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Abstract 10 

Landslides constitute a hazard to life and infrastructure, and their risk is mitigated primarily by 11 

reducing exposure. This requires information on landslide hazard at a scale that can enable informed 12 

decisions. Such information is often unavailable to, or not easily interpreted by, those who might 13 

need it most (e.g., householders, local governments, and NGOs). To address this shortcoming, we 14 

develop simple rules to minimize exposure to coseismic landslide hazard that are understandable, 15 

communicable, and memorable, and that require no prior knowledge, skills, or equipment to apply. 16 

We examine rules based on two common metrics of landslide hazard, local slope and upslope 17 

contributing area as a proxy for hillslope location relative to rivers or ridge crests. In addition, we 18 

introduce and test two new metrics: the maximum angle to the skyline and the hazard area, defined 19 

as the upslope area with slope >40˚ from which landslide debris can reach a location without passing 20 

over a slope of <10˚. We then test the skill with which each metric can identify landslide hazard – 21 

defined as the probability of being hit by a landslide - using inventories of landslides triggered by six 22 

earthquakes that occurred between 1993 and 2015. We find that the maximum skyline angle and 23 

hazard area provide the most skilful predictions, and these results form the basis for two simple 24 

rules: ‘minimize your maximum angle to the skyline’ and ‘avoid steep (>10˚) channels with many 25 

steep (>40˚) areas that are upslope’. Because local slope alone is also a skilful predictor of landslide 26 

hazard, we can formulate a third rule as minimise the angle of the slope under your feet, especially 27 

on steep hillsides, but not at the expense of increasing skyline angle or hazard area’. In contrast, 28 

upslope contributing area, has a weaker and more complex relationship to hazard than the other 29 
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predictors. Our simple rules complement, but do not replace, detailed site-specific investigation; they 30 

can be used for initial estimation of landslide hazard or to guide decision-making in the absence of 31 

any other information. 32 

 33 

Keywords: coseismic landslides, landslide, heuristic, hazard, exposure 34 

 35 

1. Introduction 36 

Landslides involve the downward movement of soil or rock under gravity, sometimes mixing with 37 

water or air to run out rapidly over long distances. Landslides have considerable destructive potential 38 

and constitute a major hazard to life and infrastructure (e.g. Froude and Petley, 2018). 39 

Landslide risk can be mitigated by either reducing exposure - the likelihood that a particular person 40 

or structure is hit by a landslide - or by reducing the consequences of landslide impact. The latter is 41 

expensive for a building (Fell et al. 2005; Volkwein et al., 2011; Guillard-Gonçalves et al., 2016) and 42 

extremely difficult for a person (Kennedy et al., 2015). As a result, efforts in reducing landslide risk 43 

tend to focus on reducing exposure, primarily by siting infrastructure and assets (or by choosing to 44 

spend time) in places of lower landslide hazard. These choices, however, require information on 45 

landslide hazard at a scale that can enable informed decisions about how to mitigate the risk. In 46 

other words, a decision to reduce landslide exposure requires knowledge of how landslide hazard 47 

varies in space.  48 

Quantitative landslide hazard information is commonly expressed as a relative weighting or 49 

probability of landslide occurrence in a given location and over a specified period of time. This is 50 

often communicated as a hazard map (Dransch et al., 2010). These maps can provide useful 51 

information to inform decisions such as siting infrastructure, allocating resources, designing 52 

countermeasures, or planning mitigation measures such as evacuation routes. There are, however, 53 

at least five limitations to reliance on hazard maps as the sole source of landslide hazard information. 54 

First, landslide hazard maps do not exist for all hazardous locations, since their generation requires 55 

technical expertise and site-specific information that may not be available (such as geological maps 56 

or landslide inventories). Second, where maps do exist they may not be available to those that need 57 

them. Whether in physical or digital form, hazard maps are rarely held by the communities that live 58 
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within their boundaries (Alexander, 2005; Mills and Curtis, 2008; Twigg et al., 2017). Third, where 59 

landslide hazard maps are available their resolution may not be fine enough to address the questions 60 

that potential users will have. In everyday decisions, from where to build a house to which way to 61 

walk, distances of even a few metres can matter greatly for determining landslide exposure, because 62 

landslide hazard can vary substantially even over those short length scales. National- or even 63 

regional-scale hazard maps do not resolve hazard at those scales, however, and hazard maps at 64 

the appropriate scale would be extremely costly and time-consuming to produce over large areas. 65 

Fourth, landslide hazard maps are designed for technical users (such as engineers and planners) 66 

and thus can be difficult for non-technical users to interpret (Dransch et al., 2010). Hazard is often 67 

expressed in probabilistic terms which are inherently difficult to communicate and understand 68 

(Thompson et al., 2015). The maps may also require particular equipment, such as a computer with 69 

appropriate software, or additional contextual information to enable clear visualisation or to orient 70 

the user (Mills and Curtis, 2008). Finally, landslide hazard maps may lack appropriate information 71 

for decision-making. For example, landslide hazard is commonly equated simply with the probability 72 

of landslide initiation at a given location, rather than the probability that that location will be impacted 73 

by a landslide occurring there or somewhere upslope.  74 

In the absence of detailed hazard maps, how should we make decisions about siting infrastructure 75 

or spending time in landslide-prone areas? An alternative, and complementary, form of hazard 76 

information might be a set of general rules that can be memorised by anyone who might be exposed 77 

to landslide hazard, or by those charged with managing landslide risk, to be applied where no other 78 

information exists. A good general rule should: 1) be understandable, communicable and 79 

memorable; 2) require no prior knowledge, skills or equipment to evaluate; 3) be a skilful discriminant 80 

of hazard; and 4) be cast so that it does not increase exposure to another hazard. A good example 81 

of such a rule would be the instruction to minimise exposure to tsunami: “in case of earthquake, go 82 

to high ground or inland” (Atwater et al., 1999, p20). Research has shown that these types of simple 83 

rules are already to some extent implicitly coded into the decisions that people make (e.g., 84 

Gigerenzer, 2008), reflecting tacit knowledge of hazards (e.g., Shaw et al., 2008; Lebel, 2013; Twigg 85 

et al., 2017). Importantly, however, there are limits to this tacit knowledge (Briggs, 2005); in 86 

particular, the body of experience required to generate these rules is limited by both the infrequency 87 
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of triggering events, such as earthquakes or large storms, and a focus on normal rather than unusual 88 

but not improbable events, which can introduce bias (McCammon, 2004; Kahneman and Klein, 89 

2009). For example, while perennial rainfall-triggered landslides and the risks that they pose may be 90 

familiar to people in landslide-prone communities, landslides triggered by large earthquakes may fall 91 

outside of residents’ lived experience, and so will be more challenging to comprehend and account 92 

for in decision-making. If simple, memorable rules (fulfilling criteria one and two above) could be 93 

derived from a large inventory of hazardous events, these biases might be reduced while maintaining 94 

the other benefits of a rule-based approach (criteria three and four). Such a set of data-based rules 95 

could be used in the absence of, or in conjunction with, existing tools such as hazard maps and local 96 

knowledge, both to inform decisions and to inspire discussion amongst householders, local 97 

government, and non-governmental organisations. Such knowledge is commonly in demand not only 98 

from technical users but also from lay people (Twigg et al., 2017; Datta et al., 2018), especially 99 

because self-recovery after disasters (for example, via reconstruction programmes in which 100 

householders rebuild their own homes) is increasingly recognised as a critical mechanism of 101 

recovery (Twigg et al., 2017).  102 

Here we focus on rules that can be derived from the topography surrounding a given location and 103 

that differentiate exposure to coseismic landslide hazard on length scales of tens to hundreds of 104 

metres. Such rules are likely to be most useful for decisions before an earthquake about where to 105 

site infrastructure or spend time, and may be less useful for decisions about where to go during an 106 

earthquake when time is limited. We focus on earthquakes because landsliding is an important, but 107 

poorly understood, aspect of hazard in many recent continental earthquakes (Huang and Fan, 2013; 108 

Roback et al., 2018). We consider the extent to which our results may be transferrable to landslides 109 

caused by more frequent triggers, such as storms, in the discussion.  110 

We examine candidate rules based on our existing understanding of landslide mechanics to identify 111 

those that meet criteria one and two above. We then test the skill with which each candidate rule 112 

can identify landslide hazard, using inventories of coseismic landslides from the recent Finisterre 113 

(Papua New Guinea), Northridge (USA), Chi-Chi (Taiwan), Wenchuan (China), Haiti, and Gorkha 114 

(Nepal) earthquakes. Our goal is to determine the rule or rules that best fulfil the four criteria listed 115 

above, and that therefore provide the best combination of simplicity and skill in anticipating coseismic 116 
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landslide impacts. We ask two key questions: (1) to what extent could observed landslide locations 117 

in past earthquakes have been predicted by these simple rules alone, without recourse to more 118 

complex models; and (2) is there a single rule or set of rules that performs well across all 119 

earthquakes, and could form the basis for anticipating landslide-affected locations in a future 120 

earthquake? The first question relates to the absolute performance of the rule set, while the second 121 

relates to relative performance of rules within the set. While spatial patterns of landsliding in these 122 

earthquakes have been previously established, this is to our knowledge the first attempt to extract a 123 

more general set of rules from landslide datasets across multiple earthquakes. 124 

This paper is necessarily technical, addressing the question of whether it is possible to formulate 125 

such rules, identifying which rules work best and assessing their performance. We therefore expect 126 

the paper’s primary audience to be technical experts with an interest in landslide risk reduction. We 127 

have begun to explore ways of expressing these rules in a format that is more accessible to a general 128 

audience (e.g. Milledge et al., 2018). 129 

 130 

2. Potential predictors for coseismic landslide hazard: slope and upslope contributing 131 

area 132 

Local slope, the gradient of the ground surface measured over some short distance (usually ~1-100 133 

m) has been identified as an important driver of landslide occurrence in almost all prior landslide 134 

studies (e.g. Harp et al., 1981; Tibaldi et al., 1995; Keefer, 2000; Wang et al., 2003; Xu et al., 2012, 135 

2013; Parker et al., 2017). This is consistent with mechanistic expectations based on the balance of 136 

driving and resisting forces on an inclined failure plane (Taylor, 1937). Local slope is an intuitive 137 

parameter that is familiar to most people and can be easily estimated in relative terms (i.e., hillside 138 

A is steeper than hillside B) without specialised equipment. Seismic acceleration or shaking is 139 

commonly identified as the other dominant control on coseismic landslide occurrence (Khazai and 140 

Sitar 2004, Meunier 2007). However, shaking for any future earthquake cannot be predicted due to 141 

lack of certainty on source location, magnitude, rupture style, and local site effects (Geller, 1997). It 142 

is therefore difficult to incorporate into a general rule for future landslide hazard. 143 

Ridges are often considered to be areas of high coseismic landslide probability due to topographic 144 

amplification (Densmore and Hovius, 2000; Meunier et al., 2008; Rault et al., 2018), while rivers are 145 
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by definition areas of flow concentration into which landslides from multiple potential initiation zones 146 

may run out. Here we use upslope contributing area as a continuous estimator of the proximity to a 147 

ridgeline (defined here as an area with little or no upslope cells) or a valley, in order to assess how 148 

hazard may vary with position in the landscape. 149 

Other predictors have been identified in coseismic landslide studies, but these generally have a 150 

secondary effect and are not consistently identified as important controls on landslide occurrence 151 

(Parker et al., 2017). Elevation and aspect in particular lack a consistent explanation or pattern as a 152 

control on coseismic landslide hazard (Parker et al., 2017). Other common predictors are difficult to 153 

evaluate ‘on the ground’ without specialised equipment or knowledge. Soil type (e.g., Lee and 154 

Pradhan, 2006), rock type (e.g., Parise and Jibson, 2000), or land cover (e.g., Pradhan, 2013) may 155 

be relevant to slope stability but are difficult to identify without specialised training. Curvature (e.g., 156 

Xu et al., 2014a) is strongly dependent on the length scale over which it is measured and is extremely 157 

difficult to estimate by eye, particularly in rough natural topography. Proximity to roads (e.g., Xu et 158 

al., 2012) is often possible to estimate in the field, but inclusion of this factor assumes that all roads 159 

are similar in their design, age and construction, and thus have similar impacts on slope stability.  160 

 161 

3. Accounting for runout in landslide hazard: reach angle and runout routing 162 

The potential predictors described above are primarily chosen in hazard models for their perceived 163 

link to the probability of coseismic landslide initiation. Once triggered, however, landslide material 164 

may run out for long distances and over large areas. Thus, there are substantial portions of any 165 

landscape where landslide initiation is unlikely but where contact with a landslide is still possible – 166 

for example, at the foot of a steep hillslope. Mechanistic modelling of landslide runout is 167 

computationally intensive and strongly sensitive to initial conditions, taking it beyond the capacity of 168 

exposed communities (e.g., George and Iverson, 2014). In contrast, simple empirical approaches 169 

that have shown some predictive power fall into two categories: reach angles and runout routing. 170 

The Fahrboeschung or reach angle from the crown of a landslide to the toe of its deposit has been 171 

shown to follow an exponential decrease with landslide volume (Heim, 1882; Corominas, 1996; 172 

Hunter and Fell, 2003). The reach angle concept has been incorporated into a small number of 173 

hazard maps as a way to represent the probability that a landslide will reach a given location, and 174 
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can be coupled with predictions of the probability of landslide initiation (e.g., Kritikos et al., 2015). 175 

However, these complex combinations of probability are difficult to distil into a single simple rule and, 176 

to our knowledge, this has not yet been done. 177 

If initiation probability is unknown and we make the conservative assumption that any cell can initiate 178 

a landslide, then the hazard at a given location becomes proportional to the area that protrudes 179 

above a cone with its apex at the location of interest and its sides inclined at a critical reach angle 180 

from the horizontal. This approach has similarities with local sloping base level (Jaboyedoff et al., 181 

2004) and excess topography metrics (Blöthe et al., 2015), which both project surfaces through the 182 

landscape to identify less stable zones, though neither of these approaches are framed in terms of 183 

reach angles. Even this simple approach, which neglects initiation probability, is hard to distil: 1) its 184 

conceptual complexity makes it difficult to communicate; 2) its predictions depend on a reach angle 185 

parameter that is poorly constrained; and 3) the area protruding from an imaginary surface projected 186 

beneath the land surface is very difficult to estimate by eye, particularly in high-relief areas where 187 

significant parts of the landscape may be occluded from the viewpoint. An alternative metric would 188 

simply be the maximum angle from the horizontal to the skyline, which can be interpreted as the 189 

maximum (or worst-case) reach angle for that location. This metric is much simpler and thus easier 190 

to communicate and remember, can be estimated by eye, and avoids the problem of choosing a 191 

critical reach angle. We choose this as our third potential hazard predictor. 192 

Runout routing approaches assess the probability that landslide debris will reach a given location by 193 

assuming that it flows downslope and that its probability of stopping is dependent on some local 194 

property of the path along which it flows. This approach ranges in complexity from detailed physics-195 

based treatments (George and Iverson, 2014; von Ruette et al., 2016) to simple empirical rules such 196 

as the local slope or junction angle of flowpaths (Benda and Cundy, 1990; Montgomery and Dietrich, 197 

1994; Densmore et al., 1998; Fannin and Wise, 2001). Hazard estimates are then a function of the 198 

initiation probability integrated over the upslope area and the stopping probability for each potential 199 

event. To incorporate these considerations as simply as possible into a hazard predictor, we 200 

introduce a new approach (described below) that accounts for local slope at both the locations of 201 

landslide initiation and along the flow path. While this approach does not capture the dynamic 202 
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behaviour of landslide initiation or runout, we include it so that we can test the skill of such non-local 203 

approaches and the need to account for them in our simple rules. 204 

 205 

4. Earthquake inventories 206 

In this section, we describe the landslide inventories against which we test our four potential 207 

predictors. A Mw 6.9 earthquake occurred on 13 October 1993 in the Finisterre Mountains of Papua 208 

New Guinea with a hypocentre at 25 km depth, rupturing the north-dipping Ramu-Markham thrust 209 

fault to within a few hundred meters of the surface (Stevens et al., 1998). The event was followed by 210 

multiple aftershocks of >Mw 6, including a Mw 6.7 event on 25 October 1993 with a hypocentre at a 211 

depth of 30 km. About 4,700 landslides triggered by these earthquakes were mapped from 30 m 212 

resolution SPOT images (Meunier et al., 2007). Location accuracy for the landslides is thought to be 213 

similar to the pixel size of the satellite images used, ~30 m. 214 

 215 

The Mw 6.7 Northridge earthquake occurred in southern California, USA, on 17 January 1994 and 216 

ruptured 14 km of a south-dipping blind thrust fault, with a hypocenter at 19 km depth (Wald and 217 

Heaton, 1994, Hauksson et al., 1995). The triggered more than 11,000 landslides (Harp and Jibson, 218 

1996). Landslides were mapped immediately after the earthquake using field studies and aerial 219 

reconnaissance and were manually digitized on 1:24,000 scale base maps. Landslides >10 m across 220 

could be confidently identified and location errors were estimated to be <30 m (Harp and Jibson, 221 

1996).  222 

 223 

The Mw 7.6 Chi-Chi earthquake occurred on 21 September 1999 with a hypocentre at 8-10 km depth, 224 

rupturing ~100 km of the east-dipping Chelungpu thrust fault in western Taiwan (Shin and Teng, 225 

2001). The earthquake triggered more than 20,000 landslides with the majority occurring across a 226 

3,000 km2 region (Dadson et al., 2004). Landslides in this region were mapped by the Taiwan 227 

National Science and Technology Centre for Disaster Prevention from SPOT satellite images with a 228 

resolution of 20 m. Landslides with areas >3,600 m2 were resolved, resulting in an inventory of 9,272 229 

landslides with location errors estimated to be ~20 m (Dadson et al., 2004). 230 

 231 
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The Mw 7.9 Wenchuan earthquake occurred on 12 May 2008 with a hypocentre at 14-19 km depth, 232 

rupturing ~320 km of the steeply northwest-dipping Yingxiu-Beichuan and Pengguan faults in 233 

Sichuan, China (Xu et al., 2009). The earthquake triggered more than 60,000 landslides across a 234 

total area of 35,000 km2 (Gorum et al., 2011; Li et al., 2014). We used a subset of the landslide 235 

inventory compiled by Li et al. (2014), who mapped landslides from high-resolution (<15 m) satellite 236 

images and air photos. The subset of 18,700 landslides comprises all mapped landslides east of 237 

104° E (Figure S6), and was chosen to avoid gaps in the available 30 m resolution SRTM topographic 238 

data. The subset covers a similar range of topographic and lithologic conditions, and experienced a 239 

similar range of peak ground accelerations (0.16-1.3 g), to the full inventory (0.12-1.3 g). Location 240 

accuracy for landslides is thought to be similar to the pixel size of the satellite images used, ~15 m 241 

(Li et al., 2014).  242 

 243 

The Mw 7.0 Haiti earthquake occurred on 12 January 2010, with a hypocentre at 13 km depth 244 

(Mercier de Lépinay et al., 2011). The complex rupture involved both a blind thrust fault and deep 245 

lateral slip on the Enriquillo–Plantain Garden Fault (Hayes et al., 2010, Mercier de Lépinay et al., 246 

2011). The earthquake triggered more than 30,000 landslides across a 3,000 km2 region (Xu et al., 247 

2014a). We used an inventory of 23,679 landslides mapped by Harp et al. (2016) from publicly-248 

available satellite imagery with a resolution of 0.6 m before and after the earthquake; landslides with 249 

areas >10 m2 were resolved (Harp et al., 2017).  250 

 251 

The Mw 7.8 Gorkha earthquake occurred on 25 April 2015, rupturing ~140 km of the north-dipping 252 

Main Himalayan Thrust in central Nepal (Hayes et al., 2015; Elliott et al., 2016). It had a hypocentre 253 

at 8.2 km depth but did not rupture to the surface (Hayes et al., 2015). The event was followed by a 254 

series of large aftershocks, including a Mw 7.2 event on 12 May which ruptured a portion of the Main 255 

Himalayan Thrust directly east of the 25 April rupture (Avouac et al., 2015). The earthquake triggered 256 

approximately 25,000 landslides with a total surface area of about 87 km2 (Roback et al., 2018). We 257 

used an inventory of 24,915 landslides mapped by Roback et al. (2018) from Worldview-2 258 

Worldview-3 and Pleiades imagery, with a resolution of 0.25-0.5 m, before and after the earthquake.  259 

 260 
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These epicentral areas encompass a large range of millennial scale erosion rates (0.1 to >7 mm yr-261 

1), lithological properties (metamorphic, igneous and sedimentary), climatic conditions 262 

(Mediterranean to tropical) and vegetation covers (chapral, savannah, tundra, tropical and 263 

subtropical forest); see table S2 and Figures S3 to S8 in Supplementary Information. We choose 264 

this range of settings in order to test the general applicability of any rules that we can extract. 265 

 266 

5. Methods 267 

5.1. Conditional probability and landslide hazard 268 

Landslide hazard can be defined as the probability of being hit by a landslide in a given location 269 

and within a given time interval (Lee and Jones, 2004). Here we make no distinction between the 270 

consequences of being hit by landslides of different sizes or velocities, assuming that all are 271 

equally dangerous. This probability can be expressed mathematically as P(L|x,y,t), where L is the 272 

outcome of being hit by a landslide, x,y are the coordinates for a particular location, and t is the 273 

time interval of interest. We do not address the timing of landsliding, assuming that this is driven by 274 

the timing of an earthquake and is thus unpredictable (Geller, 1997). Instead we focus on landslide 275 

susceptibility given an earthquake that produces shaking of unknown intensity at a location (x,y), 276 

hence the notation P(L|x,y). We assume that the hazard at that location can be approximated by 277 

some location-specific characteristic (a). Thus, the landslide hazard at (x,y) is the conditional 278 

probability of being touched by a landslide given the value of the characteristic at that location, 279 

P(L|a), and can be calculated using Bayes' Theorem: 280 

 281 

𝑃𝑃(𝐿𝐿|𝑎𝑎) = 𝑃𝑃(𝐿𝐿) 𝑃𝑃(𝑎𝑎|𝐿𝐿)
𝑃𝑃(𝑎𝑎)           (1) 282 

 283 

where a is a specific characteristic of the location, such as  the topographic slope. If we assume that 284 

the relationships between past landslides and local characteristics are good predictors of their future 285 

relationships then we can construct empirical conditional probability calculations from landslide 286 

inventories. This approach has proved successful for a range of applications, including identifying 287 

topographic controls on vegetation patterns (Milledge et al., 2012) and the rainfall conditions that 288 
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trigger landslides (Berti et al., 2012). If we grid the topography, then the Bayes’ equation can be 289 

easily rewritten in terms of the numbers of grid cells, and in this form the direct equivalence of 290 

landslide conditional probability and landslide area density (e.g., Meunier et al., 2007; Dai et al., 291 

2011; Gorum et al., 2014) is clear: 292 

 293 

𝑃𝑃(𝐿𝐿|𝑎𝑎) = 𝑁𝑁(𝑎𝑎∩𝐿𝐿) 
𝑁𝑁(𝑎𝑎)

          (2) 294 

 295 

where N(a∩L) is the number of cells with a given value of characteristic a that are touched by a 296 

mapped landslide, N(a) is the number of cells with the characteristic of a in the entire study area, 297 

and the study area is defined by the smallest convex hull that contains all of the observed landslides. 298 

To account for variability in the magnitude of shaking between the six study areas, we normalise the 299 

conditional probability of being hit by a landslide P(L|a) by the study area average probability of 300 

landsliding P(L) to generate a relative hazard. This can be shown to be directly equivalent to the 301 

‘frequency ratio’ (e.g., Lee and Pradhan, 2007; Lee and Sambath, 2006; Yilmaz, 2009; Kritikos et 302 

al., 2015): 303 

 304 

𝑃𝑃(𝐿𝐿|𝑎𝑎)
𝑃𝑃(𝐿𝐿)

=
𝑁𝑁(𝑎𝑎∩𝐿𝐿)

𝑁𝑁(𝑎𝑎)�  

𝑁𝑁(𝐿𝐿)
𝑁𝑁(𝑆𝑆)�  

=  𝑁𝑁(𝑎𝑎∩𝐿𝐿)
𝑁𝑁(𝑎𝑎)

 𝑁𝑁(𝑆𝑆)
𝑁𝑁(𝐿𝐿)

         (3) 305 

 306 

where N(S) is the total number of cells in the study area and N(L) is the number of cells touched by 307 

landslides. Our normalised conditional probability is also directly equivalent to the ‘probability ratio’ 308 

used by Lin et al. (2008) and Meunier et al. (2008) since, from Bayes’ Theorem: 309 

 310 

𝑃𝑃(𝐿𝐿|𝑎𝑎)
𝑃𝑃(𝐿𝐿)

= 𝑃𝑃(𝐿𝐿) 𝑃𝑃(𝑎𝑎|𝐿𝐿)
𝑃𝑃(𝑎𝑎)𝑃𝑃(𝐿𝐿)

= 𝑃𝑃(𝑎𝑎|𝐿𝐿)
𝑃𝑃(𝑎𝑎)

         (4) 311 

 312 

We display the normalised conditional probability on a logarithmic scale for readability, resulting in a 313 

probability metric that is strongly similar to the ‘information value’ metric used in some landslide 314 

susceptibility analyses (e.g., Yin and Yan, 1988). We evaluate both one-dimensional conditional 315 
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probability in terms of one predictor variable a, and two-dimensional conditional probability in terms 316 

of two predictors considered jointly. 317 

Conditional probability analysis is advantageous for its direct link to hazard and does not require us 318 

to impose a functional form to the data. However, the results are partly dependent on bin size and 319 

location for the predictor variable, and bins with few observations (i.e., those for which N(a) << N(S)) 320 

can result in noisy data that are difficult to interpret. We use the approach of Rault et al. (2018) to 321 

identify the parts of the conditional probability data where our observations are sparse, leading to 322 

lower confidence in the results. We compute the confidence interval Ip associated with the random 323 

drawing of the N(L) landslide cells from the landscape distribution of the predictor variable. If the 324 

normalised conditional probability P(L|a) / P(L) is within the interval Ip then we cannot exclude the 325 

possibility that the difference between the conditional and study area average probabilities is simply 326 

the result of random fluctuations. Given that landslides are rare events even in these large 327 

earthquakes, we assume that landslides are independent and can be modelled with Bernoulli 328 

sampling. Since the binomial distribution is well approximated by a normal distribution when samples 329 

sizes are large (i.e. N(L) > 30) and in the absence of extreme skew (i.e. N(L) x (P(a|L) > 5 and N(L) 330 

x (1 - (P(a|L)) > 5), then the 90% confidence interval can be estimated as: 331 

𝐼𝐼𝑝𝑝 = �1 − 1.96� 1−𝑃𝑃�𝑎𝑎�𝐿𝐿�
𝑁𝑁(𝐿𝐿) 𝑃𝑃�𝑎𝑎�𝐿𝐿� ; 1 + 1.96� 1−𝑃𝑃�𝑎𝑎�𝐿𝐿�

𝑁𝑁(𝐿𝐿) 𝑃𝑃(𝑎𝑎|𝐿𝐿)
; �      (5) 332 

We distinguish conditional probability values that exceed this confidence interval Ip in the analysis 333 

below.  334 

To aid interpretation in the two-dimensional case, we also perform a two-variable logistic regression 335 

with both local slope and upslope contributing area as predictors. Whilst other statistical approaches 336 

could be used here (e.g. Pradhan, 2013), our intention is not to find the statistical approach that 337 

provides the most powerful synthesis of the different variables, but to test the effectiveness of the 338 

variables themselves at distinguishing hazard when applied in the form of simple rules. 339 

 340 

5.2. Receiver operating characteristic curves  341 

Any simple rule for identifying more or less hazardous locations in the landscape will produce a 342 

relative measure of landslide probability. To evaluate this measure against a binary landslide map 343 
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or inventory (where every cell is classified as landslide or non-landslide), it must be converted into a 344 

binary classification. A common approach to this problem is to construct a receiver operating 345 

characteristic (ROC) curve (e.g., Frattini et al., 2010). This curve quantifies both the benefit of a 346 

given classification in terms of successfully classified outcomes (landslide and non-landslide 347 

locations correctly identified, representing true positive and true negative outcomes, respectively) 348 

and also the cost (non-landslides identified as landslides, known as false positives; and vice versa, 349 

known as false negatives). The ROC curve is constructed by thresholding a continuous variable 350 

(e.g., slope) and calculating the true positive rate as the number of true positives normalised by all 351 

positive observations, and the false positive rate as the number of false positives normalised by all 352 

negative observations. Evaluation of these rates at different threshold values results in a curve, 353 

where the 1:1 line reflects the naïve random case. The area under the curve (AUC) tends to 1 as the 354 

skill of the classifier improves towards perfect classification and to 0.5 as the classifier worsens 355 

towards the naïve case. We calculate ROC curves for all of our chosen predictive approaches for 356 

each inventory. 357 

 358 

5.3. Topographic analysis 359 

All of the metrics tested here are defined using topographic data in the form of digital elevation 360 

models (DEMs). We use 30 m resolution DEM data drawn from the most widely-used, freely-361 

available source for each site: for Northridge they are derived from down-sampled 10 m NED 362 

elevation data (https://lta.cr.usgs.gov/NED), while for all other sites we use 1-arc sec Shuttle Radar 363 

Topography Mission (STRM) elevation data (http://srtm.csi.cgiar.org/). 364 

 365 

5.3.1. Slope and upslope contributing area 366 

We calculate local slope as the steepest path to a downslope neighbour from each cell (Travis et al., 367 

1975) because calculating slope over larger (e.g., 3 x 3 cell) windows for a 30 m resolution DEM 368 

results in considerable underestimation (Claessens et al., 2005). We calculate upslope contributing 369 

area using a multiple flow direction algorithm (Quinn et al., 1991) having filled pits using a flood fill 370 

algorithm (Schwanghart and Kuhn, 2010), and normalising by the grid cell width to minimise grid 371 

https://lta.cr.usgs.gov/NED
http://srtm.csi.cgiar.org/
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resolution biases. These topographic analyses are performed in Matlab using TopoToolbox v1.06 372 

(Schwanghart and Kuhn, 2010). 373 

 374 

5.3.2. Skyline angle analysis 375 

To capture the effects of both landslide initiation and runout, we define the skyline angle as the 376 

maximum angle from horizontal to the skyline for a given location. This metric is easily estimated by 377 

eye in the field, and gives a worst-case reach angle for the location of interest, but is runout-378 

dominated in that it does not take into account the probability of initiation.  379 

For each cell in a study area, we estimate the skyline angle by calculating vertical angles between 380 

the target cell and every other cell within a 4.5 km radius. This search radius is chosen to greatly 381 

exceed the average hillslope lengths in all study areas and thus to fully capture the local skyline. The 382 

longest average hillslope length out of our study areas is ~500 m for Wenchuan, estimated following 383 

the method of Roering et al. (2007). We choose a search radius nine times larger than this hillslope 384 

length to ensure redundancy in capturing the local skyline and because the only disadvantage of a 385 

larger radius is increased computational cost. This approach is physically limited in at least two ways 386 

(Figure 1a). First, it does not account for the dependence of runout on the size of the initial failure or 387 

on increases or decreases of failure volume during runout (e.g., Corominas, 1996). Second, it does 388 

not honour potential material flow paths. That is, the skyline cell that generates the steepest slope 389 

to the target cell may not be connected to the target cell by a flowpath with monotonically decreasing 390 

elevation. However, this metric provides a measure of the gravitational potential energy available to 391 

drive runout in the vicinity of the target cell. 392 
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 393 

Figure 1. Schematic view of the different topographic metrics tested here. (a) perspective view of a 394 

landscape with each cell shaded according to its local slope from light (steep) to dark (gentle). The 395 

upslope contributing area for point P is coloured blue, and the cells steeper than 40˚ that have a flow 396 

path to P that is never less than 10˚ are coloured red. (b) the same perspective view with a cone 397 

projected from point P at an angle of 34˚ so that the surface of the cone is in places tangent to but 398 

never intersects the ground surface, indicating a maximum skyline angle of 34˚ for point P. (c) cross 399 

section A-A’ through the landscape (highlighted in yellow on panels a and b) with dashed lines 400 

showing skyline angles at four example locations. 401 

 402 

5.3.3. Runout routing analysis 403 

To assess the importance of non-local runout paths on landslide probability, we follow the approach 404 

of Dietrich and Sitar (1997) who proposed the simplest possible debris flow runout model, requiring 405 

only thresholds to define the initial instability and for downslope motion to continue. This simple 406 

model, referred to as SHALRUN, has been integrated with the coupled hydrologic-slope stability 407 

model SHALSTAB in an efficient parallel framework to predict landslide hazard potential in California 408 



16 
 

(Bellugi et al, 2011). SHALRUN requires only two field-calibrated parameters: a critical rainfall 409 

threshold to define instability, and a minimum slope threshold for downslope motion to continue. To 410 

apply this model in the context of coseismic landslides, we modify the condition for landslide 411 

initiation, replacing the critical rainfall threshold with a slope threshold, to create a new model that 412 

we refer to as SHALRUN-EQ. We thus assume that landslide initiation and deposition are entirely 413 

dependent on the local slope of the ground surface - that is, landslides are more likely to initiate on 414 

steeper slopes and deposit on flatter slopes. More formally, SHALRUN-EQ predicts the upslope 415 

hazard area Ah as the upslope area weighted by the joint probability of landslide initiation and runout. 416 

Locations with higher Ah should have higher exposure to coseismic landslide hazard than those with 417 

low (or no) Ah. Formulation of the model requires: (1) determination of the mobilisation probability 418 

Pmi at each cell i in the study area; (2) determination of the connection probability Pcij for mobilised 419 

material from each cell i to the target cell j; (3) convolution of (1) and (2) to get the locational hazard 420 

Pmcij; and (4) accumulation of the locational hazard to determine a hazard area Ahj above each target 421 

cell j . 422 

In order to generate a simple rule, our model assumes that landslide initiation and deposition are 423 

entirely dependent on the local slope of the ground surface θ. For landslide initiation, we assume 424 

that locations steeper than a threshold slope θm are all equally capable of initiating a landslide with 425 

probability Pmi: 426 

 427 

𝑃𝑃𝑚𝑚𝑚𝑚 = �1 ∶  𝜃𝜃𝑖𝑖 ≥ 𝜃𝜃𝑚𝑚 
0 ∶  𝜃𝜃𝑖𝑖 < 𝜃𝜃𝑚𝑚

         (6) 428 

 429 

where θi is the observed local slope in a downslope direction at cell i and θm is the threshold slope 430 

required for landslide initiation. 431 

In order to represent a landslide hazard, mobilised material must be able to run out from the initiation 432 

point i to the target cell j. This relationship is binary: either these points are connected by a viable 433 

runout path or they are not. We define flow paths using multiple flow routing to all downslope cells 434 

weighted by the slope of the flow path (Quinn et al., 1991). This path must enable continued runout 435 

for its entire length; if at any point on the flow path the material is fully deposited, then that initiation 436 
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zone will be disconnected from the target cell j. Surface slope has previously been used to describe 437 

the probability that landslide material entering a cell will be deposited rather than continuing into the 438 

next downslope cell (e.g., Benda and Cundy, 1990; Fannin and Wise, 2001). For landslide 439 

deposition, we apply the simplest possible stopping condition, and assume that landslide runout 440 

ceases on slopes gentler than a critical angle (θs). The probability that a landslide initiated at cell i 441 

reaches the target cell j (Pcij) can thus be expressed as: 442 

 443 

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 = �
1: 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 ≥ 𝜃𝜃𝑠𝑠 
0:𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑖𝑖𝑖𝑖 < 𝜃𝜃𝑠𝑠

         (7) 444 

 445 

where θminij is the minimum slope along the flow path from cell i to cell j, and θs is the critical slope 446 

required for stopping. We recognise that this simple stopping condition would be violated for 447 

landslides large enough to continue beyond the first cell with angle below the deposition threshold 448 

and discuss the implications of this simplification in Section 7.1. 449 

We combine the initiation and runout probabilities to calculate the locational hazard Pmcij as the area 450 

ai of cell i weighted by the probability that a landslide is both mobilised in cell i and is connected to 451 

cell j: 452 

 453 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑎𝑎𝑖𝑖  𝑃𝑃𝑚𝑚𝑚𝑚  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐          (8) 454 

 455 

Assuming that 𝜃𝜃𝑠𝑠 > 0, we calculate the hazard area Ahj for each target cell j by summing locational 456 

hazard in the n cells upslope of j, normalised by grid cell width to minimise grid resolution bias: 457 

 458 

𝐴𝐴ℎ𝑗𝑗 = ∑ �𝑎𝑎𝑖𝑖
𝑙𝑙𝑗𝑗

 𝑃𝑃𝑚𝑚𝑚𝑚  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐�𝑛𝑛
𝑖𝑖=1          (9) 459 

 460 

where lj, is the grid cell width (30 m). Equation 9 is evaluated for every cell in the study area to 461 

generate a spatial grid of hazard area Ah (Figure 2). Our choice of step functions for the mobilisation 462 

(Pmi) and connection (Pcj) probabilities allows us to interpret Ah as the upslope area with slope steeper 463 
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than θm from which landslide debris can reach the target cell without passing over a slope of gentler 464 

than θs. Alternative formulations could be used for Pmi and Pcj but these would result in a less intuitive 465 

index that would be difficult to implement as a simple rule. 466 

 467 

There is implicit resolution dependence to the stopping condition θs because it assumes that the low 468 

gradient area is long enough (in terms of flow path length) that the landslide will stop. Similarly, there 469 

is resolution dependence to the initiating condition θm as topographic surfaces will be more or less 470 

smooth, depending on the resolution of the DEM (Claessens et al., 2005). Also, the initiation 471 

probability is based on local slope alone and so does not account for any of the other possible drivers 472 

of coseismic landslide initiation, such as topographic amplification (Meunier et al., 2008) or pore 473 

water pressure (e.g., Xu et al., 2012). While many more complex models exist that account for 474 

initiation volumes and flow dynamics (e.g., George and Iverson, 2014; von Ruette et al., 2016), we 475 

seek the simplest possible model that captures the effects of drainage networks in accumulating 476 

hazard, of steep slopes in landslide initiation, and of gentle slopes in landslide deposition. 477 

The model has two parameters (θm and θs), both of which are effective rather than measurable. We 478 

first optimise the model for each inventory to establish its performance under the best possible 479 

scenario, finding the values of θm and θs that provide the best fit to the inventory data. We then test 480 

the model using the average of the optimised parameters from the six inventories, in order to 481 

represent a more realistic application where these parameters must be estimated from previous 482 

earthquakes. Thus, the values of θm and θs should not be interpreted as mechanistic thresholds, but 483 

rather as the result of an optimisation that also depends on the DEM resolution. 484 
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 485 

Figure 2. SHALRUN-EQ hazard area calculations for a simplified (steepest flowpath) example with 486 

an initiation angle of 40˚ and a stopping angle of 10˚: a) elevations from a 30 m resolution digital 487 

elevation model for an area of topographic convergence, where lines show flow paths from cell to 488 

cell; b) local slope with thick outlines showing cells steeper than 40˚; c) upslope contributing area; d) 489 

upslope contributing area steeper than 40˚; and e) hazard area, the upslope area steeper than 40˚ 490 

with flow paths that do not fall below 10˚. 491 

  492 
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6. Results 493 

6.1. Local slope 494 

For all inventories, landslide hazard increases as an approximately exponential function of local 495 

slope (Figure 3a). This behaviour is consistent up to slopes of 70˚, beyond which small sample sizes 496 

limit our confidence. Conditional probability exceeds the study area average landslide probability for 497 

slopes >30-35 in four of the inventories, and for slopes >20-25 for the remaining two (Northridge and 498 

Haiti). This suggests that slopes <30˚ are generally safer than average, while those >45˚ have a 499 

landslide hazard >200% of the average, and those >50˚ are generally >300% of the average. The 500 

conditional probability curves for Finisterre, Chi-Chi and Gorkha largely collapse on each other when 501 

normalised by study-area average probability (Figure 3a). However, landslide hazard is less 502 

sensitive to slope for Wenchuan and more sensitive for Northridge and Haiti. This variability between 503 

inventories may be a result of weaker rock strength in the Northridge and Haiti study areas. When 504 

local slope is normalised by study area average slope (Figure 3b), the curves collapse onto those 505 

from the other study areas. Comparing the combined PDF of study area slopes (Figure 3a) with the 506 

hazard curves indicates that the majority of landslide hazard is concentrated in a small subset of 507 

each study area (that is, on slopes >35˚). This implies that 1) many of the modest (<15˚) slopes on 508 

which people in these areas generally choose to live are exposed to relatively low hazard (less than 509 

half the study area average for all but Wenchuan); and 2) any choice to spend time or build 510 

infrastructure on steeper slopes should take into account the considerable associated increase in 511 

exposure to coseismic landslide hazard.  512 

 513 

6.2. Upslope contributing area 514 

For all inventories, landslide hazard increases from less than the study area average at the lowest 515 

upslope contributing areas – that is, at the ridge tops – to a peak or plateau at intermediate upslope 516 

contributing areas (Figure 3c). Locations with the lowest upslope contributing area also have the 517 

lowest hazard for four of the six inventories, with Northridge and Finisterre as exceptions. For 518 

Northridge, the zone of lower than average hazard extends only to upslope contributing areas of ~40 519 

m2/m; for Finisterre it extends to ~100 m2/m, for Chi-Chi and Haiti to ~150 m2/m, and for Wenchuan 520 

and Nepal to ~200 m2/m. The location of peak landslide hazard broadly coincides with the inflection 521 
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in average slope for a given upslope contributing area (Figure 4). This inflection is commonly used 522 

as an indicator of the transition from hillslopes to rivers (Montgomery and Foufoula-Georgiou, 1993; 523 

Stock and Dietrich, 2006; Hancock and Evans, 2006), suggesting that maximum (or near-maximum) 524 

landslide hazard occurs at the transition from hillslopes to channels (Figure 3c). We use this inflection 525 

to identify a reference upslope contributing area associated with channel initiation for each 526 

landscape. Normalising upslope contributing area by this reference area shifts the conditional 527 

probability curves laterally, aligning the Northridge curve with those from the other sites (Figure 3d). 528 

This normalised analysis shows that landslide hazard is highest within low-order channels, where 529 

upslope contributing areas are less than ten times the upslope contributing area associated with 530 

channel initiation in the study sites (Figure 3d). Further downstream, landslide hazard generally 531 

decreases with increasing upslope contributing area although limited sample sizes mean that we 532 

cannot confidently interpret the curves beyond ~1000 m2/m. 533 
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 534 

Figure 3. Landslide hazard defined as conditional probability P(L|x) normalised by study area 535 

average landslide probability P(L), where x is a) local slope; b) local slope normalised by the study 536 

area average slope; c) upslope contributing area per unit cell width; and d) upslope contributing area 537 

normalised by the upslope contributing area of the inflection in average slope. Solid black lines show 538 

normalised probability of 1, the study area average; thus, points above this line have above-average 539 

landslide hazard compared to the study area as a whole. Asterisks indicate values for which 540 

conditional probability differs from the study area average probability at 90% confidence. Red bars 541 

in (a) and (c) show histograms of local slope and upslope contributing area over the six inventories. 542 
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Numbers in brackets show study-area average slopes in panel (a), and upslope contributing area at 543 

the hillslope-channel transition in panel (c).  544 

 545 

6.3. Local slope and upslope contributing area combined 546 

When slope and upslope contributing area are examined in combination, the highest landslide 547 

hazard is consistently found at the highest upslope contributing area for a given slope, or the highest 548 

slope for a given upslope contributing area (Figure 4). In this case normalisation adds little to our 549 

understanding of the relationship between landslide hazard and the two metrics under consideration, 550 

with normalised results shown in Figure S9 for reference.  551 

Two-dimensional conditional probability analysis is sensitive to the sample size within each bin, 552 

limiting our confidence in the results for large parts of the slope-upslope contributing area space. 553 

The logistic regression contours do not suffer the same limitation, however, and provide important 554 

additional information on the form of the relationship between landslide hazard, slope and upslope 555 

contributing area. Taken together, the logistic regression contours and conditional probability 556 

surfaces show that the lowest hazard is consistently found at locations with both low slope and low 557 

upslope contributing area. Importantly, landslide hazard increases more steeply with increasing 558 

slope than with increasing upslope contributing area, indicating the dominance of local slope in 559 

setting landslide hazard. There is some variability in the orientation of the hazard contours between 560 

inventories, with Finisterre and Northridge showing the strongest slope dependence and Wenchuan 561 

showing the strongest upslope contributing area dependence (Figure 4).  562 

The shape of the two-dimensional probability surface determines the best course of action in terms 563 

of choosing alternative locations for a particular asset or activity, but such action is also constrained 564 

by what is possible. The average slopes for each upslope contributing area (shown by the dashed 565 

lines in Figure 4) indicate that for Northridge, Finisterre, Chichi, and Haiti there are rarely situations 566 

where a reduction in upslope contributing area will not involve (on average) an increase in slope that 567 

will actually increase landslide hazard. However, for locations in Wenchuan and Gorkha with upslope 568 

contributing areas of 300 to 10,000 m2/m, the hazard reduction due to reducing upslope contributing 569 

area is not offset by the associated increase in slope. This suggests that, for the former inventories, 570 

it is always beneficial to decrease slope even at the expense of upslope contributing area, while for 571 
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the latter inventories benefit is more dependent on initial location. In general, the average slope 572 

contour appears to separate higher and lower than average landslide hazard in slope-upslope 573 

contributing area space, suggesting that higher than average landslide hazard is consistently found 574 

on higher than average slopes for a given upslope contributing area. 575 

 576 

 577 

Figure 4. Two-dimensional plots of landslide hazard defined as conditional landslide probability 578 

P(L|s,a) normalised by study area average landslide probability P(L), where s is local slope and a is 579 

upslope contributing area per unit cell width. Dashed lines show the mean slope per upslope 580 

contributing area bin, using 100 logarithmically-spaced bins. Solid lines are landslide probability 581 

contours derived from logistic regression in the same units as the conditional landslide probability 582 

surface. Grey cells indicate slope-area pairs with data but with no cells touching a landslide. Note 583 

that upslope contributing area is shown on a logarithmic axis, so that maintaining a constant landslide 584 

probability for a given increase in slope requires a larger reduction in upslope contributing area at 585 

low slopes than at high slopes. Fainter colours indicate landslide hazard estimates that do not differ 586 

significantly from the study area average at 90% confidence. 587 
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 588 

6.4. Skyline angle 589 

Landslide hazard increases as an approximately exponential function of maximum skyline angle 590 

(Figure 5a), similar to the relationship with local slope (Figure 3a). We are confident in this behaviour 591 

for skyline angles in the range 5˚ to 70˚, outside of which small sample sizes limit our confidence. 592 

Landslide hazard exceeds the study area average at skyline angles > 27-28˚ for Northridge and 593 

Haiti, 34˚ for Wenchuan, and 38-40˚ for Finisterre, Chi-Chi and Gorkha. Locations with skyline angles 594 

of <20˚ have less than half the study area average landslide hazard for all inventories, while those 595 

with skyline angles of >50˚ have more than double the study area average (Figure 5a). The lowest 596 

landslide hazard values, at skyline angles of less than 10˚, are lower than those for local slope or 597 

upslope contributing area. As with local slope, the curves for several of the inventories (Finisterre, 598 

Chi-Chi and Wenchuan) collapse to a similar relationship when normalised by study area average 599 

hazard, suggesting similar behaviour across a range of different landscapes. However, Northridge 600 

and Haiti show stronger sensitivity to skyline angle, and Gorkha shows considerably reduced 601 

landslide hazard at low skyline angles, relative to the other inventories. Some of this variability 602 

between inventories is likely related to differences in rock strength, because normalising skyline 603 

angle by the study area average considerably reduces the separation between individual curves, 604 

particularly those for Gorkha, Northridge and Haiti (Figure 5b). 605 

 606 
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Figure 5. Landslide hazard defined as conditional landslide probability normalised by study area 607 

average landslide probability, for a) skyline angle; and b) skyline angle normalised by the study area 608 

average. Asterisks indicate values for which conditional probability differs from the study area 609 

average probability at 90% confidence. Red bars in (a) show histograms of skyline angle over the 610 

six inventories. Numbers in brackets show study area average skyline angles. 611 

 612 

6.5. Hazard area  613 

The ability of hazard area Ah to distinguish landslide from non-landslide cells is sensitive to two 614 

tuneable parameters (θm and θs in Equations 6 and 7), that have a unique optimum for each inventory 615 

(Figure S1). The optimum parameter values vary between inventories, with optimum initiation slopes 616 

θm ranging from 36˚ to 40˚ and stopping slopes θs from 6˚ to 31˚ (Table S1). Since these optimum 617 

parameters vary between inventories and can only be identified after an earthquake, they are 618 

problematic in terms of incorporation into a rule. Instead, we use the global averages of the optimised 619 

parameter values from the six inventories, θm = 40˚ and θs 10˚, rounded to one significant figure to 620 

simplify the rule (and because it involves changing only θm from 39˚ to 40˚). The stopping angle of 621 

10˚ is steeper than many, though not all, of the observed slopes on which debris flows stop. For 622 

example, Stock and Dietrich (2003) reported that debris flows generally exhibit stopping angles of 2-623 

6˚, but may halt at much larger angles (13-22˚) on open slopes. The steeper angles reported here 624 

may reflect differences in the method and resolution of slope calculation but may result from the 625 

coseismic trigger, which does not necessitate high levels of saturation in the initial failure. Landslide 626 

hazard is very low for cells with Ah = 0 (i.e., where no cells steeper than the initiation angle runout 627 

over flowpaths steeper than the stopping angle), ranging from 2% to 15% of the study area average 628 

(Figure 6). Hazard increases with increasing Ah for all inventories but only slowly for Ah < 20 m2/m; 629 

the trend then steepens to a peak (Northridge, Haiti, Nepal) or plateau (Finisterre, Chichi, Wenchuan) 630 

at Ah values of ~100 to 1000 m2/m with conditional probabilities that are 200-800% of the study area 631 

average (Figure 6). For Finisterre and Wenchuan, a combination of limited observations and a 632 

weaker dependence of landslide probability on hazard area results in large parts of the curve (at Ah 633 
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>1 m2/m) where conditional probabilities cannot be distinguished from the study area average. For 634 

all sites, confidence becomes weak for hazard areas greater than 1000 m2/m. 635 

 636 

Figure 6. Landslide hazard defined as conditional landslide probability P(L|x) normalised by study 637 

area average landslide probability P(L), for hazard area. Hazard area is calculated with global 638 

average parameters θm and θs - that is, the areas with slope greater than 40˚ that have a flow path 639 

to the cell of interest and do not travel across a cell with a slope less than 10˚. Coloured circles on 640 

the y-axis indicate landslide hazard for cells with a hazard area of 0 m2/m. Asterisks indicate values 641 

for which probability differs from the study area average at 90% confidence. Red bars show 642 

histograms of hazard area over the six inventories. 643 

 644 

6.6. ROC analysis 645 

To supplement conditional probability analysis, we examine the performance of slope, upslope 646 

contributing area, skyline angle, and hazard area as continuous hazard indices (with high index 647 

values reflecting high hazard and vice versa) using ROC curves (Figure 6). Successful hazard 648 

indices will capture landslide cells within high index zones (true positives) without capturing non-649 

landslide cells in the same zones (false positives). Hazard area performs best for all six inventories 650 
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with an AUC always above 0.78 and an average AUC of 0.83 (Table 1). Skyline angle performs joint 651 

best for Haiti and second best for a further three of the six inventories, with AUC always above 0.65 652 

and an average AUC of 0.77. The exceptions, where slope, upslope area, or their combination 653 

perform second best, are Northridge and Wenchuan. For Northridge slope alone and slope plus 654 

upslope contributing area both outperform skyline angle by a single percentage point, while upslope 655 

contributing area by itself performs considerably worse (Figure 7a). For Wenchuan, upslope 656 

contributing area considerably outperforms the other indices, while slope performs particularly 657 

poorly, perhaps reflecting longer-runout landslides that extend to lower slopes and larger areas 658 

(Figure 7d). Although slope, upslope contributing area, and their combination all perform better than 659 

skyline angle in one of the inventories, none of these metrics do so consistently across multiple 660 

inventories. This is reflected in their averaged AUC values over all inventories of 0.69, 0.72 and 0.74 661 

for upslope contributing area, slope, and their combination respectively. 662 

 663 

Table 1. Area under the ROC curve for the five hazard metrics over the six coseismic landslide 664 

inventories. The best performing metric for each inventory is in bold, the second best is in italics and 665 

the worst performing metric is underlined. 666 

  

Hazard 

area 

Skyline 

angle 

Slope + upslope 

contributing area 

Local 

slope 

Upslope 

contributing area 

Finisterre 0.79 0.72 0.69 0.69 0.66 

Northridge 0.89 0.83 0.84 0.84 0.62 

Chi-Chi 0.80 0.73 0.68 0.67 0.69 

Wenchuan 0.78 0.65 0.62 0.58 0.74 

Haiti 0.86 0.85 0.83 0.79 0.69 

Gorkha 0.88 0.85 0.77 0.73 0.76 

Average 0.83 0.77 0.74 0.72 0.69 

1σ 0.05 0.08 0.09 0.09 0.05 

 667 
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 668 

Figure 7. Receiver operating characteristic (ROC) curves for the six inventories: a) Finisterre, b) 669 

Northridge, c) Chi-Chi, d) Wenchuan, e) Haiti, f) Gorkha. False positive rate is given by the number 670 

of false positives divided by the sum of false positives and true negatives. True positive rate is given 671 

by the number of true positives divided by the sum of true positives and false negatives. The 1:1 line 672 

represents the naïve random case. Curves plotting closer to the top left corner of each panel 673 

represent better model performance. 674 

 675 

7. Discussion 676 

We structure the discussion around three simple rules that are drawn from the results above. In each 677 

case we explain the evidence on which the message is based, why it works, our degree of 678 

confidence, and implications for applying the rule. Finally, we examine the spatial implications of 679 

these rules using an example landscape. 680 

7.1. Rule 1: Avoid steep (>10˚) channels with many steep (>40˚) areas that are 681 

upslope 682 

The hazard area is the best or joint-best predictor of landslide hazard for all six inventories. The 683 

hazard area defined by the average initiation angle (40°) and stopping angle (10°) across all six 684 

inventories performs nearly as well as the optimised area for each inventory, enabling us to define a 685 

general rule independent of any specific inventory. This is fortunate, as site-specific optimisation 686 
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requires a pre-existing landslide inventory for any individual area and so may not be generally 687 

feasible. In all six inventories, locations with Ah > 60 m2/m have landslide hazard that is greater than 688 

the study area average. While landslide hazard generally increases with increasing hazard area, the 689 

relationship is complex (Figure 6). Landslide hazard can be most effectively decreased by 690 

decreasing Ah in the range 20-100 m2/m. Outside of this range Ah is less related to hazard. An 691 

exception to this pattern is seen in areas with a hazard area of zero, which generally have landslide 692 

hazard 5-10 times lower than that for even for very small values of Ah (c. 0.1 m2/m). On this basis, 693 

the qualitative statement to avoid areas with ‘many’ steep slopes could also be phrased as ‘any’ 694 

steep slopes  695 

 696 

7.2. Rule 2: Minimise your maximum angle to the skyline  697 

The maximum skyline angle is the second-best predictor of landslide hazard in four of the six cases. 698 

Locations with skyline angles less than 30˚ generally have a landslide hazard below the study area 699 

average. Importantly, landslide hazard increases non-linearly with skyline angle, so that a slight 700 

reduction to a high skyline angle results in a much larger reduction in hazard than a similar reduction 701 

to a lower skyline angle. 702 

The distinction between local slope and skyline angle reflects the importance of runout as well as 703 

initiation in defining landslide hazard. Landslide hazard is an inherently non-local problem, defined 704 

by both conditions at the point of interest and those upslope of that point. The skyline angle is a 705 

simple way to represent this. It has the additional advantage of being easy to measure, needing only 706 

a protractor or clinometer for precise measurement in the field, and being easily approximated by 707 

eye. Local slope (rule 3), in contrast, is scale-dependent, while hazard area Ah (rule 1) is considerably 708 

more difficult to estimate in the field. 709 

Landslides do not always obey flow path routing rules, and it is possible for landslides to travel up 710 

reverse slopes or along contours. This is particularly true for large deep-seated landslides or 711 

rockfalls. The hazard area metric cannot account for such behaviour and thus is more likely to reflect 712 

hazard from smaller shallow landslides, while skyline angle, which does allow for runout over reverse 713 

slopes, may be a better predictor for larger deep-seated landslides. The two indices have some 714 

overlap but could be used in combination to find safer locations in the landscape. 715 
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 716 

7.3. Rule 3: Minimise the angle of the slope under your feet, especially on steep 717 

hillsides, but not at the expense of increasing skyline angle or hazard area 718 

Local slope generally performs less well than skyline angle or hazard area, but is still a consistently 719 

skilful predictor of coseismic landslide hazard, and could be a useful additional discriminant for 720 

situations where both skyline angle and hazard area are comparable between two locations. In this 721 

situation, our results suggest choosing the location with the lower local slope. This is particularly true 722 

at steeper slopes since landslide hazard increases exponentially with slope, approximately doubling 723 

for every 10˚ increase in slope.  724 

Given the observation from a number of landslide inventories that coseismic landslides initiate near 725 

ridge crests (Densmore and Hovius, 2000; Meunier et al., 2008; Rault et al., 2018), it is perhaps 726 

surprising that landslide hazard generally increases with increasing upslope contributing area (i.e., 727 

when moving downslope from ridge crests). In fact, while coseismic landslides may initiate 728 

preferentially near the ridges, they run out downslope; thus, areas near ridges are less likely to be 729 

touched by any part of a landslide even though they are more likely than other parts of the landscape 730 

to contain the top of a landslide scar. Landslide hazard is consistently low at small values of upslope 731 

contributing area, corresponding to ridges; for some inventories, it is also low at very large values of 732 

upslope contributing area, corresponding to valley floors in the downstream reaches of the river 733 

network. This may be partly a function of the covariance between local slope and upslope 734 

contributing area, because locations with large upslope contributing areas generally have lower 735 

slopes (see dashed lines in Figure 4). The addition of upslope contributing area as a predictor in 736 

logistic regression improves landslide hazard prediction relative to slope alone (Table 1), but the 737 

orientation of the logistic regression contours (Figure 4) indicates that its influence is weak. Moving 738 

to a location with lower slope angle almost always reduces landslide hazard independently of the 739 

upslope contributing area of the new location, although the specific reduction of landslide probability 740 

depends on the shape of the two-dimensional probability surface (Figure 4). These results suggest 741 

that decisions on how to reduce landslide hazard most effectively need to be made on a case by 742 

case basis, and are best made using hazard area, skyline angle, and the local slope in conjunction 743 

with each other. Steep areas that are upslope of a given location result in elevated hazard but gentle 744 
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areas do not, explaining the improved performance of hazard area relative to upslope contributing 745 

area (Figure 6 and Table 1). Ridges, with very low upslope contributing area, are generally low 746 

hazard locations if they have gentle local slope, but can still be hazardous if they are steep (Figure 747 

4). To minimise landslide hazard, it is thus preferable to seek broad ridges over sharp ridges where 748 

such a choice is possible.  749 

 750 

7.4. Movement rules in a landscape with variable hazard 751 

Our analysis is focused on cell-by-cell hazard assessment, and is thus most appropriate for decision-752 

making before the next large earthquake. However, it is also possible to use our results to inform 753 

movement or relocation during or immediately after an earthquake, when it is likely that movement 754 

will be limited to small distances. Our analysis shows that, even during a large earthquake in 755 

mountainous terrain, landslide hazard is not ubiquitously high. A significant fraction of the landscape 756 

has low landslide hazard (<5% of the study area average) – as much as 30% in Northridge and 33% 757 

in Nepal. Landslide hazard is extremely granular in spatial terms, so that small changes in location 758 

can make a big difference to exposure. This means that it is often possible to find nearby locations 759 

with lower landslide hazard, irrespective of the starting point. The vast majority of locations (75% in 760 

Nepal, 95% in Northridge) are within 1 km of areas of low landslide hazard (<5% of the study area 761 

average). Even smaller movements of 100 m or less, as might be possible during or immediately 762 

after a large earthquake, can result in very large reductions in hazard.  763 

Detailed analysis in the Northridge (Figure 8) and Nepal inventories shows that landslide hazard can 764 

often be effectively reduced by moving: from a slope to a ridge (e.g., from A to B in Figure 8, a 190% 765 

reduction in landslide hazard); out of a gully (e.g., from C to D, a 100% reduction), or downstream of 766 

a flatter area (e.g., from C to E a 100% reduction). However, there is no single answer to the question 767 

of where to move to reduce coseismic landslide hazard, since this differs depending on the setting, 768 

the distance that can be travelled due to time or location constraints, and on the chosen rule (e.g., 769 

skyline angle vs. hazard area). Given a 1 km radius of potential movement, minimizing skyline angle 770 

involves moving upslope for ~75% of locations in Nepal but only ~66% in Northridge. In some cases, 771 

knowing how far one can travel can be critical: if one may only travel a short distance, moving 772 

upslope may be preferable (e.g., from C to D in Figure 8, a 100% reduction), while if one could travel 773 
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farther, moving downslope may offer greater hazard reduction (e.g., from C to F or G, a 120% or 774 

190% reduction respectively). 775 

Landslide hazard estimates for high hazard locations are broadly comparable between skyline angle 776 

and hazard area metrics (e.g. Figure 8). However, different metrics emphasise different parts of the 777 

landscape. Ridges consistently minimise skyline angle but may still have intermediate values of 778 

hazard area if the ridge is sharp so that the local slope of the ridge itself is steep. Broad valley floors 779 

consistently minimise hazard area, but may still have intermediate values of skyline angle if the 780 

neighbouring slopes have sufficient relief. There are trade-offs between these metrics, and further 781 

work is needed into how they might be combined to further reduce hazard. 782 

 783 

Figure 8. Example landslide hazard estimates derived from a) skyline angle and b) hazard area for 784 

a small section of the Northridge study area. Colours reflect landslide hazard estimated from the 785 

two methods, expressed as a fraction of the study area average hazard. Points labelled A-G in 786 

white are example locations discussed in Section 7.4. Hazard estimates are overlain on a shaded-787 

relief image derived from a 0.5 m resolution LiDAR DEM for context (source: NCALM, 2015, 788 

DOI:10.5069/G9TB14V2). 789 

 790 

7.5 Caveats 791 

These rules should be combined with existing guidance, such as local knowledge and formal hazard 792 

and risk information when that is available. The rules provide an evidence base that could be used, 793 

for example, in infrastructure and land-use planning, identifying evacuation routes, and designing 794 
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contingency plans from individual to community level, where more detailed or formal technical advice 795 

is not available. It is also important to note some caveats.  796 

This analysis is purely focussed on coseismic landslide hazard, and thus it does not take into account 797 

the distribution of vulnerability: that is, the locations of people and infrastructure in these landscapes 798 

or how they might be differentially impacted by landslides. While one area may be more hazardous 799 

than another, the distribution of people and infrastructure may be such that risk is not actually 800 

increased. Further, our analysis is probabilistic, defining hazard as the probability of intersecting a 801 

landslide; thus, our rules identify locations where the landslide probability is lower, not where 802 

probability is zero. This means that it is possible for an alternate location chosen based on its lower 803 

landslide probability to be impacted by a landslide while the original higher-probability location is not. 804 

The choice of inventory will influence the specific results and, although we adjust for bulk shaking 805 

intensity by normalising conditional probability by bulk probability, differences between inventories 806 

are likely to remain (e.g., in spatial patterns of shaking intensity and their relation to topography). 807 

Rock type is a critical influence on landslide occurrence (Chen et al., 2012; Harp et al., 2016; Roback 808 

et al., 2018), but we have excluded it from our analysis because it is extremely difficult for an 809 

untrained observer to identify and to translate into meaningful estimates of material strength and 810 

thus landslide probability. We also expect that the length scales over which lithology varies will often 811 

be long (on the order of kilometres) relative to the other factors examined here.  812 

Because the analysis is focussed on coseismic landslide hazard, it does not account for other 813 

sources of hazard, either associated with an earthquake (e.g., amplification of seismic accelerations 814 

on ridges), or with other processes or events such as flooding or rainfall-induced landsliding. In some 815 

cases, following our rules in isolation might increase exposure to other hazards. For example, 816 

moving to ridge tops to minimise skyline angle might increase exposure to intense shaking due to 817 

seismic amplification in subsequent earthquakes; moving to valley floors that are occupied by large 818 

rivers, where hazard area is minimal, might increase exposure to fluvial flooding. We have also not 819 

considered the effects of landslide size or failure type, choosing instead to treat all landslides as 820 

representing an equivalent hazard. If landslide size or type shows a strong spatial dependence, then 821 

parts of the landscape may be preferentially impacted in ways that are not reflected by our rules. It 822 

is not yet clear how transferrable our conditional probability results are to rainfall-triggered landslides. 823 
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For instance, stopping angles are likely to be lower for rainfall-triggered landslides if the failing mass 824 

is more highly saturated (e.g., Stock and Dietrich, 2003), meaning that the hazard area in rule 1 825 

underestimates potential landslide impacts. Similarly, in the case of rainfall-triggered landslides, 826 

initiation is likely to depend not only on slope angle but also on a topographic control on saturation 827 

(e.g. Montgomery and Dietrich, 1994). Extending the analysis to other triggering mechanisms is thus 828 

a future research need. 829 

We have evaluated these rules using gridded topographic data and landslide inventories. 830 

Topographic derivatives, particularly slope and upslope contributing area, are known to be sensitive 831 

to the resolution of the DEM from which they are derived. We use the Northridge study site to begin 832 

to explore this issue, by repeating our analysis with DEMs at both the original 10 m resolution and 833 

at resampled resolutions of 20, 30, 60, and 90 m. We find that performance of slope, skyline angle, 834 

and upslope contributing area all improve slightly at finer resolutions (Table S3). Hazard area 835 

performance degrades at both finer and coarser resolutions than 30 m, likely the result of parameter 836 

optimization being performed at 30m resolution. We still find, however, that the hazard area metric 837 

remains the most skillful predictor of landslide hazard across all DEM resolutions.  838 

The accuracy of landslide inventories depends on the quality of the imagery from which they are 839 

mapped and on subjective judgements by the mappers (Williams et al., 2018). For example, there 840 

are uncertainties associated with landslide distinction and amalgamation (Marc et al., 2015; Tanyas 841 

et al., 2017), and the definition of the downslope boundary of each landslide. Amalgamation is 842 

particularly problematic for landslide volume estimates but less so in our analysis, which requires 843 

identification of landslide affected areas rather than distinguishing individual landslides. However, 844 

recent studies have identified substantial areal mismatches (up to 67%) between inventories of the 845 

same event mapped by different authors (Fan et al., 2019). To investigate the impact of mapping 846 

error on our results, we test two independent inventories for the Wenchuan earthquake, from Li et 847 

al. (2014) and Xu et al. (2014b), with an estimated areal mismatch for our study area of 21%. We 848 

find that the change of inventory has no impact on the rank order of performance of the metrics 849 

(Table S3); and a minor impact on both the AUC values and the hazard curves (Figures S10 and 850 

S11). Thus, we suggest that our findings are relatively robust to mapping uncertainties in the 851 

landslide inventories that we have used. 852 
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 853 

8. Conclusions 854 

We have defined a set of simple rules that can be used to anticipate, and thus potentially reduce, 855 

exposure to earthquake-triggered landslides. We test a set of candidate predictors for their ability to 856 

reproduce mapped landslide distributions from six recent earthquakes. Landslide hazard, defined as 857 

the conditional probability of intersecting a landslide in one of the six earthquakes, increases 858 

exponentially with local slope. Landslide hazard on hillslopes also increases with upslope 859 

contributing area, suggesting that while ridges may be areas of preferential coseismic landslide 860 

initiation, they are not the locations of highest coseismic landslide hazard due to downslope 861 

movement of landslide material during runout. When accounting for both slope and upslope 862 

contributing area, landslide hazard is highest for the largest upslope contributing area at a given 863 

slope or the highest slope at a given upslope contributing area. Landslide hazard can be reduced by 864 

decreasing local slope, even at the cost of increased upslope contributing area, and especially at 865 

high slopes. Landslide hazard also increases exponentially with the skyline angle, and this simple, 866 

easily-measured metric performs better than slope or upslope contributing area for four of the six 867 

inventories. Hazard area, which accounts for both landslide initiation and runout, offers the best 868 

predictive skill for all six inventories but is more difficult to estimate in the field and requires estimation 869 

of two empirical parameters. Fortunately, hazard area calculated with parameters that are averaged 870 

across all six study sites (initiation angle of 40˚ and stopping angle of 10˚) performs almost as well 871 

as hazard area calculated with optimised site-specific parameters, suggesting that the average 872 

parameters can be applied to other inventories. These findings can be distilled into three simple 873 

rules: 874 

1) Avoid steep (>10˚) channels with many steep (>40˚) areas that are upslope;  875 

2) Minimise your maximum angle to the skyline; and 876 

3) Minimise the angle of the slope under your feet, especially on steep hillsides, but not at the 877 

expense of increasing skyline angle or hazard area. 878 
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