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Abstract

Gully-type debris flow induced by high-intensity and short-duration rainfall, frequently cause a great
loss of properties and causalities in mountainous regions of Southwest China. In order to reduce the
risk by geohazards, early warning systems have been provided. A triggering index can be detected in
an early stage by the monitoring of rainfall and the changes in physical properties of the deposited
materials along debris flow channel. Based on the method of critical pore pressure for slope stability
analysis, this study presents critical pore pressure threshold in combination with rainfall factors for
gully-type debris flow early warning. The Wenjia gully, which contains an enormous amount of loose
materials, was selected as a case study to reveal the relationship between the rainfalls and pore
pressure by field monitoring data. A three-level early warning system (Zero, Attention, and Warning)
is adopted and the corresponding judgement conditions are defined in real-time. Based on this
threshold, there are several rainfall events in recent years have been validated in Wenjia gully, which
prove that such a combined threshold may be a reliable approach for the early warning of gully-type
debris flow to safeguard the population in the mountainous areas.

Keywords: gully-type debris flow, pore pressure, rainfall threshold, early warning
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1. Introduction

Gully-type debris flow, a kind of common geohazards in Southwest China, is mainly triggered by
high-intensity short-duration rainfall causing a runoff-induced effect. Most of them are initiated by
shallow landslides distributed along the gullies in mountainous region (Kean et al., 2013). The fast
growth of the population and economic development in these areas increase the frequency of
catastrophic accidents and consequent socio-economic losses. The Wenchuan earthquake on May12,
2008, Yushu earthquake on April 14, 2010, Lushan earthquake on April 20, 2013, Ludian earthquake
on August, 3 2014 and the Nepal earthquake on April, 25 2015 trigged thousands of landslides and
cracked mountains which made these areas prone for debris flow development under rainstorm
conditions (Shieh et al., 2009). In the Chi-Chi earthquake area Taiwan, numerous co-seismic
landslides were triggered as well, causing the continuous triggering of debris-flows during 10 years
after the earthquake (Yu et al., 2013b). These catastrophic events have greatly shocked the local
people and government, because of the human vulnerability to natural hazards as well as the lack of
knowledge on natural disaster prevention and mitigation. For the descendant, there is an urgent
demand for an effective method to reduce the hazard and risk. Therefore, researchers have been
working on the forecast of debris flow occurrence and setting up of early warning systems for several
decades. At the regional scale, the methods for shallow landslides early warning are mostly based on
statistical models and empirical conclusion, and which have already been proved their importance in
landslide prevention and mitigation (Keefer et al., 1987;Guzzetti et al., 2007a;Baum and Godt,
2009;Segoni et al., 2014;Shuin et al., 2012; Tropeano and Turconi, 2004). In the beginning, one or two
parameters were selected for the assessment of rainfall thresholds to forecast landslide occurrence, e.g.
rainfall intensity and duration (Keefer et al., 1987;Guzzetti et al., 2007a;Guzzetti et al., 2007b;Cannon
et al., 2008), antecedent precipitation (Glade et al., 2000), and cumulative rainfall(Guo et al., 2013).

Hereafter, Baum and Godt (2009) presented a combination threshold, including cumulative rainfall
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threshold, rainfall intensity-duration threshold and antecedent water index or soil wetness for the
shallow landslide forecasting. At the local scale, physical methods (e.g. humerical simulation) were
used to find relationships among rainfall, soil properties, and pore pressure and their contributions to
slope stability (lverson, 1997;Peng et al., 2014;van Asch et al., 2013;Thiebes, 2012;Chae and Kim,
2011;Michel G. P. and Kobiyama M., 2016;Beven and Kirkby, 1979;Deb S. K. and El-Kadi A. 1.,
2009). However, detailed information related to landslide triggering are required to establish the
site-specific thresholds, which are very difficult to extrapolate to other places due to the large variation
in soil properties between different regions. Yu et al. (2013a) selected several identified factors related
to topography, geology, and hydrology, to develop a normalized critical rainfall factor combined with
an effective cumulative precipitation and maximum hourly rainfall intensity index for the forecast of
gully-type debris flows. The model which is partly based on a runoff-induced mechanism has been
successfully applied to the Wangmo River catchment, Guizhou Province, China (Yu et al., 2014).
Unfortunately, strong earthquake shocks in Southwest China caused a significant rise in the
frequency of debris flow during recent years. The long-term effect by earthquakes cause the region
become a high-risk area, and particularly the gullies in mountain with no debris flows before become
the debris flow gullies at present. The mechanism, movement characteristics, and thresholds of debris
flow in these shocked areas, therefore, have been paid great attention by researchers, e.g. Guo et al.
(2013), Huang et al. (2015a), Yin et al. (2010), Yu et al. (2014), Zhou and Tang (2013) and so on. But
these models still mainly focused on rainfall threshold, with no consideration about the rise of loose
deposited material and unstable slope distributed along the catchments. Therefore, during this study,
pore pressure in slope stability analysis have been considered for establishing a combined threshold.
The goal of the presented study is to propose a comprehensive method for gully-type debris flow early
warning by real-time monitoring of rainfall and changes in pore pressure in the deposited material

along channel in Southwest China. The infinite slope stability analysis was applied to identify the
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critical stability conditions of the deposited material. Then, a comprehensive warning threshold for
rainfall and critical pore pressure will be presented, which includes both rainfall conditions and soil
properties. Finally, verification and revision would been discussed to search a practical and useful
method for reducing the risks of gully-type debris flow in Southwest China.

2. Study area

The Wenjia gully is located at the north of Qingping town, Mianzhu city, Sichuan province,
Southwest China, and has a catchment area of 7.8 km? and a 5.2 km long main channel, as shown in
Fig. 1. The elevation of this study area ranges from 860 m to 2,400 m above sea level (Fig. 2a), and
the main valley with slope inclinations between 30° and 70° has been deeply incised by the Mianyuan
river. The average yearly temperature is about 16 °C, and the climate is mild semi-tropical and moist
with abundant rainfall and four distinguishable seasons. Eighty percent of the rainfall is concentrated
in three months from July to September.

Before the Wenchuan earthquake on May12, 2008, the Wenjia catchment was covered by rich
vegetation, and the channel was smooth and stable, as shown in Fig.3 (a). At that time, few geological
disasters occurred in this region. Therefore, many farmers settled down at the foothills along the
Mianyuan River. Qingping town downstream of the Wenjia channel's outlet (Fig 3 a & b). During the
earthquake, a giant landslide occurred upstream in the catchment at the top of the watershed, which
generated abundant co-seismic rock fall material and finer landslide deposits on a platform with an
elevation of 1,300 m above sea level (Fig. 1, the photograph at left bottom of the main map). These
loose solid erodible materials could easily transform into debris flows during a rain storm. Shortly
after the earthquake on Sep. 24, 2008, one rainfall event caused the first debris flow in this gully. The
catastrophic debris flow triggered by a heavy rainfall on August 13, 2010, with a peak discharge of
1,530 m%/s and a total volume of 4.5 x 10° m?, caused many victims and the burying of reconstructed

houses, most of the downstream check dams along the channel (Yu et al., 2013b).
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102 Fig. 1. Location of Wenjia gully modified from Huang et al. (2013). The inset photograph of Wenjia gully at the

103 left bottom was taken from the other side of Mianyuan River on August 10, 2008.
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Fig. 2. DEM map of Wenjia gully and photo on the debris flow event (August 13, 2010)
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Fig. 3. Aerial image of Wenjia gully (a. image from Google Earth on Dec. 31, 2007; b. aerial photograph taken
on May 18, 2008)
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Fig. 4. Geological profile of the main channel of Wenjia gully

Fig. 4 is the geological profile of cross section I-1"'in Wenjia gully (Fig. 3b). The exposure
strata are Guanwushan Group (upper devonian period) with limestone, and Qingping Group (cambrian
perod) with sandstone and siltstone. Field investigation also shows that the main loose deposits are
located at the 1300 platform (Fig. 1 & 3). During heavy rains, the intense surface run-off may cause
the unstable slope collapse into the channel, maybe bed failure or run-off scouring of the loose
deposited material. This explains why there would be giant debris flow occurrence in this gully, e.g.
the debris flow event on August 13, 2010 above-mentioned.

3. Methodology

According to Terzaghi theory in soil mechanics, the shear strength of material at a point within a
slope can be expressed as Eq. (1).

T =c+(c—utang (1)

where 7 is the shear strength of the slope material, ¢ is the effective cohesion of the material,

@ is the effective friction angle of the material, o is the total stress normal to a potential slip

surface, and ¢ is the pore pressure. Generally, the strength parameters (¢, @) of the slope material
mainly determined the stability of the slope and the potential position of the slip surface.

Rainfall infiltrates into a hillslope, always accumulating in a saturated zone above a permeability

barrier, and increases the pore pressures within the slope material. Based on the Terzaghi's work, the
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increase in ¥ would cause the effective overburden stress (o — u) to decrease, and therefore the
decrease of the shear strength until the slope fails. A formula to calculate the critical level of the pore
pressure, for a highly idealized model of an infinite slope composed of cohesionless materials (¢ = 0)
has been presented by Keefer et al. (1987), assuming both slip surface and piezometric surface are

parallel to the ground surface. For all these assumptions, the critical pore pressure can be calculated by

Eq. (2).

tan @
=7 1—
e e ( tan ¢j 2

where Z is the depth of slip surface, y, is the total unit weight of the slope material, and & is
the slope inclination, the other parameters are the same to those mentioned-above.

Since the deposited material along the channel usually is loose and has a grain shape, it can be
regarded as an infinite slope composed of cohesionless materials. Therefore, the critical pore pressure
(Eqg. 2) can be used to calculate the stability of the source area. Then pore pressure and rainfall
monitoring sensors were installed in the Wenjia gully to capture the real-time data and put forward a
comprehensive warning threshold for forecasting debris flow occurrence. The history events about
rainfall with debris flow occurrences and non-occurrences have been collected for this study from
2008 to 2018. Fortunately, three debris flow events with detailed rainfall and pore pressure monitoring
data have been recorded, which could be an important evidence to prove the presented methodology.
4. Results
4.1 Data analysis

Data were collected from the literature about the occurrence of debris flows in the Wenjia gully
and from technical reports and documents presented by government agency. Since there is a large
difference in debris flow frequency before and after the Wenchuan earthquake, only the data after

quake were used for the analyses and set-up of an early warning system (Table 1). There were no



147  debris flow events after 2014, so the rainfall data are omitted in the table.

148 Table 1. Primary rainfall events in the catchment of Wenjia gully (2008-2018), added from Xu (2010)

149 & Yu et al. (2013b)
Maximum .
_ hourly rainfall Accu_rr!ula.ted Debris flow VoILfme of
Time intensity precipitation occurrence or debris flow
(Iy: mm) (Rgt: mm) not (m?3)

Sep. 24, 2008 30.5 88.0 Yes 5.0x10°
Jul. 18, 2009 20.5 70.5 No -
Aug. 25, 2009 28.9 86.7 No -
Sep. 13, 2009 154 84.6 No -
May 27, 2010 10.5 34.9 No -
Jun. 13, 2010 55 95.1 No -

Jul. 25, 2010 11.6 89.6 No -

Jul. 31, 2010 51.7 60.2 Yes 1.0~2.0x10°
Aug. 13, 2010 70.6 185.0 Yes 4.5x108
Aug. 19, 2010 31.9 72.6 Yes 3.0x10°
Sep. 18, 2010 29.0 52.0 Yes 1.7x10°
Sep. 22, 2010 24.5 81.2 No -
May 2, 2011 5.6 35.8 No -

Jul. 5, 2011 12.5 61.3 No -

Jul. 21, 2011 235 63.2 No -

Jul. 30, 2011 18.2 78.3 No -
Aug. 16, 2011 10.5 44.3 No -
Aug. 21, 2011 13.6 76.6 No -
Sep. 7, 2011 15.2 51.3 No -
Oct. 27, 2011 8.5 36.9 No -

Jul. 21, 2012 30.5 76 No -
Aug. 14, 2012 68 109 Yes 3.2x104
Aug. 17, 2012 41 89.5 Yes 7.8x10%
Aug. 18, 2012 69 104.5 No -
Sep. 16, 2012 12 44 No -
Sep. 25, 2012 4.5 52 No -
Jun. 19, 2013 335 62 No -
Jun. 29, 2013 16.5 41.5 No -
Jun. 30, 2013 40.5 94 No -

Jul. 4, 2013 32 98 No -

Jul. 8, 2013 53 195 Yes 34.4x10%
Jul. 10, 2014 51.5 67 No -
Aug. 8, 2014 50.5 68.5 No -

150 *note: The accumulated precipitation is a total sum of one rainfall event of which the beginning is defined as the moment



151

152

153
154

155

156

157

158

159

160

161

162

163

164

165

166

that the hourly rainfall amount is more than 4mm, and the end is when the hourly rainfall amount is less than 4mm, and this

should last for at least 6h (Huang et al., 2015b).

4- B Frequency

2
1_ h
0 - T

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Time (year)

Frequency (number)

Fig. 5. The frequency of debris flow events in Wenjia gully from 2008 to 2017

Table 1 and Fig. 5 shows that the number of debris flows decreases with time. Several years after
the earthquake, however, giant debris flows still caused catastrophic losses, which alarmed the public
and government because of its huge destructive power and long-term impact. Particularly on Aug. 13,
2010, a great rainstorm lasting for 2 hours during midnight, triggered a giant debris flow, which buried
the Qingping town in the Mianyuan River floodplain. According to the inventory report, the maximum
deposition height was up to 6 m. Most of the check dams located in the downstream part of the Wenjia
gully collapsed and lost their effectiveness after passing of the debris flow. Meanwhile, it eroded the
channel bottom over a depth of about 13 m (Yu et al. 2012).

Pore pressure and rainfall monitoring sensors have been installed for understanding their
relationship, and the link with debris flow occurrence. The real-time monitoring system in the Wenjia
gully includes 7 automatic rain gauges and 5 pore pressure monitoring instruments. The installation

was finished by April 1, 2012 (see Table 2, Fig. 4 and Fig. 6). It can be seen that all rain gauges are
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arranged in the upstream part of the Wenjia gully catchment, while pore pressure monitoring sensors
are distributed along the mainstream of the Wenjia gully, with a depth of 1 m below the ground
surface.

The 2012, heavy rainfall event on August 14, which triggered a debris flow has been caught totally
by the real-time monitoring system. During the rainstorm, monitoring sensors YLO5, YLO06 and SY02,
SYO05 lost the connection with the monitoring center. The other monitoring sensors worked well, as
shown in Fig. 7 and Fig. 8. The figures show that the rainfall was almost concentrated in two hours
from 17:00 until 19:00. The amount of precipitation was highly variable along the channel of the
Wengjia gully. The maximum hourly rainfall intensity is 73.5 mm (YLO1, 17:00), and the cumulative

maximum rainfall is 118 mm (YLO04).

Table 2. List of monitoring devices in the Wenjia gully

No. Longitude Latitude Elevation(m) Photo
YLO1 E104°8721" N31°33'32" 1652
YLO2 E104°7'55" N31°33'11" 1390
YLO3 E104°8'39" N31°33'14" 1671
YLO4 E104°8'16" N31°32'47" 1490
YLO5 E104°7'47" N31°32'39" 1433
YLO6 E104°7'46" IN31°33'29" 1280
YLO7 E104°7'9" N31°32'59" 1025
SY01 E104°8'12" N31°33'9" 1210
SY02 E104°8'11" N31°33'9" 1212
SY03 E104°8'11" N31°33'8" 1208
SY04 E104°7'49" N31°32'55" 1092

SY05 [E104°7'48" N31°32'56" 1081
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Fig. 8. The rainfall and pore pressure in Wenjia gully on Aug. 14, 2012 (the column graphs are hourly rainfall
and the single line curves are pore pressure)

The maximum hourly rainfall and cumulative rainfall are not found in the highest part of the
catchment. The variety in cumulative maximum rainfall is larger than the variety in maximum hourly
rainfall intensity. The Fig. 8 shows the relation between hourly rainfall and pore pressure: the small
amount of rain from 2:00 to 5:00 with a maximum hourly rainfall of 12.5 mm did not trigger any
change in pore pressure. However, during the concentrated rain period between 15:00 and 18:00 there
was a sudden rise of the pore pressure. The debris flow was triggered adjacently when it reached the
maximum rise of the pore pressure. The highest value of the pore pressure is 9.1 kPa (SY01) at 18:00,
5.7 kPa (SY03) at 20:00 and 7.8 kPa (SY04) at 17:00. The sudden rise of pore pressure, therefore may
be a good indicator for contributing to the gully-type debris flows occurrence.

4.2 Warning threshold for the Wenjia gully

In order to improve the warning thresholds for forecasting the debris flow occurrence, which do
not just represent a simple relationship between rainfall and debris flow occurrence, the pore pressure
of landslide deposits was incorporated into the assessment of a threshold. Critical pore pressure for
bed failure generating debris flows can be estimated with Eq. (2). The total unit weight of deposit
material at 1300 platform in the Wenjia gully is around 21 + 2 kN/m?, average slope inclination of

18.5°, and average effective friction angle is 27.5° by consolidated undrain indoor test. Thus, the
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critical pore pressure of the deposited material can be calculated by Eg. (3).
up = (6.79 — 8.22) x 7 3)
Obviously, it's a linear function, as shown in Fig. 9. According to the real-time monitoring system,
therefore, the critical pore pressure should be 6.79~8.22 kPa at the depth of 1 m below the ground
surface. According to Table 1, on Aug. 14, 2012, there was a debris flow with run-off volume of
3.2x10* m?, and before the debris flow event pore pressure monitoring data show its maximum value
was up to 9.1 kPa (SY01), 7.8 kPa (SY04) and 5.7 kPa (SY03). Obviously, SYO1 has already
exceeded the upper threshold of critical pore pressure (8.22 kPa), which means that the critical pore

pressure might be an important factor in debris flow occurrence.
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Fig. 9. The critical pore pressure with probable depth of slip surface in the Wenjia gully

Considering the acquired available data, the maximum hourly rainfall (I.:. mm) and cumulative
rainfall (Ri: mm) are selected as the basic triggering rainfall parameters for the rainfall threshold, and
the critical pore pressure (uc) has been defined as a supporting factor in forecasting debris flow
occurrence. For each rainfall event with or without debris flow occurrence, R: (Cumulative rainfall)
and In (Hourly intensity), can be plotted in a X-Y field, like the debris flow event on Aug. 13, 2010

(Fig. 10 Tag A). The red line drawn under the lowest rectangle points which represent debris flow
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occurrences under such rainfall conditions. The area between the line and the x and y axes defines

combinations of R; and I, with a zero probability of debris flow occurrence. The gradient is an

uncertain parameter which can be determined by experts' experiences and historical data sets (Huang

et al., 2015b). Then, the rainfall threshold can be defined by Eq. (4) in Fig. 10 (Tag C).

R +2.41, =120

where R is the cumulative rainfall (mm), Iy is the maximum hourly rainfall (mm).

80
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50

Maximum hourly rainfall: I, (mm)

(4)
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Fig. 10. Warning threshold combined with rainfall and pore pressure

200

While above the red line, the probability of debris flow occurrence is higher. But among these

points, there are 8 rectangular points with debris flow. The possibility of debris flow occurrence can be

predicted correctly up to 62% by rainfall threshold, which seems to be fine as a preliminary

assessment. If the pore pressure monitoring data has been considered, in Fig. 10, there are three blue

circular points without debris flow, but two magenta points show debris flow happened. The different

between them is that maximum pore pressure has exceeded the critical pore pressure line (8.22 kPa).

Therefore, the rainfall threshold and pore pressure threshold need to be combined during forecasting
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debris flow occurrence, then there must be a much higher possibility of successful prediction. For a
given rainfall event, the starting point and its trend can be calculated and plotted in Fig. 10. In order to
verify in real time whether the trend line exceed the warning threshold. More detail information will
be discussed with an example as follow.
4.3 Example of application

In order to make a better use for the presented method, early warning criteria have to be
simplified to make a clear understanding for the study area. Therefore, a three-level early warning
system has been proposed for the Wenjia gully, as shown in Table 3. At level one there is low
possibility of debris flow occurrence. At level two there is a chance of debris flow occurrence in the
near future, and warning messages need to be sent to local authority and countermeasures need to be
discussed. At level three there is very likely to occur right now, therefore, local residents need to be

alerted and forbidden going to the threatened places.

Table 3. Recommended warning levels for Wenjia gully

Warning level Trigger Response
Default level. .
. . Null: but data are checked daily. Weekly
I Not exceeding rainfall threshold and o .
. monitoring bulletin.

critical pore pressure.

Attention level. Watch: data are checked more frequently.
I Exceeding rainfall threshold but critical ~ Daily monitoring bulletin. Authority and

pore pressure not. expert are alerted. Preparing for alarm.

Alert level. Warning: data are checked even more
I Exceeding both of rainfall threshold frequently. Two monitoring bulletins per

and critical pore pressure. day. Local people are alerted.

In order to explain how the presented method can be used in a real-time debris flow early warning
case, the rainfall on Jul. 8, 2013 has been selected as an application (Fig. 11). The small circular
magenta solid points connected by a magenta line shows the course of the real-time monitored data
during this rain storm, with the cumulative rainfall on the X axis and hourly rainfall intensity on the Y
axis. The Tag Ain Fig. 11 shows the rainfall data at 17:00 on Jul. 8, 2013, with a pore pressure of 3.00

kPa at that time. Three hours later at 20:00 (Tag B), the real-time rainfall has exceeded the rainfall
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threshold, but the pore pressure didn't exceed the critical pore pressure (6.3 kPa < 6.79 or 8.22 kPa)

indicating that the warning information stayed in level II. One hour later at 21:00 (Tag C), the pore

pressure did exceed the lower critical pore pressure (7.8 kPa > 6.79 kPa) indicating that debris flow

had a much higher possibility to occur. Further, the pore pressure went up to 8.7 kPa over the upper

critical pore pressure (8.22 kPa), and triggered a debris flow occurrence finally (Tag D).
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Fig. 11. Case application of the presented method in Wenjia gully (Jul. 8, 2013)
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The case study shows that how to use this presented combined warning threshold in a real-time

way during a rain storm. In 2014, two heavy rainstorms (Table 1) both have exceeded the rainfall

threshold, but pore pressure did not cross the critical pore pressure during the whole course of the

rainfall. Therefore, a warning message has been sent to the local government with a median possibility

of debris flow occurrence. At last, fortunately no debris flow occurred during these rain storms.

Therefore, the presented comprehensive warning threshold can be used as a helpful tool for debris

flow prediction in mountainous area, especially in this earthquake area of Southwest China where a lot

of loose material is available.

5. Discussion and conclusion
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Gully-type debris flow, usually triggered by high-intensity and short-duration rainstorms cause
serious harm to human lives and properties every year in the mountainous region of Southwest China.
Therefore, in order to prevent such natural disasters, there is an urgent requirement for an effective
method to predict debris flow occurrence. The combined warning threshold proposed and discussed in
this paper, not only use the common rainfall threshold, but also include the critical pore pressure
determined by a hydro mechanical stability model.

Two rainfall triggering factors: maximum hourly rainfall and cumulative rainfall, have been
selected to establish a simple rainfall threshold as a baseline for debris flow early warning. Critical
pore pressure can be used as a combined threshold to make the warning threshold better in practical
usage. The Wenjia gully was selected as a case study for a detailed explanation of the presented
method, for the great volume of deposited materials triggered by Wenchuan earthquake along the
channel. The results show that the combined threshold can play a great role in debris flow predicting,
at least reduce the mistaken alerts for debris flow occurrence compared to use of only a rainfall
threshold. However, such a combined warning threshold still has some restrictions. First, the critical
pore pressure is a linear function with the depth of a potential slip surface, which is difficult to
determine in an actual gully by the real time monitoring system. In this study, one-meter depth of the
slip surface was selected as a possible condition for this preliminary study. Second, the study area still
focused on the Wenjia gully, therefore the presented method can't be used in other gullies directly. But
in the near future, different gully-type debris flows will be researched, and more subsequent work
need to be carried on for a better understanding of debris flow prediction. Finally, the most complex
problem is the final determination whether to alert the local population, and whether some reactions
need to be done immediately, or later. Debris flow early warning is not an imminent hazard but is just
regarded as a potential danger. In spite of these limitations, the methodology presented in this paper

has reached the goal to establish a preliminary combined warning threshold for gully-type debris flow
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prediction. In the future studies, the critical pore pressure threshold which are dependent on
topography, geology, and soil properties, can be determined by long-term field monitoring, and more
important by debris flow tests in laboratory with different slope angles, and depths of slip surface to

reduce the loss of properties and lives.
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