

1 **Study on the combined threshold for gully-type debris flow early warning**

2
3 *Jian HUANG¹, Theodoor Wouterus Johannes van Asch^{1,2}, Changming WANG¹, Qiao LI¹*
4 *1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection*
5 *Chengdu University of Technology, Chengdu, Sichuan 610059, China*
6 *2. Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584, CS, The Netherlands*
7 *E-mail: huangjian2010@gmail.com*
8

9 **Abstract**

10 Gully-type debris flow induced by high-intensity and short-duration rainfall, frequently cause a great
11 loss of properties and causalities in mountainous regions of Southwest China. In order to reduce the
12 risk by geohazards, early warning systems have been provided. A triggering index can be detected in
13 an early stage by the monitoring of rainfall and the changes in physical properties of the deposited
14 materials along debris flow channel. Based on the method of critical pore pressure for slope stability
15 analysis, this study presents critical pore pressure thresholds in combination with rainfall factors for
16 gully-type debris flow early warning. The Wenjia gully, which contains an enormous amount of loose
17 materials, was selected as a case study to reveal the relationship between the rainfalls and pore
18 pressure, which can be used as a combined warning threshold. A three-level early warning system
19 (Zero, Attention, and Warning) is adopted and the corresponding judgement conditions are defined in
20 real-time. Based on this threshold, several rainfall events in recent years have been validated to prove
21 that such a comprehensive threshold may be a reliable approach for the early warning of debris flows
22 to safeguard the population in the mountainous areas.

23 **Keywords:** gully-type debris flow, pore pressure, rainfall threshold, early warning

24

25

26

27

28

29 **1. Introduction**

30 Debris flows occur in mountainous area in Southwest China every year during the rainy season.

31 Gully-type debris flows are mainly triggered by high-intensity short-duration rainfall causing a

32 runoff-induced effect. They are partly initiated by shallow landslides distributed along the gullies

33 (Kean et al., 2013). The fast growth of the population and economic development in these areas

34 increase the frequency of catastrophic accidents and consequent socio-economic losses. The

35 Wenchuan earthquake on May12, 2008, Yushu earthquake on April 14, 2010, Lushan earthquake on

36 April 20, 2013, Ludian earthquake on August, 3 2014 and the Nepal earthquake on April, 25 2015

37 triggered thousands of landslides and cracked mountains which made these areas prone for debris flow

38 development under rainstorm conditions (Shieh et al., 2009). In the Chi-Chi earthquake area Taiwan,

39 numerous co-seismic landslides were triggered as well, causing the continuous triggering of

40 debris-flows during 10 years after the earthquake (Yu et al., 2013b). These catastrophic events have

41 greatly shocked the local people and government, because of the human vulnerability to natural

42 hazards as well as the lack of knowledge on natural disaster prevention and mitigation. For the

43 descendant, there is an urgent demand for an effective method to reduce the hazard and risk. Therefore,

44 researchers have been working on the forecast of debris flow occurrence and setting up of early

45 warning systems for several decades. At the regional scale, the methods for shallow landslides early

46 warning are mostly based on statistical models which have already been proved their importance in

47 landslide prevention and mitigation (Keefer et al., 1987;Guzzetti et al., 2007a;Baum and Godt,

48 2009;Segoni et al., 2014;Shuin et al., 2012;Tropeano and Turconi, 2004). Generally, one or two

49 parameters were selected for the assessment of rainfall thresholds, e.g. rainfall intensity and duration

50 (Keefer et al., 1987;Guzzetti et al., 2007a;Guzzetti et al., 2007b;Cannon et al., 2008), antecedent

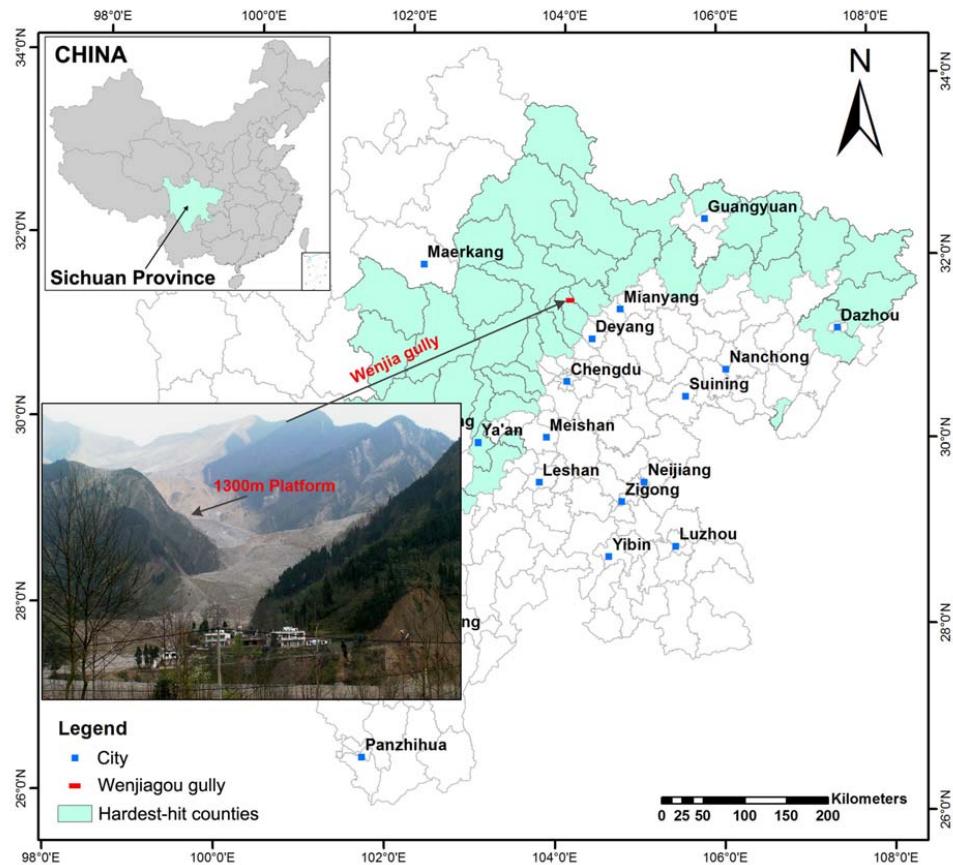
51 precipitation (Glade et al., 2000), and cumulative rainfall(Guo et al., 2013). Besides, Baum and Godt

52 (2009) presented a combination threshold, including cumulative rainfall threshold, rainfall

53 intensity-duration threshold and antecedent water index or soil wetness for the shallow landslide
54 forecasting. At the local scale, physical methods (e.g. numerical simulation) were used to find
55 relationships among rainfall, soil properties, and pore pressure and their contributions to slope stability
56 (Iverson, 1997; Peng et al., 2014; van Asch et al., 2013; Thiebes, 2012; Chae and Kim, 2011). However,
57 detailed information related to landslide triggering are required to establish the site-specific thresholds,
58 which are very difficult to extrapolate to other places due to the large variation in soil properties
59 between different regions. In the Chenyulan River Watershed of Taiwan, debris flows were frequently
60 triggered by Typhoons. Yu et al. (2013a) selected several decade identified factors related to
61 topography, geology, and hydrology, to develop a normalized critical rainfall factor combined with an
62 effective cumulative precipitation and maximum hourly rainfall intensity index for the forecast of
63 gully-type debris flows. The model which is partly based on a runoff-induced mechanism has been
64 successfully applied to the Wangmo River catchment, Guizhou Province, Southwest China (Yu et al.,
65 2014).

66 In Southwest China, the strong earthquake shocks caused a significant rise in the frequency of
67 debris flow. Researchers have already paid great attention to the mechanism, movement characteristics,
68 and thresholds of debris flow in these shocked areas (Yu et al.; Yin et al., 2010; Zhou and Tang,
69 2013; Guo et al., 2013; Huang et al., 2015a). The long-term effect by earthquakes cause the region
70 become a high risk area, and particularly the gullies in mountain with no debris flows before become
71 the debris flow gullies at present. Unfortunately, there is a significant lack of available data in these
72 areas, e.g. the rainfall events which are very important to understand the debris flow triggering
73 threshold. But in the earthquake shocked regions, numbers of unstable slope or loose deposited
74 material distributed along the catchments. Therefore, rainfall is not the only triggering factor for debris
75 flow occurrence. Xue and Huang (2016) discussed a possibility of establishing a comprehensive
76 threshold for debris flow early warning by combination of rainfall and pore water pressure threshold.

77 Thus, during this study, pore pressure in slope stability analysis have been considered for gully-type
78 debris flow forecasting. The goal of the here presented study is to propose a comprehensive method
79 for such kind of debris flow early warning by real-time monitoring of rainfall and changes in pore
80 pressure in the deposited material along channel in Southwest China. The infinite slope stability
81 analysis was applied to identify the critical stability conditions of the deposited material. Then, a
82 comprehensive warning threshold for rainfall and critical pore pressure will be presented, which
83 includes both rainfall conditions and soil properties. Finally, verification and revision has been
84 discussed to search a practical and useful method for reducing the risks of debris flows in Southwest
85 China.


86 **2. Study area**

87 The Wenjia gully is located at the north of Qingping town, Mianzhu city, Sichuan province,
88 Southwest China, and has a catchment area of 7.8 km² and a 5.2 km long main channel, as shown in
89 Fig. 1. The elevation of this study area ranges from 300 m to 1,600 m above sea level, and the main
90 valley with slope inclinations between 30° and 70° has been deeply incised by the Mianyuan river.
91 The average yearly temperature is about 16 °C, and the climate is mild semi-tropical and moist with
92 abundant rainfall and four distinguishable seasons. Eighty percent of the rainfall is concentrated in
93 three months from July to September.

94 Before the Wenchuan earthquake on May12, 2008, the Wenjia catchment was covered by rich
95 vegetation, and the channel was smooth and stable, as shown in Fig.2 (a). At that time, few geological
96 disasters occurred in this region. Therefore, many farmers settled down at the foothills along the
97 Mianyuan River. Qingping town downstream of the Wenjia channel's outlet (Fig 2 a & b). During the
98 earthquake, a giant landslide occurred upstream in the catchment at the top of the watershed, which
99 generated abundant co-seismic rock fall material and finer landslide deposits on a platform with an
100 elevation of 1,300 m above sea level (Fig. 1, the photograph at left bottom of the main map). These

101 loose solid erodible materials could easily transform into debris flows during a rain storm. Shortly
102 after the earthquake on Sep. 24, 2008, one rainfall event caused the first debris flow in this gully. The
103 catastrophic debris flow triggered by a heavy rainfall on August 13, 2010, with a peak discharge of
104 $1,530 \text{ m}^3/\text{s}$ and a total volume of $4.5 \times 10^6 \text{ m}^3$, caused many victims and the burying of reconstructed
105 houses, most of the downstream check dams along the channel (Yu et al., 2012).

106
107 Fig. 1. Location of Wenjia gully modified from Huang et al. (2013). The inset photograph of Wenjia gully at the
108 left bottom was taken from the other side of Mianyuan River on August 10, 2008.

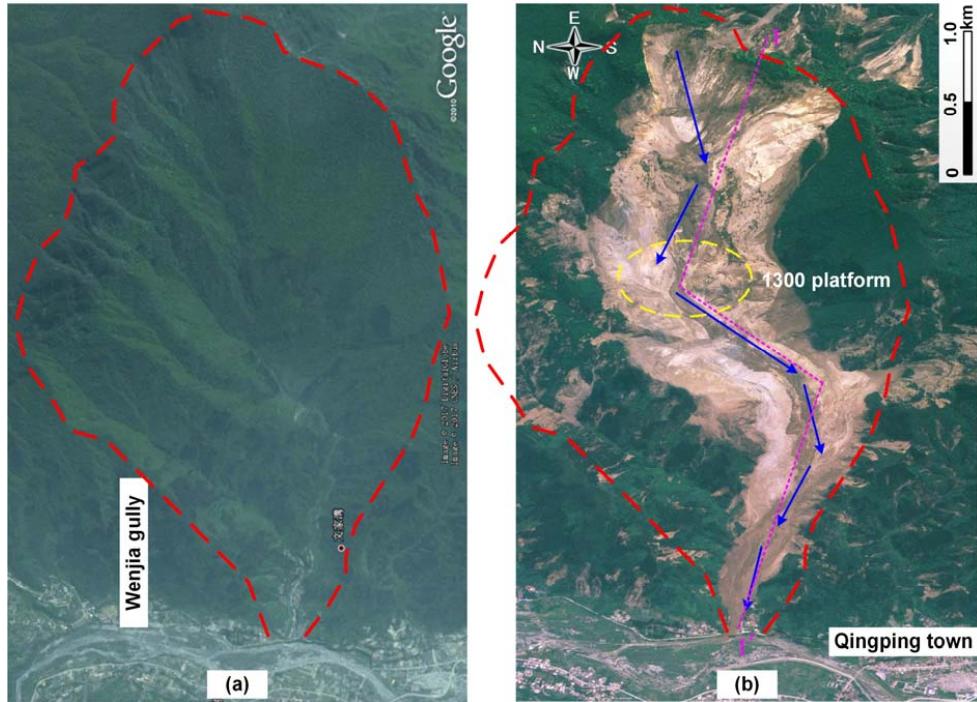
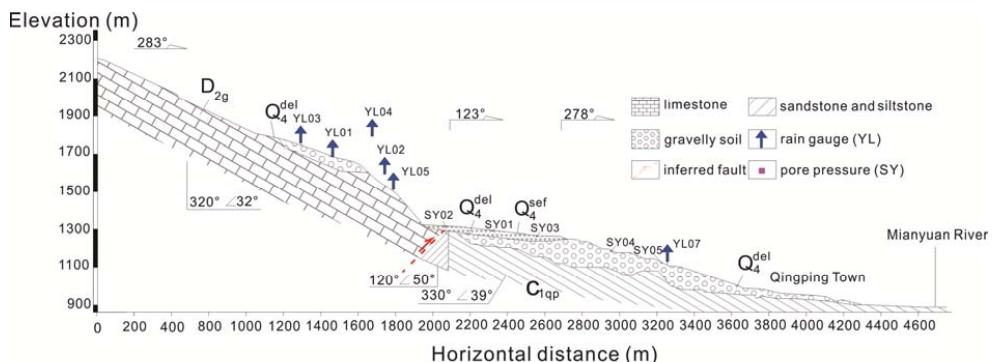



Fig. 2. Aerial image of Wenjia gully (a. image from Google Earth on Dec. 31, 2007; b. aerial photograph taken on May 18, 2008)

109

110

Fig. 3. Geological profile of the main channel of Wenjia gully

111

Fig. 3 is the geological profile of cross section I - I' in Wenjia gully (Fig. 2b). The exposure
 112 strata is Guanwushan Group (upper devonian period) with limestone, and Qingping Group (cambrian
 113 period) with sandstone and siltstone. Field investigation also shows that the main loose deposits are
 114 located at the 1300 platform (Fig 1 & 2). During heavy rains, the intense surface run-off may cause the

115 unstable slope collapse into the channel, maybe bed failure or run-off scouring of the loose deposited
116 material. This explains why there would be giant debris flow occurrence in this gully, e.g. the debris
117 flow event on August 13, 2010 above-mentioned.

118 **3. Methodology**

119 According to Terzaghi theory in soil mechanics, the shear strength of material at a point within a
120 slope can be expressed as Eq. (1).

121
$$\tau = c + (\sigma - u) \tan \phi \quad (1)$$

122 where τ is the shear strength of the slope material, c is the effective cohesion of the material,
123 ϕ is the effective friction angle of the material, σ is the total stress normal to a potential slip
124 surface, and u is the pore pressure. Generally, the strength parameters (c, ϕ) of the slope material
125 mainly determined the stability of the slope and the potential position of the slip surface.

126 Rainfall infiltrates into a hillslope, always accumulating in a saturated zone above a permeability
127 barrier, and increases the pore pressures within the slope material. Based on the Terzaghi's work, the
128 increase in u would cause the effective overburden stress ($\sigma - u$) to decrease, and therefore the
129 decrease of the shear strength until the slope fails. A formula to calculate the critical level of the pore
130 pressure, for a highly idealized model of an infinite slope composed of cohesionless materials ($c = 0$)
131 has been presented by Keefer et al. (1987), assuming both slip surface and piezometric surface are
132 parallel to the ground surface. For all these assumptions, the critical pore pressure can be calculated by
133 Eq. (2).

134
$$u_c = Z \times \gamma_t \times \left(1 - \frac{\tan \theta}{\tan \phi}\right) \quad (2)$$

135 where Z is the depth of slip surface, γ_t is the total unit weight of the slope material, and θ is
136 the slope inclination, the other parameters are the same to those mentioned-above.

137 Since the deposited material along the channel usually is loose and has a grain shape, it can be

138 regarded as an infinite slope composed of cohesionless materials. Therefore, the critical pore pressure
139 (Eq. 2) can be used to calculate the stability of the source area. Then pore pressure and rainfall
140 monitoring sensors were installed in the Wenjia gully to capture the real-time data and put forward a
141 comprehensive warning threshold for forecasting debris flow occurrence. The history events about
142 rainfall with debris flow occurrences and non-occurrences have been collected for this study from
143 2008 to 2018. Fortunately, three debris flow events with detailed rainfall and pore pressure monitoring
144 data have been recorded, which could be an important evidence to prove the presented methodology.

145 **3.1 Data analysis**

146 Data were collected from the literature about the occurrence of debris flows in the Wenjia gully
147 and from technical reports and documents presented by government agency. Since there is a large
148 difference in debris flow frequency before and after the Wenchuan earthquake, only the data after
149 quake were used for the analyses and set-up of an early warning system (Table 1). There was no debris
150 flow events after 2014, so the rainfall data are omitted in the table.

151 Table 1. Primary rainfall events in the catchment of Wenjia gully (2008-2018), added from Xu (2010)

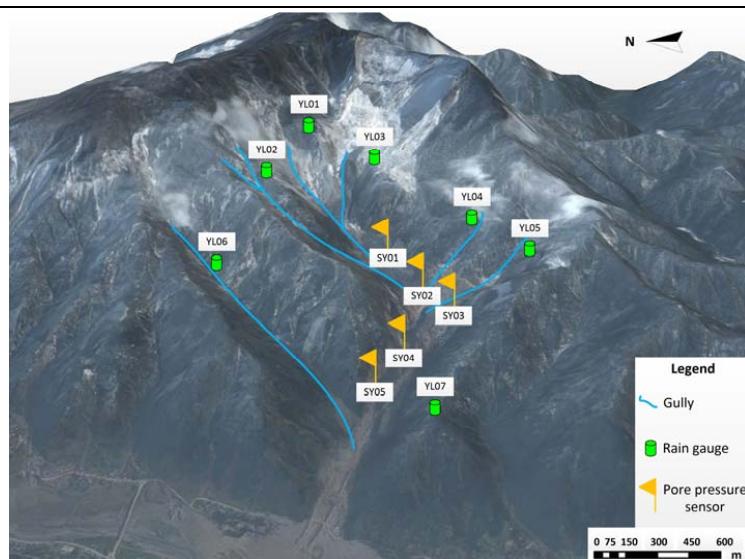
152 & Yu et al. (2012)

Time	Maximum hourly rainfall intensity (I _h : mm/h)	Accumulated precipitation (R _{dt} : mm)	Debris flow occurrence or not	Volume of debris flow (m ³)
Sep. 24, 2008	30.5	88.0	Yes	5.0×10 ⁵
Jul. 18, 2009	20.5	70.5	No	-
Aug. 25, 2009	28.9	86.7	No	-
Sep. 13, 2009	15.4	84.6	No	-
May 27, 2010	10.5	34.9	No	-
Jun. 13, 2010	5.5	95.1	No	-
Jul. 25, 2010	11.6	89.6	No	-
Jul. 31, 2010	51.7	60.2	Yes	1.0~2.0×10 ⁵
Aug. 13, 2010	70.6	185.0	Yes	4.5×10⁶
Aug. 19, 2010	31.9	72.6	Yes	3.0×10 ⁵
Sep. 18, 2010	29.0	52.0	Yes	1.7×10 ⁵
Sep. 22, 2010	24.5	81.2	No	-
May 2, 2011	5.6	35.8	No	-

Jul. 5, 2011	12.5	61.3	No	-
Jul. 21, 2011	23.5	63.2	No	-
Jul. 30, 2011	18.2	78.3	No	-
Aug. 16, 2011	10.5	44.3	No	-
Aug. 21, 2011	13.6	76.6	No	-
Sep. 7, 2011	15.2	51.3	No	-
Oct. 27, 2011	8.5	36.9	No	-
Jul. 21, 2012	30.5	76	No	-
Aug. 14, 2012	68	109	Yes	3.2×10^4
Aug. 17, 2012	41	89.5	Yes	7.8×10^4
Aug. 18, 2012	69	104.5	No	-
Sep. 16, 2012	12	44	No	-
Sep. 25, 2012	4.5	52	No	-
Jun. 19, 2013	33.5	62	No	-
Jun. 29, 2013	16.5	41.5	No	-
Jun. 30, 2013	40.5	94	No	-
Jul. 4, 2013	32	98	No	-
Jul. 8, 2013	53	195	Yes	34.4×10^4
Jul. 10, 2014	51.5	67	No	-
Aug. 8, 2014	50.5	68.5	No	-
.....

153 Table 1 shows that the number of debris flows decreases with time, from 2008 to 2014. Several
154 years after the earthquake, however, giant debris flows still caused catastrophic losses, which alarmed
155 the public and government because of its huge destructive power and long-term impact. Particularly
156 on Aug. 13, 2010, a great rainstorm lasting for 2 hours during midnight, triggered a giant debris flow,
157 which buried the Qingping town in the Miayuan River floodplain. According to the inventory report,
158 the maximum deposition height was up to 6 m. Most of the check dams located in the downstream part
159 of the Wenjia gully collapsed and lost their effectiveness after passing of the debris flow. Meanwhile,
160 it eroded the channel bottom over a depth of about 13 m (Yu et al. 2012).

161 Pore pressure and rainfall monitoring sensors have been installed for understanding their
162 relationship, and the link with debris flow occurrence. The real-time monitoring system in the Wenjia
163 gully includes 7 automatic rain gauges and 5 pore pressure monitoring instruments. The installation
164 was finished by April 1, 2012 (see Table 2, Figure 3 and Figure 4). It can be seen that all rain gauges
165 are arranged in the upstream part of the Wenjia gully catchment, while pore pressure monitoring

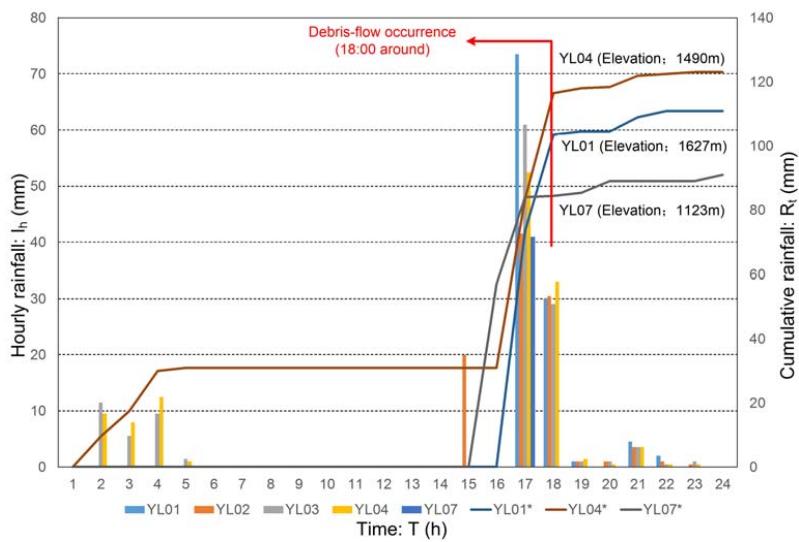


166 sensors are distributed along the mainstream of the Wenjia gully, with a depth of 1 m below the
 167 ground surface.

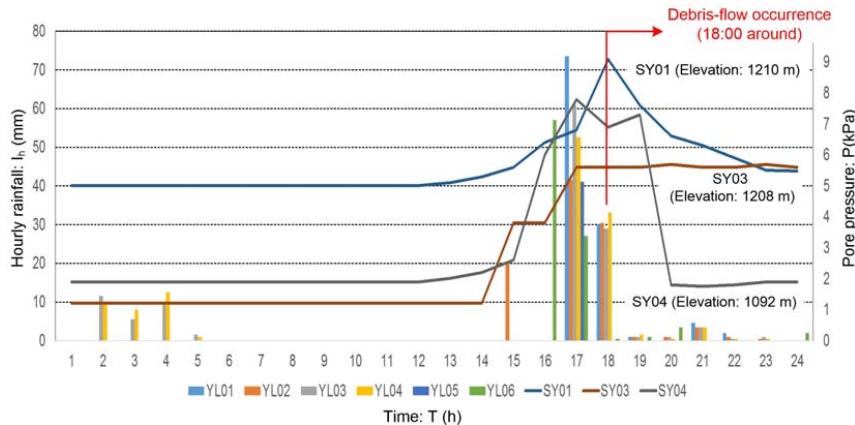
168 Table 2. List of monitoring devices in the Wenjia gully

No.	Longitude	Latitude	Elevation(m)	Photo
YL01	E104°8'21"	N31°33'32"	1652	
YL02	E104°7'55"	N31°33'11"	1390	
YL03	E104°8'39"	N31°33'14"	1671	
YL04	E104°8'16"	N31°32'47"	1490	
YL05	E104°7'47"	N31°32'39"	1433	
YL06	E104°7'46"	N31°33'29"	1166	
YL07	E104°7'9"	N31°32'59"	1025	

SY01	E104°8'12"	N31°33'9"	1210	
SY02	E104°8'11"	N31°33'9"	1212	
SY03	E104°8'11"	N31°33'8"	1208	
SY04	E104°7'49"	N31°32'55"	1092	
SY05	E104°7'48"	N31°32'56"	1081	



169
 170 Fig. 4. Layout map of the monitoring devices installed in the Wenjia gully (The base map is from Google Earth,
 171 the date of background image is Dec. 18, 2010).


172 The 2012, heavy rainfall event on August 14, which triggered a debris flow has been caught totally

173 by the real-time monitoring system. During the rainstorm, monitoring sensors YL05, YL06 and SY02,
174 SY05 lost the connection with the monitoring center. The other monitoring sensors worked well, as
175 shown in Figure 5 and Figure 6. The figures show that the rainfall was almost concentrated in two
176 hours from 17:00 until 19:00. The amount of precipitation was highly variable along the channel of the
177 Wengjia gully. The maximum hourly rainfall intensity is 73.5 mm (YL01, 17:00), and the cumulative
178 maximum rainfall is 118 mm (YL04). The receive frequency is every 5 minutes during the rainfall
179 event, which is defined as the moment that hourly rainfall amount is more than 5 mm/h, and the end is
180 when the hourly rainfall amount is less than 5 mm/h, and this should last for at least 6 h.

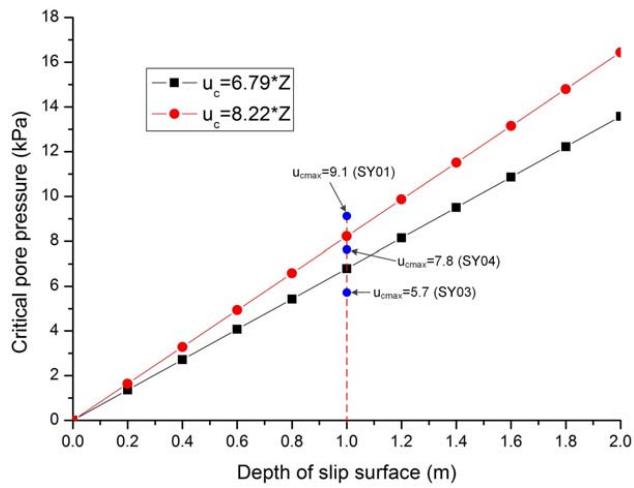
181
182 Fig. 5. The rainfall in Wenjia gully on Aug. 14, 2012 (the column graphs are hourly rainfall and the single line
183 curves are cumulative rainfall)
184

185

186 Fig. 6. The rainfall and pore pressure in Wenjia gully on Aug. 14, 2012 (the column graphs are hourly rainfall
187 and the single line curves are pore pressure)

188 The maximum hourly rainfall and cumulative rainfall are not found in the highest part of the
189 catchment. The variety in cumulative maximum rainfall is larger than the variety in maximum hourly
190 rainfall intensity. The Figure 6 shows the relation between hourly rainfall and pore pressure: the small
191 amount of rain from 2:00 to 5:00 with a maximum hourly rainfall of 12.5 mm did not trigger any
192 change in pore pressure. However, during the concentrated rain period between 15:00 and 18:00 there
193 was a sudden rise of the pore pressure. The debris flow was triggered adjacently when it reached the
194 maximum rise of the pore pressure. The highest value of the pore pressure are 9.01 kPa (SY01) at
195 18:00, 5.7 kPa (SY03) at 20:00 and 7.8 kPa (SY04) at 17:00. The sudden rise of pore pressure,
196 therefore may be a good indicator for contributing to the gully-type debris flows occurrence.

197 **3.2 Warning threshold for the Wenjia gully**

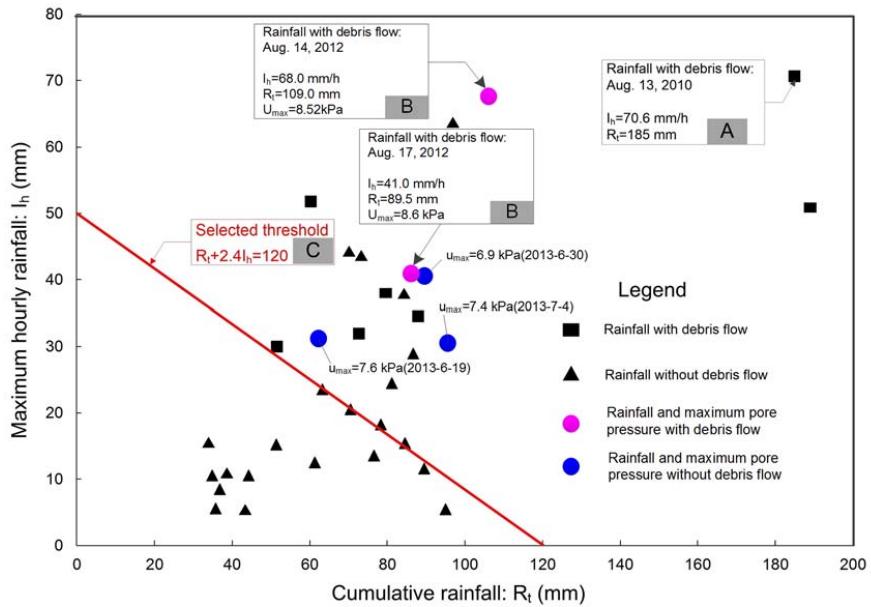

198 In order to improve the warning thresholds for forecasting the debris flow occurrence, which do
199 not just represent a simple relationship between rainfall and debris flow occurrence, the pore pressure
200 of landslide deposits was incorporated into the assessment of a threshold. Critical pore pressure for
201 bed failure generating debris flows can be estimated with Eq.(2). The total unit weight of deposit
202 material at 1300 platform in the Wenjia gully is around $21 \pm 2 \text{ kN/m}^3$, average slope inclination of
203 18.5° , and average effective friction angle is 27.5° by consolidated undrained indoor test. Thus, the

204 critical pore pressure of the deposited material can be calculated by Eq. (3).

205
$$u_c = (6.79 - 8.22) \times Z \quad (3)$$

206 Obviously, it's a linear function, as shown in Figure 7. According to the real-time monitoring
 207 system, therefore, the critical pore pressure should be 6.79~8.22 kPa at the depth of 1 m below the
 208 ground surface. According to Table 1, on Aug. 14, 2012, there was a debris flow with run-off volume
 209 of $3.2 \times 10^4 \text{ m}^3$, and before the debris flow event pore pressure monitoring data show its maximum
 210 value was up to 9.1 kPa (SY01), 7.8 kPa (SY04) and 5.7 kPa (SY03). Obviously, SY01 has already
 211 exceeded the upper threshold of critical pore pressure (8.22 kPa), which means that the critical pore
 212 pressure might be an important factor in debris flow occurrence.

213
 214 Fig. 7. The critical pore pressure with probable depth of slip surface in the Wenjia gully


215 Considering the acquired available data, the maximum hourly rainfall (I_h : mm) and cumulative
 216 rainfall (R_t : mm) are selected as the basic triggering rainfall parameters for the rainfall threshold, and
 217 the critical pore pressure (u_c) has been defined as an supporting factor in forecasting debris flow
 218 occurrence. For each rainfall event with or without debris flow occurrence, R_t (Cumulative rainfall)
 219 and I_h (Hourly intensity), can be plotted in a X-Y field, like the debris flow event on Aug. 13, 2010
 220 (Figure 8 Tag A). The red line drawn under the lowest rectangle points which represent debris flow

221 occurrences under such rainfall conditions. The area between the line and the x and y axes defines
 222 combinations of R_t and I_h with a zero probability of debris flow occurrence. The gradient is an
 223 uncertain parameter which can be determined by experts' experiences and historical data sets (Huang
 224 et al., 2015b). Then, the rainfall threshold can be defined by Eq. (4) in Figure 8 (Tag C).

225
$$R_t + 2.4I_h = 120 \quad (4)$$

226 where R_t is the cumulative rainfall (mm), I_h is the maximum hourly rainfall (mm).

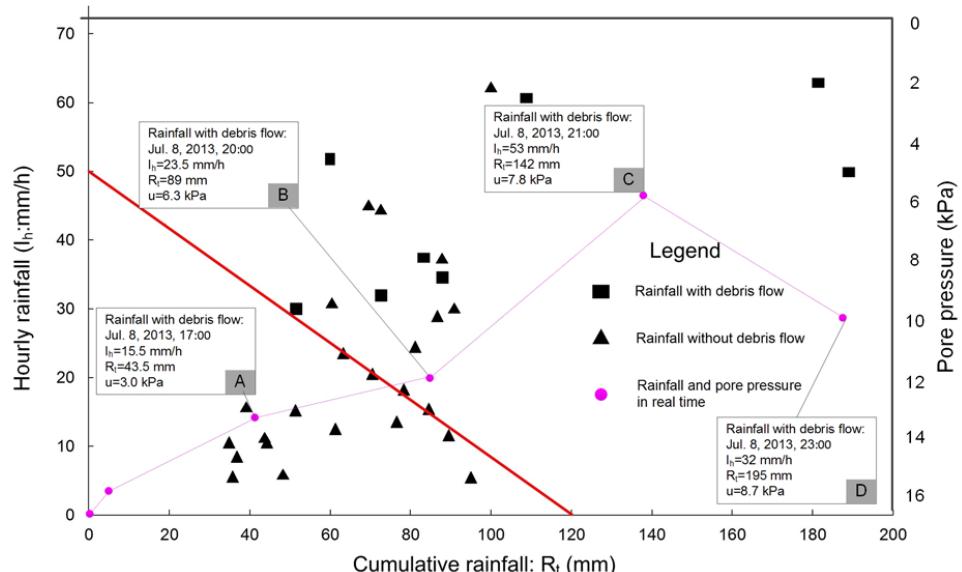
227
 228 Fig. 8. Warning threshold combined with rainfall and pore pressure

229 While above the red line, the probability of debris flow occurrence is higher. But among these
 230 points, there are 8 rectangular points with debris flow. The possibility of debris flow occurrence can be
 231 predicted correctly up to 62% by rainfall threshold, which seems to be fine as a preliminary
 232 assessment. If the pore pressure monitoring data has been considered, in Figure 8, there are three blue
 233 circular points without debris flow, but two magenta points show debris flow happened. The different
 234 between them is that maximum pore pressure has exceeded the critical pore pressure line (8.22 kPa).
 235 Therefore, the rainfall threshold and pore pressure threshold need to be combined during forecasting

236 debris flow occurrence, then there must be a much higher possibility of successful prediction. For a
237 given rainfall event, the starting point and its trend can be calculated and plotted in Figure 8. In order
238 to verify in real time whether the trend line exceed the warning threshold. More detail information will
239 be discussed with an example as follow.

240 **4. Example of application**

241 In order to make a better use for the presented method, early warning criteria have to be
242 simplified to make a clear understanding for the study area. Therefore, a three-level early warning
243 system has been proposed for the Wenjia gully, as shown in Table 3. At level one there is low
244 possibility of debris flow occurrence. At level two there is a chance of debris flow occurrence in the
245 near future, and warning messages need to be sent to local authority and countermeasures need to be
246 discussed. At level three there is very likely to occur right now, therefore, local residents need to be
247 alerted and forbidden going to the threatened places.


248 Table 3. Recommended warning levels for Wenjia gully

Warning level	Trigger	Response
I	Default level. Not exceeding rainfall threshold and critical pore pressure.	Null: but data are checked daily. Weekly monitoring bulletin.
II	Attention level. Exceeding rainfall threshold but critical pore pressure not.	Watch: data are checked more frequently. Daily monitoring bulletin. Authority and expert are alerted. Preparing for alarm.
III	Alert level. Exceeding both of rainfall threshold and critical pore pressure.	Warning: data are checked even more frequently. Two monitoring bulletins per day. Local people are alerted.

249 In order to explain how the presented method can be used in a real-time debris flow early warning
250 case, the rainfall on Jul. 8, 2013 has been selected as an application (Figure 9). The small circular
251 magenta solid points connected by a magenta line shows the course of the real-time monitored data
252 during this rain storm, with the cumulative rainfall on the X axis and hourly rainfall intensity on the Y
253 axis. The Tag A in Figure 9 shows the rainfall data at 17:00 on Jul. 8, 2013, with a pore pressure of
254 3.00 kPa at that time. Three hours later at 20:00 (Tag B), the real-time rainfall has exceeded the

255 rainfall threshold, but the pore pressure didn't exceed the critical pore pressure ($6.3 \text{ kPa} < 6.79 \text{ or}$
 256 8.22 kPa) indicating that the warning information stayed in level II. One hour later at 21:00 (Tag C),
 257 the pore pressure did exceed the lower critical pore pressure ($7.8 \text{ kPa} > 6.79 \text{ kPa}$) indicating that debris
 258 flow had a much higher possibility to occur. Further, the pore pressure went up to 8.7 kPa over the
 259 upper critical pore pressure (8.22 kPa), and triggered a debris flow occurrence finally (Tag D).

260

261

Fig. 9. Case application of the presented method in Wenjia gully (Jul. 8, 2013)

262

The case study shows that how to use this presented combined warning threshold in a real-time
 263 way during a rain storm. In 2014, two heavy rainstorms (Table 1) both have exceeded the rainfall
 264 threshold, but pore pressure did not cross the critical pore pressure during the whole course of the
 265 rainfall. Therefore, a warning message has been sent to the local government with a median possibility
 266 of debris flow occurrence. At last, fortunately no debris flow occurred during these rain storms.
 267 Therefore, the presented comprehensive warning threshold can be used as a helpful tool for debris
 268 flow prediction in mountainous area, especially in this earthquake area of Southwest China where a lot
 269 of loose material is available.

270 5. Discussion and conclusion

271 Gully-type debris flow, usually triggered by high-intensity and short-duration rainstorms cause
272 serious harm to human lives and properties every year in the mountainous region of Southwest China.
273 Therefore, in order to prevent such natural disasters, there is an urgent requirement for an effective
274 method to predict debris flow occurrence. The combined warning threshold proposed and discussed in
275 this paper, not only use the common rainfall threshold, but also include the critical pore pressure
276 determined by a hydro mechanical stability model.

277 Two rainfall triggering factors: maximum hourly rainfall and cumulative rainfall, have been
278 selected to establish a simple rainfall threshold as a baseline for debris flow early warning. Critical
279 pore pressure can be used as a combined threshold to make the warning threshold better in practical
280 usage. The Wenjia gully was selected as a case study for a detailed explanation of the presented
281 method, for the great volume of deposited materials triggered by Wenchuan earthquake along the
282 channel. The results show that the combined threshold can play a great role in debris flow predicting,
283 at least reduce the mistaken alerts for debris flow occurrence compared to use of only a rainfall
284 threshold. However, such a combined warning threshold still has some restrictions. First, the critical
285 pore pressure is a linear function with the depth of a potential slip surface, which is difficult to
286 determine in an actual gully by the real time monitoring system. In this study, one meter depth of the
287 slip surface was selected as a possible condition for this preliminary study. Second, the study area still
288 focused on the Wenjia gully, therefore the presented method can't be used in another gullies directly.
289 But in the near future, different gully-type debris flows will be researched, and more subsequent work
290 need to be carried on for a better understanding of debris flow prediction. Finally, the most complex
291 problem is the final determination whether to alert the local population, and whether some reactions
292 need to be done immediately, or later. Debris flow early warning is not an imminent hazard but is just
293 regarded as a potential danger. In spite of these limitations, the methodology presented in this paper
294 has reached the goal to establish a preliminary combined warning threshold for gully-type debris flow

295 prediction. In the future studies, the critical pore pressure threshold which are dependent on
296 topography, geology, and soil properties, can be determined by long-term field monitoring, and more
297 important by debris flow tests in laboratory with different slope angles, and depths of slip surface to
298 reduce the loss of properties and lives.

299

300 Acknowledgements

301 This study was financially supported by the Funds for Creative Research Groups of China (Grant
302 No. 41521002), International Cooperation (NSFC-RCUK_NERC), Resilience to Earthquake-induced
303 landslide risk in China(Grant No. 41661134010), and State Key Laboratory of Geo-hazard Prevention
304 and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2017Z006).
305 The authors also give great thanks to Prof. Niek Rengers for his review of an earlier version of this
306 paper and for his suggestions to polish the language, which greatly improved the quality of the
307 manuscript.

308 References

309 Baum, R. L., and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA,
310 *Landslides*, 7, 259-272, 10.1007/s10346-009-0177-0, 2009.

311 Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods
312 and debris flows from recently burned areas in southwestern Colorado and southern California, *Geomorphology*,
313 96, 250-269, 10.1016/j.geomorph.2007.03.019, 2008.

314 Chae, B.-G., and Kim, M.-I.: Suggestion of a method for landslide early warning using the change in the
315 volumetric water content gradient due to rainfall infiltration, *Environmental Earth Sciences*, 66, 1973-1986,
316 10.1007/s12665-011-1423-z, 2011.

317 Glade, T., Crozier, M., and Smith, P.: Applying probability determination to refine landslide-triggering rainfall
318 thresholds using an empirical “Antecedent Daily Rainfall Model”, *Pure and Applied Geophysics*, 157,
319 1059-1079, 2000.

320 Guo, X.-j., Cui, P., and Li, Y.: Debris flow warning threshold based on antecedent rainfall: A case study in
321 Jiangjia Ravine, Yunnan, China, *Journal of Mountain Science*, 10, 305-314, 10.1007/s11629-013-2521-z, 2013.

322 Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in
323 central and southern Europe, *Meteorology and Atmospheric Physics*, 98, 239-267, 10.1007/s00703-007-0262-7,
324 2007a.

325 Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity-duration control of shallow
326 landslides and debris flows: an update, *Landslides*, 5, 3-17, 10.1007/s10346-007-0112-1, 2007b.

327 Huang, J., Huang, R., Ju, N., Xu, Q., and He, C.: 3D WebGIS-based platform for debris flow early warning: A
328 case study, *Engineering Geology*, 197, 57-66, 10.1016/j.enggeo.2015.08.013, 2015a.

329 Huang, J., Ju, N. P., Liao, Y. J., and Liu, D. D.: Determination of rainfall thresholds for shallow landslides by a
330 probabilistic and empirical method, *Natural Hazards and Earth System Sciences*, 15, 2715-2723,
331 10.5194/nhess-15-2715-2015, 2015b.

332 Huang, R., Huang, J., Ju, N., He, C., and Li, W.: WebGIS-based information management system for landslides
333 triggered by Wenchuan earthquake, *Natural hazards*, 65, 1507-1517, 2013.

334 Iverson, R. M.: The physics of debris flows, *Reviews of geophysics*, 35, 245-296, 1997.

335 Kean, J. W., McCoy, S. W., Tucker, G. E., Staley, D. M., and Coe, J. A.: Runoff-generated debris flows:
336 Observations and modeling of surge initiation, magnitude, and frequency, *Journal of Geophysical Research: Earth Surface*, 118, 2190-2207, 10.1002/jgrf.20148, 2013.

338 Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., M.Brown, W., Ellen, S. D., Harp, E. L., Wieczorek, G. F.,
339 Alger, C. S., and Zatkin, R. S.: Real-Time Landslide Warning during Heavy Rainfall, *Science*, 238, 921-925,
340 1987.

341 Peng, J., Fan, Z., Wu, D., Zhuang, J., Dai, F., Chen, W., and Zhao, C.: Heavy rainfall triggered loess-mudstone
342 landslide and subsequent debris flow in Tianshui, China, *Engineering Geology*, 10.1016/j.enggeo.2014.08.015,
343 2014.

344 Segoni, S., Rosi, A., Rossi, G., Catani, F., and Casagli, N.: Analysing the relationship between rainfalls and
345 landslides to define a mosaic of triggering thresholds for regional-scale warning systems, *Natural Hazards and
346 Earth System Science*, 14, 2637-2648, 10.5194/nhess-14-2637-2014, 2014.

347 Shieh, C.-L., Chen, Y., Tsai, Y., and Wu, J.: Variability in rainfall threshold for debris flow after the Chi-Chi
348 earthquake in central Taiwan, China, *International Journal of Sediment Research*, 24, 177-188, 2009.

349 Shuin, Y., Hotta, N., Suzuki, M., and Ogawa, K.-i.: Estimating the effects of heavy rainfall conditions on shallow
350 landslides using a distributed landslide conceptual model, *Physics and Chemistry of the Earth, Parts A/B/C*, 49,
351 44-51, 10.1016/j.pce.2011.06.002, 2012.

352 Thiebes, B.: Integrative Early Warning, in: *Landslide Analysis and Early Warning Systems*, Springer, 215-219,
353 2012.

354 Tropeano, D., and Turconi, L.: Using historical documents for landslide, debris flow and stream flood prevention.
355 Applications in Northern Italy, *Natural Hazards*, 31, 663-679, 2004.

356 van Asch, T. W. J., Tang, C., Alkema, D., Zhu, J., and Zhou, W.: An integrated model to assess critical rainfall
357 thresholds for run-out distances of debris flows, *Natural Hazards*, 70, 299-311, 10.1007/s11069-013-0810-z,
358 2013.

359 Xu, Q.: The 13 August 2010 catastrophic debris flows in Sichuan Province: characteristics, geneticmechanism
360 and suggestions., *Journal of Engineering Geology*, 18, 596-608, 2010.

361 Xue, X., and Huang, J.: A preliminary study on the comprehensive threshold for debris-flow early warning,
362 *Natural Hazards and Earth System Sciences Discussions*, 1-16, 10.5194/nhess-2016-149, 2016.

363 Yin, Y., Wang, H., Gao, Y., and Li, X.: Real-time monitoring and early warning of landslides at relocated
364 Wushan Town, the Three Gorges Reservoir, China, *Landslides*, 7, 339-349, 10.1007/s10346-010-0220-1, 2010.

365 Yu, B., Ma, Y., and Wu, Y.: Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China,
366 *Natural Hazards*, 65, 835-849, 10.1007/s11069-012-0395-y, 2012.

367 Yu, B., Li, L., Wu, Y., and Chu, S.: A formation model for debris flows in the Chenyulan River Watershed,
368 Taiwan, *Natural Hazards*, 68, 745-762, 10.1007/s11069-013-0646-6, 2013a.

369 Yu, B., Ma, Y., and Wu, Y.: Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China,
370 *Natural Hazards*, 65, 835-849, 10.1007/s11069-012-0395-y, 2013b.

371 Yu, B., Zhu, Y., Wang, T., Chen, Y., Zhu, Y., Tie, Y., and Lu, K.: A prediction model for debris flows triggered by
372 a runoff-induced mechanism, *Natural Hazards*, 1-21, 2014.

373 Zhou, W., and Tang, C.: Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area,
374 southwestern China, *Landslides*, 11, 877-887, 10.1007/s10346-013-0421-5, 2013.