

Study on the combined threshold for gully-type debris flow early warning

Jian HUANG¹, Theodoor Wouterus Johannes van Asch^{1,2}, Changming WANG¹, Qiao LI¹

1. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Chengdu University of Technology, Chengdu, Sichuan 610059, China

2. Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584, CS, The Netherlands

E-mail: huangjian2010@gmail.com

Abstract

10 Gully-type debris flow induced by high-intensity and short-duration rainfall, frequently cause a great
11 loss of properties and causalities in mountainous regions of Southwest China. In order to reduce the
12 risk by geohazards, early warning systems have been provided. A triggering index can be detected in
13 an early stage by the monitoring of rainfall and the changes in physical properties of the deposited
14 materials along debris flow channel. Based on the method of critical pore pressure for slope stability
15 analysis, this study presents critical pore pressure threshold in combination with rainfall factors for
16 gully-type debris flow early warning. The Wenjia gully, which contains an enormous amount of loose
17 materials, was selected as a case study to reveal the relationship between the rainfalls and pore
18 pressure by field monitoring data. A three-level early warning system (Zero, Attention, and Warning)
19 is adopted and the corresponding judgement conditions are defined in real-time. Based on this
20 threshold, there are several rainfall events in recent years have been validated in Wenjia gully, which
21 prove that such a combined threshold may be a reliable approach for the early warning of gully-type
22 debris flow to safeguard the population in the mountainous areas.

23 **Keywords:** gully-type debris flow, pore pressure, rainfall threshold, early warning

24

25

26

27

28

29 **1. Introduction**

30 Gully-type debris flow, a kind of common geohazards in Southwest China, is mainly triggered by
31 high-intensity short-duration rainfall causing a runoff-induced effect. Most of them are initiated by
32 shallow landslides distributed along the gullies in mountainous region (Kean et al., 2013). The fast
33 growth of the population and economic development in these areas increase the frequency of
34 catastrophic accidents and consequent socio-economic losses. The Wenchuan earthquake on May12,
35 2008, Yushu earthquake on April 14, 2010, Lushan earthquake on April 20, 2013, Ludian earthquake
36 on August, 3 2014 and the Nepal earthquake on April, 25 2015 triggered thousands of landslides and
37 cracked mountains which made these areas prone for debris flow development under rainstorm
38 conditions (Shieh et al., 2009). In the Chi-Chi earthquake area Taiwan, numerous co-seismic
39 landslides were triggered as well, causing the continuous triggering of debris-flows during 10 years
40 after the earthquake (Yu et al., 2013b). These catastrophic events have greatly shocked the local
41 people and government, because of the human vulnerability to natural hazards as well as the lack of
42 knowledge on natural disaster prevention and mitigation. For the descendant, there is an urgent
43 demand for an effective method to reduce the hazard and risk. Therefore, researchers have been
44 working on the forecast of debris flow occurrence and setting up of early warning systems for several
45 decades. At the regional scale, the methods for shallow landslides early warning are mostly based on
46 statistical models and empirical conclusion, and which have already been proved their importance in
47 landslide prevention and mitigation (Keefer et al., 1987;Guzzetti et al., 2007a;Baum and Godt,
48 2009;Segoni et al., 2014;Shuin et al., 2012;Tropeano and Turconi, 2004). In the beginning, one or two
49 parameters were selected for the assessment of rainfall thresholds to forecast landslide occurrence, e.g.
50 rainfall intensity and duration (Keefer et al., 1987;Guzzetti et al., 2007a;Guzzetti et al., 2007b;Cannon
51 et al., 2008), antecedent precipitation (Glade et al., 2000), and cumulative rainfall(Guo et al., 2013).
52 Hereafter, Baum and Godt (2009) presented a combination threshold, including cumulative rainfall

53 threshold, rainfall intensity-duration threshold and antecedent water index or soil wetness for the
54 shallow landslide forecasting. At the local scale, physical methods (e.g. numerical simulation) were
55 used to find relationships among rainfall, soil properties, and pore pressure and their contributions to
56 slope stability (Iverson, 1997;Peng et al., 2014;van Asch et al., 2013;Thiebes, 2012;Chae and Kim,
57 2011;Michel G. P. and Kobiyama M., 2016;Beven and Kirkby, 1979;Deb S. K. and El-Kadi A. I.,
58 2009). However, detailed information related to landslide triggering are required to establish the
59 site-specific thresholds, which are very difficult to extrapolate to other places due to the large variation
60 in soil properties between different regions. Yu et al. (2013a) selected several identified factors related
61 to topography, geology, and hydrology, to develop a normalized critical rainfall factor combined with
62 an effective cumulative precipitation and maximum hourly rainfall intensity index for the forecast of
63 gully-type debris flows. The model which is partly based on a runoff-induced mechanism has been
64 successfully applied to the Wangmo River catchment, Guizhou Province, China (Yu et al., 2014).

65 Unfortunately, strong earthquake shocks in Southwest China caused a significant rise in the
66 frequency of debris flow during recent years. The long-term effect by earthquakes cause the region
67 become a high-risk area, and particularly the gullies in mountain with no debris flows before become
68 the debris flow gullies at present. The mechanism, movement characteristics, and thresholds of debris
69 flow in these shocked areas, therefore, have been paid great attention by researchers, e.g. Guo et al.
70 (2013), Huang et al. (2015a), Yin et al. (2010), Yu et al. (2014), Zhou and Tang (2013) and so on. But
71 these models still mainly focused on rainfall threshold, with no consideration about the rise of loose
72 deposited material and unstable slope distributed along the catchments. Therefore, during this study,
73 pore pressure in slope stability analysis have been considered for establishing a combined threshold.
74 The goal of the presented study is to propose a comprehensive method for gully-type debris flow early
75 warning by real-time monitoring of rainfall and changes in pore pressure in the deposited material
76 along channel in Southwest China. The infinite slope stability analysis was applied to identify the

77 critical stability conditions of the deposited material. Then, a comprehensive warning threshold for
78 rainfall and critical pore pressure will be presented, which includes both rainfall conditions and soil
79 properties. Finally, verification and revision would be discussed to search a practical and useful
80 method for reducing the risks of gully-type debris flow in Southwest China.

81 **2. Study area**

82 The Wenjia gully is located at the north of Qingping town, Mianzhu city, Sichuan province,
83 Southwest China, and has a catchment area of 7.8 km² and a 5.2 km long main channel, as shown in
84 Fig. 1. The elevation of this study area ranges from 860 m to 2,400 m above sea level (Fig. 2a), and
85 the main valley with slope inclinations between 30° and 70° has been deeply incised by the Mianyuan
86 river. The average yearly temperature is about 16 °C, and the climate is mild semi-tropical and moist
87 with abundant rainfall and four distinguishable seasons. Eighty percent of the rainfall is concentrated
88 in three months from July to September.

89 Before the Wenchuan earthquake on May 12, 2008, the Wenjia catchment was covered by rich
90 vegetation, and the channel was smooth and stable, as shown in Fig. 3 (a). At that time, few geological
91 disasters occurred in this region. Therefore, many farmers settled down at the foothills along the
92 Mianyuan River. Qingping town downstream of the Wenjia channel's outlet (Fig. 3 a & b). During the
93 earthquake, a giant landslide occurred upstream in the catchment at the top of the watershed, which
94 generated abundant co-seismic rock fall material and finer landslide deposits on a platform with an
95 elevation of 1,300 m above sea level (Fig. 1, the photograph at left bottom of the main map). These
96 loose solid erodible materials could easily transform into debris flows during a rain storm. Shortly
97 after the earthquake on Sep. 24, 2008, one rainfall event caused the first debris flow in this gully. The
98 catastrophic debris flow triggered by a heavy rainfall on August 13, 2010, with a peak discharge of
99 1,530 m³/s and a total volume of 4.5×10^6 m³, caused many victims and the burying of reconstructed
100 houses, most of the downstream check dams along the channel (Yu et al., 2013b).

101

102 Fig. 1. Location of Wenjia gully modified from Huang et al. (2013). The inset photograph of Wenjia gully at the
103 left bottom was taken from the other side of Mianyuan River on August 10, 2008.

Fig. 2. DEM map of Wenjia gully and photo on the debris flow event (August 13, 2010)

Fig. 3. Aerial image of Wenjia gully (a. image from Google Earth on Dec. 31, 2007; b. aerial photograph taken on May 18, 2008)

Fig. 4. Geological profile of the main channel of Wenjia gully

Fig. 4 is the geological profile of cross section I - I' in Wenjia gully (Fig. 3b). The exposure strata are Guanwushan Group (upper devonian period) with limestone, and Qingping Group (cambrian period) with sandstone and siltstone. Field investigation also shows that the main loose deposits are located at the 1300 platform (Fig. 1 & 3). During heavy rains, the intense surface run-off may cause the unstable slope collapse into the channel, maybe bed failure or run-off scouring of the loose deposited material. This explains why there would be giant debris flow occurrence in this gully, e.g. the debris flow event on August 13, 2010 above-mentioned.

3. Methodology

According to Terzaghi theory in soil mechanics, the shear strength of material at a point within a slope can be expressed as Eq. (1).

$$\tau = c + (\sigma - u) \tan \phi \quad (1)$$

where τ is the shear strength of the slope material, c is the effective cohesion of the material, ϕ is the effective friction angle of the material, σ is the total stress normal to a potential slip surface, and u is the pore pressure. Generally, the strength parameters (c, ϕ) of the slope material mainly determined the stability of the slope and the potential position of the slip surface.

Rainfall infiltrates into a hillslope, always accumulating in a saturated zone above a permeability barrier, and increases the pore pressures within the slope material. Based on the Terzaghi's work, the

124 increase in u would cause the effective overburden stress ($\sigma - u$) to decrease, and therefore the
125 decrease of the shear strength until the slope fails. A formula to calculate the critical level of the pore
126 pressure, for a highly idealized model of an infinite slope composed of cohesionless materials ($c = 0$)
127 has been presented by Keefer et al. (1987), assuming both slip surface and piezometric surface are
128 parallel to the ground surface. For all these assumptions, the critical pore pressure can be calculated by
129 Eq. (2).

$$130 \quad u_C = Z \times \gamma_t \times \left(1 - \frac{\tan \theta}{\tan \phi}\right) \quad (2)$$

131 where Z is the depth of slip surface, γ_t is the total unit weight of the slope material, and θ is
132 the slope inclination, the other parameters are the same to those mentioned-above.

133 Since the deposited material along the channel usually is loose and has a grain shape, it can be
134 regarded as an infinite slope composed of cohesionless materials. Therefore, the critical pore pressure
135 (Eq. 2) can be used to calculate the stability of the source area. Then pore pressure and rainfall
136 monitoring sensors were installed in the Wenjia gully to capture the real-time data and put forward a
137 comprehensive warning threshold for forecasting debris flow occurrence. The history events about
138 rainfall with debris flow occurrences and non-occurrences have been collected for this study from
139 2008 to 2018. Fortunately, three debris flow events with detailed rainfall and pore pressure monitoring
140 data have been recorded, which could be an important evidence to prove the presented methodology.

141 **4. Results**

142 **4.1 Data analysis**

143 Data were collected from the literature about the occurrence of debris flows in the Wenjia gully
144 and from technical reports and documents presented by government agency. Since there is a large
145 difference in debris flow frequency before and after the Wenchuan earthquake, only the data after
146 quake were used for the analyses and set-up of an early warning system (Table 1). There were no

147 debris flow events after 2014, so the rainfall data are omitted in the table.

148 Table 1. Primary rainfall events in the catchment of Wenjia gully (2008-2018), added from Xu (2010)

149 & Yu et al. (2013b)

Time	Maximum hourly rainfall intensity (I_h : mm)	Accumulated precipitation (R_{dt} : mm)	Debris flow occurrence or not	Volume of debris flow (m^3)
Sep. 24, 2008	30.5	88.0	Yes	5.0×10^5
Jul. 18, 2009	20.5	70.5	No	-
Aug. 25, 2009	28.9	86.7	No	-
Sep. 13, 2009	15.4	84.6	No	-
May 27, 2010	10.5	34.9	No	-
Jun. 13, 2010	5.5	95.1	No	-
Jul. 25, 2010	11.6	89.6	No	-
Jul. 31, 2010	51.7	60.2	Yes	$1.0 \sim 2.0 \times 10^5$
Aug. 13, 2010	70.6	185.0	Yes	4.5×10^6
Aug. 19, 2010	31.9	72.6	Yes	3.0×10^5
Sep. 18, 2010	29.0	52.0	Yes	1.7×10^5
Sep. 22, 2010	24.5	81.2	No	-
May 2, 2011	5.6	35.8	No	-
Jul. 5, 2011	12.5	61.3	No	-
Jul. 21, 2011	23.5	63.2	No	-
Jul. 30, 2011	18.2	78.3	No	-
Aug. 16, 2011	10.5	44.3	No	-
Aug. 21, 2011	13.6	76.6	No	-
Sep. 7, 2011	15.2	51.3	No	-
Oct. 27, 2011	8.5	36.9	No	-
Jul. 21, 2012	30.5	76	No	-
Aug. 14, 2012	68	109	Yes	3.2×10^4
Aug. 17, 2012	41	89.5	Yes	7.8×10^4
Aug. 18, 2012	69	104.5	No	-
Sep. 16, 2012	12	44	No	-
Sep. 25, 2012	4.5	52	No	-
Jun. 19, 2013	33.5	62	No	-
Jun. 29, 2013	16.5	41.5	No	-
Jun. 30, 2013	40.5	94	No	-
Jul. 4, 2013	32	98	No	-
Jul. 8, 2013	53	195	Yes	34.4×10^4
Jul. 10, 2014	51.5	67	No	-
Aug. 8, 2014	50.5	68.5	No	-
.....

150 *note: The accumulated precipitation is a total sum of one rainfall event of which the beginning is defined as the moment

151 that the hourly rainfall amount is more than 4mm, and the end is when the hourly rainfall amount is less than 4mm, and this
152 should last for at least 6h (Huang et al., 2015b).

153
154 Fig. 5. The frequency of debris flow events in Wenjia gully from 2008 to 2017

155 Table 1 and Fig. 5 shows that the number of debris flows decreases with time. Several years after
156 the earthquake, however, giant debris flows still caused catastrophic losses, which alarmed the public
157 and government because of its huge destructive power and long-term impact. Particularly on Aug. 13,
158 2010, a great rainstorm lasting for 2 hours during midnight, triggered a giant debris flow, which buried
159 the Qingping town in the Mianyuan River floodplain. According to the inventory report, the maximum
160 deposition height was up to 6 m. Most of the check dams located in the downstream part of the Wenjia
161 gully collapsed and lost their effectiveness after passing of the debris flow. Meanwhile, it eroded the
162 channel bottom over a depth of about 13 m (Yu et al. 2012).

163 Pore pressure and rainfall monitoring sensors have been installed for understanding their
164 relationship, and the link with debris flow occurrence. The real-time monitoring system in the Wenjia
165 gully includes 7 automatic rain gauges and 5 pore pressure monitoring instruments. The installation
166 was finished by April 1, 2012 (see Table 2, Fig. 4 and Fig. 6). It can be seen that all rain gauges are

167 arranged in the upstream part of the Wenjia gully catchment, while pore pressure monitoring sensors
168 are distributed along the mainstream of the Wenjia gully, with a depth of 1 m below the ground
169 surface.

170 The 2012, heavy rainfall event on August 14, which triggered a debris flow has been caught totally
171 by the real-time monitoring system. During the rainstorm, monitoring sensors YL05, YL06 and SY02,
172 SY05 lost the connection with the monitoring center. The other monitoring sensors worked well, as
173 shown in Fig. 7 and Fig. 8. The figures show that the rainfall was almost concentrated in two hours
174 from 17:00 until 19:00. The amount of precipitation was highly variable along the channel of the
175 Wenjia gully. The maximum hourly rainfall intensity is 73.5 mm (YL01, 17:00), and the cumulative
176 maximum rainfall is 118 mm (YL04).

177 Table 2. List of monitoring devices in the Wenjia gully

No.	Longitude	Latitude	Elevation(m)	Photo
YL01	E104°8'21"	N31°33'32"	1652	
YL02	E104°7'55"	N31°33'11"	1390	
YL03	E104°8'39"	N31°33'14"	1671	
YL04	E104°8'16"	N31°32'47"	1490	
YL05	E104°7'47"	N31°32'39"	1433	
YL06	E104°7'46"	N31°33'29"	1280	
YL07	E104°7'9"	N31°32'59"	1025	
SY01	E104°8'12"	N31°33'9"	1210	
SY02	E104°8'11"	N31°33'9"	1212	
SY03	E104°8'11"	N31°33'8"	1208	
SY04	E104°7'49"	N31°32'55"	1092	
SY05	E104°7'48"	N31°32'56"	1081	

178
179
180

Fig. 6. Layout map of the monitoring devices installed in the Wenjia gully (The base map is from Google Earth, the date of background image is Dec. 18, 2010).

181
182
183
184

Fig. 7. The rainfall in Wenjia gully on Aug. 14, 2012 (the column graphs are hourly rainfall and the single line curves are cumulative rainfall)

185

186 Fig. 8. The rainfall and pore pressure in Wenjia gully on Aug. 14, 2012 (the column graphs are hourly rainfall
187 and the single line curves are pore pressure)

188 The maximum hourly rainfall and cumulative rainfall are not found in the highest part of the
189 catchment. The variety in cumulative maximum rainfall is larger than the variety in maximum hourly
190 rainfall intensity. The Fig. 8 shows the relation between hourly rainfall and pore pressure: the small
191 amount of rain from 2:00 to 5:00 with a maximum hourly rainfall of 12.5 mm did not trigger any
192 change in pore pressure. However, during the concentrated rain period between 15:00 and 18:00 there
193 was a sudden rise of the pore pressure. The debris flow was triggered adjacently when it reached the
194 maximum rise of the pore pressure. The highest value of the pore pressure is 9.1 kPa (SY01) at 18:00,
195 5.7 kPa (SY03) at 20:00 and 7.8 kPa (SY04) at 17:00. The sudden rise of pore pressure, therefore may
196 be a good indicator for contributing to the gully-type debris flows occurrence.

197 **4.2 Warning threshold for the Wenjia gully**

198 In order to improve the warning thresholds for forecasting the debris flow occurrence, which do
199 not just represent a simple relationship between rainfall and debris flow occurrence, the pore pressure
200 of landslide deposits was incorporated into the assessment of a threshold. Critical pore pressure for
201 bed failure generating debris flows can be estimated with Eq. (2). The total unit weight of deposit
202 material at 1300 platform in the Wenjia gully is around $21 \pm 2 \text{ kN/m}^3$, average slope inclination of
203 18.5° , and average effective friction angle is 27.5° by consolidated undrained indoor test. Thus, the

204 critical pore pressure of the deposited material can be calculated by Eq. (3).

205

$$u_c = (6.79 - 8.22) \times Z \quad (3)$$

206 Obviously, it's a linear function, as shown in Fig. 9. According to the real-time monitoring system,
207 therefore, the critical pore pressure should be 6.79~8.22 kPa at the depth of 1 m below the ground
208 surface. According to Table 1, on Aug. 14, 2012, there was a debris flow with run-off volume of
209 3.2×10^4 m³, and before the debris flow event pore pressure monitoring data show its maximum value
210 was up to 9.1 kPa (SY01), 7.8 kPa (SY04) and 5.7 kPa (SY03). Obviously, SY01 has already
211 exceeded the upper threshold of critical pore pressure (8.22 kPa), which means that the critical pore
212 pressure might be an important factor in debris flow occurrence.

213
214 Fig. 9. The critical pore pressure with probable depth of slip surface in the Wenjia gully

215 Considering the acquired available data, the maximum hourly rainfall (I_h : mm) and cumulative
216 rainfall (R_t : mm) are selected as the basic triggering rainfall parameters for the rainfall threshold, and
217 the critical pore pressure (u_c) has been defined as a supporting factor in forecasting debris flow
218 occurrence. For each rainfall event with or without debris flow occurrence, R_t (Cumulative rainfall)
219 and I_h (Hourly intensity), can be plotted in a X-Y field, like the debris flow event on Aug. 13, 2010
220 (Fig. 10 Tag A). The red line drawn under the lowest rectangle points which represent debris flow

occurrences under such rainfall conditions. The area between the line and the x and y axes defines combinations of R_t and I_h with a zero probability of debris flow occurrence. The gradient is an uncertain parameter which can be determined by experts' experiences and historical data sets (Huang et al., 2015b). Then, the rainfall threshold can be defined by Eq. (4) in Fig. 10 (Tag C).

$$R_t + 2.4I_h = 120 \quad (4)$$

where R_t is the cumulative rainfall (mm), I_h is the maximum hourly rainfall (mm).

Fig. 10. Warning threshold combined with rainfall and pore pressure

While above the red line, the probability of debris flow occurrence is higher. But among these points, there are 8 rectangular points with debris flow. The possibility of debris flow occurrence can be predicted correctly up to 62% by rainfall threshold, which seems to be fine as a preliminary assessment. If the pore pressure monitoring data has been considered, in Fig. 10, there are three blue circular points without debris flow, but two magenta points show debris flow happened. The difference between them is that maximum pore pressure has exceeded the critical pore pressure line (8.22 kPa). Therefore, the rainfall threshold and pore pressure threshold need to be combined during forecasting

236 debris flow occurrence, then there must be a much higher possibility of successful prediction. For a
237 given rainfall event, the starting point and its trend can be calculated and plotted in Fig. 10. In order to
238 verify in real time whether the trend line exceed the warning threshold. More detail information will
239 be discussed with an example as follow.

240 **4.3 Example of application**

241 In order to make a better use for the presented method, early warning criteria have to be
242 simplified to make a clear understanding for the study area. Therefore, a three-level early warning
243 system has been proposed for the Wenjia gully, as shown in Table 3. At level one there is low
244 possibility of debris flow occurrence. At level two there is a chance of debris flow occurrence in the
245 near future, and warning messages need to be sent to local authority and countermeasures need to be
246 discussed. At level three there is very likely to occur right now, therefore, local residents need to be
247 alerted and forbidden going to the threatened places.

248 **Table 3. Recommended warning levels for Wenjia gully**

Warning level	Trigger	Response
I	Default level. Not exceeding rainfall threshold and critical pore pressure.	Null: but data are checked daily. Weekly monitoring bulletin.
II	Attention level. Exceeding rainfall threshold but critical pore pressure not.	Watch: data are checked more frequently. Daily monitoring bulletin. Authority and expert are alerted. Preparing for alarm.
III	Alert level. Exceeding both of rainfall threshold and critical pore pressure.	Warning: data are checked even more frequently. Two monitoring bulletins per day. Local people are alerted.

249 In order to explain how the presented method can be used in a real-time debris flow early warning
250 case, the rainfall on Jul. 8, 2013 has been selected as an application (Fig. 11). The small circular
251 magenta solid points connected by a magenta line shows the course of the real-time monitored data
252 during this rain storm, with the cumulative rainfall on the X axis and hourly rainfall intensity on the Y
253 axis. The Tag A in Fig. 11 shows the rainfall data at 17:00 on Jul. 8, 2013, with a pore pressure of 3.00
254 kPa at that time. Three hours later at 20:00 (Tag B), the real-time rainfall has exceeded the rainfall

255 threshold, but the pore pressure didn't exceed the critical pore pressure ($6.3 \text{ kPa} < 6.79 \text{ or } 8.22 \text{ kPa}$)
 256 indicating that the warning information stayed in level II. One hour later at 21:00 (Tag C), the pore
 257 pressure did exceed the lower critical pore pressure ($7.8 \text{ kPa} > 6.79 \text{ kPa}$) indicating that debris flow
 258 had a much higher possibility to occur. Further, the pore pressure went up to 8.7 kPa over the upper
 259 critical pore pressure (8.22 kPa), and triggered a debris flow occurrence finally (Tag D).

260
 261 Fig. 11. Case application of the presented method in Wenjia gully (Jul. 8, 2013)

262 The case study shows that how to use this presented combined warning threshold in a real-time
 263 way during a rain storm. In 2014, two heavy rainstorms (Table 1) both have exceeded the rainfall
 264 threshold, but pore pressure did not cross the critical pore pressure during the whole course of the
 265 rainfall. Therefore, a warning message has been sent to the local government with a median possibility
 266 of debris flow occurrence. At last, fortunately no debris flow occurred during these rain storms.
 267 Therefore, the presented comprehensive warning threshold can be used as a helpful tool for debris
 268 flow prediction in mountainous area, especially in this earthquake area of Southwest China where a lot
 269 of loose material is available.

270 **5. Discussion and conclusion**

271 Gully-type debris flow, usually triggered by high-intensity and short-duration rainstorms cause
272 serious harm to human lives and properties every year in the mountainous region of Southwest China.
273 Therefore, in order to prevent such natural disasters, there is an urgent requirement for an effective
274 method to predict debris flow occurrence. The combined warning threshold proposed and discussed in
275 this paper, not only use the common rainfall threshold, but also include the critical pore pressure
276 determined by a hydro mechanical stability model.

277 Two rainfall triggering factors: maximum hourly rainfall and cumulative rainfall, have been
278 selected to establish a simple rainfall threshold as a baseline for debris flow early warning. Critical
279 pore pressure can be used as a combined threshold to make the warning threshold better in practical
280 usage. The Wenjia gully was selected as a case study for a detailed explanation of the presented
281 method, for the great volume of deposited materials triggered by Wenchuan earthquake along the
282 channel. The results show that the combined threshold can play a great role in debris flow predicting,
283 at least reduce the mistaken alerts for debris flow occurrence compared to use of only a rainfall
284 threshold. However, such a combined warning threshold still has some restrictions. First, the critical
285 pore pressure is a linear function with the depth of a potential slip surface, which is difficult to
286 determine in an actual gully by the real time monitoring system. In this study, one-meter depth of the
287 slip surface was selected as a possible condition for this preliminary study. Second, the study area still
288 focused on the Wenjia gully, therefore the presented method can't be used in other gullies directly. But
289 in the near future, different gully-type debris flows will be researched, and more subsequent work
290 need to be carried on for a better understanding of debris flow prediction. Finally, the most complex
291 problem is the final determination whether to alert the local population, and whether some reactions
292 need to be done immediately, or later. Debris flow early warning is not an imminent hazard but is just
293 regarded as a potential danger. In spite of these limitations, the methodology presented in this paper
294 has reached the goal to establish a preliminary combined warning threshold for gully-type debris flow

295 prediction. In the future studies, the critical pore pressure threshold which are dependent on
296 topography, geology, and soil properties, can be determined by long-term field monitoring, and more
297 important by debris flow tests in laboratory with different slope angles, and depths of slip surface to
298 reduce the loss of properties and lives.

299

300 **Acknowledgements**

301 This study was financially supported by the Funds for Creative Research Groups of China (Grant
302 No. 41521002), International Cooperation (NSFC-RCUK_NERC), Resilience to Earthquake-induced
303 landslide risk in China (Grant No. 41661134010), and State Key Laboratory of Geo-hazard Prevention
304 and Geo-environment Protection (Chengdu University of Technology) (Grant No. SKLGP2017Z006).
305 The authors also give great thanks to Prof. Niek Rengers for his review of an earlier version of this
306 paper and for his suggestions to polish the language, which greatly improved the quality of the
307 manuscript.

308 **References**

309 Baum, R. L., and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA,
310 Landslides, 7, 259-272, 10.1007/s10346-009-0177-0, 2009.

311 Beven, K. J., and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology / Un
312 modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences
313 Bulletin, 24, 43-69, 10.1080/02626667909491834, 1979.

314 Cannon, S. H., Gartner, J. E., Wilson, R. C., Bowers, J. C., and Laber, J. L.: Storm rainfall conditions for floods
315 and debris flows from recently burned areas in southwestern Colorado and southern California, Geomorphology,
316 96, 250-269, 10.1016/j.geomorph.2007.03.019, 2008.

317 Chae, B.-G., and Kim, M.-I.: Suggestion of a method for landslide early warning using the change in the
318 volumetric water content gradient due to rainfall infiltration, Environmental Earth Sciences, 66, 1973-1986,
319 10.1007/s12665-011-1423-z, 2011.

320 Deb S. K., and El-Kadi A. I.: Susceptibility assessment of shallow landslides on Oahu, Hawaii, under
321 extreme-rainfall events, Geomorphology, 108, 219-233, 2009.

322 Glade, T., Crozier, M., and Smith, P.: Applying probability determination to refine landslide-triggering rainfall
323 thresholds using an empirical “Antecedent Daily Rainfall Model”, Pure and Applied Geophysics, 157,
324 1059-1079, 2000.

325 Guo, X.-j., Cui, P., and Li, Y.: Debris flow warning threshold based on antecedent rainfall: A case study in
326 Jiangjia Ravine, Yunnan, China, Journal of Mountain Science, 10, 305-314, 10.1007/s11629-013-2521-z, 2013.

327 Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in
328 central and southern Europe, Meteorology and Atmospheric Physics, 98, 239-267, 10.1007/s00703-007-0262-7,

329 2007a.

330 Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity-duration control of shallow
331 landslides and debris flows: an update, *Landslides*, 5, 3-17, 10.1007/s10346-007-0112-1, 2007b.

332 Huang, J., Huang, R., Ju, N., Xu, Q., and He, C.: 3D WebGIS-based platform for debris flow early warning: A
333 case study, *Engineering Geology*, 197, 57-66, 10.1016/j.enggeo.2015.08.013, 2015a.

334 Huang, J., Ju, N. P., Liao, Y. J., and Liu, D. D.: Determination of rainfall thresholds for shallow landslides by a
335 probabilistic and empirical method, *Natural Hazards and Earth System Sciences*, 15, 2715-2723,
336 10.5194/nhess-15-2715-2015, 2015b.

337 Huang, R., Huang, J., Ju, N., He, C., and Li, W.: WebGIS-based information management system for landslides
338 triggered by Wenchuan earthquake, *Natural hazards*, 65, 1507-1517, 2013.

339 Iverson, R. M.: The physics of debris flows, *Reviews of geophysics*, 35, 245-296, 1997.

340 Kean, J. W., McCoy, S. W., Tucker, G. E., Staley, D. M., and Coe, J. A.: Runoff-generated debris flows:
341 Observations and modeling of surge initiation, magnitude, and frequency, *Journal of Geophysical Research: Earth Surface*, 118, 2190-2207, 10.1002/jgrf.20148, 2013.

342 Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., M.Brown, W., Ellen, S. D., Harp, E. L., Wieczorek, G. F.,
343 Alger, C. S., and Zatkin, R. S.: Real-Time Landslide Warning during Heavy Rainfall, *Science*, 238, 921-925,
344 1987.

345 Michel G. P., and Kobiyama M.: Developement of new equation to estimate the maximum soil depth by using
346 the safety factor, 2016.

347 Peng, J., Fan, Z., Wu, D., Zhuang, J., Dai, F., Chen, W., and Zhao, C.: Heavy rainfall triggered loess-mudstone
348 landslide and subsequent debris flow in Tianshui, China, *Engineering Geology*, 10.1016/j.enggeo.2014.08.015,
349 2014.

350 Segoni, S., Rosi, A., Rossi, G., Catani, F., and Casagli, N.: Analysing the relationship between rainfalls and
351 landslides to define a mosaic of triggering thresholds for regional-scale warning systems, *Natural Hazards and
352 Earth System Science*, 14, 2637-2648, 10.5194/nhess-14-2637-2014, 2014.

353 Shieh, C.-L., Chen, Y., Tsai, Y., and Wu, J.: Variability in rainfall threshold for debris flow after the Chi-Chi
354 earthquake in central Taiwan, China, *International Journal of Sediment Research*, 24, 177-188, 2009.

355 Shuin, Y., Hotta, N., Suzuki, M., and Ogawa, K.-i.: Estimating the effects of heavy rainfall conditions on shallow
356 landslides using a distributed landslide conceptual model, *Physics and Chemistry of the Earth, Parts A/B/C*, 49,
357 44-51, 10.1016/j.pce.2011.06.002, 2012.

358 Thiebes, B.: Integrative Early Warning, in: *Landslide Analysis and Early Warning Systems*, Springer, 215-219,
359 2012.

360 Tropeano, D., and Turconi, L.: Using historical documents for landslide, debris flow and stream flood prevention.
361 Applications in Northern Italy, *Natural Hazards*, 31, 663-679, 2004.

362 van Asch, T. W. J., Tang, C., Alkema, D., Zhu, J., and Zhou, W.: An integrated model to assess critical rainfall
363 thresholds for run-out distances of debris flows, *Natural Hazards*, 70, 299-311, 10.1007/s11069-013-0810-z,
364 2013.

365 Xu, Q.: The 13 August 2010 catastrophic debris flows in Sichuan Province: characteristics, geneticmechanism
366 and suggestions., *Journal of Engineering Geology*, 18, 596-608, 2010.

367 Yin, Y., Wang, H., Gao, Y., and Li, X.: Real-time monitoring and early warning of landslides at relocated
368 Wushan Town, the Three Gorges Reservoir, China, *Landslides*, 7, 339-349, 10.1007/s10346-010-0220-1, 2010.

369 Yu, B., Li, L., Wu, Y., and Chu, S.: A formation model for debris flows in the Chenyulan River Watershed,
370 Taiwan, *Natural Hazards*, 68, 745-762, 10.1007/s11069-013-0646-6, 2013a.

371 Yu, B., Ma, Y., and Wu, Y.: Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China,
372 *Natural Hazards*, 65, 835-849, 10.1007/s11069-012-0395-y, 2013b.

373 Yu, B., Zhu, Y., Wang, T., Chen, Y., Zhu, Y., Tie, Y., and Lu, K.: A prediction model for debris flows triggered by
374 a runoff-induced mechanism, *Natural Hazards*, 1-21, 2014.

375 Zhou, W., and Tang, C.: Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area,

