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Abstract. Unexpectedly large displacements in the interior of the oceans are studied through the dynamics of packets of 
internal waves, where the evolution is governed by the nonlinear Schrödinger equation. The case of constant buoyancy 10 
frequency permits analytical treatment. While modulation instability for surface wave packets only arises for sufficiently deep 
water, ‘rogue’ internal waves may occur for the shallow water and intermediate depth regimes. The dependence on the 
stratification parameter and choice of internal modes can be demonstrated explicitly. The spontaneous generation of rogue 
waves is tested by numerical simulations.  

1 Introduction 15 

Rogue waves are unexpectedly large displacements from equilibrium positions or otherwise tranquil configurations. Oceanic 

rogue waves obviously pose immense risk to marine vessels and offshore structures (Dysthe, et al., 2008). After these waves 

were observed in optical waveguides, studies of such extreme and rare events have been actively pursued in many fields of 

science and engineering (Onorato et al., 2013). Within the realm of oceanic hydrodynamics, observation of rogue waves in 

coastal regions has been recorded (Nikolkina and Didenkulova, 2011; O’Brien et al., 2018). 20 

Theoretically the propagation of weakly nonlinear, weakly dispersive narrow-band wave packets is governed by the 

nonlinear Schrödinger equation, where the dynamics is dictated by the competing effects of second order dispersion and cubic 

nonlinearity (Zakharov, 1968; Ablowitz and Segur, 1979). Modulation instability of plane waves and rogue waves can then 

occur only if dispersion and cubic nonlinearity are of the same sign. For surface wave packets on a fluid of finite depth, rogue 

modes can emerge for kh > 1.363 where k is the wavenumber of the carrier wave packet and h is the water depth. Hence 25 

conventional understanding is that such rogue waves can only occur if the water depth is sufficiently large.  

Other fluid physics phenomena have also been considered, such as the effects of rotation (Whitfield and Johnson, 

2015) or the presence of shear current or an opposing current (Onorato et al., 2011; Toffoli et al., 2013a; Liao et al., 2017) or  

oblique perturbations (Toffoli et al., 2013b). While such considerations may change the numerical value of the threshold 

(1.363) and extend the instability region, the requirement of water of sufficiently large depth is probably unaffected. For wave 30 

packets of large wavelengths, dynamical models associated with the shallow water regime have been employed (Didenkulova 
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and Pelinovsky, 2011, 2016), such as the well-known Korteweg-de Vries and Kadomtsev-Petviashvili types of equations 

(Grimshaw et al., 2010, 2015; Pelinovsky et al., 2000; Talipova et al., 2011), which may also lead to modulation instability 

under several special circumstances.  

The goal here is to establish another class of rogue wave occurrence through the effects of density stratification, 

namely, internal waves in the interior of the oceans. There is an extensive literature on large amplitude internal solitary waves 5 

which are spatially localized pulses propagating essentially without change of form (Grimshaw et al., 2004; Osborne, 2010). 

Our focus here is on internal rogue wave which is modelled as a wave pulse localized in both space and time. The asymptotic 

multiple scale expansions for internal wave packets under the Boussinesq approximation also yield the nonlinear Schrödinger 

equation (Grimshaw, 1977, 1981; Liu and Benney, 1981). When the buoyancy frequency is constant, modulation instability in 

one horizontal space dimension will only occur for kh < kch = 0.766n where the fluid is confined between rigid walls distance 10 

h apart, n is the vertical mode number of the internal wave, and the critical wave number kc given by (Liu et al., 2018):  

𝑘௖ =
𝑛𝜋

ℎ
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 .                                                                                                                                                                                 (1) 

For a basin depth (h) of say 500m, the critical wavelength (λc) is 

𝜆௖ =
2 𝜋

𝑘௖

=
2ℎ
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and ranges of ‘shallow’ and ‘intermediate’ depths are covered (Table 1): 15 

n (internal mode number) Rogue waves and instability can occur for 

wavelengths longer than λc given by (in meters) 

1 1305 

2 652 

3 435 

4 326 

5 261 

Table 1: Critical wavelength λc as a function of the internal mode number n (with h = 500 m). 

The important point is not just a difference in the numerical value of the cutoff, but rogue waves now occur for water 

depth less than a certain threshold. Our contribution is to extend this result. The nonlinear focusing mechanism of internal 

rogue waves is: (i) determined by estimation of the growth rate of modulation instability, and (ii) elucidated by a numerical 

simulation of emergence of rogue modes with the optimal modulation instability growth rate as the initial condition.    20 

 

2 Formulation 

2.1 Nonlinear Schrödinger theory for stratified shear flows 

The dynamics of small amplitude (linear) waves in a stratified shear flow with the Boussinesq approximation is governed by 

the Taylor-Goldstein equation (ϕ(y) = vertical structure, k = wavenumber, c = phase speed, U(y) = shear current): 25 
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where N is the Brunt-Väisälä frequency or more simply ‘buoyancy frequency’ (𝜌̅ is the background density profile): 

𝑁ଶ = −
𝑔

𝜌̅

𝑑𝜌̅

𝑑𝑦
 .                                                                                                                                                                                                  (3) 

The evolution of weakly nonlinear, weakly dispersive wave packets is described by the nonlinear Schrödinger equation for the 

complex-valued wave envelope S, obtained through a multi-scale asymptotic expansion, which involves calculating the 5 

induced mean flow and second harmonic (β, γ being parameters determined from the density and current profiles): 

𝑖𝑆ఛ − 𝛽𝑆కక −  𝛾|𝑆|ଶ𝑆 = 0 ,   𝜏 = 𝜀ଶ𝑡 , 𝜉 = 𝜀൫𝑥 − 𝑐௚𝑡൯                                                                                                                       (4)  

where τ is the slow time scale, ξ is the group velocity (cg) coordinate and ε is a small amplitude parameter.   

2.2 Constant buoyancy frequency 

For the simple case of constant buoyancy frequency N0, the formulations simplify considerably in the absence of 10 

shear flow (U(y) = 0). The linear theory Eq. (2) yields simple solutions for the mode number n: 

N = N0 ,   𝜙 = sin ቀ
௡గ௬

௛
ቁ ,                                                                                               (5) 

with the dispersion relation, phase velocity (c) and group velocity (cg) given by 
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The subsequent nonlinear analysis yields the coefficients of the nonlinear Schrödinger equation in explicit forms: 15 

 𝛽 =
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 .                                                                                                                         (7) 

A plane wave solution for Eq. (4) (or physically a continuous wave background of amplitude A0) is  

S = A0 exp[–iγ𝐴଴
ଶ𝜏] .                                                                                                                                                                   (8) 

Small disturbances with modal dependence exp[i(rξ – Ωτ)] will exhibit modulation instability if  

(a) Ωଶ = 𝛽𝑟ଶ(𝛽𝑟ଶ − 2𝛾𝐴଴
ଶ) is negative, i.e. for βγ > 0; calculations using Eqs. (6, 7) lead to kh < kch = 0.766n (Eq. (1)); 20 

(b) the maximum growth rate is (imaginary part of Ω) = Ω௜ = |𝛾|𝐴଴
ଶ for a special wavenumber given by β1/2r = γ1/2A0;  

(c) the growth rate for long wavelength disturbance is |Ωi/r| = (2βγ)1/2A0 for r → 0. 

 In terms of significance in oceanography, the constraint kh < kch = 0.766n does not depend on the constant buoyancy 

frequency N0. However, it does depend on the mode number (n) of the internal wave, with the higher order modes permitting 

a large range of carrier envelope wavenumber and fluid depth for rogue waves to occur. An analysis in the long wave regime 25 

of this Taylor-Goldstein formulation would in principle recover the previous results related to the Korteweg-de Vries and 

Gardner equations, and details will be reported in the future.  
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3. Computational Simulations 

An intensively debated issue in the studies of rogue waves through a deterministic approach is the proper initial condition 

which may generate or favour the occurrence of such large amplitude disturbances. One suggestion is the role played by long 

wavelength modes associated with modulation instability, or ‘baseband instability’ (Baronio et al., 2015). To highlight this 

effect and to clarify the role of stratification as well as the choice of internal wave modes, numerical simulations are performed 5 

where modes with the proper modulation instability growth rate on a plane wave background and say 5% amplitude are selected 

as the initial condition (Chan and Chow, 2017; Chan et al., 2018):  

S(ξ,0) = [1 + 0.05exp(irξ)]A0,  

(A0 = the amplitude parameter defined by Eq. (8) and r = wavenumber of the optimal mode). 

A pseudospectral method with a fourth-order Runge-Kutta scheme for marching forward in time is applied. When the 10 

wavenumber r of the disturbance is small, corresponding to a baseband mode, rogue wave can be generated from the plane 

wave background (Figure 1). Physically this spontaneous growth of disturbance due to modulation instability is closely 

associated with the ‘focusing’ of energy and thus the formation of rogue waves.   

The growth rate of the baseband mode is a crucial factor of rogue wave generation. A stronger baseband growth rate 

will trigger a rogue wave within a shorter period of time. From Eqs. (6) and (7), the baseband growth rate (2βγ)1/2A0 increases 15 

as the depth h or wavenumber k increases (Figure 2), but this growth rate decreases as the mode number n increases. However, 

this baseband rate is independent of the buoyancy frequency N0.  

Figure 1 shows that rogue waves can emerge sooner when the fluid is deeper. Remarkably, this implies that baseband 

instability is stronger when the system is closer to the singular limit where the cubic nonlinearity changes sign. On the other 

hand, the degree of the background density stratification posts only a minor effect to the baseband mode. Apart from choosing 20 

a preferred baseband mode, another perspective taken in the literature is to select a random field as the initial condition. For 

the present nonlinear Schrödinger equation, ‘rogue wave like’ entities would then emerge too (Akhmediev et al., 2009).  

 

 4. Discussions and Conclusions 

An analytically tractable model for packets of internal waves is studied through four input parameters, h (fluid depth), k 25 

(wavenumber of the carrier envelope packet), N0 (buoyancy frequency), and n (mode number of the internal wave), with only 

h and k relevant for surface waves. For internal waves, modulation instabilities and rogue waves may now arise for the shallow 

water and intermediate depth regimes if N0 is constant. With knowledge of baseband instability and supplemented by computer 

simulations, the nonlinear focusing mechanism of rogue waves is assessed. Remarkably the constant buoyancy frequency may 

not play a critical role in the existence condition in terms of focusing, but the mode number of the internal wave does. For 30 

breathers or other pulsating modes, this buoyancy frequency parameter will enter the focusing mechanism consideration and 

further analytical and computational studies will be valuable (Sergeeva et al., 2014). In the next phase of this research effort, 

contrasts and similarities with surface waves should also be pursued, where a directional field or opposing currents can provide 

rogue waves generation mechanisms beyond the well established criterion of kh>1.363. Such effects of shear currents and 
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comparisons with experimental / field data will be taken up in future studies (Onorato et al. 2011; Toffoli et al. 2013a; Toffoli 

et al. 2013b). 

 

Figure 1: The emergence of rogue wave modes from a background continuous wave perturbed by a long wavelength unstable mode. 
Larger baseband gain implies a smaller time is required for the rogue wave modes to emerge. Left: For N0 = 2, h = 4, k = 0.5, n = 1, 5 
r = 0.2, baseband instability growth rate = 0.868, rogue wave emerges at τ ≈ 17; Middle: For N0 = 2, h = 1, k = 0.5, n = 1, r = 0.2, 
baseband instability growth rate = 0.193, longer time is required for the emergence of rogue wave in a shallower fluid (τ ≈ 55); Right: 
For N0 = 1, h = 4, k = 0.5, n = 1, r = 0.2, baseband instability growth rate = 0.868, rogue wave emerges at about the same time (τ ≈ 14) 
as compared to the case with a higher buoyancy frequency N0 = 2. 

 10 
Figure 2: The baseband growth rate increases as the fluid depth h increases: N0 = 2,  k = 0.5, n = 1 (blue solid line); N0 = 2,  k = 0.5, 
n = 2 (red dashed line) ; N0 = 2,  k = 0.25, n = 1 (black dotted line). 

 

Acknowledgements 

Partial financial support has been provided by the Research Grants Council (contracts HKU17200815 and HKU17200718). 15 

References 

Ablowitz, M. J. and Segur, H.: On the evolution of packets of water waves, J. Fluid Mech., 92, 691–715, 1979. 

Akhmediev, N., Ankiewicz, A., and Soto-Crespo, J. M.: Rogue waves and rational solutions of the nonlinear Schrödinger 

equation, Phys. Rev. E, 80, 026601 (2009). 

Baronio, F., Chen, S., Grelu, P., Wabnitz, S., and Conforti, M.: Baseband modulation instability as the origin of rogue waves, 20 

Phys. Rev. A, 91, 033804, 2015. 



6 
 

Chan, H. N. and Chow, K. W.: Rogue waves for an alternative system of coupled Hirota equations: Structural robustness and 

modulation instabilities, Stud. Appl. Math. 139, 78–103, 2017. 

Chan, H. N., Grimshaw, R. H. J., and Chow, K. W.: Modeling internal rogue waves in a long wave-short wave resonance 

framework, Phys. Rev. Fluids 3, 124801, 2018. 

Didenkulova, I. and Pelinovsky, E.: Rogue wave in nonlinear hyperbolic systems (shallow-water framework), Nonlinearity, 5 

24, R1-R18, 2011. 

Didenkulova, I. and Pelinovsky, E.: On shallow water rogue wave formation in strongly inhomogeneous channels, J. Phys. A 

Math. Theo., 49, 194001, 2016. 

Dysthe, K., Krogstad, H. E., and Müller, P.: Oceanic rogue waves, Annu. Rev. Fluid Mech., 40, 287–310, 2008.  

Grimshaw, R. H. J.: The modulation of an internal gravity-wave packet, and the resonance with the mean motion, Stud. Appl. 10 

Math., 56, 241–266, 1977. 

Grimshaw, R.: Modulation of an internal gravity wave packet in a stratified shear flow, Wave Motion, 3, 81–103, 1981. 

Grimshaw, R., Chow, K. W., and Chan, H. N.: Modulational instability and rogue waves in shallow water models, ‘New 

Approaches to Nonlinear Waves’, edited by E. Tobisch, Lect. Notes Phys., 908, 135–149, 2015. 

Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkin, A.: Simulation of the transformation of internal solitary waves on 15 

oceanic shelves,  J. Phys. Ocean., 34, 2774–2779, 2004.  

Grimshaw, R., Pelinovsky, E., Taipova, T., and Sergeeva, A.: Rogue internal waves in the ocean: Long wave model, Eur. Phys. 

J. Special Topics, 185, 195–208, 2010. 

Liao, B., Dong, G., Ma, Y., and Gao, J. L.: Linear-shear-current modified Schrödinger equation for gravity waves in finite 

water depth, Phys. Rev. E, 96, 043111 (2017). 20 

Liu, A. K. and Benney, D. J.: The evolution of nonlinear wave trains in stratified shear flows, Stud. Appl. Math., 64, 247–269, 

1981. 

Liu, T. Y., Chan, H. N., Grimshaw, R. H. J., and Chow, K. W.: Internal rogue waves in stratified flows and the dynamics of 

wave packets, Nonlinear Anal. Real World Appl., 44, 449–464, 2018. 

Nikolkina, I. and Didenkulova, I., Rogue waves in 2006-2010, Nat. Hazards Earth Syst. Sci., 11, 2913–2924, 2011. 25 

O’Brien, L., Renzi, E., Dudley, J. M., Clancy, C., and Dias, F.: Catalogue of extreme wave events in Ireland: revised and 

updated for14680 BP to 2017, Nat. Hazards Earth Syst. Sci., 18, 729–758, 2018. 

Onorato, M., Proment, D., and Toffoli, A.: Triggering rogue waves in opposing currents, Phys. Rev. Lett., 107, 184502, 2011. 

Onorato, M., Residori, S., Bortolozzo, U., Montina, A., and Arecchi, F. T.: Rogue waves and their generating mechanisms in 

different physical contexts, Phys. Rep., 528, 47–89, 2013. 30 

Osborne, A. R.: Nonlinear Ocean Waves and the Inverse Scattering Transform, Academic Press, 2010. 

Pelinovsky, E., Talipova, T., and Kharif, Ch.: Nonlinear-dispersive mechanism of the freak wave formation in shallow water, 

Physica D, 147, 83-94, 2000. 



7 
 

Sergeeva, A., Slunyaev, A., Pelinovsky, E., Talipova, T., and Doong, D. J.:  Numerical modeling of rogue waves in coastal 

waters, Nat. Hazards Earth Syst. Sci., 14, 861–870, 2014. 

Talipova, T. G., Pelinovsky, E. N., and Kharif, Ch.: Modulation instability of long internal waves with moderate amplitudes 

in a stratified horizontally inhomogeneous ocean, JETP Letters, 94, 182-186, 2011. 

Toffoli, A., Waseda, T., Houtani, H., Kinoshita, T., Collins, K., Proment, D., and Onorato, M.: Excitation of rogue waves in a 5 

variable medium: An experimental study on the interaction of water waves and currents, Phys. Rev. E, 87, 051201(R), 2013a.  

Toffoli, A., Fernandez, L., Monbaliu, J., Benoit, M., Gagnaire-Renou, E., Lefèvre, J. M., Cavaleri, L., Proment, D., Pakozdi, 

C., Stansberg, C. T., Waseda, T., and Onorato, M.: Experimental evidence of the modulation of a plane wave to oblique 

perturbations and generation of rogue waves in finite water depth, Phys. Fluids, 25, 091701, 2013b. 

Whitfield, A. J. and Johnson, E. R.: Modulational instability of co-propagating internal wavetrains under rotation, Chaos, 25, 10 

023109, 2015.  

Zakharov, V. E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 

190–194, 1968. 

 


