

SUMMARY

Milledge et al., present a thorough statistical analysis of six coseismic landslides inventories to relate landslide hazard to landscape properties such as slope and contributing areas, but also more specific variables such as skyline angle and a hazard area integrating the probability of initiation and propagation of landslides. They found that the two latter metrics explain best the location of the inventories and may allow to be converted into simple rules useful for hazard management. The paper is well written, with a straight forward structure and informative. It will make a nice contribution for NHESS both for its systematic analysis and its recommendations.

I have two major comments that I think could improve the results and the discussion, and then give a number of minor Line by Line comments with potential clarification or additional small analysis.

MAJOR COMMENTS

My first comment is about the normalization of several of the hazard metrics : I am convinced that a substantial part of the difference between the hazard curves could be removed by plotting the hazard against a landscape metric : For example for slope, each landscape as likely a modal slope, that may be interpreted as the result of geomechanical difference (for steady state landscape at least). Thus curves may be plotted against S-mode(S) , somewhat normalizing for difference between two landscape. I can understand the author may still want to express their rules in terms of absolute values of slope or other variables, but I suspect this normalization would clarify and strengthen the result and their analysis (as this did in other studies). I make suggestion for the other variables in my inline comments.

My second concern is that there maybe some over-interpretation of the data scatter towards the extremity of the hazard curves. And the author do not provide clear metrics or indication of the validity of individual datapoint. This is not an easy task but the work of Rault et al., which I co-authored, recently proposed a method to do exactly that. I would suggest the author to apply these criterium and check.

In this work we consider the probability p of the whole topography, and the one resulting from the landslides affected area only p_L . To assess whether p_L is significantly different from p we compute the confidence interval Ip associated to the random drawing of n (n the number of landslides) pixels out of the landscape distribution. If p_L belongs to $[p-Ip : p+Ip]$ then we cannot exclude that the difference between p and p_L just comes from random fluctuations and it is likely not significant. Given landslides remain rare in the whole topography, the drawing can be assumed independent, and similar to a Bernoulli sampling. Provided the central limit theorem is respected (i.e.

$n > 30$, $np > 5$ and $n(1-p) > 5$) the 90% confidence interval can be estimated as :

$Ip = p - 1.96 (p(1-p)/n)^{0.5} ; p + 1.96 (p(1-p)/n)^{0.5}$. Some additional details can be found in the supplementary methods of Rault et al., 2018.

Basically n is large ($n > 1000-10,000$) so the authors should obtain very narrow Ip until they reach $p < 0.001 - 0.0001$ but I expect these low probability to be reached in the tail of the distribution (Fig 3,4, 6) and the cut off will vary for the different landscape with higher or lower p or n . The authors could compute **Ip as well as the convergence**

criterium and show the points which may be insignificant in shaded / transparent ?

Line By Line comments:

L123 : I could not find Milledge 2018 in the reference list... please check.

L133: Add couple of reference for shaking: e.g. Khazai and Sitar 2004, Meunier 2007.

L138: I think you should also cite Meunier 2008 here, and probably the recent analysis discussion for an extended number of earthquakes in Rault et al., 2018

L142:152 : A couple of references on the suspected effects would be relevant. Especially the ones cited elsewhere in the text : Parise and Jibson 2000, for lithology , Maufroy et al., 2015 for curvature and ridge amplification.

L155: True they pertain to initiation, but vast majority of studies highlighting their role or quantifying statistical relations between these predictors and landslide use total area and therefore are combining both initiation and runout.

L180: I have the impression it should be the minimum skyline angle, not intersecting topography, Indeed a maximum reach angle. Cf comment on Fig 1

L200 – 300 : This is certainly at the appreciation of the authors, but I have the impression the earthquake environment (tectonic, climatic, vegetation) is over described. Given you never re-refer to this context later, you may shrink those description and end this section with a sentence like : "these epicentral areas encompasses a large diversity of tectonic (X to Z) , climatic (X to Y) and vegetation cover (X to Y) contexts, but we assume landslides in all of them should be at first order driven by topographic parameters in the same way".

In contrast, some aspects may be missing or insufficiently discussed:

1/ I think the number of landslide polygons used in Chi-Chi is missing.

2/ The fact you used a sub-inventories in Wenchuan may mean you artificially limit your analysis to a range of shaking quite different from the other cases . This should be mentionned.

3/ A few words on the Implications of polygon mapping quality on your analysis may be given here (or in discussion), such as the affect of amalgamation ; inclusion or not of debris flow propagation within the river network ? (I know it is a difficult distinction, often ignored but it should impact the statistics, especially of contributing area for example). Implications of the different resolution limit (for Chi Chi or Finisterre compared to Northridge) or of the location accuracy ?

Figure 1: Caption: a cone projected from P no ?

If your cone as angle define from horizontal upward, are you looking for the minimum skyline angle, not intersecting the topography? That is what I get from your sketch in c). See previous comment about skyline angle definition.

L372-380: < 10 observations ? Why ? And this is only for the 2 variable case (Fig 4). For the single variable case it is not clear what is noisy data and where to really set the boundary or unimportant datapoints. Rault et al., 2018 propose an extension of Meunier et al., 2008 studies with an estimation of the uncertainty of observations based on both the number of observations and the probability. See major comments.

L458: Shalrun-EQ= Probability of mobilization convolved with connection probability. Average in the above area. So hazard area is basically the number of pixel where debris flow can occur and reach the interest cell (say Nhaz)... in the contributing area, times pixel area, and divided by the contour length, i.e. the square root of contributing area.

Although I am confused because in Fig 2 : Hazard Area seem to be Nhaz times Pixel resolution (or Nhaz.a/sqrt(a)). But then smallest values should be 0 and 30 (as it does in Fig 2). But in Fig 6 it goes from 0.1 to 1e3... So there seems to be a problem between the 2 definitions. Please check.

L462: repeat from L452-453. Cut or rephrase ?

L478-482 : Steepest descent may be too conservative, even if your rule needs to be simple, maybe you could mention that probability to propagate on non-steepest descent path is probably non-null.

Also what about landslide large enough to be continuing beyond the first cell with angle below the deposition threshold ?

I see this is partially acknowledged in the discussion. Maybe you can flag here the fact you discuss such limits later.

L512-516 : Ok, simplicity is important and it is difficult to integrate other effect mentioned here. But what about checking the actual evolution of probability with slope, for both initiation and stop ?

A reasonable estimate of scar area can be obtained by selecting the highest elevation pixel in your landslide, and selecting as many as needed to reach a scar area with an aspect-ratio of 1.5 (Domej et al., 2017) and a mean width representing of your polygon (see Marc et al., 2018 for how to do that). Doing so you could check if a plateau develops in your probability ratio after 39° or so... Interestingly you could reverse the idea and take the lowest N pixel ($N \sim \text{Width} / 30$ for 30m resolution DEM) of your landslides to obtain a probability of stopping.

L536 : Did you check the curve appearance when using gradients, that is $\tan(\Theta)$ (with Θ the slope in degree) ? Because the $\tan(\theta)$ does appear mostly exponential over a large range of Θ . Thus a linear function of $\tan(\theta)$ (the

relevant parameter for landslide stability) may appear exponential when plotted against theta.

L538-542 : Northridge and Haiti are shifted compared to other. They both become > average probability around 20° , vs 30 for others. This roughly correspond to modal slopes of these areas.

It would be interesting to re-plot all curves not against slope, but slope – Sm the modal slopes. This collapsed curves on a similar analysis for rainfall (cf Marc et al 2018)

Similarly is there a large variety of drainage area distribution ? Haiti and Northridge are very peculiar again compared to the other cases. Some normalization by the mode of the landscape drainage area may be important.

L542-543: If you consider that Haiti and Northridge are more sensitive because they reach higher ratio it may be a confusion because of the lack of normalization (previous comment). It is plausible the relation between slope – Sm and hazard is similar, only the difference between resolvable slope (with a 30m DEM) and the modal slope is larger, allowing to reach larger relative hazard. I think the effect of normalizing for the landscape must be assessed.

L545: combined or merged PDF rather than amalgamated (that sounds negative an unusual to me but I may be wrong).

L555: You say you observe contributing area, but you have normalized by contour length. In the paragraph about hazard (L489), you say contour length is $a^{0.5}$, but it is not so clear what is a (the area of a cell, which cell ?) On Fig 2, contributing area seems to be the square root of a. It would be consistent with the contour length estimated as \sqrt{a} but then why not say straight you look at the \sqrt{a} of drainage area ? Maybe I missed something, or it is worth clarifying a bit.

L562: This was somehow my expectation, so why not normalizing the contributing area and thus analyzing a/a_{rc} , with a_{rc} the channel ridge transition area? Like this the relative decrease or increase away from this objective characterization of the landscape could be analyzed (and the plot in Fig 3,4 would compare hazard curve shape only, not locations). This seems like an important improvement even if I understand that you may point to the fact a layman user of an hazard rule may not guess the modal slope of its landscape or the value of a_{rc} . After some analysis in the normalized domain general rules for the natural domain may be derived.

Fig 4 is very interesting and make a lot of sense after Fig 3.
However, I am wondering about two things...

1/ Would all the plot look the same if you use normalized area and slope ? Maybe not given that it was not expected from Fig 3 that Finisterre would be different, but it seems worth and easy to check.

2/ You work with 100 log-bins of a and it seems 1degree bins of slope. So I wonder what is your typical number of DEM cells in each of your bins, and thus how statistically

significant bins are... This is a detail as pattern are very consistent and a larger bin size would rapidly increase the amount of data.

Fig 5 : Skyline angle is strongly uni-modal. So I would study all areas with a relative skyline hazard: Sky- Modal(Sky). The modal will account for difference in incision/relief between landscape. A potential outcome of such normalization may be that your case have all similar behavior for high skyline angle (increase and then plateau) but that Gorkha, Haiti, Northridge have a steep decrease below a certain angle while not the three others.

The definition you take for hazard area gives 0 hazard area for the reference in all cases and then a decrease. It does not seem that shift in the horizontal direction would do any good, and the vertical shift seems due to the proportion of zero hazard area in the landscape, so maybe computing a landscape PDF ignoring the zero would be insightful ?

L645: $Ah < 1 \text{ m}^2/\text{m}$. I am surprised by this threshold, but maybe it is a typo. I would have say in Fig 5b the curves steepens most in all case around 20.

It is true that for Haiti, Gorkha and Northridge there is a slight increase in the trend after $Ah \sim 1$, but minor compare to the later steepening.

Also to be sure that the difference between a peak or a plateau is a real result it would be important to check the evolution of the uncertainty in your last bins, where certainly few data are available (even if we cannot read the probability of $Ah > 1\text{e}2$ or $1\text{e}3$).

We also do not see the difference in availability of such high hazard area in the different areas, so could a very low availability of such hazard areas in Haiti and Northridge (that have less steep slopes) caused a scattered behavior for $Ah > 100$ instead of $Ah > 1000$. A quantification of uncertainty may clarify that. See major comment.

L672 : This sentence confused me. Do you mean each of the three parameters, may be better than the skyline angle for at least one event ?

L674: These values do not match Table 1 with 0.72, 0.69, 0.74.... Please correct one or the other.

L694: I am a bit surprise by the term of channel inside this rule. I guess it derives from the fact that the hazard consider upslope contributing areas defined from flow algorithm. But the hazard area at many intermediate locations on hillslopes may be a channel for your analysis but not for the resident and deciders of the area. Because a channel is defined on finer scale than the DEM. You already say that this metrics is anyway difficult to estimate and handle for application, but this terminology would also complexify the problem for deciders or policy makers.

L699 : This is fortunate indeed, almost surprising.

L711: Interesting. Do you think this could be somewhat validated by making skyline and hazard graph for landslide above and below a certain threshold (say 5e3 m² or even better above a certain width...) ?

L739 : You certainly mean Meunier 2008 here. However, note that the new study from Rault et al., 2018 is considerably nuancing these past studies.

L820: And even for a trained observer.

L822-23: I do not understand what you mean by "we expect the length scales over which this occurs to be long (order kilometres) relative to the other factors examined here"

Do you mean that main lithological units are usually big (regional scales) and thus significant part of a landscape will have homogeneous lithology, whereas topographic attribute change at the scales of 10s of meter ? Then it is the lengthscale for the variability of lithology that you want to mention. Anyway please clarify.

On a side comment, normalizing each landscape slope by their modal slope would be somehow a step toward normalizing difference in landscape that can be due to major lithological or geomechanical attributes (Korup 2008).

L824-826: This is an important and natural point to make but I would mention rainfall induced landslides straight here, as area affected by coseismic landslides are often even more often affected by rainfall induced landslides (at least for wet climate Nepal, Finisterre, Taiwan).

L830: And they likely do, given that large landslide (likely to travel further away as you recall in the introduction) are usually reported closer of the fault or at larger shaking values ([Khazai and Sitar \(2004\)](#), for the Chi-Chi earthquake (1999), [Massey et al. \(2018\)](#) for Kaikoura or Valagussa et al 2019 for systematic evaluation of PGA and landslide size distribution.

So future exploration of the behavior of your hazard curve split for specific lithology of different area class should be done.

L834 : I would say we can reasonably expect strong differences : given that hazard increase strongly with local slope for EQ (Fig 4) but not for the rainfall induced landslides : as shown by the analysis similar to your Fig 3 in Marc et al., 2018. Further, the longer runout (due to lower stopping angles) and stronger dependence on contributing areas are additional changes.

References used in the review

Claire Rault, Alexandra Robert, Odin Marc, Niels Hovius, and Patrick Meunier, Seismic and geologic controls on spatial clustering of landslides in three large earthquakes, 2018, <https://www.earth-surf-dynam-discuss.net/esurf-2018-82/>

Marc, O., Stumpf, A., Malet, J. P., Gosset, M., Uchida, T. and Chiang, S. H.: Towards a global database of rainfall-induced landslide inventories: first insights from past and new events, *Earth Surface Dynamics*

Discussions, (March), 1–28, doi:10.5194/esurf-2018-20, 2018.

Maufroy, E., Cruz-Atienza, V. M., Cotton, F. and Gaffet, S.: Frequency-Scaled Curvature as a Proxy for Topographic SiteEffect Amplification and Ground-Motion Variability, Bulletin of the seismological society of America, 105(1), 354–367, 2015

Valagussa, A., Marc, O., Frattini, P., and Crosta, G. B.: Seismic and geologic controls on earthquake-induced landslide size, Earth and Planetary Science Letters, 2019. <https://doi.org/10.1016/j.epsl.2018.11.005>

Bijan Khazai, Nicholas Sitar, Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events, Engineering Geology, 2004, [https://doi.org/10.1016/S0013-7952\(03\)00127-3](https://doi.org/10.1016/S0013-7952(03)00127-3).

Domej, G., Bourdeau, C., and Lenti, L.: Mean Landslide Geometries Inferred from a Global Database of Earthquakeand Non-Earthquake-Triggered Landslides, Italian Journal of Engineering Geology and Environment, 87–107, <https://doi.org/10.4408/IJEGE.2017-02.O-05>, 2017

Korup, O. (2008), Rock type leaves topographic signature in landslide-dominated mountain ranges, *Geophys. Res. Lett.*, 35, L11402, doi: 10.1029/2008GL034157.