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Abstract. Large wildfires across parts of France can cause devastating damages which put lives, infrastructures, and natural

ecosystem at risk. In the climate change context, it is essential to better understand how these large wildfires relate to weather

and climate and how they might change in a warmer world. Such projections rely on the development of a robust modeling

framework linking large wildfires to present-day atmospheric variability. Drawing from a MODIS product and a gridded

meteorological dataset, we derived a suite of biophysical and fire danger indices and developed generalized linear models5

simulating the probability of large wildfires (>100 ha) at 8-km spatial and daily temporal resolutions across the entire country

over the last two decades. The models were able to reproduce large wildfires activity across a range of spatial and temporal

scales. Different sensitivities to weather and climate were detected across different environmental regions. Long-term drought

was found to be a significant predictor of large wildfires in flammability-limited systems such as the Alpine and Southwest

regions. In the Mediterranean, large wildfires were found to be associated with both short-term fire weather conditions and10

longer-term soil moisture deficits, collectively facilitating the occurrence of large wildfires. Simulated probabilities during the

day of large wildfires were on average 2-3 times higher than normal with respect to the mean seasonal cycle, highlighting the

key role of atmospheric variability in wildfire spread. The model has wide applications, including improving our understanding

of the drivers of large wildfires over the historical period and providing a basis to estimate future changes to large wildfire from

climate scenarios.15

Copyright statement.

1 Introduction

Large wildfires in France have received much attention recently due to the threat they pose to ecosystems, society, property and

the economy. In the Mediterranean region, large wildfires threat many of the ecosystems components and their recurrence can

induce a loss of resilience (Pausas et al., 2008), potential shifts in plant composition and structure (Vennetier and Ripert, 2009;20

Frejaville et al., 2013) or soil losses. Additionally, the growth of the wildland-urban interface (WUI) has increased wildfire risk,

the cost of suppression and our vulnerability across the region (Lampin-Maillet et al., 2011; Modugno et al., 2016; Ruffault

and Mouillot, 2017; Fox et al., 2018) and will continue to do so given future demographic trends. Although wildfire extent

1



Figure 1. Left) Orography in France. The red contour shows the outlines of the investigated French region. Right) Environmental stratification

based on climate data, data on the ocean influence and geographical position (Metzger et al., 2005; Jongman et al., 2006). Abbreviations:

NTH – North (Atlantic Central in Metzger et al. (2005)); ALP - Alpine; WST - WEST (Lusitanean in Metzger et al. (2005)); MDM -

Mediterranean Mountains; MDN - Mediterranean North; MDS - Mediterranean South.

does not systematically reflect wildfire intensity and the related-impacts (Tedim et al., 2018), large wildfires are usually the

most destructive for both ecosystems and infrastructures.

Wildfire ignitions in Europe were strongly related to a range of human activities (Ganteaume et al., 2013) with arson and

negligence being the main wildfire ignition causes in the French Mediterranean (Ganteaume and Jappiot, 2013; Curt et al.,

2016; Ganteaume and Guerra, 2018). Despite the accidental and unintentional nature of most wildfire ignitions, wildfire spread5

in the French Mediterranean is generally enabled and driven by a range of weather-to-climate processes operating at different

timescales such as long-term drought (Hernandez et al., 2015b; Turco et al., 2017) and favorable large-scale weather conditions

including synoptic blocking (Hernandez et al., 2015a) or the Atlantic ridge weather type (Ruffault et al., 2017b). These large-

scale weather patterns are known to facilitate wildfire spread through different mechanisms: wind speed (for the Atlantic ridge)
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and anomalously warm conditions (for the synoptic blocking) (Ruffault et al., 2016). While wind-induced wildfires may arise

due to strong winds that accelerate the rate of spread in a specific direction, heat-induced wildfires (also called plume-driven

wildfires) arise due to anomalously warm conditions that increase fuel dryness and flammability and facilitate wildfire spread

in all directions (Lahaye et al., 2017) contingent on topography and fuel structure. Collectively, heat wave, wind speed and

drought conditions during previous months have been shown to enhance the potential for large wildfire (Hernandez et al.,5

2015a, b; Ruffault et al., 2017a). However, most of these previous efforts have exploited regional datasets of burned area across

parts of Southeast France commencing in early 1970s and little attention has been devoted to understanding processes in other

regions except in Alpine mountains (Dupire et al., 2017).

Over the long-term, a substantial reduction in wildfire activity was observed in the 1990s across the French Mediterranean

due to suppression and prevention strategies (Ruffault and Mouillot, 2015; Curt and Frejaville, 2017), decoupling wildfire10

trends from climate expectations (Fréjaville and Curt, 2017). However, the 2003 heat wave have induced wildfire prone me-

teorological conditions across the region impeding suppression efforts and promoting 2003 as one of the most extreme years

in terms of burned area over the last six decades (Ganteaume and Barbero, 2019). The continued intensification and increased

frequency of heat waves in the future due to climate change (Vautard et al., 2013; Guerreiro et al., 2018) alongside the grad-

ual precipitation deficit simulated by climate models across southern Europe during the fire season (Abatzoglou et al., 2018;15

Cramer et al., 2018) raises legitimate concerns about the sustainability of current fire policies and strategies. Additionally,

the accumulation of fuel loads due to past wildfire suppression efforts within a long-term forest recovery context across the

Mediterranean (Abadie et al., 2017) is widely thought to have created favorable ground conditions for wildfire spread and the

occurrence of large wildfires (Curt and Frejaville, 2017).

In this context, it is essential to develop a modeling framework resolving the complex relationships linking weather-to-20

climate variability to the occurrence of large wildfires. Such model is still lacking due to observational inhomogeneities in

wildfire detection across the country, hampering the compilation of a homogeneous database. Drawing from a global remote

sensing database of burned area, we sought here to develop a nation-wide statistical model including wildfire-prone regions

overlooked in previous studies. The model is expected to advance our understanding of processes and drivers of large wildfires

and to provide guidance on how weather and climate variability may increase the occurrence of large wildfires in France under25

a warmer climate.

2 Data and methods

2.1 Wildfire data

We used the Moderate Resolution Imaging Spectroradiometer (MODIS) Firecci v5.0 product developed within the framework

of the European Space Agency’s Climate Change Initiative (CCI) program and available on the period 2001–2016 (Chuvieco30

et al., 2016). This product is based on MODIS on board of the Terra polar heliosynchronous orbiting satellite. The burned area

algorithm combined temporal changes in near-infrared MERIS-corrected reflectances based on MOD09GQ of the MODIS

sensor at 250-m spatial resolution with active fire detection from the standard MODIS thermal anomalies product, follow-
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Table 1. Candidate variables in the modeling framework.

Name Acronym Category

1. Fine Fuel Moisture Code FFMC Fire-Weather metric

2. Duff Moisture Code DMC Fire-Weather metric

3. Drought Code DC Fire-Weather metric

4. Initial Spread Index ISI Fire-Weather metric

5. Build-Up Index BUI Fire-Weather metric

6. Fire Weather Index FWI Fire-Weather metric

7. Forest McArthur Fire Danger Index FFDI Fire-Weather metric

8. F-Index FINDEX Fire-Weather metric

9. Nesterov Fire Danger Index NFDI Fire-Weather metric

10. Fosberg Fire Weather Index FFWI Fire-Weather metric

11. Effective drought Index EDI Drought metric

12. Potential Evapotranspiration PET Drought metric

13. Standardized Precipitation Index SPI Drought metric

14. Soil Wetness Index SWI Soil Moisture metric

Table 2. This table provides for each environmental region (first column): the number of wildfires (second column), the number of large

wildfires (>100 ha) (third column), the contribution of large wildfires to regional burned area (fourth column) and the contribution of large

wildfires to national burned area (fifth column).

Env. Region # Wildfires # Large wildfires Contribution to regional BA Contribution to national BA

North 49 6 61.8% 1.9%

Alpine 41 8 69.1% 2.3%

West 101 19 63.6% 5.4%

Mediterranean Mountains 289 51 83.9% 34.8%

Mediterranean North 309 59 75.9% 25.7%

Mediterranean South 105 13 72.4% 7.1%

ing a two-phase algorithm (Alonso-Canas and Chuvieco, 2015). Complementary to the surface reflectance product, the daily

MOD09GA Collection 6 product was also used to extract information on the quality of the data. Although small wildfires

are generally difficult to detect with satellite observations due to the timing of the scan or cloud-cover impairment of remote

sensing, our focus on large wildfires is expected to minimize this uncertainty.

We excluded MODIS fires located within agricultural lands using CORINE Land Cover 2012 data (https://land.copernicus.eu/pan-5

european/corine-land-cover) as well as prescribed fires related to pastoral practices during the cool season (November-March)

since these fires are generally under control and do not put infrastructures or ecosystems at risk. MODIS pixels spatially and

temporally adjacent were aggregated using the location and the date of the first detection to form consistent wildfire events.
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Figure 2. Interannual relationships between the annual frequency of large wildfires (>100 ha) and the total annual burned area. The total

number of large wildfires as well as Pearson correlations are indicated for each region. The symbol * indicates significant correlations at the

95% confidence level. The linear fitting and the 95% confidence intervals are also shown.

Pixels belonging to the same wildfire event were required to be within a maximum distance of 4 pixels (to minimize inaccu-

racies in burned area detection within a pixel) and to have adjacent burning dates. The 22,785 MODIS pixels extracted from

2001-2016 across France were found to form 894 distinct wildfire events. We then defined large wildfires as wildfires whose

size exceeds 100 ha (N=156 large wildfires) following Ganteaume and Barbero (2019), a threshold corresponding here to the

83th percentile of the distribution of wildfires extent. The average large wildfires extent was found to be 398 ha, with the largest5

wildfire reaching 7,675 ha. Finally, we regridded this information onto an 8-km resolution grid to facilitate the comparison with

meteorological data (see section 2.2).
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2.2 Weather and climate data

Meteorological variables were obtained from the quality-controlled SAFRAN (Système d’Analyse Fournissant des Renseigne-

ments Atmosphériques a la Neige; Analysis system providing data for snow model) re-analyses providing minimum and

maximum temperature, relative humidity, precipitation and wind speed over France from 2001-2016 (Vidal et al., 2009, 2010,

2012) on a daily basis and over an 8-km grid.5

Drawing from the SAFRAN data, we derived a suite of fire weather and drought indices (see Table 1) intended to reflect

different timescales of variability that are widely thought to facilitate wildfire spread from synoptic (weather) to interannual

(climate) scales (Barbero et al., 2015a; Nogueira et al., 2017). Fire weather variables included the Canadian Forest Fire Weather

Index system (Fine Fuel Moisture Code (FFMC), Build-Up Index (BUI), Duff Moisture Code (DMC), Initial Spread Index

(ISI), Drought Code (DC), Fire Weather Index (FWI)) (Van Wagner, 1987). Although these indices were empirically calibrated10

for estimating whether atmospheric conditions and fuel moisture content are prone to wildfire development in a jack pine forest

of Canada (Van Wagner, 1987), the FWI system has proven useful in Mediterranean regions (Dimitrakopoulos et al., 2011;

Fox et al., 2018; Lahaye et al., 2017) as well as in Alpine environments (Dupire et al., 2017). We also included in our analysis

other fire weather indices that have been shown useful in estimating fire danger conditions across parts of the world including

the Forest McArthur Fire Danger Index (Dowdy et al., 2010), the F-Index (Sharples et al., 2009), the Nesterov Fire Danger15

Index (Nesterov, 1949) and the Fosberg Fire Weather Index (Fosberg, 1978). Further information on each of these fire weather

variables and how they relate to wildfire activity can be found in the literature.

Additionally, we used a series of fast- and slow-reacting drought indices to detect flash and chronic drought that are of-

ten associated with large wildfires. These indices include potential evapotranspiration (PET) based on the Penman–Monteith

equation, the Effective Drought Index (EDI) (Byun and Wilhite, 1999) integrating here precipitation over the last 30 days to20

detect short-term precipitation deficit and the Standardized Precipitation Index (SPI) based on a non-parametric framework

(Farahmand and AghaKouchak, 2015) and computed on 6-month windows to detect long-term precipitation deficit. The SPI

has already shown some skill in predicting burned area across different parts of the globe (Turco et al., 2018). Finally, we used

the more sophisticated Soil Wetness Index (SWI) developed by CNRM (Centre National de la Recherche Météorologique).

This last index was derived from ISBA (Noilhan and Mahfouf, 1996), a soil-biosphere-atmosphere interaction model based25

on soil characteristics across France reflecting the moisture available for the plants. The SWI integrates the propagation of

moisture from the superficial surface layer to the root zone (Barbu et al., 2011).

2.3 Environmental stratification

The relationships between weather-to-climate and wildfire activity in France is mediated through vegetation, the complex

topography of the region (Figure 1, left) alongside human factors (Fréjaville and Curt, 2015; Ganteaume and Long-Fournel,30

2015; Ganteaume and Guerra, 2018). Given the compounding influence of these environmental factors, we developed separate

models using an environmental stratification (Figure 1, right) based on climate data, topography and geographical position

(Metzger et al., 2005; Jongman et al., 2006), assuming that the weather-to-climate forcing on large wildfires is relatively
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consistent within each of these regions. Only a brief description of these environmental units is given here. The North region

(Atlantic Central in Metzger et al. (2005)), the less fire-prone region (Table 2), corresponds to a temperate climate where

average summer temperatures are relatively low. The Alpine region spans high mountains conditions typical of the alpine

ranges of southern Europe which is dominated by conifer forests at high elevation and broad-leaves at low elevation. The

West region (Lusitanean in Metzger et al. (2005)), corresponds to the southern Atlantic climate characterized by warm and5

dry summers coupled with mild and humid winters. Further south, the Mediterranean area is stratified into three distinct

environmental regions: the Mediterranean Mountains (hereafter referred to as Mnts in the figures), that combine the influence of

both Mediterranean and mountain climates (including various species such as Fagus sylvatica, Pinus sp., Quercus pubescens),

the Mediterranean North, which is a holm oak, cork oak dominated-vegetation (Quercus ilex, Quercus suber, Pinus sp.) and the

Mediterranean South, a low elevation area (Figure 1, left) spanning the Rhone delta. The spatial extent of each region allows the10

pooling of a decent number of MODIS wildfires needed to develop robust models. We however acknowledge the existence of

sub-regional variations in human factors (e.g., ignition and suppression) and that other biogeographic units with homogeneous

attributes with respect to wildfire regime and climatic conditions may yield different results (Fréjaville and Curt, 2015).

2.4 The modeling framework

2.4.1 Generalized Linear Models15

Empirical models linking weather and climate to wildfires have received much attention in the climate change context (Riley

and Thompson, 2016) and multiple model specifications have been introduced in the literature to simulate wildfire activity

(Boulanger et al., 2018). We sought here to develop separate models for each environmental region to simulate the probability

of large wildfire (given an ignition) at 8-km spatial and daily resolutions, based purely on the weather-to-climate forcing.

Simulating the day-to-day variability has the advantage of detecting short-duration synoptic conditions otherwise masked in20

monthly or seasonal timescales.

We used Generalized Linear Models (GLM) with a stepwise regression using all predictors listed in Table 1. GLMs have

already been used to simulate the occurrences of large wildfires in other regions of the world (Stavros et al., 2014a, b; Barbero

et al., 2014, 2015b) given their ability to model the relationship between a dichotomous variable (presence/absence of large

wildfires) and a set of predictor variables. For each day of the MODIS period (2001-2016) and each cell of the 8-km grid, the25

binomial predictand (y) was coded as 1 if a large wildfire was observed, and 0 otherwise. This binary response is modeled as

the probability (P ) to observe a large wildfire via a logistic model with a logit link such as:

P (y = 1|x) = exp(β
′
x)

1+ exp(β′x)

where β
′
= (β0,β1, ...βp) is a vector of coefficients relating probability of wildfires to p covariates via the relationship β

′
x=

β0+β1x1+...+βpxp. P is intrinsically bounded in the interval [0,1]. We considered each observation of the predictor variables30

as independent samples despite the inherent spatial autocorrelation and serial correlation. This violates the assumption of
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Table 3. Equations describing daily large wildfire (>100 ha) probabilities at 8-km for each environmental region. The second column indicates

the number of large wildfires observed from 2001-2016. The third column gives the β
′
x parameters and the last column indicates the model

selection frequencies, i.e. the percent of bootstraps in which there was agreement.

Env. Region # Large wildfires exp(β
′
x)

1+exp(β
′
x)

Bootstrap πi

North 6 β
′
x=−20.674+FFMC × 0.0767 100

Alpine 8 β
′
x=−14.828+SPI × (−1.9868) 98

West 19 β
′
x=−16.242+DC × 0.0054 100

Mediterranean Mountains 51 β
′
x=−9.3825+DMC × 0.0165+SWI × (−7.4097) 36

Mediterranean North 59 β
′
x=−8.7438+FWI × 0.067+SWI × (−13.036) 92

Mediterranean South 13 β
′
x=−11.932+DMC × 0.0183 100

independence between samples and overestimates the number of degrees of freedom. However, these effects are mitigated with

the use of a random sampling design in model development (see below), although it is not intended to completely remove the

true spatial autocorrelation. Predictor variables that did not significantly improved the model were discarded from stepwise

model selection procedure using the Bayesian Information Criterion (BIC) since the penalty for additional parameters is higher

in BIC than in Akaike Information Criterion (AIC), consequently favoring more parsimonious models (Murtaugh, 2009). Also,5

we did not allow interactive and non-linear terms in logistic equations.

2.4.2 Model selection uncertainty

While a model may be developed using all 8-km grid cells available through the period and the region, numerous caveats arise

that limit the model robustness, particularly given the huge imbalance between 0 (absence) and 1 (presence). Selecting the

"best" approximating model from one single sample would raise the following question: would the same model be selected10

with another sample? The model selection uncertainty is of primary importance (Burnham and Anderson, 2002), especially

when competing models exist to describe the unknown state of the complex climate-wildfires relationship (Podschwit et al.,

2018). The use of replications in logistic regressions allows avoiding instability of the results due to sampling bias and helps

reduce structural uncertainty. We used resampling methods combining the strength of probabilistic and statistical methods

(Guns and Vanacker, 2012) to assess model stability and to achieve a proper tradeoff between bias and variance (Burnham and15

Anderson, 2002). To do so, we conducted a case-control experiment (Keating and Cherry, 2004) and generated 1,000 bootstrap

samples to estimate model selection frequencies (πi). Each sample includes all large wildfire occurrences (1) as well as 50,000

randomly chosen non-occurrences (0). Each resampled data corresponds to a specific grid cell during a specific day. Maximum

likelihood theory provides estimates of the parameters β′ and the BIC-best model is found for each bootstrap sample. Finally,

the model selection relative frequencies (πi) are computed as the sums of the frequencies where model i was selected as best,20

divided by the total number of bootstraps. We used the model with the highest πi from these bootstraps in subsequent modeling

as we considered this model to represent the most stable relationships in a given region. Note that the simulated probabilities
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Table 4. Spearman rank correlations between large wildfires (>100 ha) observed and that expected from simulated probabilities at the

monthly (second column) and interannual (third column) timescales. The symbol * indicates significant correlation at the 95% confidence

level.

Env. Region Monthly variations Interannual variations

North 0.56 0.45

Alpine 0.58* 0.23

West 0.73* 0.58*

Mediterranean Mountains 0.68* 0.45

Mediterranean North 0.73* 0.65*

Mediterranean South 0.67* 0.22

were derived using all data available so that the sum of simulated probabilities in a given region reflects the total number of

large wildfires observed.

Receiver-operating characteristic (ROC) plots was used to evaluate the model performance, as ROC statistics provide in-

formation for a range of possible threshold values to classify a grid cell during a specific day as "prone to large wildfire" and

gives rapidly an overall idea of model skill. The ROC curve shows the false-positive rate vs the true-positive rate and the area5

under the ROC curve ranges from 0.5 (random prediction) to 1.0 (perfect prediction). Also, we examined simulated proba-

bilities expressed as anomalies with respect to the mean annual cycle both 80 days prior to and 80 days following observed

large wildfire days at the 8-km grid cell level. This allows determining whether simulated probabilities during large wildfires

days were locally higher than what we would expect from the seasonal forcing alone and how fast these large wildfire-prone

conditions develop.10

3 Results and discussion

3.1 Large wildfires contribution to total burned area

In each region, the annual frequency of large wildfires strongly shaped interannual variations in annual burned area (Figure

2), with an overall contribution in total burned area from 2001-2016 ranging from 62% (North) to 84% (Mediterranean Mnts)

(Table 2). Large wildfires in the Mediterranean North and Mediterranean Mountains were the strongest contributors to national15

total burned area (Table 2). Note that the Mediterranean Mountains region has experienced a dramatic increase in large wildfires

and annual burned area in response to the 2003 heat wave. It is thus readily apparent that a few large wildfires are responsible

for a majority of burned area and that a better understanding of drivers and processes of these specific events is of utmost

importance.

9



Figure 3. Area under the curve (AUC) illustrating the performance of each model.

Figure 4. Observed (black) and simulated (color) total number of large wildfires (>100 ha) per month in each environmental region. The

middle panel shows the location of large wildfires during the April-October season from 2001-2016.
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3.2 Model selection and regional variability

Most models showed high skill (Figure 3). The AUC was the highest for the Mediterranean North which is also the region with

the largest sample of large wildfires, while the Mediterranean South model had the lowest predictive power. In this region, a

true positive rate hardly exceeding 0.8 was associated with a false negative rate exceeding 0.7, indicating that large wildfires in

that region are less related to the weather-to-climate forcing.5

Table 3 shows the best model selected in each environmental region alongside the relative model selection frequencies (πi)

from applying BIC to each of the 1,000 bootstrap samples. In five out of the six regions, models were selected as the best in

>90% of the simulations. However, the Mediterranean Mountains model had much lower selection frequencies (36%). Note that

a lower frequency of selection does not mean that the model has a lower skill, but rather that other combinations of predictors

are possible. The table also shows the different predictor variables selected in the stepwise procedure and indicates how the10

weather-to-climate forcing can affect large wildfires very differently depending on what kinds of environmental conditions

predominate, as already shown in previous works across the US (Stavros et al., 2014a; Barbero et al., 2014; Podschwit et al.,

2018). Table A1 in the supplementary information provides the typical range of each explanatory variable during the day of

large wildfires. In the North, the best model uses only FFMC, an index reflecting the flammability of litter and fine fuels. As

opposed to Mediterranean regions where FFMC quickly saturates early summer due to overall low soil moisture conditions,15

this index seems to be useful in tracking large wildfire potential in more humid climates where fine fuels dominate. By contrast,

the Alpine and West regions best models are based on slow-reacting indices (SPI for the Alpine region and DC for the West

region), both reflecting chronic soil moisture deficit and low fuel moisture levels (Dupire et al., 2017). This suggests that

large wildfires in these more humid and more flammability-limited systems are mainly enabled by slow-evolving drought. The

picture is slightly more complex in both Mediterranean Mountains and Mediterranean North. For instance, the best model in the20

Mediterranean North combines the information provided by the FWI (fire weather metrics) with the SWI (soil moisture content

metric). In fact, a strong decrease in the SWI in summer, corresponding to a reduction of plant available soil moisture level,

accelerates the desiccation and may lead to vegetation mortality (Barbu et al., 2011), which in turn facilitate wildfire spread.

Beside, an increase in the FWI, which also integrates the expected rate of spread in response to wind speed, underlines once

again the strong role of wind speed in wildfire spread in the Mediterranean North. In other words, large wildfires occur when25

multiple conditions are gathered, namely high winds, dry fuel and low soil moisture levels. This illustrates how complementary

fire weather and soil moisture indices are, and how they may, collectively, improve the ability to track the potential for large

wildfire.

It is noteworthy that the effect of wind speed on large wildfires is only revealed through the FWI in the Mediterranean

North. The absence of wind speed as a significant factor in other regions may arise due to the temperature decrease associated30

with wind spells in the French Mediterranean (Ruffault et al., 2017b), with contrasting effects on commonly used fire weather

indices that were designed to increase with temperature. This may also indicate the stronger role of fuel moisture in these

regions in response to slower climatic variations, regardless what short-term fire weather does.
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Figure 5. Daily large wildfire (>100 ha) probabilities across months averaged from 2001-2016. Note the highly non-linear color bar (proba-

bilities in the highest class are >582 times higher than those in the first class).

3.3 Seasonal and interannual variability in observed and simulated large wildfires

The mean seasonal cycle, featuring a peak in August in most regions, is well reproduced in the simulations (Figure 4 and Table

4). However, some large wildfires were also seen in the spring and in September in the North and Alpine regions respectively,

a feature that is not reproduced in the model due either to sample size limitations or other human factors not included in the

models. Figure 5 shows the spatio-temporal patterns of mean daily simulated probabilities from May-October. The potential5

for large wildfires emerges in the Mediterranean South first and then propagates northwards into the Mediterranean Mountains

and along the west coast before slowly decaying in October. An animation of daily simulated probabilities from 2001-2016 is

available in the supplementary information (Supp1.mov).
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Figure 6. Observed (top) and simulated (bottom) total number of large wildfires (>100 ha) per year in each environmental region.

Models were also able to simulate, to some extent, interannual variations in large wildfires (Figure 6 and Table 4), including

the exceptional 2003 outbreak in Mediterranean Mountains. As expected, interannual variance in simulated probabilities was

much lower than that of large wildfires observed (Figure 6) due to the continuous nature of probabilities (in contrast to the

strongly intermittent nature of large wildfire), thereby underestimating (overestimating) the probability of very likely (unlikely)

events and resulting in a variance deflation.5

3.4 Local simulated probabilities

Figure 7 shows simulated probabilities expressed as anomalies with respect to the mean local seasonal cycle during a period

spanning 80 days before to 80 days after large wildfires pooled over the entire country. It is readily apparent that simulated

probabilities progressively increased until the day of large wildfire, reaching values 2-3 times higher than normal, and then

slowly decayed towards normal conditions. This temporal pattern was, however, variable across environmental regions (Figure10

8) depending on the predictor variables selected (Table 2). In fact, the slowly increasing probabilities evident in the Alpine

region and the Mediterranean Mountains mimic the slow variations of the SPI and the SWI respectively, and align with global
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Figure 7. Composites of local simulated probabilities (expressed as percent with respect to the mean seasonal cycle, i.e. 100% indicates that

probabilities are two times higher than normal) relative to the large wildfire (>100 ha) days. The 95% confidence intervals of the composite

means are computed using 1,000 bootstrapped datasets. The envelope of confidence indicates the 2.5 and 97.5 percentile of the composite

means obtained from the bootstrapped datasets.

change-type drought (Breshears et al., 2005; Ruffault et al., 2017a). By contrast, faster-increasing probabilities in the Mediter-

ranean North during the day of large wildfires reflect the role of short-term fire weather conditions, highlighting again different

generating mechanisms across regions.

3.5 Potential applications and limitations

This modelling framework has multiple potential applications. First, it could be implemented in a real-time fashion using5

meteorological forecasts. This may complement traditional forecasts based on FWI only. Indeed, the FWI only measures

the potential intensity of wildfire and this quantity is not always straightforward in the real world. In this regard, our model

translates a series of fire weather and drought indices into a probability of occurrence of large wildfire that could be useful in

decision-making. Second, our model may serve as a basis to simulate future changes to large wildfires based on future climate

projections from the EURO-Cordex project. Such projections will help better understand future changes and will provide the10

information decision-makers need for successful adaptation to climate change.

However, several caveats and well-known limitations apply to our modeling framework. First, our model is based purely on

weather and climate and ignores human activities (ignition/suppression). Indeed, drought is one component of a complicated

wildfire system (Littell, 2018) and our modeling framework is obviously contingent on ignition and fuels. Although human

activities adds a less understood and therefore less predictable component (Littell, 2018), including human factors (Costafreda-15

Aumedes et al., 2017) as well as causes of wildfire ignition (Ganteaume and Guerra, 2018) may improve model skill. All

these factors should be considered in the more complex context of risk assessment. Second, the environmental stratification
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Figure 8. Same as figure 7 but for specific regions. Note the different ranges on the y-axis.

used here (Metzger et al., 2005) has proven useful to aggregate large wildfires and develop different models (and should be

considered in future pan-European climate-wildfire modeling efforts) but we acknowledge that this stratification is likely, as

any other stratification, to mix-up large wildfires with different human causes and different climate drivers. Third, information

on fuel connectivity could also improve model skill and help target the regions at risk. A recent study has shown that wildfire

spread in the French Mediterranean is severely limited by fuel connectivity in some regions (Ganteaume and Barbero, 2019).5

Finally, developing a statistical model with a very limited number of large wildfires is a major limitation in some regions.

This limitation is obviously inherent to the modeling of extreme events and was partly overcome with the use a resampling

approach. Nonetheless, a longer record of wildfires would certainly allow the stabilization of the equations.

4 Conclusions

This study provides a statistical modeling framework of large wildfires from the weather-to-climate forcing. The model sim-10

ulates the daily probability of large wildfires onto an 8-km grid across the country. The best explanatory variables differ from
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one region to another, indicating that the atmosphere-large wildfire coupling is strongly mediated by environmental conditions.

Long-term drought was found to be a significant predictor of large wildfires in flammability-limited systems such as the Alpine

and Southwest regions. In the Mediterranean, large wildfires were found to be associated with both short-term fire weather

conditions and longer-term soil moisture deficits, collectively facilitating the occurrence of large wildfires. In this regard, the

SWI based on soil characteristics and reflecting the soil moisture available for the plant appears to be a useful metric to track5

large wildfire and may complement traditional fire weather indices. This modeling framework highlights once again the strong

control that atmospheric variability exerts on the occurrence of large wildfires across a range of timescales.
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Table A1. Typical range of explanatory variables during the day of large wildfires. The range indicates the 2.5 and 97.5 percentile (95%

confidence interval) of the composite means obtained from 1,000 bootstrapped datasets.

Env. Region Predictor 1 (95%CI) Predictor 2 (95%CI)

North FFMC(76.7;82.5)

Alpine SPI(-2.0;-1.1)

West DC(661.6;767.4)

Mediterranean Mountains DMC (86.1;108.9) SWI(0.14;0.18)

Mediterranean North FWI(26.9;30.9) SWI(0.12;0.14)

Mediterranean South DMC(77.2;131.2)
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