across the peninsular Malaysia. Also, Zin et al. (2013) assessed the return period of 

drought severity over the peninsular Malaysia by means of the SPI. An inspection of these studies reveals that they employed 

only an individual drought index in most cases, with few attempts to explore the possible differences in drought hazard 30 

probability, as a function of different drought indices (e.g. Yan et al., 2018) or different drought timescales (Moradi et al., 

2011; Tošić and Unkašević, 2014). Due to the varying response of the different hydrological sub-systems, socioeconomic 

sectors and natural ecosystems to drought, the impacts of droughts should be assessed at various drought timescales (McKee 

et al., 1993; Vicente-Serrano, 2013). Moreover, the spatial patterns of drought and hazard probability maps can differ largely 



3 

 

in response to timescale (Vicente-Serrano, 2006). Taken together, it is important to assess drought hazard probability at 

different drought timescales to meet the specific needs of the different socioeconomic sectors and natural systems.  

The overall objective of this study is to employ a newly developed high-resolution spatial (1.21 km2) and temporal (weekly) 

gridded dataset of drought indices (Vicente-Serrano et al., 2017) to characterize drought events in Spain. Specifically, this 

study aims to i) apply the extreme value theory to determine the best threshold and statistical distribution to fit the probability 5 

of drought duration and magnitude, ii) explore spatial variations in this probability as a function of two common drought 

indices, with different underlying calculations (i.e. SPI vs. SPEI), and iii) assess whether there are spatial differences in drought 

hazard probability in response to the different drought timescales. In Spain, this detailed spatial assessment is still lacking, 

limiting the possibility to provide guidance on the use of drought hazard probability to manage and mitigate drought risks at 

the national, regional and even local scale. 10 

2 Data and methods 

2.1 Dataset 

Based on the gridded datasets of maximum and minimum air temperatures (1304 observatories), precipitation (2269 

observatories), wind speed (82 observatories), relative humidity (179 observatories) and sunshine duration (112 observatories), 

Vicente-Serrano et al. (2017) developed a high-resolution spatial (1.21 km2) and temporal (weekly) drought dataset for Spain 15 

(412178 pixels). This dataset spans the period from 1961 to 2014. This drought dataset was developed after a rigorous 

procedure to check the quality and homogeneity of the input climatic data. The grid of each variable was computed by a 

universal kriging method (Borrough and McDonnell 1998; Pebesma, 2004), using the latitude, longitude and elevation of each 

grid cell as auxiliary variables. The grid layers were validated with a jackknife resampling procedure (Phillips et al., 1992), 

indicating low differences between the predicted and the observed values for each grid. A detailed description of this dataset 20 

can be found in Vicente-Serrano et al. (2017b). Overall, these gridded climatic data were employed to compute the 

Standardized Precipitation Index (SPI) (McKee et al., 1993) and the Standardized Precipitation Evapotranspiration Index 

(SPEI) (Vicente-Serrano et al., 2010) at different timescales ranging from 1- to 48-month (http://monitordesequia.csic.es). 

While the SPI accounts only for precipitation data, the SPEI is based on a normalization of the difference between precipitation 

and atmospheric evaporative demand (AED). In this study, we employed these two drought indices to characterize the possible 25 

impacts of the AED on drought hazard probability. Drought characteristics were assessed for the period 1961-2014 using the 

SPI and SPEI at time scales of 1-, 3-, 6- and 12-month.  

2.2 Selection of drought events    

There are several criteria (thresholds) to identify independent drought events (e.g. Fleig et al., 2006; Lee et al., 1986). These 

thresholds are generally arbitrary, with no clear objective metrics to relate a certain value of a drought index with specific 30 

sectorial impacts. Indeed, this is a challenging task, given the large number of economic sectors and environmental systems 
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impacted by droughts  (Pérez and Barreiro-Hurlé, 2009). Furthermore, regions and sectors can respond differently to  various 

drought timescales (Lorenzo-Lacruz et al., 2013; Pasho et al., 2012). In this work, we obtained the series of drought events 

from the weekly gridded series of SPEI and SPI at four selected time scales (1-, 3-, 6- and 12-month). We used zero threshold 

to define drought events. Although this threshold allows for inclusion of less severe drought events, it can secure a sufficient 

sampling size to conduct the probabilistic analysis. Importantly, the retention of drought events in this manner will not bias 5 

the obtained results, considering that high values of the series will be retained following the peak-over-threshold approach.   

Overall, each drought event was defined as the period of consecutive weeks with SPI or SPEI values lower than zero. Likewise, 

the series of drought duration and magnitude were created based on the consecutive weeks of SPEI/SPI values below zero. 

The drought magnitude was calculated following the classical approach of Dracup et al. (1980). However, for operational 

purposes, the total magnitude of drought was transformed to positive values. 10 

2.3 Probabilistic analysis 

The series of peaks-over-threshold (POT) were obtained using the series of drought duration and magnitude calculated at 1-, 

3-, 6- and 12-month timescales. These series are stationary and do not show any trend (Domínguez-Castro et al., 2018), which 

is a prerequisite for the application of extreme value theory. The POT series were obtained according to a threshold (x
0
), as: 

𝒀 = 𝑿 − 𝒙𝟎∀ 𝑿 >  𝒙𝟎                                                       (1) 15 

In order to assess the role of the selected threshold in fitting the probability distribution of the series, we tested different 

thresholds defined according to the percentiles of the series (i.e. 0th, 10th, 20th,…, 90th and 95th). Following this procedure, 

we selected the optimal percentile threshold to define the exceedance series of drought duration and magnitude for the different 

indices and timescales.  

Numerous studies employed the GP distribution to model meteorological and hydrological droughts (e.g. Fleig et al., 2006; 20 

Nadarajah, 2008; Nadarajah and Kotz, 2008; Chen et al., 2011; Yusof et al., 2013; Tošić and Unkašević, 2014; Trenberth et 

al., 2014; Zamani et al., 2015; Liu et al., 2016). This is mainly because the probability distribution of a POT series, with 

random occurrence times, fits well with GP distribution (e.g. Hosking et al., 1987; Pham et al., 2014; Wang, 1991). The GP 

distribution is a flexible, long-tailed distribution, whose distribution function is formulated, as: 

𝑭(𝒙) = 𝟏 − [𝟏 −
𝜿

𝜶
(𝒙 − 𝜺)]

𝟏
𝜿⁄

                                          (2) 25 

where κ, α and ε are the shape, scale and location parameters of the distribution origin that corresponds to the lower bound x0. 

The GP parameters were obtained using the L-moment statistics following Hosking (1990).  

Hosking (1990) proposed a procedure to provide parametric approximations to the relationships between L-skewness and L-

kurtosis. This procedure allows for determining the suitability of the GP distribution to fit the exceedance obtained from 

different x0 values. Herein, we plotted the different L-moment diagrams with the statistics obtained from drought duration and 30 
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magnitude series. The aim was to assess the suitability of the different x0 thresholds to obtain POT series with good fitting to 

GP distribution.  

We applied the Anderson-Darling test to check the goodness of fitting of the POT series obtained from different x0 thresholds. 

To define the most suitable threshold, we paid much attention to secure a sample of sufficient length to obtain solutions for 

the GP parameters. This is important to obtain reliable probability estimations. For this purpose, we compared the observed 5 

maximum drought duration and magnitude obtained for the whole study period (1961-2014) with those estimated using GP 

distribution and POT for the different thresholds. Then, we calculated the probability that an event of magnitude XT in a period 

of T = 54 years (expressed in the original scale) will occur at least once in a period of T years. This is formulated, as: 

𝐗𝐓 = 𝛆 +
𝛂

𝛋
[𝟏 − (

𝟏

𝛌𝐓
)

𝛋

]                                                (3) 

where λ is a frequency parameter equalling the average number of occurrences of X per year in the original sample. The 10 

performance of each threshold was assessed using different accuracy statistics, including the mean absolute error (MAE), the 

Willmot’ D agreement index (Willmott, 1981), and the Pearson’s r correlation coefficient. The comparison was made for the 

observed maximum drought duration and magnitude and the GP estimations for the same sample length. 

Once a general threshold was established to define the POT series of drought duration and magnitude, we determined the 

goodness of the GP modelling for each drought index and timescale. For this purpose, we used the probability-probability (p-15 

p) plots, which define the extent to which the empirical and modelled GP cumulative distribution functions (cdfs) closely 

match. This procedure was applied to a total of 412,178 gridded series of drought magnitude and duration covering the four 

selected timescales of the SPI and SPEI. The empirical cdfs were obtained using the plotting position formula proposed by 

Hosking (1990) for highly skewed data, according to:   

𝑷(𝑿 ≤ 𝒙) =
𝒊−𝟎.𝟑𝟓

𝑵
                                                                      (4) 20 

where i is the rank of the observations arranged in descending order, and N is the number of observations. The goodness of 

agreement between the empirical and modelled cdfs was tested using a weighted correlation coefficient. This procedure gives 

more weight to the highest and less frequent observations in the sample, which are more relevant to extreme value analysis. 

The weight was defined using the empirical cdf, as: 

𝒘𝒋 =
𝟏

𝟏−𝒄𝒅𝒇(𝒋)
     (5) 25 

where cdf is the cumulative distribution function, and j refers to the observations in the series of exceedance sorted in ascending 

order. 
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3 Results 

3.1 Selection of the distribution and threshold to define the POT series 

Figure 1 illustrates some examples of L-moment diagrams, considering the 1-month SPEI duration series over the peninsular 

Spain. The series for each diagram were obtained considering POT at different percentiles. Each line represents a theoretical 

curve distribution: the generalized logistic (GLO, blue), generalized extreme value (GEV, green), generalized Pareto (GPA, 5 

red), generalized normal (GNO, black), and Pearson type III (PE3, light blue). As noted, irrespective of the selected threshold, 

the drought duration series tend to closely approximate to the GP distribution. Notably, there is a higher dispersion of points 

around the theoretical curve at higher percentiles, which can simply be seen in the context of lower sampling size. Figure 2 

depicts the L-moment diagrams corresponding to the 12-month SPEI magnitude series. The plots show high dispersion 

considering the different percentile thresholds. Nevertheless, at low percentiles, the points do not approximate to the theoretical 10 

curve of the GP distribution, but they conversely tend to approximate to the GP curve at percentiles between 60th and 80th. 

Again, the points exhibited high dispersion at upper percentiles (mostly above the 85th). An inspection of Supplementary 

Figures S1 to S14 suggest similar patterns for other timescales and for the drought duration and magnitude series obtained 

using the SPI. Table 1 summarizes the percentage of the POT series that fit well with the GP distribution following Anderson-

Darling statistic. As listed, the series of drought magnitude show better fit to GP distribution than those of drought duration, 15 

but with no considerable differences between SPI and SPEI. In contrast, we noted remarkable differences amongst the different 

timescales. For example, we noted that a high percentage of the series obtained for low percentiles did not fit well to the GP 

distribution. In contrast, for all drought duration and magnitude series, this fitting improved markedly when considering higher 

percentiles (mostly above the 40th percentile). The only exceptions were found for the duration series obtained at 1-month 

time scale using, but considering thresholds higher than 80th percentile either for SPI or SPEI. The total percentage of these 20 

series is almost close to 100%. Overall, although results suggest that high percentiles (e.g. 90th or 95th) were more appropriate 

to define the series of drought duration and magnitude, our decision was to define the series using a more relaxed threshold 

(80th percentile). This decision was motivated mainly by the notion that L-moment statistics showed high dispersion at the 

most upper percentiles. Furthermore, it was quite difficult to secure enough sampling size using these upper percentiles. Figure 

3 shows the number of drought events corresponding to the different percentiles and timescales (i.e. 1-, 3-, 6-, and 12-month). 25 

It can be noted that the number of events using the 90th and 95th percentile thresholds was very low for all timescales. This 

low number of events was statistically insufficient for reliable estimation of L-moment and GP parameters (Table 2). 

Accordingly, we considered lower percentiles to get more reliable probabilistic estimations. In this context, our results 

indicated that the series of drought duration and magnitude obtained using the 80th percentile as a threshold mostly fit to the 

GP distribution and the majority of these series (≈ 99%) showed solutions for GP parameters. Figure 4 depicts the accuracy 30 

metrics (i.e. Willmott’s D, MAE and Pearson’s r coefficient), which compare the maximum observed and modelled drought 

duration and magnitude for each grid. It can be noted that the agreement between the maximum observed and modelled values 

is higher for drought magnitude series than for drought duration series. However, for drought magnitude and duration series, 
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this agreement improved when considering higher percentiles, especially the 80th percentile. These findings were clearly 

evident for the SPI and SPEI and for all timescales.  

Also, we compared the empirical and modelled cumulative distribution functions (cdfs) using the GP distribution considering 

the 80th percentile POT series. The comparisons were made at the pixel scale, considering the two drought indices (SPI vs. 

SPEI) and the different timescales. A representative example is shown in Figure 5 for the grid point located at 40ºN and 3ºW. 5 

As illustrated, we noted a high agreement between the empirical and modelled cdfs, irrespective of the drought index and the 

timescale. However, a lower agreement was observed for longer timescales (i.e. 6- and 12-month). This can be expected given 

the low sampling size at long timescales, in comparison to shorter timescales. Overall, the weighted correlations between the 

empirical and the modelled cdfs showed high values (> 0.98) in all cases, which was reflected in the general observed pattern 

for the whole Spain. Figure 6 depicts the spatial distribution of the weighted correlations between the empirical and the GP 10 

distribution modelled cdfs using the 80th percentile POT series. At the 1- and 3-month timescales, the correlations were almost 

close to 1 for the entire Spain. The magnitude of correlation decreased for the 6- and 12-month timescales, though being above 

0.97 in most areas. Overall, these findings enhance our decision to select the 80th percentile and the GP distribution to 

statistically model drought duration and magnitude in our study domain. 

3.2 Mapping drought duration and magnitude 15 

Figures 7 and 8 illustrate the spatial distribution of GP parameters calculated for drought duration series obtained using the 

SPI and SPEI, respectively. The GP parameters showed very similar distributions for SPI and SPEI. However, we found 

considerable spatial variations in the distribution of these parameters as a function of the drought timescale, with higher values 

of the location (Xo) and scale (α) parameters for longer time scales. This can be explained by the increase in drought duration 

at longer time scales. The shape (k) parameter exhibited similar range values for all time scales. Herein, it is difficult to interpret 20 

the geographical distribution of the shape (k), as there is large uncertainty in estimating this parameter (Rosbjerg et al., 1992). 

As illustrated in Supplementary Figures S15 and S16, all parameters showed similar spatial patterns for the drought magnitude 

series. 

We mapped drought probability for the drought duration and magnitude series using the parameter maps and Eq. (3). Figure 9 

shows the estimated drought duration (in weeks) obtained from the 1-, 3-, 6- and 12-month SPEI series for periods of 50 and 25 

100 years. The results suggest important spatial differences among drought timescales. For example, at the 1-month timescale, 

the maximum duration was found in the central areas of Spain, with more than 40 weeks of consecutive negative SPEI values. 

A similar pattern can also be noted for the 3-month timescale, as central and southern Spain experience a longer duration. In 

northern Spain, the estimated maximum drought duration is almost half than that in central Spain. Nevertheless, the spatial 

patterns of drought probability differ markedly at the time scales of 6- and 12-month, with the maximum duration recorded in 30 

south-eastern and south-western regions and parts of northern and north-eastern Spain. The spatial patterns found at the 12-

month timescale resemble closely those observed at 6-month timescale, suggesting a maximum drought duration (>180 weeks) 

in a period of 50 years over some regions in the southwest and along the eastern Mediterranean coast. On the other hand, 
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considering the maximum drought duration for a period of 100 years, drought events are expected to extend spatially, especially 

in southern Spain. Figure 10 reveals that drought probability maps obtained using SPI are similar to those obtained using SPEI, 

albeit with some spatial differences that can mainly be linked to drought timescale. Figure 11 summarizes the relationship 

between the maximum drought duration of SPEI and SPI, considering 1-, 3-, 6- and 12-month timescale and periods of 50 and 

100 years. For drought duration, the agreement between SPI and SPEI is stronger considering long timescales. For timescales 5 

between 1 and 6 months, the SPEI tends to record higher quantile estimates than SPI. Nevertheless, at 12-month timescale, the 

differences in the quantile estimates between the two indices are clearly minimized. For drought magnitude, the quantile 

estimates show more consistent spatial patterns for the two indices, as compared to those identified for drought duration series 

(Supplementary Figure S17 to S19). 

4 Discussion and conclusions 10 

We developed high-resolution drought probability maps for Spain using two widely-recognized drought indices that are 

spatially and temporally comparable: the Standardized Precipitation Index (SPI) and the Standardized Precipitation 

Evapotranspiration Index (SPEI). Albeit with their similar conceptual background, these indices differ in their input variables. 

In specific, while the SPI accounts only for precipitation data (McKee et al., 1993), the SPEI considers the atmospheric 

evaporative demand (AED) in its calculation (Vicente-Serrano et al., 2010). In this study, we computed these two drought 15 

indices at different timescales (1-, 3-, 6- and 12-month). The aim was to assess whether there are noticeable spatial differences 

in the obtained drought hazard probabilities, as a function of the selected index and/or timescale. 

We assessed the suitability of the GP distribution to model drought duration and magnitude events. The results demonstrate 

that drought magnitude and duration series fit mostly well with a GP distribution: a finding that was confirmed in earlier 

drought assessment investigations in many regions worldwide (e.g. Chen et al., 2011; Serra et al., 2016; Vicente-Serrano and 20 

Beguería-Portugués, 2003; Zamani et al., 2015). In this study, our decision to select the GP distribution was motivated by the 

need to make a balance between the goodness of the fit to the GP distribution on one hand and the selection of a representative 

threshold to obtain the peaks-over-threshold (POT) series on the other hand. Our exploratory analysis suggests the use of the 

80th percentile as a threshold. This threshold makes a good balance between the two requirements for the SPI and SPEI and 

for all timescales. 25 

In earlier hydrologic and climatic hazards investigations, a regionalization approach has been employed to estimate the 

probability distribution, L-moment statistics and the distribution parameters (e.g. Durrans and Tomic, 1996; Serra et al., 2016; 

She et al., 2014). As opposed to these studies, our preference was given to analyse hazard probability locally. In specific, to 

calculate the L-moment statistics and the distribution parameters, we considered each gridded cell as an independent series. 

While regionalization is advantageous in terms of the spatial homogeneity and the reduction of the parameter uncertainty 30 

(Hosking and Wallis, 1997), characterization of drought conditions in our study domain reveals noticeable spatial differences 

in response to drought timescale. This is clearly evident for probabilities of both drought duration and magnitude. 
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Regionalization is usually based on the variables used for calculating drought indices (i.e. precipitation or difference between 

precipitation and atmospheric evaporative demand) (Ghosh and Srinivasan, 2016; Habibi et al., 2018; Santos et al., 2011; Yuan 

et al., 2013; Zhang et al., 2015). Importantly, this study stresses that this kind of regionalization might not be useful when 

drought hazard differs strongly due to drought timescale. Previous studies indicated that the spatial patterns of drought may 

strongly differ as a function of drought timescale, especially with the different temporal influence of local/regional 5 

precipitation events on drought index values (e.g. Vicente-Serrano 2006). This is confirmed in our study for the whole Spain, 

where the spatial patterns of the GP parameters and the maps of hazard probability strongly vary due to the different drought 

timescale. Again, this stresses the difficulty of applying regionalization approaches to obtain maps of drought probability. This 

difficulty is confirmed in this study, as our findings reveal differences in the drought probability as a consequence of the 

selected drought index. All together makes this kind of regionalization a challenging task. A possible solution could be 10 

establishing different regionalization schemes based on the different series of drought indices and timescales. However, this is 

practically disadvantageous, as it makes the use of probability estimations by end-users more confused (e.g. stakeholders, 

decision makers and local communities). Also, with the spatial coherence and the observed gradients of GP parameters, a 

direct calculation of hazard probabilities at the local scale is highly recommended, particularly in regions with strong spatial 

and temporal climatic variability like Spain. Overall, taken all these limitations into consideration, this study stresses that 15 

employing regionalization approaches to determine drought hazard probabilities should be taken with caution, especially when 

different drought indices and timescales are used. 

Assessing the different spatial patterns of drought probabilities as a function of timescales has strong implications for drought 

impact assessment and drought mitigation. It is well-established that different hydrological, agricultural and environmental 

systems respond differently to drought timescales (Pasho et al., 2012; Peña-Gallardo et al., 2018; Vicente-Serrano, 2013). As 20 

such, for more effective assessment and monitoring of drought hazard, drought timescales must be linked to specific drought 

impacts. This is basically because although drought probability can differ in response to drought timescale, the impacts of 

drought hazard may vary considerably from one region to another due to different environmental and socioeconomic factors. 

Correspondingly, the degree of vulnerability can differ according to drought timescale and region. For example, albeit with 

the high probability of occurrence of an extreme drought event at a certain timescale in a particular region, drought risk may 25 

be small if the sensitivity to drought timescale is low. This confirms that it is essential to obtain drought hazard probability 

maps at different timescales. Practically, the real hazard would be definitely derived from drought timescale that triggers 

impacts in a given space and sector.  

Recently, there is a great debate on the influence of climate change processes on drought severity (Dai, 2013; Sheffield et al., 

2012; Trenberth et al., 2014). This debate is largely motivated by the role of warming processes and the atmospheric 30 

evaporative demand in drought severity. Numerous studies have shown a noticeable increase in the AED across the 

Mediterranean region, which could enhance the severity of drought events in comparison to the events driven mainly by 

precipitation deficit (Stagge et al., 2017; Vicente-Serrano et al., 2014). Here, we indicated that, mainly at timescales from 1- 

to 6-month, SPEI duration and magnitude values are higher than those of the SPI. This finding suggests that the increased 
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AED due to warming processes may have a certain role in increasing drought duration and magnitude hazard probabilities in 

Spain. When a drought event occurs as a consequence of a precipitation deficit, high values of the AED can increase the 

magnitude and duration of drought events. However, this pattern was not observed for long drought timescales (i.e. 12- month), 

which showed small differences between the SPI and SPEI drought duration and magnitude quantile maps. This could be 

explained by the strong seasonality that characterizes the climate of Spain. This can be seen for the 12-month timescale, which 5 

summarizes the entire annual climate conditions. As indicated by Vicente-Serrano et al. (2014), the role of increased AED 

(mostly recorded during summer months) would be diminished in comparison to the role of precipitation. In contrast, the role 

of the AED would be more highlighted at shorter timescales that record stronger seasonal variability. 

Assessing drought hazard probability by means of joint probabilities of drought duration and magnitude has been applied in 

more depth by means of the use of copulas (e.g. Ganguli and Reddy, 2012; Liu et al., 2011; Zhang et al., 2015). Nevertheless, 10 

given the nature of the drought indices, the time series exhibit strong temporal autocorrelation and accordingly the duration 

and magnitude of particular drought events can show high agreement. Here, we found a strong correlation between the 

magnitude and the duration of drought events for the selected drought indices and timescales. This indicates that—as 

expected—the total magnitude of an event is proportional to drought duration. Therefore, although copulas could give some 

additional information for particular events, we still believe that an accurate evaluation of drought hazard probability in Spain 15 

using a univariate approach is more advantageous.    

Recalling the strong spatial differences in the drought hazard probability over Spain, the maps obtained in this study can 

contribute to better management practices for different sectors, including agriculture, water resources management, urban 

water supply, tourism, and environmental management. The spatial quantile probabilities developed in this study, combined 

with those estimated for the 50 and 100 years, are fully accessible to the research community and end-users via the web 20 

repository of the Spanish National Research Council (CSIC) at https://digital.csic.es/. 
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Table 1 Percentage of the peaks-over-threshold drought duration and magnitude series that fit well with the Generalized Pareto 

distribution following Anderson-Darling statistic. Results are summarized for different percentiles and timescales using SPEI and 

SPI.  
 Magnitude Duration 

SPEI 1-month 3-month 6-month 12-month 1-month 3-month 6-month 12-month 

00th 98.5 42.8 51.8 68.9 0.0 12.8 51.7 81.6 

10th 100.0 91.1 90.4 91.5 3.8 91.0 98.3 99.2 

20th 100.0 99.8 99.1 98.4 3.8 94.8 99.1 99.6 

30th 100.0 100.0 100.0 99.9 5.6 99.5 99.9 99.9 

40th 100.0 100.0 100.0 100.0 8.9 100.0 100.0 100.0 

50th 100.0 100.0 100.0 100.0 37.0 100.0 100.0 100.0 

60th 100.0 100.0 100.0 100.0 57.9 100.0 100.0 100.0 

70th 100.0 100.0 100.0 100.0 84.3 100.0 100.0 100.0 

80th 100.0 100.0 100.0 100.0 98.6 100.0 100.0 100.0 

90th 100.0 100.0 100.0 100.0 98.8 100.0 100.0 100.0 

95th 100.0 100.0 100.0 96.9 98.6 100.0 99.9 98.5 

SPI 1-month 3-month 6-month 12-month 1-month 3-month 6-month 12-month 

00th 85.8 27.9 41.3 70.9 0.0 6.4 39.2 81.5 

10th 99.3 79.9 80.8 88.9 0.1 84.4 96.8 99.1 

20th 100.0 99.0 97.3 97.3 0.1 89.8 98.2 99.5 

30th 100.0 100.0 99.9 99.7 1.4 98.0 99.8 99.9 

40th 100.0 100.0 100.0 100.0 5.0 99.8 100.0 100.0 

50th 100.0 100.0 100.0 100.0 20.8 100.0 100.0 100.0 

60th 100.0 100.0 100.0 100.0 45.2 100.0 100.0 100.0 

70th 100.0 100.0 100.0 100.0 75.7 100.0 100.0 100.0 

80th 100.0 100.0 100.0 100.0 94.4 100.0 100.0 100.0 

90th 100.0 100.0 100.0 100.0 98.6 100.0 100.0 99.9 

95th 100.0 100.0 100.0 98.2 97.1 99.9 99.9 98.8 

 5 
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Table 2 Percentage of cases in which solution for the L-moment and the Generalized Pareto distribution parameters is found for 

the peaks over threshold drought duration/magnitude series at different percentiles from 1-, 3-, 6-, and 12-month SPI and SPEI. 
 1-month 

SPEI 

3-month 

SPEI 

6-month 

SPEI 

12-month 

SPEI 

1-month 

SPI 

3-month 

SPI 

6-month 

SPI 

12-month 

SPI 

00th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

10th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

20th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

30th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

40th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

50th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

60th 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 

70th 100.0 100.0 100.0 99.6 100.0 100.0 99.9 99.2 

80th 100.0 100.0 99.7 97.4 100.0 99.9 99.3 96.8 

90th 99.7 98.5 96.8 79.8 99.5 97.7 96.6 84.9 

95th 98.7 86.7 75.9 52.7 96.8 91.1 85.0 52.8 
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Figure 1: L-moment diagrams for the peak-over-threshold series obtained from the 1-month SPEI duration series. 
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Figure 2: L-moment diagrams for the peak-over-threshold series obtained from the 12-month SPEI magnitude series. 
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Figure 3: Probability density diagrams showing the number of cases corresponding to the peaks over threshold drought 5 
duration/magnitude series at different percentiles and different timescales (1-, 3-, 6-, and 12-month) using (a) SPI and (b) SPEI.  
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Figure 4: Willmott’s D, mean absolute error (MAE) and Pearson’s r, summarized as a function of the different percentiles used to 

obtain the peaks-over-threshold series. All  accuracy metrics were computed based on  comparing the maximum observed and 

modelled 1-, 3-, 6- and 12-month SPI and SPEI drought duration and magnitude between 1961 and 2014. The modelled data were 

computed using the Generalized Pareto distribution. 5 
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Figure 5: Example of probability-probability (P-P) plots for the series of 1-, 3-, 6- and 12-month SPEI and SPI drought duration 

and drought magnitude obtained by means of the 80th percentile used as a threshold to derive the peak-over-threshold series. 
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Figure 6: Spatial distribution of the weight correlation coefficients from probability-probability (P-P) plots from the series of 1-, 3-

, 6- and 12-month SPEI and SPI drought duration and magnitude series obtained considering the 80th percentile as a threshold for 

the peak-over-threshold series. 
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Figure 7: Spatial distribution of the parameters of the GP distribution calculated for the SPI duration series. 
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Figure 8: Spatial distribution of the parameters of the GP distribution calculated for the SPEI duration series. 
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Figure 9: Spatial distribution of the maximum drought duration (in weeks) from the 1-, 3-, 6- and 12-month SPEI series in a 

period of 50 and 100 years. 
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Figure 10: Spatial distribution of the maximum drought duration (in weeks) from the 1-, 3-, 6- and 12-month SPI series in a period 

of 50 and 100 years. 
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Figure 11: Scatterplots showing the relationship between the maximum drought duration (in weeks) expected in a period of 50 and 

100 years considering 1-, 3-, 6- and 12- SPEI and the SPI. The colours represent the density of points, with red denoting the 

highest density. Given the large sample used, the significance of the Pearson’s r coefficients was estimated by means of a 

Montecarlo approach using 103 random samples, with each sample containing 30 cases. 5 
 


