
Response to reviewers 
 
Reviewer comments are in normal text, and our responses are in bold 
 
Comments from Gianvito Scaringi 
 
Dear authors, 
I enjoyed reading your manuscript, which I believe can be a useful contribution towards landslide risk 
reduction in highly seismic regions. I have a few questions, mostly regarding the robustness of your 
findings, which I list as follows: 
- You mentioned multiple times that the DEM resolution can influence some of your results. It would be nice 
to quantify this influence at least for one inventory for which a higher resolution DEM is available (e.g. 
Northridge). Perhaps, moving from 30 m to 10 m DEM will only produce marginal improvements while 
increasing the computational cost significantly, or on the contrary it will change the result significantly. 
 
We have tested the impact of varying DEM resolution from 10 – 90 m for the Northridge study area. 
We find that performance of slope, skyline angle and upslope contributing area improves slightly at 
finer resolutions. Hazard area preforms best at the same resolution as that used for parameter 
optimization (in this case 30 m). Nevertheless, we find that the hazard area metric remains the most 
skillful predictor of hazard across grid resolutions from 10 m to 60 m, and thus that the rule even 
when applied over length scales as small as 10 m or as large as 60 m will continue to perform ‘well’ 
relative to the alternatives. A description of this test has been added to the Discussion. 
 
- There are cases in which several inventories are available for the same study area (e.g. Wenchuan). 
These inventories are sometimes quite different from each other. Among others, we discussed this in a 
recent submission, still under review (see the revised manuscript in the discussion at https://www.earth-
syst-sci-data-discuss.net/essd-2018-105/) and we found substantial areal mismatches (up to 67%) between 
inventories in the Wenchuan, and rather low pixel-based correlations (R-squared as low as 0.35). We 
showed that this translates in quite some differences in landslide-size probability distributions and hence in 
landslide volume estimations. This might condition some types of hazard assessments based on volume-
runout correlations. However, we did not go deeper into the topic, as it was out of the scope of our 
manuscript, and we did not investigate how this mismatch between inventories translates into statistics of 
controlling factors (e.g. slope, upstream contributing area, etc.). It would be interesting if you could estimate 
to what extent choosing a different inventory for the same study area would affect your assessment. 
 
We have tested the impact of different landslide inventories for the Wenchuan earthquake and now 
report the results in the discussion. We find that the change of inventory has no impact on the rank 
order of performance of the metrics; and a very minor impact on both the AUC values and the 
hazard curves. As above, we now provide a description of this test in the Discussion 
 
- Also, again about the Wenchuan case, you only chose a subset of the inventory by Li et al. (2014) 
containing about 1/3 of the landslides. It would be good to explain whether this subset can be thought as 
representative of the entire study area (e.g. in terms of landslide metrics, topography, lithology, distance 
from epicentre and fault rupture, etc.) so that one would be confident that the results you obtain have more 
general validity and are not biased by your choice, which was only due to a data availability issue. What 
you report in the conclusion (see my point below), that is that the site-specific and averaged rules perform 
similarly, is comforting in this sense, but what if it is just a coincidence? 
 
Subsetting was necessary because gaps in the SRTM would result in incorrect computations for 
our topographic metrics, particularly upslope contributing area and hazard area. The subset of 
landslides that we use run in a swath from north to south. The area extends from the footwall to the 
hanging wall of the fault crossing the surface expression of the fault and thus spans almost the full 
range of shaking intensities, lithologies, and topographic settings. Thus, while we cannot rule out 
the possibility that the site-specific rule for Wenchuan would be different with the full data set, we 
see no reason why that should be the case. The fact that site-specific and averaged values for 
hazard area are essentially equivalent also suggests that we are looking at general patterns rather 
than coincidental relationships. We now include a series of study area maps in the supplementary 
information showing the study areas and the mapped landslides superimposed on the DEMs. For 
Wenchuan we show both the full set of landslides mapped by Li et al. (2014) and the subset that we 
use. 



 
- From your analyses you obtained a set of simple and easily understandable rules to minimise the 
exposure, and you wrote that the hazard area calculated with averaged parameters performs only slightly 
worse than hazard area calculated with site-specific parameters. This is encouraging and, as you wrote, it 
suggests that the average parameters can be applied to other inventories (or subsets of inventories). Thus, 
it would be very interesting to see these averaged parameters being applied to other inventories, across a 
variety of landscapes, climates and seismic characteristics. Also, it would be interesting to apply your rules 
to a highly seismic region in which no recent earthquake has occurred, and relate it to the current 
distribution of population and exposed goods (but I recognise the latter is out of the scope of this work, so it 
is just an idea). 
 
These are both very interesting ideas, though we feel that they are out of scope for this work as you 
say. We are keen to examine these rules in different contexts to establish the range of conditions 
under which they apply, but felt that the six cases used here make a useful initial contribution. We 
have taken an approach similar to your second idea to provide an indication of the spatial 
distribution of co-seismic landslides that might be expected in a scenario earthquake for the 
specific case of an earthquake on the Weinan-Jinyang fault near Xian, China (covered in a separate 
manuscript submitted to IJDRR). 
 
 
Reviewer 1: Odin Marc 
 
Summary 
Milledge et al., present a thorough statistical analysis of six coseismic landslides inventories to relate 
landslide hazard to landscape properties such as slope and contributing areas, but also more specific 
variables such as skyline angle and a hazard area integrating the probability of initiation and propagation of 
landslides. They found that the two latter metrics explain best the location of the inventories and may allow 
to be converted into simple rules useful for hazard management. The paper is well written, with a straight 
forward structure and informative. It will make a nice contribution for NHESS both for its systematic analysis 
and its recommendations. I have two major comments that I think could improve the results and the 
discussion, and then give a number of minor Line by Line comments with potential clarification or additional 
small analysis. 
 
Major Comments 
My first comment is about the normalization of several of the hazard metrics : I am convinced that a 
substantial part of the difference between the hazard curves could be removed by plotting the hazard 
against a landscape metric : For example for slope, each landscape as likely a modal slope, that may be 
interpreted as the result of geolechanical difference (for steady state landscape at least). Thus curves may 
be plotted against S-mode(S) , somewhat normalizing for difference between two landscape. I can 
understand the author may still want to express their rules in terms of absolute values of slope or other 
variables, but I suspect this normalization would clarify and strengthen the result and their analysis (as this 
did in other studies). I make suggestion for the other variables in my inline comments.  
 
This is an excellent suggestion, and indeed we found that normalization collapses the hazard 
curves to some extent. This is very satisfying in terms of explaining our observations. We include 
these new results in our revised manuscript though they do not alter our conclusions since 
normalization does not alter the rank order or improve predictive skill of any metric.  
 
My second concern is that their maybe some over-interpretation of the data scatter towards the extremity of 
the hazard curves. And the author do not provide clear metrics or indication of the validity of individual 
datapoint. This is not an easy task but the work of Rault et al., which I co-authored, recently proposed a 
method to do exactly that. I would suggest the author to apply these criterium and check.  
In this work we consider: the probabilty p of the whole topography, and the one resulting from the 
landslides affected area only p_L.  
To assess whether p_L is significantly different from p we compute the confidence interval Ip associated to 
the random drawing of n (n the number of landslides) pixels out of the landscape distribution. If p_L belongs 
to [p-Ip : p+Ip] then we cannot exclude that the difference between p and p_L just comes from random 
fluctuations and it is likely not significant. Given landslides remain rare in the whole topography, the 
drawing can be assumed independent, and similar to a Bernoulli sampling. Provided the central limit 
theorem is respected (i.e. n>30, np>5 and n(1-p)>5 ) the 90% confidence interval can be estimated as: 



Ip = p – 1.96 (p(1-p)/n)^0.5 ; p + 1.96 (p(1-p)/n)^0.5. Some additional details can be found in the 
supplementary methods of Rault et al., 2018. Basically n is large (n>1000-10,000) so the authors should 
obtain very narrow Ip until they reach p<0.001 – 0.0001 but I expect these low probability to be reached in 
the tail of the distribution (Fig 3,4, 6) and the cut off will vary for the different landscape with higher or lower 
p or n. The authors could compute Ip as well as the convergence criterium and show the points which may 
be insignificant in shaded / transparent ? 
 
Thank you for pointing us to this approach. We had struggled to find a way to account for sample 
sizes in our analysis but the Rault et al. approach is extremely well suited to the problem! We have 
now implemented this method in all cases where we generate hazard curves (i.e. conditional 
probability curves). In each case (Figs 3-5) we show both those data points that show a significant 
difference and those that don’t, and we explain this distinction in the text. 
 
Line By line comments: 
L123 : I could not find Milledge 2018 in the reference list... please check. Added. 
 
L133: Add couple of reference for shaking: e.g. Khazai and Sitar 2004, Meunier 2007. Added on L141 
 
L138: I think you should also cite Meunier 2008 here, and probably the recent analysis discussion for an 
extended number of earthquakes in Rault et al., 2018. Added on L145. 
 
L142:152 : A couple of references on the suspected effects would be relevant. Especially the ones cited 
elsewhere in the text: Parise and Jibson 2000, for lithology, Maufroy et al., 2015 for curvature and ridge 
amplification. Added on L154-159. 
 
L155: True they pertain to initiation, but vast majority of studies highlighting their role or quantifying 
statistical relations between these predictors and landslide use total area and therefore are combining both 
initiation and runout. 
We agree. However, the mechanistic justification for the factors is almost always initiation based, 
as are the GIS approaches that are typically applied to assess landslide susceptibility. Our point 
here is that when these variables are used for landslide hazard prediction they are used to 
represent controls on landslide initiation. We have modified the sentence to say: 
“The potential predictors described above are primarily chosen in hazard models for their 
perceived link to the probability of coseismic landslide initiation.” (L163). 
 
L180: I have the impression it should be the minimum skyline angle, not intersecting topography, …. Indeed 
a maximum reach angle. Cf comment on Fig 1 
We could phrase this either as: ‘the maximum angle from horizontal to the skyline’ or ‘the minimum 
angle from the horizontal that does not intersect the skyline’. We have chosen the former because it 
is shorter and because we are concerned that the latter is more open to misinterpretation. In 
particular, people may not think of cones at increasing angles and thus may misunderstand or 
ignore the second clause. 
 
L200 – 300: This is certainly at the appreciation of the authors, but I have the impression the earthquake 
environment (tectonic, climatic, vegetation) is over described. Given you never re-refer to this context later, 
you may shrink those description and end this section with a sentence like : “these epicentral areas 
encompasses a large diversity of tectonic (X to Z) , climatic (X to Y) and vegetation cover ( X to Y) contexts, 
but we assume landslides in all of them should be at first order driven by topographic parameters in the 
same way”. 
Thank you, this is a useful suggestion. We have considerably shortened this section, compressed 
the information into a table in the Supplementary Information, and added a summary paragraph in 
line with your suggestion. 
 
In contrast, some aspects may be missing or insufficiently discussed: 
1/ I think the number of landslide polygons used in Chi-Chi is missing. Agreed, added on L229 
2/ The fact you used a sub-inventories in Wenchuan may mean you artificially limit your analysis to a range 
of shaking quite different from the other cases . This should be mentionned.  
We agree that this is an important issue and needs clarifying, as also mentioned in our response to 
Dr Scaringi’s comments above. We have added maps of the study areas in the Supplementary 
Information to help readers interpret our results. In the Wenchuan case we show both the full 



inventory of Li et al. (2014) and the subset that we use. We have added a statement in the paper 
itself (L239-242) to show that the range of PGA values experienced in our Wenchuan study area 
(0.16-1.3 g) is similar to those for the whole inventory (0.12-1.3 g). 
 
3/ A few words on the Implications of polygon mapping quality on your analysis may be given here (or in 
discussion), such as the affect of amalgamation ; inclusion or not of debris flow propagation within the river 
network ? (I know it is a difficult distinction, often ignored but it should impact the statistics, especially of 
contributing area for example). Implictions of the different resolution limit (for Chi Chi or FInisterre 
compared to Northridge ) or of the location accuracy ? 
Agreed, we have now added a paragraph on mapping quality in the discussion (L840-853) 
 
Figure 1: Caption: a cone projected from P no ? Agreed, modified. 
If your cone as angle define from horizontal upward, are you looking for the minimum skyline angle, not 
intersecting the topography? That is what I get from your sketch in c). See previous comment about skyline 
angle definition. 
Both are possible definitions of the angle we are seeking, but we believe our current definition is 
less open to misinterpretation (see response to comment on line 180 above). 
 
L372-380: < 10 observations ? Why ? And this is only for the 2 ariable case (Fig 4). For the single variable 
case it is not clear what is noisy data and where to really set the boundary or unsignificant datapoints. Rault 
et al., 2018 propose an extension of Meunier et al., 2008 studies with an estimation of the uncertainty of 
observations based on both the number of observations and the probability. See major comments. 
We have now applied the Rault et al approach, so thank you for pointing it out to us. 
 
L458: Shalrun-EQ= Probability of mobilization convolved with connection probability. Average in the above 
area. So hazard area is basically the number of pixel where debris flow can occur and reach the interest 
cell (say Nhaz)... in the contributing area, times pixel area, and divided by the contour length, i.e. the 
square root of contributing area. Although I am confused because in Fig 2 : Hazard Area seem to be Nhaz 
times Pixel resolution (or Nhaz.a/sqrt(a) ). But then smallest vales should be 0 and 30 (as it does in 
Fig 2). But in Fig 6 it goes from 0.1 to 1e3… So there seems to be a problem between the 2 definitions. 
Please check. 
Your interpretation of SHALRUN-EQ is correct. The reason for sub-pixel hazard areas is due to 
multiple flow path routing. We now explain this more clearly (see L432). 
 
L462: repeat from L452-453. Cut or rephrase ? Rephrased to avoid repetition. 
 
L478-482 : Steepest descent may be too conservative, even if your rule needs to be simple, maybe you 
could mention that probability to propagate on non-steepest descent path is probably non-null.  
This is an error in our explanation. We in fact use multiple flowpath routing, and amended our 
description of this in the methods section (see L435).  
Also what about landslide large enough to be continuing beyond the first cell with angle below the 
deposition threshold? I see this is partially acknowledged in the discussion. Maybe you can flag here the 
fact you discuss such limits later. We Agree and now point the reader to our discussion of this in 
section 7.1. (see L450). 
 
L512-516 : Ok, simplicity is important and it is difficult to integrate other effect mentioned here. But what 
about checking the actual evolution of probability with slope, for both initiation and stop? A reasonable 
estimate of scar area can be obtained by selecting the highest elevation pixel in your landslide, and 
selecting as many as needed to reach a scar area with an aspect-ratio of 1.5 (Domej et al., 2017) and a 
mean width representing of your polygon (see Marc et al., 2018 for how to do that). Doing so you could 
check if a plateau develop in your probability ratio after 39Æ or so... Interestingly you could reverse the 
idea and take the lowest N pixel (N ~ Width / 30 for 30m resolution DEM) of your landslides to obtain a 
probability of stopping. 
We had performed this analysis with interesting results. We found that landslides initiate on a fairly 
narrow range of slopes but stop on a much broader range (consistent with our observations), with 
modal values similar to our optimized values. However, these results are telling us the slopes on 
which landslides initiate and stop rather than the probability of initiation and stopping given slope, 
so we need to be careful in connecting the two sets of results. A careful examination of this 
connection is outside the scope of the paper since we focus on developing simple rules. 
 



L536 : Did you check the curve appearance when using gradients, that is tan(Theta) (with theta the slope in 
degree) ? Because the tan(theta) does appear mostly exponential over a large range of Theta. Thus a 
linear function of tan(theta) (the relevant parameter for landslide stability) may appear exponential when 
plotted against theta. 
The kink in some curves at low slopes indeed suggested that tan(theta) might be a better predictor. 
While this is consistent with landslide mechanics, we found that for most inventories this 
relationship does not provide a good fit to the data at high slopes. Given the additional complexity 
of the tangent function it is not well suited to a simple rule so we chose not to report it here. 
However, the misfit between tan(theta) and landslide probability is clearly interesting and merits 
further examination in the future. 
 
L538-542: Northridge and Haiti are shifted compared to other. They both become > average probability 
around 20Æ , vs 30 for others. This roughly correspond to modal slopes of these areas. It would be 
interesting to re-plot all curves not against slope, but slope – Sm the modal slopes. This collapsed curves 
on a similar analysis for rainfall (cf Marc et al 2018) Similarly is there a large variety of drainage area 
distribution ? Haiti and Northridge are very peculiar again compared to the other cases. Some 
normalization by the mode of the landscape drainage area may be important. 
This is a good suggestion in terms of improving the explanation of the dataset as a whole but does 
not alter the simple rules because: 1) they are applied in relative terms (i.e. choose the location with 
the lower local slope); and 2) the alteration would require knowledge of the slope distribution for a 
location (which will not be available to most users). Nevertheless, we have now performed 
normalization on both slope and UCA. We include the figures in the supplementary information and 
briefly report the findings in the main text (L529).  
 
L542-543: If you consider that Haiti and Northridge are more sensitive because they reach higher ratio it 
may be a confusion because of the lack of normalization (previous comment). It is plausible the relation 
between slope – Sm and hazard is similar, only the difference between resolvable slope (with a 30m DEM) 
and the modal slope is larger, allowing to reach larger relative hazard. I think the effect of normalizing for 
the landscape must be assessed. 
This is exactly what the normalization shows. We have adjusted the text to reflect this observation, 
added a normalized panel to the figures, and refer to the normalized results in the text (L505). 
 
L545: combined or merged PDF rather than amalgamated (that sounds negative an unusual to me but I 
may be wrong). Altered to combined (L506). 
 
L555: You say you observe contributing area, but you have normalized by contour length. In the paragraph 
about hazard (L489), you say contour length is a^0.5, but it is not so clear what is a (the area of a cell, 
which cell ?) On Fig 2, contributing area seems to be the square root of a. It would be consistent with the 
contour length estimated as sqrt(a) but then why not say straight you look at the sqrt of drainage area ? 
Maybe I missed something, or it is worth clarifying a bit. 
We now clarify this on first introducing upslope contributing area “and normalising by the grid cell 
width to minimise grid resolution biases” (L371), and in our definition of lj, as the cell width (L461). 
 
L562: This was somehow my expectation, so why not normalizing the contributing area and thus analyzing 
a/a_rc , with a_rc the channel ridge transition area? Like this the relative decrease or increase away from 
this objective characterization of the landscape could be analyzed (and the plot in Fig 3,4 would compare 
hazard curve shape only, not locations). This seems like an important improvement even if I understand 
that you may point to the fact a layman user of an hazard rule may not guess the modal slope of its 
landscape or the value of a_rc. After some analysis in the normalized domain general rules for the natural 
domain may be derived. 
We agree, and now include a normalized plot showing the Northridge curve partially collapsing 
onto the other curves. Given the generally poor performance of upslope contributing area we 
choose not to come up with a new rule based around it, nor adjust the other rules in light of these 
results. 
 
Fig 4 is very interesting and make a lot of sense after Fig 3. However, I am wondering about two things… 
1/ Would all the plot look the same if you use normalized area and slope ? Maybe not given that it was not 
expected from Fig 3 that Finisterre would be different, but it seems worth and easy to check. 
The differences that result from normalization are largely in the steepness of the surface rather than 
the way that slope and upslope contributing area interact. As a result there is little obvious change 



in Fig 4 as a result of normalization. However, we show the normalized results in the supplementary 
information for completeness. 
 
2/ You work with 100 log-bins of a and it seems 1degree bins of slope. So I wonder what is your typical 
number of DEM cells in each of your bins, and thus how statistically significant bins are… This is a detail as 
pattern are very consistent and a larger bin size would rapidly increase the amount of data. 
We have applied the approach of Rault et al., extended to 2D, to indicate bins where the hazard is 
significantly different from the study area average. We flag that in the figure caption. 
 
Fig 5 : Skyline angle is strongly uni-modal. So I would study all areas with a relative skyline hazard: Sky- 
Modal(Sky). The modal will account for difference in incision/relief between landscape. A potential outcome 
of such normalization may be that your case have all similar behavior for high skyline angle (increase and 
then plateau) but that Gorkha, Haiti, Northridge have a steep decrease below a certain angle while not the 
three others. 
We tested the effects of normalization and as you suggest it does collapse the data to some extent. 
We find that normalization is particularly effective at aligning the Gorkha, Haiti and Northridge 
hazard curves with those from the other sites. We now describe this normalisation in the text. 
 
The definition you take for hazard area gives 0 hazard area for the reference in all cases and then a 
decrease. It does not seem that shift in the horizontal direction would do any good, and the vertical shift 
seems due to the proportion of zero hazard area in the landscape, so maybe computing a landscape PDF 
ignoring the zero would be insightful?  
We suspect that normalisation may not be particularly informative in this case. We could normalise 
the initiation and stopping angles but we are then farther from a simple rule and, particularly in the 
case of stopping angle, it is not entirely clear what the appropriate property to normalize by would 
be. As a result we do not pursue normalization for hazard area. 
 
L645: Ah<1 mÇ/m . I am surprised by this threshold, but maybe it is a typo. I would have say in Fig 5b the 
curves steepens most in all case around 20. It is true that for Haiti, Gorkha and Northridge there is a slight 
increase in the trend after Ah~1, but minor compare to the later steepening.  
This was a typo, and has now been fixed. 
 
Also to be sure that the difference between a peak or a plateau is a real result it would be important to 
check the evolution of the uncertainty in your last bins, where certainly few data are available (even if we 
cannot read the probability of Ah>1e2 or 1e3). 
A peak followed by a decline in hazard with increasing hazard area is retained within that part of the 
data where there are sufficient observations to allow confident hazard identification only for Haiti. 
However, we have adjusted our plots to indicate which observations are more or less certain, using 
the approach of Rault et al. as described above, and discuss this in the modified text at L630. 
 
We also do not see the difference in availability of such high hazard area in the different areas, so could a 
very low availability of such hazard areas in Haiti and Northridge (that have less steep slopes) caused a 
scattered behavior for Ah>100 instead of Ah>1000. A quantification of uncertainty may clarify that. See 
major comment. Your suggestion that the earlier onset of scatter in Northridge and Haiti hazard 
curves is likely to reflect a lower availability of such steep slopes is supported by the Rault et al. 
analysis, which clearly identifies the point beyond which the curves become more scattered as the 
point beyond which hazard cannot be confidently resolved. We make this point in the main text at 
line 636. 
 
L672 : This sentence confused me. Do you mean each of the three parameters, may be better than the 
skyline angle for at least one event ? Yes, your interpretation is correct. We think the confusion was 
due to a punctuation error (full stop should have been comma), and we have now fixed this. 
 
L674: These values do not match Table 1 with 0.72, 0.69, 0.74.... Please correct one or the other. Thanks 
for spotting this typo, we have now fixed it. 
 
L694: I am a bit surprise by the term of channel inside this rule. I guess it derives from the fact that the 
hazard consider upslope contributing areas defined from flow algorithm. But the hazard area at many 
intermediate locations on hillslopes may be a channel for your analysis but not for the resident and deciders 
of the area. Because a channel is defined on finer scale than the DEM. You already say that this metrics is 



anyway difficult to estimate and handle for application, but this terminology would also complexify the 
problem for deciders or policy makers. 
 
We can understand your concern here and have considered alternatives. However, we have chosen 
to retain the word channel within the rule for two reasons. First, because we feel that it is important 
to capture the notion of convergence and we are unable to find an alternative wording that can do 
so. Second, because we expect that if SHALRUN-EQ is calculating convergence using a 30 m DEM, 
it is extremely unlikely that the real topography does not have some sort of channel or gully within 
that area. It’s hard to imagine a topography that would be convergent at 30 m scale but not 
obviously channelised or gullied at finer scales. 
 
L699 : This is fortunate indeed, almost surprising. 
Agreed - we expected more sensitivity to the parameters here. 
 
L711: Interesting. Do you think this could be somewhat validated by making skyline and hazard graph for 
landslide above and below a certain threshold (say 5e3 m2 or even better above a certain width...) ? 
This is an interesting idea and something that we will investigate in future but we feel that it is 
outside the scope of the current paper. 
 
L739 : You certainly mean Meunier 2008 here. However, note that the new study from Rault et al., 2018 is 
considerably nuancing these past studies. 
Modified to add citation and account for Rault et al’s work (L727). 
 
L820: And even for a trained observer. 
Agreed but given our simple rules focus we choose to retain the focus on untrained observers here. 
 
L822-23: I do not understand what you mean by “we expect the length scales over which this occurs to be 
long (order kilometres) relative to the other factors examined here” Do you mean that main lithological units 
are usually big (regional scales) and thus significant part of a landscape will have homogeneous lithology, 
whereas topographic attribute change at the scales of 10s of meter ? Then it is the length scale for the 
variability of lithology that you want to mention. Anyway please clarify. 
Your interpretation is correct but we have clarified our point in line with your suggestion (see L812 
in revised manuscript). 
 
On a side comment, normalizing each landscape slope by their modal slope would be somehow a step 
toward normalizing difference in landscape that can be due to major lithological or geomechanical attributes 
(Korup 2008). 
Agreed, but as discussed above including this in a simple rule would be problematic. 
 
L824-826: This is an important and natural point to make but I would mention rainfall induced landslides 
straight here, as area affected by coseismic landslides are often even more often affected by rainfall 
induced landslides ( at least for wet climate Nepal,Finisterre, Taiwan). 
Agreed, and we have modified this text to: ‘such as flooding or even rainfall induced landsliding’. 
(L815). 
 
L830: And they likely do, given that large landslide (likely to travel further away as you recall in the 
introduction) are usually reported closer of the fault or at larger shaking values (Khazai and Sitar (2004), for 
the Chi-Chi earthquake (1999), Massey et al. (2018) for Kaikoura or Valagussa et al 2019 for systematic 
evaluation of PGA and landslide size distribution. So future exploration of the behavior of your hazard curve 
split for specific lithology of different area class should be done. 
Agreed, both landslide size and lithology are interesting topics for future work but are outside the 
scope of this paper. 
 
L834 : I would say we can reasonably expect strong differences : given that hazard increase strongly with 
local slope for EQ (Fig 4) but not for the rainfall induced landslides : as shown by the anaysis similar to your 
Fig 3 in Marc et al., 2018. Further, the longer runout (due to lower stopping angles) and stronger 
dependence on contributing areas are additional changes. 
We agree that large differences are possible, but we think it is fair to say that the strength of these 
differences is not yet clear. 
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Reviewer 2 
 
General Comment 
Thank you for this interesting paper. Using six inventories of coseismic landslides, the authors test the 
significance of multiple topographical parameters to constrain a set of simple rules in order to minimise 
exposure to landslide hazard. The paper forms a significant added value to the landslide hazard scientific 
community as a first attempt in identifying simple rules which is essential for communication about complex 
hazards to a broad (lay) audience in creating awareness and minimizing landslide exposure. I appreciate 
the authors’ balanced conclusion on the most effective parameters for hazard reduction [“We conclude that 
decisions on how to reduce landslide hazard most effectively need to be made on a case by case basis, 
and are best made using hazard area, skyline angle, and the local slope in conjunction with each other.”], 
unfortunately this is not taken in the abstract and conclusion where the authors present without further 
nuances three simple rules. The discussion is focused on the authors’ results with limited reflections with 
respect to related research (cf. introduction). I believe such a reflection would make the results more 
convincing. 
 
Thank you for your careful reading of the paper and your many helpful comments and suggestions. 
We have worked hard to identify this set of simple rules and it is encouraging that this comes 
through in the manuscript. However, we will take on board your suggestion to temper our 
presentation of these rules. We have sought to clarify that we are suggesting such rules as a new 
tool to complement existing approaches rather than replace them. We highlight, though, that we are 
clear from the outset that the rules are designed to complement other approaches. For example, we 
say in the abstract: “Our simple rules complement, but do not replace, detailed site-specific 
investigation; they can be used for initial estimation of landslide hazard or guide decision-making 
in the absence of any other information.” 
 
Specific Comments 
The first time I read through the paper I found the abstract and introduction confusing while the terms 
hazard, exposure, risk, hazard response, “anticipating”. . . are used without first clearly constraining them. 
Even though the audience from NHESS should be familiar with these terms I believe that these terms are 
still easily confused. I would therefore recommend to distinguish these terms in the introduction, or make 
reference to literature in which this is done. 
Thank you for this useful feedback. We had been careful to define key terms such as hazard, 
exposure, risk and mitigation in the introduction and were even concerned that these definitions 
hampered the flow of the text, so it is helpful to know that they are important. We generally define 
terms in the introduction rather than the abstract given the limited space in the abstract. In all these 
cases we give the definition within five lines of introducing the term, though to retain the flow of the 
text our definitions are generally ‘in-line’ rather than taking the form of a separate sentence in the 
form ‘x is defined as…’.  
However, following your comment we have sought to simplify our language, removing hazard 
response (and instead talking in terms of risk mitigation, which we introduce earlier).  
 
The paper is well structured and the figures of high quality presenting very clearly the results, yet I would 
suggest to shorten the paper to bring forward the main messages even more clearly. Sections that I would 
suggest to reduce are section 4 (“Earthquake inventories”) by providing a summary of the used inventories 
with the most important parameters necessary for the analysis; and section 5 (“Methods”) could also be 
reduced, moreover this would allow the reader to more easily follow the workflow. 
We are pleased that you found our presentation of the results clear. We have considerably 
shortened the “Earthquake inventories” section of the manuscript and slightly shortened the 
Methods section. 
 
I wonder how easily the presented rules can be adopted without prior knowledge or skills, which seems to 
be the main purpose of the study yet lacking from the discussion. This is not easily answered and out of 
scope of the study to check the applicability of their rules by householders, local government, and NGOs, 
but I would recommend to be more cautious when claiming to present ‘simple rules’. 
We have chosen the term ‘simple rules’ to make the connection to an existing and active field of 
research around heuristic decision-making (e.g. Gigerenzer, 2008). This field explicitly refers to 
heuristics as ‘simple rules’ (e.g. Todd and Gigerenzer, 2000, Behavioral and brain sciences, 
23(5):727-741). We would argue that the first two rules are simple and do not require prior 



knowledge or skills: ‘minimize your maximum angle to the skyline’ and ‘avoid steep (>10˚) channels 
with many steep (>40˚) areas that are upslope’.  
Your point here and in detailed comments that the language of the third rule needs to be improved 
is helpful and we have simplified this rule to read: ‘minimise the angle of the slope under your feet, 
especially on steep hillsides, but not at the expense of increasing skyline angle or hazard area’. 
 
Examining the applicability of these rules is, as you suggest, beyond the scope of this study, but 
that doesn’t prevent the development and testing of the rules themselves from being a useful 
exercise. We have had some experience of applying these rules with organisations involved in 
post-earthquake reconstruction in Nepal, and have some positive feedback so far, but it is too early 
for a more formal evaluation and we feel strongly that this would be the topic of another 
manuscript. 
 
Detailed comments on “Simple rules to minimize exposure to coseismic landslide hazard”  
 
L10 - The abstract misses information on the fact that the study is on coseismic landslide hazard. 
Agreed, added ‘coseismic’ on line 15. 
 
L15 - Do you present in the end primarily simple rules to identify hazard? Or rules to minimize exposure, cf 
title? I understand they go hand in hand, but it would be good in my opinion to be aware that the terms 
Hazard, Exposure and Risk are easily confused by readers. Being consequent in using terminology in the 
abstract might avoid confusion.  
Thank you for spotting this possible source of confusion. Although the metrics identify hazard, we 
have written the rules in such a way that they provide advice on action to take to minimize 
exposure. We have modified this sentence on line 15 the abstract to be consistent with the title.  
 
L18 - Not sure what you mean with "as a proxy for hillslope location". 
We added: “…location relative to rivers or ridge crests.” (L18). 
 
L20 - From reading only the abstract it is difficult to agree that defining "the upslope area with slope >39° 
that reaches a location without passing over a slope of <10°" does not require prior knowledge or skills and 
that it is easy understandable. 
Agreed, but on line 26 we distil this into a simpler rule: ‘avoid steep (>10˚) channels with many 
steep (>40˚) areas that are upslope’ 
 
L22 - Could you add the observation period covered by the inventories here between brackets to know 
what is 'recent' to you? 
Added: “… earthquakes (occurring between 1993 and 2015)” (L23) 
 
L23 - Show which other metrics were tested besides the two new metrics you introduce so this sentence 
("most skilful") has more meaning. 
We mention these on lines 16-17 and are conscious that we are short on space in the abstract. The 
text now reads: “We examine rules based on two common metrics of landslide hazard, local slope 
and upslope contributing area as a proxy for hillslope location relative to rivers or ridge crests. In 
addition, we introduce and test two new metrics…” (L17) 
 
L25 - If the rules should be simple and applied by people without skills, why not round to 40°? What is the 
sensitivity of this rule to a change in the slope of one degree? 
Agreed, we will round to 40 degrees, the impact on performance of a one degree change is 
negligible. 
 
L26 - How does that work, "minimise local slope especially on steep slopes"? 
It is particularly important to minimize local slope on steep slopes. This is explained in more detail 
in the results and discussion sections. We are not sure if you found the sentence difficult to 
interpret or were concerned about how robust the finding was. The latter will be addressed in the 
results and discussion section of the paper. We have added a comma between the clauses and 
altered the second ‘slopes’ to ‘hillsides’ to help to clarify the meaning of the phrase (e.g. L28). 
 



L26-28 - This rule seems dubious when stating at the same time "even at the expense of increasing 
upslope contributing area" and " but not at the expense of [...] hazard area" with the latter also comprising 
upslope contributing area. 
The hazard area is found within the upslope area but these two metrics are radically different from 
one another, as we show in the paper. Our results strongly support both parts of this rule that you 
identify above. 
 
L38 - I would suggest to use the updated paper of Petley, 2012:  
Froude, Melanie J., and D. Petley. "Global fatal landslide occurrence from 2004 to 2016." Natural Hazards 
and Earth System Sciences 18 (2018): 2161-2181. Given the very extensive reference list I think that 'e.g. 
Froude et al. 2018' would do while omitting the other references if not necessary in the rest of the paper. 
Agreed. Added. 
 
L46 - I think "respond to that hazard" is of lesser relevance here as you do not deal with hazard response in 
this paper. 
We agree that response is not our focus, but information at a scale that enables decisions to be 
made on how to respond to the hazard is one of the key motivations for this work. Thus we think it 
is important to retain the response clause. 
 
L55 - I would add to “site-specific information that may not be available” something like "such as... " to 
make it more informative. 
Agreed, changed to “…available (such as geological maps or landslide inventories)”. (L56) 
 
L62 – “hazard maps cannot resolve hazard at those scales” : I doubt that, with the current availability of 
high-resolution remote sensing data; yet I agree it could be time-consuming. 
Agreed, although it is worth highlighting that we are talking about national and regional scale maps 
in this clause. We softened the statement by changing from “cannot” to “do not”. (L64). 
 
L97 - How does the “self-recovery” relate to the first part of the sentence? I don't see the relevance of it 
here. 
We added an inline indication of what self-recovery means “…self-recovery after disasters (for 
example, via reconstruction programmes in which householders rebuild their own homes)”. (L100). 
 
L102 - Not only of “less use” but also inherently different; your rules aim to minimize landslide exposure, not 
to help in hazard response. Please modify. 
We disagree with this point. Action to minimize your exposure to a hazard can occur both before 
and during an earthquake. Taking the earthquake example, this might be the difference between 
relocating away from an earthquake prone area and choosing to ‘drop cover and hold on’. Given 
this, we think that ‘less use’ is the appropriate modifier here. 
 
L107 - Could you site a reference at the end of this sentence, in order to make "our" refer to the scientific 
background.  
Here, the use of ‘our’ was referring to the findings of this paper. To clarify this, we modified “Some 
of our results may be transferrable to landslides caused by more frequent triggers, such as storms, 
and we consider this point in the discussion.” To “We consider the extent to which our results may 
be transferrable to landslides caused by more frequent triggers, such as storms, in the discussion.” 
(L109). 
 
L110 - Add respective countries between brackets. 
Modified to: “Finisterre (Papua New Guinnea), Northridge (USA), Chichi (Taiwan), Wenchuan 
(China), Haiti, and Gorkha (Nepal) earthquakes”. (L114). 
 
L112-116 - I don't see much difference between the two questions? 
The first relates to absolute performance of the rule set, the second to relative performance of rules 
within the set. We have added this sentence on L121 to clarify this point. 
 
L116 - What kind of patterns? Temporal/spatial... modified to “spatial patterns”. (L122). 
 
L118 - Which "combined datasets" you refer to? The landslide inventories or more specifically to the 
derived topographical parameters from the inventories? Modified to “landslide datasets”. (L124). 



 
L127 – This question is probably related to my lack of knowledge in the earthquake-triggered landslides, 
but to me it is not clear what you mean here with ‘local slope’, could you specify? Do you mean the slope at 
the landslide head ? What is the spatial extent of a "local" slope?  
We have now clarified our definition of local slope, which although conventional may not be familiar 
to all readers: “Local slope, the gradient of the ground surface measured over some short distance 
(usually ~1-100 m)” (L133). 
 
L129 - In Parker et al. 2017, who you cite, they find hillslope gradient as an important driver, which is 
different than local slope I would think? Parker et al. 2017: "We find that a simple model combining PGA 
and hillslope gradient provides the most numerically elegant and best fitting model. The use of topographic 
variables other than hillslope gradient were found to produce models with a lower fit,..."  
In fact we use ‘local slope’ to refer to the same property that Parker et al. 2017 call hillslope 
gradient. We considered a switch to their nomenclature but feel that local slope is the best 
established and most appropriate term for the property that we refer to. One reason for this is that 
local slope indicates that a gradient is being calculated over a (relatively) short length scale rather 
than over the entire hillslope (from ridge to river). It is also more clearly contrasted with a non-local 
measure like skyline angle, which considers the topography over a larger window around a 
particular point of interest. We now clarify this by defining local slope within the sentence (on L133) 
as mentioned above. 
 
L135 - Can you add a reference here, after “However, shaking for any future earthquake cannot be 
predicted due to lack of certainty on source location, magnitude, rupture style, and local site effects. Added 
on L142. 
 
L194 - How is this "non-local" when accounting for local slope?  
The hazard area is a non-local metric because the value of the metric at a given cell is a function of 
cells within a wider neighborhood than only its 8 connected (local) neighbors. In this case the 
property is the gradient (local slope in our terms) of the cells in this wider neighborhood (from all 
possible initiation points to the target cell).  
 
L323 - "conditional probability for landslide occurrence" seems more informative to me. 
Agreed, but we are talking about a broader class than simply occurrence. We have modified the title 
to: “Conditional probability and landslide hazard” (L268) 
 
L324 – “Landslide hazard can be defined as…” should already have been clear from the introduction. 
Agreed, but here we are building the case for a conditional probability based analysis, so we feel 
that the connection with the definition of landslide hazard needs to be retained here. 
 
L342 - Make reference to preceding research using this approach, yet using rainfall characteristics (I,D) 
instead of landslide susceptibility (a). E.g., Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., 
Simoni, A., & Pizziolo, M. (2012). Probabilistic rainfall thresholds for landslide occurrence using a Bayesian 
approach. Journal of Geophysical Research: Earth Surface, 117(F4). 
Agreed, this is a useful reference and while many other studies apply similar approaches this has a 
stronger connection than most. We have added: “…landslide inventories. This type of approach 
has proved successful for a range of applications including identifying topographic controls on 
vegetation patterns [Milledge et al., 2012] and the rainfall conditions that trigger landslides [Berti et 
al., 2012]. If we grid…” (L289). 
 
L383 - I would strongly reduce this section as readers of NHESS could be assumed to be acquainted with 
the concept of ROC curves. We feel that a clear explanation of ROC curves is important in this paper 
because of the central role that these curves play in quantifying the performance of the metrics that 
we test. 
 
L396 – “the naïve (random)” : Necessary to repeat (L394) the two terms here again? 
Agreed, removed ‘(random)’ on L356. 
 
L402 - Why would you use NED elevation data? Since SRTM covers each of the inventory, it seems more 
logical to use consequently the same DEM source to avoid bias. Certainly because you emphasize on the 



slope factor here, there should not be a biased introduced voluntarily (unless it would be used for an 
investigation of sensitivity to spatial resolution)  
Our approach was to use the best freely-available data at each location, but to use a consistent 
resolution between sites. For all the locations but Northridge SRTM is the best quality available 
data. This can be problematic, as SRTM data can have gaps (as in Wenchuan) and can smooth 
highly dissected terrain (as in Northridge). While in Wenchuan we had to restrict our analysis to a 
subset of the terrain, in Northridge we were able to use better topographic data (the NED), though 
we downsampled to the same resolution. Our performance tests at Northridge, comparing SRTM 
and NED data, support this. We find a considerable performance reduction for SRTM relative to 
NED data, particularly for the hazard area metric. This is likely due to the highly dissected 
topography within the Northridge study area; the SRTM data do not capture this topography but the 
resampled NED data do.  
 
L416 - Avoid repetition, cf. L181 
Addressed by modifying and shortening sentence. 
 
L420 - Could you clarify what you consider here as channel and channel spacing? How is channel spacing 
related to the skyline?  
Channel spacing is related to the window size required to evaluate the skyline angle because the 
skyline is likely to be defined by local ridges and the distance to these ridges to be defined by 
channel spacing. However, the term was distracting and in retrospect unnecessary so we have 
removed it in our new explanation. 
 
L421 - What is meant with 'characteristic hillslope length'?  
Characteristic hillslope length can be interpreted as an estimate of the average hillslope length for 
the study area. It is calculated based on the upslope area at which there is a scaling break in the 
relationship between slope and upslope area following the approach of Roering et al. (2007). We 
have now replaced ‘characteristic’ with ‘average’ since this is a more straightforward term (L382). 
 
L423 - What is the relation between the characteristic hillslope length and channel spacing?  
Since channels are separated by ridges with hillslopes on each side, then the average channel 
spacing is twice the characteristic hillslope length. In answering this query we identified an 
alternative explanation for our choice of search radius that avoids the confusing connection to 
channels. 
 
L422-423 - Since these are parameterized by the chosen inventories, do you estimate that your rules might 
change for other areas? Or do you argue that the conservative approach is general enough?  
The size of this window should not have an impact on the rules. It will affect only on their 
implementation and testing within a GIS. The objective here is to ensure that the search radius is 
large enough to reproduce the same horizon angle in the GIS that would be measured in the field. 
 
The four comments above suggest that our explanation of our choice of search radius for the 
skyline angle was a source of confusion. We have now rephrased the entire section as follows 
(removing reference to channel spacing which was a distraction): 
 
“For each cell in a study area, we estimate the skyline angle by calculating vertical angles 
between the target cell and every other cell within a 4.5 km radius. This search radius is 
chosen to greatly exceed the average hillslope lengths in all study areas and thus to fully 
capture the local skyline. The longest average hillslope length out of our study areas is 
~500 m for Wenchuan, estimated following the method of Roering et al. (2007). We choose 
a search radius nine times larger than this hillslope length to ensure redundancy in 
capturing the local skyline and because the only disadvantage of a larger radius is 
increased computational cost.” L380-386. 
 
L423 – The sentence “We choose larger window size because skyline angle estimates become 
asymptotically insensitive to window size” is not clear to me, larger than what? 
This sentence has been removed from the modified manuscript. 
 
L437 - Seems to be projected from point P? 
Agreed, altered. 



 
L443 - With “non-local” you mean not at the landslide initiation location? 
This point has been addressed in our earlier discussion of ‘non-local’. 
 
L464 - Avoid repetition with L453. 
Modified to remove repetition. 
 
L547-548 - "on which people generally choose to live" : This statement is too vague to me without a 
reference, does this statement reflect to your inventories solely? 
We can be confident of this for our specific inventories but would argue that it is true in general. 
However, we do not have a reference to support it, so we have adjusted the sentence to refer to our 
inventories in particular (L509). 
 
L567 - I do not see a significant difference in the point density (~number of observations) for observations 
with Upslope contributing area > 1000m./m.  
Our point here was that the number of observations per bin was very small for upslope contributing 
area >100 m2/m. However, we have adopted a new approach (as suggested by reviewer 1) that 
enables us to identify the point at which sample sizes per bin are too small to confidently interpret. 
 
L631- Make reference to the respective equations in the Methodology section for the parameters 
mentioned here. 
Agreed, equation references added (L615). 
 
L673- None, capital N.  The typo was the full stop, which should have been a comma. This is now 
fixed. 
 
L677 - Table 1 and Fig. 6 are redundant, you could add Fig. 6 in supplementary material? 
We disagree, and feel that Fig.6 shows the data that are synthesized in Table 1. It is important for 
readers to see these curves rather than the AUC values only, both because they illustrate the point 
more clearly than a table of values and because they provide richer information. As a result, we feel 
that it is important to include this in the text rather than leaving it for the supplementary info. 
 
L753-756 – I think it is very valuable that the authors take a step back from there rules while summarizing 
the main parameters to take into account for hazard assessment, being “hazard area, skyline angle, and 
the local slope in conjunction with each other”. Yet this idea that is stated as a conclusion “We conclude 
that decisions on how to reduce landslide hazard most effectively need to be made on a case by case 
basis, …” is not repeated in the abstract or conclusion, which to me is confusing. It is even in contrast with 
the conclusion stating (L858-859) “suggesting that the average parameters can be applied to other 
inventories. These findings can be distilled into three simple rules:”.  
The ‘case by case basis’ on L754 refers to application of the rules on a case by case rather than 
simply resolving to always move upslope or downslope for example. This does not conflict with our 
later conclusions. However, we have modified the sentence on L753 (now L742) to remove the word 
conclusion and thus avoid confusion. 
 
L764-L766 I am not sure what your message is here, helping in decision-making before an earthquake is 
the same to me as decision making after an earthquake which is in turn also before a future earthquake. 
What is the differentiation that I am missing here?  
The point we are trying to make here is that these rules could be used not only for long-term 
decision making, where the time that it takes to move a certain distance is not the limiting factor in 
whether you can locate yourself or your assets, but also for short-term decision making during or 
in the immediate aftermath of an earthquake when one may only be able to move short distances. 
We clarify this in our revised manuscript (L752-755). 
 
L770 - This statement is largely depending on which spatial extent you perform your analysis and therefore 
I don't think it is relevant, or should be said in a different way. 
Agreed. The sentence order has now been adjusted so that this statement (L759) follows the 
sentence on the granularity of landslide hazard and is supported by examples in two subsequent 
sentences. 
 
L849 - In "the highest area at a given slope" it is not clear what you mean with "highest area". 



Agreed, and this has been rephrased to “largest upslope contributing area” (L735). 
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Abstract 10 

Landslides constitute a hazard to life and infrastructure, and their risk is mitigated primarily by 11 

reducing exposure. This requires information on landslide hazard at a scale that can enable informed 12 

decisions. Such information is often unavailable to, or not easily interpreted by, those who might 13 

need it most (e.g., householders, local governments, and NGOs). To address this shortcoming, we 14 

develop simple rules to minimize exposure to coseismic landslide hazard that are understandable, 15 

communicable, and memorable, and that require no prior knowledge, skills, or equipment to apply. 16 

We examine rules based on two common metrics of landslide hazard, local slope and upslope 17 

contributing area as a proxy for hillslope location relative to rivers or ridge crests. In addition, we 18 

introduce and test two new metrics: the maximum angle to the skyline and the hazard area, defined 19 

as the upslope area with slope >40˚ from which landslide debris can reach a location without passing 20 

over a slope of <10˚. We then test the skill with which each metric can identify landslide hazard – 21 

defined as the probability of being hit by a landslide - using inventories of landslides triggered by six 22 

earthquakes that occurred between 1993 and 2015. We find that the maximum skyline angle and 23 

hazard area provide the most skilful predictions, and these results form the basis for two simple 24 

rules: ‘minimize your maximum angle to the skyline’ and ‘avoid steep (>10˚) channels with many 25 

steep (>40˚) areas that are upslope’. Because local slope alone is also a skilful predictor of landslide 26 

hazard, we can formulate a third rule as minimise the angle of the slope under your feet, especially 27 

on steep hillsides, but not at the expense of increasing skyline angle or hazard area’. In contrast, 28 

upslope contributing area, has a weaker and more complex relationship to hazard than the other 29 
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predictors. Our simple rules complement, but do not replace, detailed site-specific investigation; they 49 

can be used for initial estimation of landslide hazard or to guide decision-making in the absence of 50 

any other information. 51 

 52 

Keywords: coseismic landslides, landslide, heuristic, hazard, exposure 53 

 54 

1. Introduction 55 

Landslides involve the downward movement of soil or rock under gravity, sometimes mixing with 56 

water or air to run out rapidly over long distances. Landslides have considerable destructive potential 57 

and constitute a major hazard to life and infrastructure (e.g. Froude and Petley, 2018). 58 

Landslide risk can be mitigated by either reducing exposure - the likelihood that a particular person 59 

or structure is hit by a landslide - or by reducing the consequences of landslide impact. The latter is 60 

expensive for a building (Fell et al. 2005; Volkwein et al., 2011; Guillard-Gonçalves et al., 2016) and 61 

extremely difficult for a person (Kennedy et al., 2015). As a result, efforts in reducing landslide risk 62 

tend to focus on reducing exposure, primarily by siting infrastructure and assets (or by choosing to 63 

spend time) in places of lower landslide hazard. These choices, however, require information on 64 

landslide hazard at a scale that can enable informed decisions about how to mitigate the risk. In 65 

other words, a decision to reduce landslide exposure requires knowledge of how landslide hazard 66 

varies in space.  67 

Quantitative landslide hazard information is commonly expressed as a relative weighting or 68 

probability of landslide occurrence in a given location and over a specified period of time. This is 69 

often communicated as a hazard map (Dransch et al., 2010). These maps can provide useful 70 

information to inform decisions such as siting infrastructure, allocating resources, designing 71 

countermeasures, or planning mitigation measures such as evacuation routes. There are, however, 72 

at least five limitations to reliance on hazard maps as the sole source of landslide hazard information. 73 

First, landslide hazard maps do not exist for all hazardous locations, since their generation requires 74 

technical expertise and site-specific information that may not be available (such as geological maps 75 

or landslide inventories). Second, where maps do exist they may not be available to those that need 76 

them. Whether in physical or digital form, hazard maps are rarely held by the communities that live 77 
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within their boundaries (Alexander, 2005; Mills and Curtis, 2008; Twigg et al., 2017). Third, where 83 

landslide hazard maps are available their resolution may not be fine enough to address the questions 84 

that potential users will have. In everyday decisions, from where to build a house to which way to 85 

walk, distances of even a few metres can matter greatly for determining landslide exposure, because 86 

landslide hazard can vary substantially even over those short length scales. National- or even 87 

regional-scale hazard maps do not resolve hazard at those scales, however, and hazard maps at 88 

the appropriate scale would be extremely costly and time-consuming to produce over large areas. 89 

Fourth, landslide hazard maps are designed for technical users (such as engineers and planners) 90 

and thus can be difficult for non-technical users to interpret (Dransch et al., 2010). Hazard is often 91 

expressed in probabilistic terms which are inherently difficult to communicate and understand 92 

(Thompson et al., 2015). The maps may also require particular equipment, such as a computer with 93 

appropriate software, or additional contextual information to enable clear visualisation or to orient 94 

the user (Mills and Curtis, 2008). Finally, landslide hazard maps may lack appropriate information 95 

for decision-making. For example, landslide hazard is commonly equated simply with the probability 96 

of landslide initiation at a given location, rather than the probability that that location will be impacted 97 

by a landslide occurring there or somewhere upslope.  98 

In the absence of detailed hazard maps, how should we make decisions about siting infrastructure 99 

or spending time in landslide-prone areas? An alternative, and complementary, form of hazard 100 

information might be a set of general rules that can be memorised by anyone who might be exposed 101 

to landslide hazard, or by those charged with managing landslide risk, to be applied where no other 102 

information exists. A good general rule should: 1) be understandable, communicable and 103 

memorable; 2) require no prior knowledge, skills or equipment to evaluate; 3) be a skilful discriminant 104 

of hazard; and 4) be cast so that it does not increase exposure to another hazard. A good example 105 

of such a rule would be the instruction to minimise exposure to tsunami: “in case of earthquake, go 106 

to high ground or inland” (Atwater et al., 1999, p20). Research has shown that these types of simple 107 

rules are already to some extent implicitly coded into the decisions that people make (e.g., 108 

Gigerenzer, 2008), reflecting tacit knowledge of hazards (e.g., Shaw et al., 2008; Lebel, 2013; Twigg 109 

et al., 2017). Importantly, however, there are limits to this tacit knowledge (Briggs, 2005); in 110 

particular, the body of experience required to generate these rules is limited by both the infrequency 111 
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of triggering events, such as earthquakes or large storms, and a focus on normal rather than unusual 121 

but not improbable events, which can introduce bias (McCammon, 2004; Kahneman and Klein, 122 

2009). For example, while perennial rainfall-triggered landslides and the risks that they pose may be 123 

familiar to people in landslide-prone communities, landslides triggered by large earthquakes may fall 124 

outside of residents’ lived experience, and so will be more challenging to comprehend and account 125 

for in decision-making. If simple, memorable rules (fulfilling criteria one and two above) could be 126 

derived from a large inventory of hazardous events, these biases might be reduced while maintaining 127 

the other benefits of a rule-based approach (criteria three and four). Such a set of data-based rules 128 

could be used in the absence of, or in conjunction with, existing tools such as hazard maps and local 129 

knowledge, both to inform decisions and to inspire discussion amongst householders, local 130 

government, and non-governmental organisations. Such knowledge is commonly in demand not only 131 

from technical users but also from lay people (Twigg et al., 2017; Datta et al., 2018), especially 132 

because self-recovery after disasters (for example, via reconstruction programmes in which 133 

householders rebuild their own homes) is increasingly recognised as a critical mechanism of 134 

recovery (Twigg et al., 2017).  135 

Here we focus on rules that can be derived from the topography surrounding a given location and 136 

that differentiate exposure to coseismic landslide hazard on length scales of tens to hundreds of 137 

metres. Such rules are likely to be most useful for decisions before an earthquake about where to 138 

site infrastructure or spend time, and may be less useful for decisions about where to go during an 139 

earthquake when time is limited. We focus on earthquakes because landsliding is an important, but 140 

poorly understood, aspect of hazard in many recent continental earthquakes (Huang and Fan, 2013; 141 

Roback et al., 2018). We consider the extent to which our results may be transferrable to landslides 142 

caused by more frequent triggers, such as storms, in the discussion.  143 

We examine candidate rules based on our existing understanding of landslide mechanics to identify 144 

those that meet criteria one and two above. We then test the skill with which each candidate rule 145 

can identify landslide hazard, using inventories of coseismic landslides from the recent Finisterre 146 

(Papua New Guinea), Northridge (USA), Chi-Chi (Taiwan), Wenchuan (China), Haiti, and Gorkha 147 

(Nepal) earthquakes. Our goal is to determine the rule or rules that best fulfil the four criteria listed 148 

above, and that therefore provide the best combination of simplicity and skill in anticipating coseismic 149 
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landslide impacts. We ask two key questions: (1) to what extent could observed landslide locations 159 

in past earthquakes have been predicted by these simple rules alone, without recourse to more 160 

complex models; and (2) is there a single rule or set of rules that performs well across all 161 

earthquakes, and could form the basis for anticipating landslide-affected locations in a future 162 

earthquake? The first question relates to the absolute performance of the rule set, while the second 163 

relates to relative performance of rules within the set. While spatial patterns of landsliding in these 164 

earthquakes have been previously established, this is to our knowledge the first attempt to extract a 165 

more general set of rules from landslide datasets across multiple earthquakes. 166 

This paper is necessarily technical, addressing the question of whether it is possible to formulate 167 

such rules, identifying which rules work best and assessing their performance. We therefore expect 168 

the paper’s primary audience to be technical experts with an interest in landslide risk reduction. We 169 

have begun to explore ways of expressing these rules in a format that is more accessible to a general 170 

audience (e.g. Milledge et al., 2018). 171 

 172 

2. Potential predictors for coseismic landslide hazard: slope and upslope contributing 173 

area 174 

Local slope, the gradient of the ground surface measured over some short distance (usually ~1-100 175 

m) has been identified as an important driver of landslide occurrence in almost all prior landslide 176 

studies (e.g. Harp et al., 1981; Tibaldi et al., 1995; Keefer, 2000; Wang et al., 2003; Xu et al., 2012, 177 

2013; Parker et al., 2017). This is consistent with mechanistic expectations based on the balance of 178 

driving and resisting forces on an inclined failure plane (Taylor, 1937). Local slope is an intuitive 179 

parameter that is familiar to most people and can be easily estimated in relative terms (i.e., hillside 180 

A is steeper than hillside B) without specialised equipment. Seismic acceleration or shaking is 181 

commonly identified as the other dominant control on coseismic landslide occurrence (Khazai and 182 

Sitar 2004, Meunier 2007). However, shaking for any future earthquake cannot be predicted due to 183 

lack of certainty on source location, magnitude, rupture style, and local site effects (Geller, 1997). It 184 

is therefore difficult to incorporate into a general rule for future landslide hazard. 185 

Ridges are often considered to be areas of high coseismic landslide probability due to topographic 186 

amplification (Densmore and Hovius, 2000; Meunier et al., 2008; Rault et al., 2018), while rivers are 187 
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by definition areas of flow concentration into which landslides from multiple potential initiation zones 193 

may run out. Here we use upslope contributing area as a continuous estimator of the proximity to a 194 

ridgeline (defined here as an area with little or no upslope cells) or a valley, in order to assess how 195 

hazard may vary with position in the landscape. 196 

Other predictors have been identified in coseismic landslide studies, but these generally have a 197 

secondary effect and are not consistently identified as important controls on landslide occurrence 198 

(Parker et al., 2017). Elevation and aspect in particular lack a consistent explanation or pattern as a 199 

control on coseismic landslide hazard (Parker et al., 2017). Other common predictors are difficult to 200 

evaluate ‘on the ground’ without specialised equipment or knowledge. Soil type (e.g., Lee and 201 

Pradhan, 2006), rock type (e.g., Parise and Jibson, 2000), or land cover (e.g., Pradhan, 2013) may 202 

be relevant to slope stability but are difficult to identify without specialised training. Curvature (e.g., 203 

Xu et al., 2014a) is strongly dependent on the length scale over which it is measured and is extremely 204 

difficult to estimate by eye, particularly in rough natural topography. Proximity to roads (e.g., Xu et 205 

al., 2012) is often possible to estimate in the field, but inclusion of this factor assumes that all roads 206 

are similar in their design, age and construction, and thus have similar impacts on slope stability.  207 

 208 

3. Accounting for runout in landslide hazard: reach angle and runout routing 209 

The potential predictors described above are primarily chosen in hazard models for their perceived 210 

link to the probability of coseismic landslide initiation. Once triggered, however, landslide material 211 

may run out for long distances and over large areas. Thus, there are substantial portions of any 212 

landscape where landslide initiation is unlikely but where contact with a landslide is still possible – 213 

for example, at the foot of a steep hillslope. Mechanistic modelling of landslide runout is 214 

computationally intensive and strongly sensitive to initial conditions, taking it beyond the capacity of 215 

exposed communities (e.g., George and Iverson, 2014). In contrast, simple empirical approaches 216 

that have shown some predictive power fall into two categories: reach angles and runout routing. 217 

The Fahrboeschung or reach angle from the crown of a landslide to the toe of its deposit has been 218 

shown to follow an exponential decrease with landslide volume (Heim, 1882; Corominas, 1996; 219 

Hunter and Fell, 2003). The reach angle concept has been incorporated into a small number of 220 

hazard maps as a way to represent the probability that a landslide will reach a given location, and 221 
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can be coupled with predictions of the probability of landslide initiation (e.g., Kritikos et al., 2015). 228 

However, these complex combinations of probability are difficult to distil into a single simple rule and, 229 

to our knowledge, this has not yet been done. 230 

If initiation probability is unknown and we make the conservative assumption that any cell can initiate 231 

a landslide, then the hazard at a given location becomes proportional to the area that protrudes 232 

above a cone with its apex at the location of interest and its sides inclined at a critical reach angle 233 

from the horizontal. This approach has similarities with local sloping base level (Jaboyedoff et al., 234 

2004) and excess topography metrics (Blöthe et al., 2015), which both project surfaces through the 235 

landscape to identify less stable zones, though neither of these approaches are framed in terms of 236 

reach angles. Even this simple approach, which neglects initiation probability, is hard to distil: 1) its 237 

conceptual complexity makes it difficult to communicate; 2) its predictions depend on a reach angle 238 

parameter that is poorly constrained; and 3) the area protruding from an imaginary surface projected 239 

beneath the land surface is very difficult to estimate by eye, particularly in high-relief areas where 240 

significant parts of the landscape may be occluded from the viewpoint. An alternative metric would 241 

simply be the maximum angle from the horizontal to the skyline, which can be interpreted as the 242 

maximum (or worst-case) reach angle for that location. This metric is much simpler and thus easier 243 

to communicate and remember, can be estimated by eye, and avoids the problem of choosing a 244 

critical reach angle. We choose this as our third potential hazard predictor. 245 

Runout routing approaches assess the probability that landslide debris will reach a given location by 246 

assuming that it flows downslope and that its probability of stopping is dependent on some local 247 

property of the path along which it flows. This approach ranges in complexity from detailed physics-248 

based treatments (George and Iverson, 2014; von Ruette et al., 2016) to simple empirical rules such 249 

as the local slope or junction angle of flowpaths (Benda and Cundy, 1990; Montgomery and Dietrich, 250 

1994; Densmore et al., 1998; Fannin and Wise, 2001). Hazard estimates are then a function of the 251 

initiation probability integrated over the upslope area and the stopping probability for each potential 252 

event. To incorporate these considerations as simply as possible into a hazard predictor, we 253 

introduce a new approach (described below) that accounts for local slope at both the locations of 254 

landslide initiation and along the flow path. While this approach does not capture the dynamic 255 
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behaviour of landslide initiation or runout, we include it so that we can test the skill of such non-local 259 

approaches and the need to account for them in our simple rules. 260 

 261 

4. Earthquake inventories 262 

In this section, we describe the landslide inventories against which we test our four potential 263 

predictors. A Mw 6.9 earthquake occurred on 13 October 1993 in the Finisterre Mountains of Papua 264 

New Guinea with a hypocentre at 25 km depth, rupturing the north-dipping Ramu-Markham thrust 265 

fault to within a few hundred meters of the surface (Stevens et al., 1998). The event was followed by 266 

multiple aftershocks of >Mw 6, including a Mw 6.7 event on 25 October 1993 with a hypocentre at a 267 

depth of 30 km. About 4,700 landslides triggered by these earthquakes were mapped from 30 m 268 

resolution SPOT images (Meunier et al., 2007). Location accuracy for the landslides is thought to be 269 

similar to the pixel size of the satellite images used, ~30 m. 270 

 271 

The Mw 6.7 Northridge earthquake occurred in southern California, USA, on 17 January 1994 and 272 

ruptured 14 km of a south-dipping blind thrust fault, with a hypocenter at 19 km depth (Wald and 273 

Heaton, 1994, Hauksson et al., 1995). The triggered more than 11,000 landslides (Harp and Jibson, 274 

1996). Landslides were mapped immediately after the earthquake using field studies and aerial 275 

reconnaissance and were manually digitized on 1:24,000 scale base maps. Landslides >10 m across 276 

could be confidently identified and location errors were estimated to be <30 m (Harp and Jibson, 277 

1996).  278 

 279 

The Mw 7.6 Chi-Chi earthquake occurred on 21 September 1999 with a hypocentre at 8-10 km depth, 280 

rupturing ~100 km of the east-dipping Chelungpu thrust fault in western Taiwan (Shin and Teng, 281 

2001). The earthquake triggered more than 20,000 landslides with the majority occurring across a 282 

3,000 km2 region (Dadson et al., 2004). Landslides in this region were mapped by the Taiwan 283 

National Science and Technology Centre for Disaster Prevention from SPOT satellite images with a 284 

resolution of 20 m. Landslides with areas >3,600 m2 were resolved, resulting in an inventory of 9,272 285 

landslides with location errors estimated to be ~20 m (Dadson et al., 2004). 286 

 287 
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The Mw 7.9 Wenchuan earthquake occurred on 12 May 2008 with a hypocentre at 14-19 km depth, 369 

rupturing ~320 km of the steeply northwest-dipping Yingxiu-Beichuan and Pengguan faults in 370 

Sichuan, China (Xu et al., 2009). The earthquake triggered more than 60,000 landslides across a 371 

total area of 35,000 km2 (Gorum et al., 2011; Li et al., 2014). We used a subset of the landslide 372 

inventory compiled by Li et al. (2014), who mapped landslides from high-resolution (<15 m) satellite 373 

images and air photos. The subset of 18,700 landslides comprises all mapped landslides east of 374 

104° E (Figure S6), and was chosen to avoid gaps in the available 30 m resolution SRTM topographic 375 

data. The subset covers a similar range of topographic and lithologic conditions, and experienced a 376 

similar range of peak ground accelerations (0.16-1.3 g), to the full inventory (0.12-1.3 g). Location 377 

accuracy for landslides is thought to be similar to the pixel size of the satellite images used, ~15 m 378 

(Li et al., 2014).  379 

 380 

The Mw 7.0 Haiti earthquake occurred on 12 January 2010, with a hypocentre at 13 km depth 381 

(Mercier de Lépinay et al., 2011). The complex rupture involved both a blind thrust fault and deep 382 

lateral slip on the Enriquillo–Plantain Garden Fault (Hayes et al., 2010, Mercier de Lépinay et al., 383 

2011). The earthquake triggered more than 30,000 landslides across a 3,000 km2 region (Xu et al., 384 

2014a). We used an inventory of 23,679 landslides mapped by Harp et al. (2016) from publicly-385 

available satellite imagery with a resolution of 0.6 m before and after the earthquake; landslides with 386 

areas >10 m2 were resolved (Harp et al., 2017).  387 

 388 

The Mw 7.8 Gorkha earthquake occurred on 25 April 2015, rupturing ~140 km of the north-dipping 389 

Main Himalayan Thrust in central Nepal (Hayes et al., 2015; Elliott et al., 2016). It had a hypocentre 390 

at 8.2 km depth but did not rupture to the surface (Hayes et al., 2015). The event was followed by a 391 

series of large aftershocks, including a Mw 7.2 event on 12 May which ruptured a portion of the Main 392 

Himalayan Thrust directly east of the 25 April rupture (Avouac et al., 2015). The earthquake triggered 393 

approximately 25,000 landslides with a total surface area of about 87 km2 (Roback et al., 2018). We 394 

used an inventory of 24,915 landslides mapped by Roback et al. (2018) from Worldview-2 395 

Worldview-3 and Pleiades imagery, with a resolution of 0.25-0.5 m, before and after the earthquake.  396 

 397 
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These epicentral areas encompass a large range of millennial scale erosion rates (0.1 to >7 mm yr-491 

1), lithological properties (metamorphic, igneous and sedimentary), climatic conditions 492 

(Mediterranean to tropical) and vegetation covers (chapral, savannah, tundra, tropical and 493 

subtropical forest); see table S2 and Figures S3 to S8 in Supplementary Information. We choose 494 

this range of settings in order to test the general applicability of any rules that we can extract. 495 

 496 

5. Methods 497 

5.1. Conditional probability and landslide hazard 498 

Landslide hazard can be defined as the probability of being hit by a landslide in a given location 499 

and within a given time interval (Lee and Jones, 2004). Here we make no distinction between the 500 

consequences of being hit by landslides of different sizes or velocities, assuming that all are 501 

equally dangerous. This probability can be expressed mathematically as P(L|x,y,t), where L is the 502 

outcome of being hit by a landslide, x,y are the coordinates for a particular location, and t is the 503 

time interval of interest. We do not address the timing of landsliding, assuming that this is driven by 504 

the timing of an earthquake and is thus unpredictable (Geller, 1997). Instead we focus on landslide 505 

susceptibility given an earthquake that produces shaking of unknown intensity at a location (x,y), 506 

hence the notation P(L|x,y). We assume that the hazard at that location can be approximated by 507 

some location-specific characteristic (a). Thus, the landslide hazard at (x,y) is the conditional 508 

probability of being touched by a landslide given the value of the characteristic at that location, 509 

P(L|a), and can be calculated using Bayes' Theorem: 510 

 511 

𝑃𝑃(𝐿𝐿|𝑎𝑎) = 𝑃𝑃(𝐿𝐿) 𝑃𝑃(𝑎𝑎|𝐿𝐿)
𝑃𝑃(𝑎𝑎)           (1) 512 

 513 

where a is a specific characteristic of the location, such as  the topographic slope. If we assume that 514 

the relationships between past landslides and local characteristics are good predictors of their future 515 

relationships then we can construct empirical conditional probability calculations from landslide 516 

inventories. This approach has proved successful for a range of applications, including identifying 517 

topographic controls on vegetation patterns (Milledge et al., 2012) and the rainfall conditions that 518 
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trigger landslides (Berti et al., 2012). If we grid the topography, then the Bayes’ equation can be 525 

easily rewritten in terms of the numbers of grid cells, and in this form the direct equivalence of 526 

landslide conditional probability and landslide area density (e.g., Meunier et al., 2007; Dai et al., 527 

2011; Gorum et al., 2014) is clear: 528 

 529 

𝑃𝑃(𝐿𝐿|𝑎𝑎) = 𝑁𝑁(𝑎𝑎∩𝐿𝐿) 
𝑁𝑁(𝑎𝑎)

          (2) 530 

 531 

where N(a∩L) is the number of cells with a given value of characteristic a that are touched by a 532 

mapped landslide, N(a) is the number of cells with the characteristic of a in the entire study area, 533 

and the study area is defined by the smallest convex hull that contains all of the observed landslides. 534 

To account for variability in the magnitude of shaking between the six study areas, we normalise the 535 

conditional probability of being hit by a landslide P(L|a) by the study area average probability of 536 

landsliding P(L) to generate a relative hazard. This can be shown to be directly equivalent to the 537 

‘frequency ratio’ (e.g., Lee and Pradhan, 2007; Lee and Sambath, 2006; Yilmaz, 2009; Kritikos et 538 

al., 2015): 539 

 540 

𝑃𝑃(𝐿𝐿|𝑎𝑎)
𝑃𝑃(𝐿𝐿)

=
𝑁𝑁(𝑎𝑎∩𝐿𝐿)

𝑁𝑁(𝑎𝑎)�  

𝑁𝑁(𝐿𝐿)
𝑁𝑁(𝑆𝑆)�  

=  𝑁𝑁(𝑎𝑎∩𝐿𝐿)
𝑁𝑁(𝑎𝑎)

 𝑁𝑁(𝑆𝑆)
𝑁𝑁(𝐿𝐿)

         (3) 541 

 542 

where N(S) is the total number of cells in the study area and N(L) is the number of cells touched by 543 

landslides. Our normalised conditional probability is also directly equivalent to the ‘probability ratio’ 544 

used by Lin et al. (2008) and Meunier et al. (2008) since, from Bayes’ Theorem: 545 

 546 

𝑃𝑃(𝐿𝐿|𝑎𝑎)
𝑃𝑃(𝐿𝐿)

= 𝑃𝑃(𝐿𝐿) 𝑃𝑃(𝑎𝑎|𝐿𝐿)
𝑃𝑃(𝑎𝑎)𝑃𝑃(𝐿𝐿)

= 𝑃𝑃(𝑎𝑎|𝐿𝐿)
𝑃𝑃(𝑎𝑎)

         (4) 547 

 548 

We display the normalised conditional probability on a logarithmic scale for readability, resulting in a 549 

probability metric that is strongly similar to the ‘information value’ metric used in some landslide 550 

susceptibility analyses (e.g., Yin and Yan, 1988). We evaluate both one-dimensional conditional 551 
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probability in terms of one predictor variable a, and two-dimensional conditional probability in terms 553 

of two predictors considered jointly. 554 

Conditional probability analysis is advantageous for its direct link to hazard and does not require us 555 

to impose a functional form to the data. However, the results are partly dependent on bin size and 556 

location for the predictor variable, and bins with few observations (i.e., those for which N(a) << N(S)) 557 

can result in noisy data that are difficult to interpret. We use the approach of Rault et al. (2018) to 558 

identify the parts of the conditional probability data where our observations are sparse, leading to 559 

lower confidence in the results. We compute the confidence interval Ip associated with the random 560 

drawing of the N(L) landslide cells from the landscape distribution of the predictor variable. If the 561 

normalised conditional probability P(L|a) / P(L) is within the interval Ip then we cannot exclude the 562 

possibility that the difference between the conditional and study area average probabilities is simply 563 

the result of random fluctuations. Given that landslides are rare events even in these large 564 

earthquakes, we assume that landslides are independent and can be modelled with Bernoulli 565 

sampling. Since the binomial distribution is well approximated by a normal distribution when samples 566 

sizes are large (i.e. N(L) > 30) and in the absence of extreme skew (i.e. N(L) x (P(a|L) > 5 and N(L) 567 

x (1 - (P(a|L)) > 5), then the 90% confidence interval can be estimated as: 568 

𝐼𝐼𝑝𝑝 = �1 − 1.96� 1−𝑃𝑃�𝑎𝑎�𝐿𝐿�
𝑁𝑁(𝐿𝐿) 𝑃𝑃�𝑎𝑎�𝐿𝐿� ; 1 + 1.96� 1−𝑃𝑃�𝑎𝑎�𝐿𝐿�

𝑁𝑁(𝐿𝐿) 𝑃𝑃(𝑎𝑎|𝐿𝐿)
; �      (5) 569 

We distinguish conditional probability values that exceed this confidence interval Ip in the analysis 570 

below.  571 

To aid interpretation in the two-dimensional case, we also perform a two-variable logistic regression 572 

with both local slope and upslope contributing area as predictors. Whilst other statistical approaches 573 

could be used here (e.g. Pradhan, 2013), our intention is not to find the statistical approach that 574 

provides the most powerful synthesis of the different variables, but to test the effectiveness of the 575 

variables themselves at distinguishing hazard when applied in the form of simple rules. 576 

 577 

5.2. Receiver operating characteristic curves  578 

Any simple rule for identifying more or less hazardous locations in the landscape will produce a 579 

relative measure of landslide probability. To evaluate this measure against a binary landslide map 580 
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or inventory (where every cell is classified as landslide or non-landslide), it must be converted into a 599 

binary classification. A common approach to this problem is to construct a receiver operating 600 

characteristic (ROC) curve (e.g., Frattini et al., 2010). This curve quantifies both the benefit of a 601 

given classification in terms of successfully classified outcomes (landslide and non-landslide 602 

locations correctly identified, representing true positive and true negative outcomes, respectively) 603 

and also the cost (non-landslides identified as landslides, known as false positives; and vice versa, 604 

known as false negatives). The ROC curve is constructed by thresholding a continuous variable 605 

(e.g., slope) and calculating the true positive rate as the number of true positives normalised by all 606 

positive observations, and the false positive rate as the number of false positives normalised by all 607 

negative observations. Evaluation of these rates at different threshold values results in a curve, 608 

where the 1:1 line reflects the naïve random case. The area under the curve (AUC) tends to 1 as the 609 

skill of the classifier improves towards perfect classification and to 0.5 as the classifier worsens 610 

towards the naïve case. We calculate ROC curves for all of our chosen predictive approaches for 611 

each inventory. 612 

 613 

5.3. Topographic analysis 614 

All of the metrics tested here are defined using topographic data in the form of digital elevation 615 

models (DEMs). We use 30 m resolution DEM data drawn from the most widely-used, freely-616 

available source for each site: for Northridge they are derived from down-sampled 10 m NED 617 

elevation data (https://lta.cr.usgs.gov/NED), while for all other sites we use 1-arc sec Shuttle Radar 618 

Topography Mission (STRM) elevation data (http://srtm.csi.cgiar.org/). 619 

 620 

5.3.1. Slope and upslope contributing area 621 

We calculate local slope as the steepest path to a downslope neighbour from each cell (Travis et al., 622 

1975) because calculating slope over larger (e.g., 3 x 3 cell) windows for a 30 m resolution DEM 623 

results in considerable underestimation (Claessens et al., 2005). We calculate upslope contributing 624 

area using a multiple flow direction algorithm (Quinn et al., 1991) having filled pits using a flood fill 625 

algorithm (Schwanghart and Kuhn, 2010), and normalising by the grid cell width to minimise grid 626 
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resolution biases. These topographic analyses are performed in Matlab using TopoToolbox v1.06 636 

(Schwanghart and Kuhn, 2010). 637 

 638 

5.3.2. Skyline angle analysis 639 

To capture the effects of both landslide initiation and runout, we define the skyline angle as the 640 

maximum angle from horizontal to the skyline for a given location. This metric is easily estimated by 641 

eye in the field, and gives a worst-case reach angle for the location of interest, but is runout-642 

dominated in that it does not take into account the probability of initiation.  643 

For each cell in a study area, we estimate the skyline angle by calculating vertical angles between 644 

the target cell and every other cell within a 4.5 km radius. This search radius is chosen to greatly 645 

exceed the average hillslope lengths in all study areas and thus to fully capture the local skyline. The 646 

longest average hillslope length out of our study areas is ~500 m for Wenchuan, estimated following 647 

the method of Roering et al. (2007). We choose a search radius nine times larger than this hillslope 648 

length to ensure redundancy in capturing the local skyline and because the only disadvantage of a 649 

larger radius is increased computational cost. This approach is physically limited in at least two ways 650 

(Figure 1a). First, it does not account for the dependence of runout on the size of the initial failure or 651 

on increases or decreases of failure volume during runout (e.g., Corominas, 1996). Second, it does 652 

not honour potential material flow paths. That is, the skyline cell that generates the steepest slope 653 

to the target cell may not be connected to the target cell by a flowpath with monotonically decreasing 654 

elevation. However, this metric provides a measure of the gravitational potential energy available to 655 

drive runout in the vicinity of the target cell. 656 
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 681 

Figure 1. Schematic view of the different topographic metrics tested here. (a) perspective view of a 682 

landscape with each cell shaded according to its local slope from light (steep) to dark (gentle). The 683 

upslope contributing area for point P is coloured blue, and the cells steeper than 40˚ that have a flow 684 

path to P that is never less than 10˚ are coloured red. (b) the same perspective view with a cone 685 

projected from point P at an angle of 34˚ so that the surface of the cone is in places tangent to but 686 

never intersects the ground surface, indicating a maximum skyline angle of 34˚ for point P. (c) cross 687 

section A-A’ through the landscape (highlighted in yellow on panels a and b) with dashed lines 688 

showing skyline angles at four example locations. 689 

 690 

5.3.3. Runout routing analysis 691 

To assess the importance of non-local runout paths on landslide probability, we follow the approach 692 

of Dietrich and Sitar (1997) who proposed the simplest possible debris flow runout model, requiring 693 

only thresholds to define the initial instability and for downslope motion to continue. This simple 694 

model, referred to as SHALRUN, has been integrated with the coupled hydrologic-slope stability 695 

model SHALSTAB in an efficient parallel framework to predict landslide hazard potential in California 696 
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(Bellugi et al, 2011). SHALRUN requires only two field-calibrated parameters: a critical rainfall 705 

threshold to define instability, and a minimum slope threshold for downslope motion to continue. To 706 

apply this model in the context of coseismic landslides, we modify the condition for landslide 707 

initiation, replacing the critical rainfall threshold with a slope threshold, to create a new model that 708 

we refer to as SHALRUN-EQ. We thus assume that landslide initiation and deposition are entirely 709 

dependent on the local slope of the ground surface - that is, landslides are more likely to initiate on 710 

steeper slopes and deposit on flatter slopes. More formally, SHALRUN-EQ predicts the upslope 711 

hazard area Ah as the upslope area weighted by the joint probability of landslide initiation and runout. 712 

Locations with higher Ah should have higher exposure to coseismic landslide hazard than those with 713 

low (or no) Ah. Formulation of the model requires: (1) determination of the mobilisation probability 714 

Pmi at each cell i in the study area; (2) determination of the connection probability Pcij for mobilised 715 

material from each cell i to the target cell j; (3) convolution of (1) and (2) to get the locational hazard 716 

Pmcij; and (4) accumulation of the locational hazard to determine a hazard area Ahj above each target 717 

cell j . 718 

In order to generate a simple rule, our model assumes that landslide initiation and deposition are 719 

entirely dependent on the local slope of the ground surface θ. For landslide initiation, we assume 720 

that locations steeper than a threshold slope θm are all equally capable of initiating a landslide with 721 

probability Pmi: 722 

 723 

𝑃𝑃𝑚𝑚𝑚𝑚 = �1 ∶  𝜃𝜃𝑚𝑚 ≥ 𝜃𝜃𝑚𝑚 
0 ∶  𝜃𝜃𝑚𝑚 < 𝜃𝜃𝑚𝑚

         (6) 724 

 725 

where θi is the observed local slope in a downslope direction at cell i and θm is the threshold slope 726 

required for landslide initiation. 727 

In order to represent a landslide hazard, mobilised material must be able to run out from the initiation 728 

point i to the target cell j. This relationship is binary: either these points are connected by a viable 729 

runout path or they are not. We define flow paths using multiple flow routing to all downslope cells 730 

weighted by the slope of the flow path (Quinn et al., 1991). This path must enable continued runout 731 

for its entire length; if at any point on the flow path the material is fully deposited, then that initiation 732 
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zone will be disconnected from the target cell j. Surface slope has previously been used to describe 751 

the probability that landslide material entering a cell will be deposited rather than continuing into the 752 

next downslope cell (e.g., Benda and Cundy, 1990; Fannin and Wise, 2001). For landslide 753 

deposition, we apply the simplest possible stopping condition, and assume that landslide runout 754 

ceases on slopes gentler than a critical angle (θs). The probability that a landslide initiated at cell i 755 

reaches the target cell j (Pcij) can thus be expressed as: 756 

 757 

𝑃𝑃𝑃𝑃𝑚𝑚𝑖𝑖 = �
1: 𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑚𝑚𝑖𝑖 ≥ 𝜃𝜃𝑠𝑠 
0:𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝑚𝑚𝑖𝑖 < 𝜃𝜃𝑠𝑠

         (7) 758 

 759 

where θminij is the minimum slope along the flow path from cell i to cell j, and θs is the critical slope 760 

required for stopping. We recognise that this simple stopping condition would be violated for 761 

landslides large enough to continue beyond the first cell with angle below the deposition threshold 762 

and discuss the implications of this simplification in Section 7.1. 763 

We combine the initiation and runout probabilities to calculate the locational hazard Pmcij as the area 764 

ai of cell i weighted by the probability that a landslide is both mobilised in cell i and is connected to 765 

cell j: 766 

 767 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 = 𝑎𝑎𝑚𝑚  𝑃𝑃𝑚𝑚𝑚𝑚   𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖          (8) 768 

 769 

Assuming that 𝜃𝜃𝑠𝑠 > 0, we calculate the hazard area Ahj for each target cell j by summing locational 770 

hazard in the n cells upslope of j, normalised by grid cell width to minimise grid resolution bias: 771 

 772 

𝐴𝐴ℎ𝑖𝑖 = ∑ �𝑎𝑎𝑖𝑖
𝑙𝑙𝑗𝑗

 𝑃𝑃𝑚𝑚𝑚𝑚   𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖�𝑛𝑛
𝑚𝑚=1          (9) 773 

 774 

where lj, is the grid cell width (30 m). Equation 9 is evaluated for every cell in the study area to 775 

generate a spatial grid of hazard area Ah (Figure 2). Our choice of step functions for the mobilisation 776 

(Pmi) and connection (Pcj) probabilities allows us to interpret Ah as the upslope area with slope steeper 777 
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than θm from which landslide debris can reach the target cell without passing over a slope of gentler 799 

than θs. Alternative formulations could be used for Pmi and Pcj but these would result in a less intuitive 800 

index that would be difficult to implement as a simple rule. 801 

 802 

There is implicit resolution dependence to the stopping condition θs because it assumes that the low 803 

gradient area is long enough (in terms of flow path length) that the landslide will stop. Similarly, there 804 

is resolution dependence to the initiating condition θm as topographic surfaces will be more or less 805 

smooth, depending on the resolution of the DEM (Claessens et al., 2005). Also, the initiation 806 

probability is based on local slope alone and so does not account for any of the other possible drivers 807 

of coseismic landslide initiation, such as topographic amplification (Meunier et al., 2008) or pore 808 

water pressure (e.g., Xu et al., 2012). While many more complex models exist that account for 809 

initiation volumes and flow dynamics (e.g., George and Iverson, 2014; von Ruette et al., 2016), we 810 

seek the simplest possible model that captures the effects of drainage networks in accumulating 811 

hazard, of steep slopes in landslide initiation, and of gentle slopes in landslide deposition. 812 

The model has two parameters (θm and θs), both of which are effective rather than measurable. We 813 

first optimise the model for each inventory to establish its performance under the best possible 814 

scenario, finding the values of θm and θs that provide the best fit to the inventory data. We then test 815 

the model using the average of the optimised parameters from the six inventories, in order to 816 

represent a more realistic application where these parameters must be estimated from previous 817 

earthquakes. Thus, the values of θm and θs should not be interpreted as mechanistic thresholds, but 818 

rather as the result of an optimisation that also depends on the DEM resolution. 819 
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 833 

Figure 2. SHALRUN-EQ hazard area calculations for a simplified (steepest flowpath) example with 834 

an initiation angle of 40˚ and a stopping angle of 10˚: a) elevations from a 30 m resolution digital 835 

elevation model for an area of topographic convergence, where lines show flow paths from cell to 836 

cell; b) local slope with thick outlines showing cells steeper than 40˚; c) upslope contributing area; d) 837 

upslope contributing area steeper than 40˚; and e) hazard area, the upslope area steeper than 40˚ 838 

with flow paths that do not fall below 10˚. 839 
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6. Results 861 

6.1. Local slope 862 

For all inventories, landslide hazard increases as an approximately exponential function of local 863 

slope (Figure 3a). This behaviour is consistent up to slopes of 70˚, beyond which small sample sizes 864 

limit our confidence. Conditional probability exceeds the study area average landslide probability for 865 

slopes >30-35 in four of the inventories, and for slopes >20-25 for the remaining two (Northridge and 866 

Haiti). This suggests that slopes <30˚ are generally safer than average, while those >45˚ have a 867 

landslide hazard >200% of the average, and those >50˚ are generally >300% of the average. The 868 

conditional probability curves for Finisterre, Chi-Chi and Gorkha largely collapse on each other when 869 

normalised by study-area average probability (Figure 3a). However, landslide hazard is less 870 

sensitive to slope for Wenchuan and more sensitive for Northridge and Haiti. This variability between 871 

inventories may be a result of weaker rock strength in the Northridge and Haiti study areas. When 872 

local slope is normalised by study area average slope (Figure 3b), the curves collapse onto those 873 

from the other study areas. Comparing the combined PDF of study area slopes (Figure 3a) with the 874 

hazard curves indicates that the majority of landslide hazard is concentrated in a small subset of 875 

each study area (that is, on slopes >35˚). This implies that 1) many of the modest (<15˚) slopes on 876 

which people in these areas generally choose to live are exposed to relatively low hazard (less than 877 

half the study area average for all but Wenchuan); and 2) any choice to spend time or build 878 

infrastructure on steeper slopes should take into account the considerable associated increase in 879 

exposure to coseismic landslide hazard.  880 

 881 

6.2. Upslope contributing area 882 

For all inventories, landslide hazard increases from less than the study area average at the lowest 883 

upslope contributing areas – that is, at the ridge tops – to a peak or plateau at intermediate upslope 884 

contributing areas (Figure 3c). Locations with the lowest upslope contributing area also have the 885 

lowest hazard for four of the six inventories, with Northridge and Finisterre as exceptions. For 886 

Northridge, the zone of lower than average hazard extends only to upslope contributing areas of ~40 887 

m2/m; for Finisterre it extends to ~100 m2/m, for Chi-Chi and Haiti to ~150 m2/m, and for Wenchuan 888 

and Nepal to ~200 m2/m. The location of peak landslide hazard broadly coincides with the inflection 889 
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in average slope for a given upslope contributing area (Figure 4). This inflection is commonly used 911 

as an indicator of the transition from hillslopes to rivers (Montgomery and Foufoula-Georgiou, 1993; 912 

Stock and Dietrich, 2006; Hancock and Evans, 2006), suggesting that maximum (or near-maximum) 913 

landslide hazard occurs at the transition from hillslopes to channels (Figure 3c). We use this inflection 914 

to identify a reference upslope contributing area associated with channel initiation for each 915 

landscape. Normalising upslope contributing area by this reference area shifts the conditional 916 

probability curves laterally, aligning the Northridge curve with those from the other sites (Figure 3d). 917 

This normalised analysis shows that landslide hazard is highest within low-order channels, where 918 

upslope contributing areas are less than ten times the upslope contributing area associated with 919 

channel initiation in the study sites (Figure 3d). Further downstream, landslide hazard generally 920 

decreases with increasing upslope contributing area although limited sample sizes mean that we 921 

cannot confidently interpret the curves beyond ~1000 m2/m. 922 
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 933 

Figure 3. Landslide hazard defined as conditional probability P(L|x) normalised by study area 934 

average landslide probability P(L), where x is a) local slope; b) local slope normalised by the study 935 

area average slope; c) upslope contributing area per unit cell width; and d) upslope contributing area 936 

normalised by the upslope contributing area of the inflection in average slope. Solid black lines show 937 

normalised probability of 1, the study area average; thus, points above this line have above-average 938 

landslide hazard compared to the study area as a whole. Asterisks indicate values for which 939 

conditional probability differs from the study area average probability at 90% confidence. Red bars 940 

in (a) and (c) show histograms of local slope and upslope contributing area over the six inventories. 941 
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Numbers in brackets show study-area average slopes in panel (a), and upslope contributing area at 953 

the hillslope-channel transition in panel (c).  954 

 955 

6.3. Local slope and upslope contributing area combined 956 

When slope and upslope contributing area are examined in combination, the highest landslide 957 

hazard is consistently found at the highest upslope contributing area for a given slope, or the highest 958 

slope for a given upslope contributing area (Figure 4). In this case normalisation adds little to our 959 

understanding of the relationship between landslide hazard and the two metrics under consideration, 960 

with normalised results shown in Figure S9 for reference.  961 

Two-dimensional conditional probability analysis is sensitive to the sample size within each bin, 962 

limiting our confidence in the results for large parts of the slope-upslope contributing area space. 963 

The logistic regression contours do not suffer the same limitation, however, and provide important 964 

additional information on the form of the relationship between landslide hazard, slope and upslope 965 

contributing area. Taken together, the logistic regression contours and conditional probability 966 

surfaces show that the lowest hazard is consistently found at locations with both low slope and low 967 

upslope contributing area. Importantly, landslide hazard increases more steeply with increasing 968 

slope than with increasing upslope contributing area, indicating the dominance of local slope in 969 

setting landslide hazard. There is some variability in the orientation of the hazard contours between 970 

inventories, with Finisterre and Northridge showing the strongest slope dependence and Wenchuan 971 

showing the strongest upslope contributing area dependence (Figure 4).  972 

The shape of the two-dimensional probability surface determines the best course of action in terms 973 

of choosing alternative locations for a particular asset or activity, but such action is also constrained 974 

by what is possible. The average slopes for each upslope contributing area (shown by the dashed 975 

lines in Figure 4) indicate that for Northridge, Finisterre, Chichi, and Haiti there are rarely situations 976 

where a reduction in upslope contributing area will not involve (on average) an increase in slope that 977 

will actually increase landslide hazard. However, for locations in Wenchuan and Gorkha with upslope 978 

contributing areas of 300 to 10,000 m2/m, the hazard reduction due to reducing upslope contributing 979 

area is not offset by the associated increase in slope. This suggests that, for the former inventories, 980 

it is always beneficial to decrease slope even at the expense of upslope contributing area, while for 981 
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the latter inventories benefit is more dependent on initial location. In general, the average slope 1002 

contour appears to separate higher and lower than average landslide hazard in slope-upslope 1003 

contributing area space, suggesting that higher than average landslide hazard is consistently found 1004 

on higher than average slopes for a given upslope contributing area. 1005 

 1006 

 1007 

Figure 4. Two-dimensional plots of landslide hazard defined as conditional landslide probability 1008 

P(L|s,a) normalised by study area average landslide probability P(L), where s is local slope and a is 1009 

upslope contributing area per unit cell width. Dashed lines show the mean slope per upslope 1010 

contributing area bin, using 100 logarithmically-spaced bins. Solid lines are landslide probability 1011 

contours derived from logistic regression in the same units as the conditional landslide probability 1012 

surface. Grey cells indicate slope-area pairs with data but with no cells touching a landslide. Note 1013 

that upslope contributing area is shown on a logarithmic axis, so that maintaining a constant landslide 1014 

probability for a given increase in slope requires a larger reduction in upslope contributing area at 1015 
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low slopes than at high slopes. Fainter colours indicate landslide hazard estimates that do not differ 1027 

significantly from the study area average at 90% confidence. 1028 

 1029 

6.4. Skyline angle 1030 

Landslide hazard increases as an approximately exponential function of maximum skyline angle 1031 

(Figure 5a), similar to the relationship with local slope (Figure 3a). We are confident in this behaviour 1032 

for skyline angles in the range 5˚ to 70˚, outside of which small sample sizes limit our confidence. 1033 

Landslide hazard exceeds the study area average at skyline angles > 27-28˚ for Northridge and 1034 

Haiti, 34˚ for Wenchuan, and 38-40˚ for Finisterre, Chi-Chi and Gorkha. Locations with skyline angles 1035 

of <20˚ have less than half the study area average landslide hazard for all inventories, while those 1036 

with skyline angles of >50˚ have more than double the study area average (Figure 5a). The lowest 1037 

landslide hazard values, at skyline angles of less than 10˚, are lower than those for local slope or 1038 

upslope contributing area. As with local slope, the curves for several of the inventories (Finisterre, 1039 

Chi-Chi and Wenchuan) collapse to a similar relationship when normalised by study area average 1040 

hazard, suggesting similar behaviour across a range of different landscapes. However, Northridge 1041 

and Haiti show stronger sensitivity to skyline angle, and Gorkha shows considerably reduced 1042 

landslide hazard at low skyline angles, relative to the other inventories. Some of this variability 1043 

between inventories is likely related to differences in rock strength, because normalising skyline 1044 

angle by the study area average considerably reduces the separation between individual curves, 1045 

particularly those for Gorkha, Northridge and Haiti (Figure 5b). 1046 
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 1059 

Figure 5. Landslide hazard defined as conditional landslide probability normalised by study area 1060 

average landslide probability, for a) skyline angle; and b) skyline angle normalised by the study area 1061 

average. Asterisks indicate values for which conditional probability differs from the study area 1062 

average probability at 90% confidence. Red bars in (a) show histograms of skyline angle over the 1063 

six inventories. Numbers in brackets show study area average skyline angles. 1064 

 1065 

6.5. Hazard area  1066 

The ability of hazard area Ah to distinguish landslide from non-landslide cells is sensitive to two 1067 

tuneable parameters (θm and θs in Equations 6 and 7), that have a unique optimum for each inventory 1068 

(Figure S1). The optimum parameter values vary between inventories, with optimum initiation slopes 1069 

θm ranging from 36˚ to 40˚ and stopping slopes θs from 6˚ to 31˚ (Table S1). Since these optimum 1070 

parameters vary between inventories and can only be identified after an earthquake, they are 1071 

problematic in terms of incorporation into a rule. Instead, we use the global averages of the optimised 1072 

parameter values from the six inventories, θm = 40˚ and θs 10˚, rounded to one significant figure to 1073 

simplify the rule (and because it involves changing only θm from 39˚ to 40˚). The stopping angle of 1074 

10˚ is steeper than many, though not all, of the observed slopes on which debris flows stop. For 1075 

example, Stock and Dietrich (2003) reported that debris flows generally exhibit stopping angles of 2-1076 

6˚, but may halt at much larger angles (13-22˚) on open slopes. The steeper angles reported here 1077 
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may reflect differences in the method and resolution of slope calculation but may result from the 1087 

coseismic trigger, which does not necessitate high levels of saturation in the initial failure. Landslide 1088 

hazard is very low for cells with Ah = 0 (i.e., where no cells steeper than the initiation angle runout 1089 

over flowpaths steeper than the stopping angle), ranging from 2% to 15% of the study area average 1090 

(Figure 6). Hazard increases with increasing Ah for all inventories but only slowly for Ah < 20 m2/m; 1091 

the trend then steepens to a peak (Northridge, Haiti, Nepal) or plateau (Finisterre, Chichi, Wenchuan) 1092 

at Ah values of ~100 to 1000 m2/m with conditional probabilities that are 200-800% of the study area 1093 

average (Figure 6). For Finisterre and Wenchuan, a combination of limited observations and a 1094 

weaker dependence of landslide probability on hazard area results in large parts of the curve (at Ah 1095 

>1 m2/m) where conditional probabilities cannot be distinguished from the study area average. For 1096 

all sites, confidence becomes weak for hazard areas greater than 1000 m2/m. 1097 

 1098 

Figure 6. Landslide hazard defined as conditional landslide probability P(L|x) normalised by study 1099 

area average landslide probability P(L), for hazard area. Hazard area is calculated with global 1100 

average parameters θm and θs - that is, the areas with slope greater than 40˚ that have a flow path 1101 

to the cell of interest and do not travel across a cell with a slope less than 10˚. Coloured circles on 1102 

the y-axis indicate landslide hazard for cells with a hazard area of 0 m2/m. Asterisks indicate values 1103 
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for which probability differs from the study area average at 90% confidence. Red bars show 1120 

histograms of hazard area over the six inventories. 1121 

 1122 

6.6. ROC analysis 1123 

To supplement conditional probability analysis, we examine the performance of slope, upslope 1124 

contributing area, skyline angle, and hazard area as continuous hazard indices (with high index 1125 

values reflecting high hazard and vice versa) using ROC curves (Figure 6). Successful hazard 1126 

indices will capture landslide cells within high index zones (true positives) without capturing non-1127 

landslide cells in the same zones (false positives). Hazard area performs best for all six inventories 1128 

with an AUC always above 0.78 and an average AUC of 0.83 (Table 1). Skyline angle performs joint 1129 

best for Haiti and second best for a further three of the six inventories, with AUC always above 0.65 1130 

and an average AUC of 0.77. The exceptions, where slope, upslope area, or their combination 1131 

perform second best, are Northridge and Wenchuan. For Northridge slope alone and slope plus 1132 

upslope contributing area both outperform skyline angle by a single percentage point, while upslope 1133 

contributing area by itself performs considerably worse (Figure 7a). For Wenchuan, upslope 1134 

contributing area considerably outperforms the other indices, while slope performs particularly 1135 

poorly, perhaps reflecting longer-runout landslides that extend to lower slopes and larger areas 1136 

(Figure 7d). Although slope, upslope contributing area, and their combination all perform better than 1137 

skyline angle in one of the inventories, none of these metrics do so consistently across multiple 1138 

inventories. This is reflected in their averaged AUC values over all inventories of 0.69, 0.72 and 0.74 1139 

for upslope contributing area, slope, and their combination respectively. 1140 

 1141 

Table 1. Area under the ROC curve for the five hazard metrics over the six coseismic landslide 1142 

inventories. The best performing metric for each inventory is in bold, the second best is in italics and 1143 

the worst performing metric is underlined. 1144 

  

Hazard 

area 

Skyline 

angle 

Slope + upslope 

contributing area 

Local 

slope 

Upslope 

contributing area 

Finisterre 0.79 0.72 0.69 0.69 0.66 

Northridge 0.89 0.83 0.84 0.84 0.62 
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Chi-Chi 0.80 0.73 0.68 0.67 0.69 

Wenchuan 0.78 0.65 0.62 0.58 0.74 

Haiti 0.86 0.85 0.83 0.79 0.69 

Gorkha 0.88 0.85 0.77 0.73 0.76 

Average 0.83 0.77 0.74 0.72 0.69 

1σ 0.05 0.08 0.09 0.09 0.05 

 1160 

 1161 

Figure 7. Receiver operating characteristic (ROC) curves for the six inventories: a) Finisterre, b) 1162 

Northridge, c) Chi-Chi, d) Wenchuan, e) Haiti, f) Gorkha. False positive rate is given by the number 1163 

of false positives divided by the sum of false positives and true negatives. True positive rate is given 1164 

by the number of true positives divided by the sum of true positives and false negatives. The 1:1 line 1165 

represents the naïve random case. Curves plotting closer to the top left corner of each panel 1166 

represent better model performance. 1167 

 1168 

7. Discussion 1169 

We structure the discussion around three simple rules that are drawn from the results above. In each 1170 

case we explain the evidence on which the message is based, why it works, our degree of 1171 

confidence, and implications for applying the rule. Finally, we examine the spatial implications of 1172 

these rules using an example landscape. 1173 
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7.1. Rule 1: Avoid steep (>10˚) channels with many steep (>40˚) areas that are 1179 

upslope 1180 

The hazard area is the best or joint-best predictor of landslide hazard for all six inventories. The 1181 

hazard area defined by the average initiation angle (40°) and stopping angle (10°) across all six 1182 

inventories performs nearly as well as the optimised area for each inventory, enabling us to define a 1183 

general rule independent of any specific inventory. This is fortunate, as site-specific optimisation 1184 

requires a pre-existing landslide inventory for any individual area and so may not be generally 1185 

feasible. In all six inventories, locations with Ah > 60 m2/m have landslide hazard that is greater than 1186 

the study area average. While landslide hazard generally increases with increasing hazard area, the 1187 

relationship is complex (Figure 6). Landslide hazard can be most effectively decreased by 1188 

decreasing Ah in the range 20-100 m2/m. Outside of this range Ah is less related to hazard. An 1189 

exception to this pattern is seen in areas with a hazard area of zero, which generally have landslide 1190 

hazard 5-10 times lower than that for even for very small values of Ah (c. 0.1 m2/m). On this basis, 1191 

the qualitative statement to avoid areas with ‘many’ steep slopes could also be phrased as ‘any’ 1192 

steep slopes  1193 

 1194 

7.2. Rule 2: Minimise your maximum angle to the skyline  1195 

The maximum skyline angle is the second-best predictor of landslide hazard in four of the six cases. 1196 

Locations with skyline angles less than 30˚ generally have a landslide hazard below the study area 1197 

average. Importantly, landslide hazard increases non-linearly with skyline angle, so that a slight 1198 

reduction to a high skyline angle results in a much larger reduction in hazard than a similar reduction 1199 

to a lower skyline angle. 1200 

The distinction between local slope and skyline angle reflects the importance of runout as well as 1201 

initiation in defining landslide hazard. Landslide hazard is an inherently non-local problem, defined 1202 

by both conditions at the point of interest and those upslope of that point. The skyline angle is a 1203 

simple way to represent this. It has the additional advantage of being easy to measure, needing only 1204 

a protractor or clinometer for precise measurement in the field, and being easily approximated by 1205 

eye. Local slope (rule 3), in contrast, is scale-dependent, while hazard area Ah (rule 1) is considerably 1206 

more difficult to estimate in the field. 1207 
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Landslides do not always obey flow path routing rules, and it is possible for landslides to travel up 1243 

reverse slopes or along contours. This is particularly true for large deep-seated landslides or 1244 

rockfalls. The hazard area metric cannot account for such behaviour and thus is more likely to reflect 1245 

hazard from smaller shallow landslides, while skyline angle, which does allow for runout over reverse 1246 

slopes, may be a better predictor for larger deep-seated landslides. The two indices have some 1247 

overlap but could be used in combination to find safer locations in the landscape. 1248 

 1249 

7.3. Rule 3: Minimise the angle of the slope under your feet, especially on steep 1250 

hillsides, but not at the expense of increasing skyline angle or hazard area 1251 

Local slope generally performs less well than skyline angle or hazard area, but is still a consistently 1252 

skilful predictor of coseismic landslide hazard, and could be a useful additional discriminant for 1253 

situations where both skyline angle and hazard area are comparable between two locations. In this 1254 

situation, our results suggest choosing the location with the lower local slope. This is particularly true 1255 

at steeper slopes since landslide hazard increases exponentially with slope, approximately doubling 1256 

for every 10˚ increase in slope.  1257 

Given the observation from a number of landslide inventories that coseismic landslides initiate near 1258 

ridge crests (Densmore and Hovius, 2000; Meunier et al., 2008; Rault et al., 2018), it is perhaps 1259 

surprising that landslide hazard generally increases with increasing upslope contributing area (i.e., 1260 

when moving downslope from ridge crests). In fact, while coseismic landslides may initiate 1261 

preferentially near the ridges, they run out downslope; thus, areas near ridges are less likely to be 1262 

touched by any part of a landslide even though they are more likely than other parts of the landscape 1263 

to contain the top of a landslide scar. Landslide hazard is consistently low at small values of upslope 1264 

contributing area, corresponding to ridges; for some inventories, it is also low at very large values of 1265 

upslope contributing area, corresponding to valley floors in the downstream reaches of the river 1266 

network. This may be partly a function of the covariance between local slope and upslope 1267 

contributing area, because locations with large upslope contributing areas generally have lower 1268 

slopes (see dashed lines in Figure 4). The addition of upslope contributing area as a predictor in 1269 

logistic regression improves landslide hazard prediction relative to slope alone (Table 1), but the 1270 

orientation of the logistic regression contours (Figure 4) indicates that its influence is weak. Moving 1271 
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to a location with lower slope angle almost always reduces landslide hazard independently of the 1288 

upslope contributing area of the new location, although the specific reduction of landslide probability 1289 

depends on the shape of the two-dimensional probability surface (Figure 4). These results suggest 1290 

that decisions on how to reduce landslide hazard most effectively need to be made on a case by 1291 

case basis, and are best made using hazard area, skyline angle, and the local slope in conjunction 1292 

with each other. Steep areas that are upslope of a given location result in elevated hazard but gentle 1293 

areas do not, explaining the improved performance of hazard area relative to upslope contributing 1294 

area (Figure 6 and Table 1). Ridges, with very low upslope contributing area, are generally low 1295 

hazard locations if they have gentle local slope, but can still be hazardous if they are steep (Figure 1296 

4). To minimise landslide hazard, it is thus preferable to seek broad ridges over sharp ridges where 1297 

such a choice is possible.  1298 

 1299 

7.4. Movement rules in a landscape with variable hazard 1300 

Our analysis is focused on cell-by-cell hazard assessment, and is thus most appropriate for decision-1301 

making before the next large earthquake. However, it is also possible to use our results to inform 1302 

movement or relocation during or immediately after an earthquake, when it is likely that movement 1303 

will be limited to small distances. Our analysis shows that, even during a large earthquake in 1304 

mountainous terrain, landslide hazard is not ubiquitously high. A significant fraction of the landscape 1305 

has low landslide hazard (<5% of the study area average) – as much as 30% in Northridge and 33% 1306 

in Nepal. Landslide hazard is extremely granular in spatial terms, so that small changes in location 1307 

can make a big difference to exposure. This means that it is often possible to find nearby locations 1308 

with lower landslide hazard, irrespective of the starting point. The vast majority of locations (75% in 1309 

Nepal, 95% in Northridge) are within 1 km of areas of low landslide hazard (<5% of the study area 1310 

average). Even smaller movements of 100 m or less, as might be possible during or immediately 1311 

after a large earthquake, can result in very large reductions in hazard.  1312 

Detailed analysis in the Northridge (Figure 8) and Nepal inventories shows that landslide hazard can 1313 

often be effectively reduced by moving: from a slope to a ridge (e.g., from A to B in Figure 8, a 190% 1314 

reduction in landslide hazard); out of a gully (e.g., from C to D, a 100% reduction), or downstream of 1315 

a flatter area (e.g., from C to E a 100% reduction). However, there is no single answer to the question 1316 
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of where to move to reduce coseismic landslide hazard, since this differs depending on the setting, 1332 

the distance that can be travelled due to time or location constraints, and on the chosen rule (e.g., 1333 

skyline angle vs. hazard area). Given a 1 km radius of potential movement, minimizing skyline angle 1334 

involves moving upslope for ~75% of locations in Nepal but only ~66% in Northridge. In some cases, 1335 

knowing how far one can travel can be critical: if one may only travel a short distance, moving 1336 

upslope may be preferable (e.g., from C to D in Figure 8, a 100% reduction), while if one could travel 1337 

farther, moving downslope may offer greater hazard reduction (e.g., from C to F or G, a 120% or 1338 

190% reduction respectively). 1339 

Landslide hazard estimates for high hazard locations are broadly comparable between skyline angle 1340 

and hazard area metrics (e.g. Figure 8). However, different metrics emphasise different parts of the 1341 

landscape. Ridges consistently minimise skyline angle but may still have intermediate values of 1342 

hazard area if the ridge is sharp so that the local slope of the ridge itself is steep. Broad valley floors 1343 

consistently minimise hazard area, but may still have intermediate values of skyline angle if the 1344 

neighbouring slopes have sufficient relief. There are trade-offs between these metrics, and further 1345 

work is needed into how they might be combined to further reduce hazard. 1346 

 1347 

Figure 8. Example landslide hazard estimates derived from a) skyline angle and b) hazard area for 1348 

a small section of the Northridge study area. Colours reflect landslide hazard estimated from the 1349 

two methods, expressed as a fraction of the study area average hazard. Points labelled A-G in 1350 

white are example locations discussed in Section 7.4. Hazard estimates are overlain on a shaded-1351 
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relief image derived from a 0.5 m resolution LiDAR DEM for context (source: NCALM, 2015, 1358 

DOI:10.5069/G9TB14V2). 1359 

 1360 

7.5 Caveats 1361 

These rules should be combined with existing guidance, such as local knowledge and formal hazard 1362 

and risk information when that is available. The rules provide an evidence base that could be used, 1363 

for example, in infrastructure and land-use planning, identifying evacuation routes, and designing 1364 

contingency plans from individual to community level, where more detailed or formal technical advice 1365 

is not available. It is also important to note some caveats.  1366 

This analysis is purely focussed on coseismic landslide hazard, and thus it does not take into account 1367 

the distribution of vulnerability: that is, the locations of people and infrastructure in these landscapes 1368 

or how they might be differentially impacted by landslides. While one area may be more hazardous 1369 

than another, the distribution of people and infrastructure may be such that risk is not actually 1370 

increased. Further, our analysis is probabilistic, defining hazard as the probability of intersecting a 1371 

landslide; thus, our rules identify locations where the landslide probability is lower, not where 1372 

probability is zero. This means that it is possible for an alternate location chosen based on its lower 1373 

landslide probability to be impacted by a landslide while the original higher-probability location is not. 1374 

The choice of inventory will influence the specific results and, although we adjust for bulk shaking 1375 

intensity by normalising conditional probability by bulk probability, differences between inventories 1376 

are likely to remain (e.g., in spatial patterns of shaking intensity and their relation to topography). 1377 

Rock type is a critical influence on landslide occurrence (Chen et al., 2012; Harp et al., 2016; Roback 1378 

et al., 2018), but we have excluded it from our analysis because it is extremely difficult for an 1379 

untrained observer to identify and to translate into meaningful estimates of material strength and 1380 

thus landslide probability. We also expect that the length scales over which lithology varies will often 1381 

be long (on the order of kilometres) relative to the other factors examined here.  1382 

Because the analysis is focussed on coseismic landslide hazard, it does not account for other 1383 

sources of hazard, either associated with an earthquake (e.g., amplification of seismic accelerations 1384 

on ridges), or with other processes or events such as flooding or rainfall-induced landsliding. In some 1385 

cases, following our rules in isolation might increase exposure to other hazards. For example, 1386 
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moving to ridge tops to minimise skyline angle might increase exposure to intense shaking due to 1392 

seismic amplification in subsequent earthquakes; moving to valley floors that are occupied by large 1393 

rivers, where hazard area is minimal, might increase exposure to fluvial flooding. We have also not 1394 

considered the effects of landslide size or failure type, choosing instead to treat all landslides as 1395 

representing an equivalent hazard. If landslide size or type shows a strong spatial dependence, then 1396 

parts of the landscape may be preferentially impacted in ways that are not reflected by our rules. It 1397 

is not yet clear how transferrable our conditional probability results are to rainfall-triggered landslides. 1398 

For instance, stopping angles are likely to be lower for rainfall-triggered landslides if the failing mass 1399 

is more highly saturated (e.g., Stock and Dietrich, 2003), meaning that the hazard area in rule 1 1400 

underestimates potential landslide impacts. Similarly, in the case of rainfall-triggered landslides, 1401 

initiation is likely to depend not only on slope angle but also on a topographic control on saturation 1402 

(e.g. Montgomery and Dietrich, 1994). Extending the analysis to other triggering mechanisms is thus 1403 

a future research need. 1404 

We have evaluated these rules using gridded topographic data and landslide inventories. 1405 

Topographic derivatives, particularly slope and upslope contributing area, are known to be sensitive 1406 

to the resolution of the DEM from which they are derived. We use the Northridge study site to begin 1407 

to explore this issue, by repeating our analysis with DEMs at both the original 10 m resolution and 1408 

at resampled resolutions of 20, 30, 60, and 90 m. We find that performance of slope, skyline angle, 1409 

and upslope contributing area all improve slightly at finer resolutions (Table S3). Hazard area 1410 

performance degrades at both finer and coarser resolutions than 30 m, likely the result of parameter 1411 

optimization being performed at 30m resolution. We still find, however, that the hazard area metric 1412 

remains the most skillful predictor of landslide hazard across all DEM resolutions.  1413 

The accuracy of landslide inventories depends on the quality of the imagery from which they are 1414 

mapped and on subjective judgements by the mappers (Williams et al., 2018). For example, there 1415 

are uncertainties associated with landslide distinction and amalgamation (Marc et al., 2015; Tanyas 1416 

et al., 2017), and the definition of the downslope boundary of each landslide. Amalgamation is 1417 

particularly problematic for landslide volume estimates but less so in our analysis, which requires 1418 

identification of landslide affected areas rather than distinguishing individual landslides. However, 1419 

recent studies have identified substantial areal mismatches (up to 67%) between inventories of the 1420 
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same event mapped by different authors (Fan et al., 2019). To investigate the impact of mapping 1427 

error on our results, we test two independent inventories for the Wenchuan earthquake, from Li et 1428 

al. (2014) and Xu et al. (2014b), with an estimated areal mismatch for our study area of 21%. We 1429 

find that the change of inventory has no impact on the rank order of performance of the metrics 1430 

(Table S3); and a minor impact on both the AUC values and the hazard curves (Figures S10 and 1431 

S11). Thus, we suggest that our findings are relatively robust to mapping uncertainties in the 1432 

landslide inventories that we have used. 1433 

 1434 

8. Conclusions 1435 

We have defined a set of simple rules that can be used to anticipate, and thus potentially reduce, 1436 

exposure to earthquake-triggered landslides. We test a set of candidate predictors for their ability to 1437 

reproduce mapped landslide distributions from six recent earthquakes. Landslide hazard, defined as 1438 

the conditional probability of intersecting a landslide in one of the six earthquakes, increases 1439 

exponentially with local slope. Landslide hazard on hillslopes also increases with upslope 1440 

contributing area, suggesting that while ridges may be areas of preferential coseismic landslide 1441 

initiation, they are not the locations of highest coseismic landslide hazard due to downslope 1442 

movement of landslide material during runout. When accounting for both slope and upslope 1443 

contributing area, landslide hazard is highest for the largest upslope contributing area at a given 1444 

slope or the highest slope at a given upslope contributing area. Landslide hazard can be reduced by 1445 

decreasing local slope, even at the cost of increased upslope contributing area, and especially at 1446 

high slopes. Landslide hazard also increases exponentially with the skyline angle, and this simple, 1447 

easily-measured metric performs better than slope or upslope contributing area for four of the six 1448 

inventories. Hazard area, which accounts for both landslide initiation and runout, offers the best 1449 

predictive skill for all six inventories but is more difficult to estimate in the field and requires estimation 1450 

of two empirical parameters. Fortunately, hazard area calculated with parameters that are averaged 1451 

across all six study sites (initiation angle of 40˚ and stopping angle of 10˚) performs almost as well 1452 

as hazard area calculated with optimised site-specific parameters, suggesting that the average 1453 

parameters can be applied to other inventories. These findings can be distilled into three simple 1454 

rules: 1455 

Deleted: introduced 
Deleted: identify 

Deleted: highest 

Deleted: reducing 

Deleted: , 

Deleted: 39˚ 
Deleted: only slightly worse than 



37 
 

1) Avoid steep (>10˚) channels with many steep (>40˚) areas that are upslope;  1463 

2) Minimise your maximum angle to the skyline; and 1464 

3) Minimise the angle of the slope under your feet, especially on steep hillsides, but not at the 1465 

expense of increasing skyline angle or hazard area. 1466 
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