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Abstract. Flood risk assessments are required for long-term planning, e.g. for investments in infrastructure and other urban

capital. Vorogushyn et al. (2018) call for new methods in large-scale ‘Flood Risk Assessment’ (FRA) to enable the capturing

of system interactions and feedbacks. With the increase of computational power, large-scale, continental FRAs have recently

become feasible (Ward et al., 2013; Alfieri et al., 2014; Dottori et al., 2016; Vousdoukas, 2016; Winsemius et al., 2016; Paprotny

et al., 2017).5

Flood events cause large damages worldwide (Desai et al., 2015). Moreover, widespread flooding can potentially cause

large damage in a short time window. Therefore, large-scale (e.g. pan-European) events and for instance maximum probable

damages are of interest, in particular for the (re)insurance industry, because they want to know the chance of their widespread

portfolio of assets getting affected by large-scale events (Jongman et al., 2014).

Using a pan-European data set of modelled, gridded river discharge data, we tracked discharge waves in all major European10

river basins. We synthetically generated a large catalogue of synthetic, pan-European events, consisting of spatially coherent

discharge peak sets.

Copyright statement. The author’s copyright for this publication is transferred to HR Wallingford, Deltares and GfZ.

1 Introduction

1.1 General approaches to FRA15

Typically, for FRAs a chain of models is applied, covering the entire risk cascade from hazardous extreme events down to flood

damages or casualties resulting from inundation (e.g. expected annual damage, loss of life). The chain can be run in continuous

mode (Cameron et al., 1999; Boughton and Droop, 2003; Borgomeo et al., 2015; Falter et al., 2015), or with separate events

(Vorogushyn et al., 2010; Gouldby et al., 2017). Event-based model runs require initial conditions for each event, introducing

the challenge to include the influence of antecedent conditions in sequences of events (Berthet et al., 2009; Schröter et al.,20

2015). Running the models in continuous mode has the advantage that pre-event conditions such as e.g. soil moisture state
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or pre-event river flow are explicitly simulated by the model chain. Continuous simulation can be, however, computationally

much more expensive.

Following the definition of risk (Field, 2012), simply put as probability of damage, FRA requires an approximation of the risk

curve under stationary climate conditions and a current distribution of asset values. The risk curve represents the probability of

damages and is approximated by the evaluation of a comprehensive set of hazard scenarios, which represent a series of flood5

events in space and time. The latter are typically generated as synthetic data with models conditioned on observations.

Fluvial flood events occur where water escapes the river in an uncontrolled fashion. Such flood events are driven by discharge

waves, which cause the exceedance of bankful conditions or cause dikes to fail. Each discharge wave occurs in a particular time

window, which varies for each location. With an increasing spatial scale, events overlap in time and merge into a space-time

continuum. For a large-scale FRA, the challenge arises how to define and simulate large-scale, synthetic river discharge events,10

retaining their statistical properties in space (spatial dependence/coherence).

1.2 Flood events in space and time

1.2.1 The challenge of event definition

River discharge events show a wave-like behaviour. Travel times of discharge waves (i.e. time lags between flow peaks at

different locations) in large river basins can be long. Therefore, a new discharge wave may be generated upstream, while the15

previous discharge wave has not yet reached the river mouth. Furthermore, discharge waves in river basins are triggered by

atmospheric events that may span across multiple river basins. Finally, discharge waves in different river basins may be related

to a single atmospheric event, but do not occur at the same time. Hence, considering large-spatial scales, going beyond the

boundaries of a single catchment, imposes a challenge on the definition of large-scale, river discharge events.

1.2.2 Blocks vs dynamic events20

We distinguish between two groups of event identification methods: methods based on time blocks and methods based on

dynamic events. Using blocks, events are defined within fixed time windows and described by their statistical properties, e.g.

annual maximum peak flows. The main advantage of blocks is its simplicity, allowing statistical properties to be directly

derived.

Dynamic events are defined as events in space-time windows, which are based on the discharge values. This may result in a25

spatially varying time window for each event. As described above, at large spatial scales small-scale events at different locations

may overlap and form one single long-lasting spatio-temporal event. Hence, a practical definition of space-time windows is

required.
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Table 1. L1-6 are different locations. Sets 1-4 describe a discharge event. Generally, dynamic discharge events do not occur at all locations,

such that peaks (P) cannot be identified for all locations. Therefore, auxiliary values (A) have to be used to fill in the gaps.

L1 L2 L3 L4 L5 L6

Set 1 P P P P A A

Set 2 A P P A P A

Set 3 P A P P P A

Set 4 P P A P P P

1.2.3 Handling dynamic events in a statistical event generator

Historically, observations have been made at specific locations, e.g. discharge gauge stations at certain locations along rivers30

[cite]. Therefore, most event identification methods are designed for local frequency analysis of discharge waves, starting with

the identification of ‘local events’, i.e. events at certain locations.

In reality, discharge waves will not occur at all gauged locations within a reasonable time window. The larger the spatial scale

in which discharge waves are considered, the more likely it is they are spread out in time. Therefore, an extraction of a dynamic

event from a space-time continuum, trying to obtain local peaks for all locations, will lead to a matrix of incomplete peak sets.

Gaps emerge at locations, where no event occurs within a reasonable time window. Current statistical methods for multivariate5

event generation cannot handle a matrix with missing components (Keef et al., 2009). Therefore, ‘auxiliary values’, i.e. values

that do not represent flood wave peaks, are required in order to fill up the gaps (see Table 1). Different methods exist to assign

auxiliary values, for different purposes. Gouldby et al. (2017) analysed different coastal flood variables with an event-based

approach, where they adopted concurrent values at all locations where particular thresholds had not been exceeded (i.e. no

local event). Keef et al. (2009) relaxed the time constraint, where they considered the values at all locations within a -3 to +310

days time window.

In this study, we analysed pan-European discharge waves in the space-time continuum, which are characterised by significant

time lags between peaks at multiple locations. We applied a new method of dynamic event identification where we aimed to

capture discharge events in each major European river basin, after which we used a block-based method to merge them to

spatially-coherent, pan-European events. The so-derived events were analysed and used to parameterise a stochastic event15

generation model. The statistical properties of synthetic events produced by the event generator were finally compared to those

of the observed.

2 Data and Framework

In this study we used a gridded discharge data set covering major river networks in Europe (Alfieri et al., 2014). This dataset

resulted from a hydrological model driven by a climate re-analysis data set for the period 1990 to 2015 and has a spatial20
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Figure 1. The network of major European rivers and a subset of 298 representative locations (red dots).

resolution of 5x5km and a daily temporal resolution. A high temporal resolution is critical for river discharge waves to be

tracked in the extended river networks (Fig.(1). In order to keep the computational costs reasonable, the network was reduced

to the major streams and tributaries. For high-order small streams to be included, even higher temporal resolution (hourly)

would be required for wave tracking.

Figure 2. Framework.

The framework for the generation of synthetic peak sets consists of three consecutive steps, see Fig.(2). First, we identified

pan-European events in the continuous data on the entire river network. To achieve this, we started by identifying local events

(single location), for which we applied a new method of time series analysis, ‘Noise Removal’ (NR), at every location in the5
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river network. These local events were then connected to neighbouring locations to obtain river basin events, to be subsequently

merged to pan-European events, which span across multiple river basins.

Second, to reduce the dimension (number of locations) for statistical analysis while trying to maintain an acceptable spatial

coverage, we selected 298 representative locations within the network of major European rivers, see Fig.(1). At these represen-

tative locations, we described the local discharge events by their peaks, where peaks on different representative locations were

connected using the pan-European events.5

Third, we fitted a multivariate extreme value model to the series of discharge peaks covering 25 years retaining the observed

spatial correlation structure. The fitted statistical model was finally used to simulate a large set of synthetic discharge peaks

(comprising 10,000 synthetic years), characterised by spatial coherence.

3 Events

3.1 Single-location events10

When studying discharge waves moving through the river network by ‘extremeness-per-location’, a complex behaviour can be

expected. Relatively extreme events upstream may become less extreme moving downstream when the lower part of the river

basin is not activated. Or, in contrast, relatively non-extreme events at different upstream branches can generate a relatively

extreme event at confluences downstream due to wave superposition. However, when using the popular ‘Peaks-Over-Threshold’

method (POT), all events below a particular threshold are dropped. Therefore, we developed a new noise removal algorithm15

to capture local events which manages to eliminate small local peaks which are part of a bigger event (noise), while retaining

small events which may be spatially connected to larger events upstream or downstream. This is a key feature to the wave

tracking which will be explained in Sect.[3.2].

The prodecure of NR is as follows. First, we identified all local minima µ and maxima M , defined as the points where

the sign of the increment changes from positive to negative and vice versa. We started from a local minimum and ended with20

a local minimum, see Fig.(3a). Second, we identified small perturbations as noise and removed them, where we applied the

following procedure:

1. Define a series Y = (µ1,M1,µ2, ..,µn−1,MnM ,µnµ) and calculate dY =
∣∣µ1−M1,M1−µ2, ..,MnM −µnµ

∣∣.

2. Either calculate the ‘NR value window’ δy = fy ×max(dY ), where fy is a fraction to set, or set δy directly.

3. Select the smallest difference in value dYi =min(dY ). If dYi < δy , remove Yi−1 and Yi from Y , then recalculate dY .25

Repeat this step until there is nothing left to remove.

An example of the NR value window filtering is displayed in Fig.(3b). Third, we made sure that two local minima were not too

close in time, for which we applied the following procedure:

1. Define a series T = (tµ1 , tµ2 , .., tµn) and calculate dT =
(
tµ2 − tµ1 , tµ3 − tµ2 , .., tµn − tµn−1

)
.
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2. Either calculate the ‘NR time window’ δt = ft×max(dT ), where ft is a fraction to set, or set δt directly.

3. Select the smallest difference in time i= argminidTi. If µi−1 < µi, j = i, else j = i−1. IfMj−1 <Mj , k = j−1, else

k = j. Remove Y2j−1, Y2k and Tj , then recalculate dT . Repeat this step until there is nothing left to remove.

An example of the time window filtering is displayed in Fig.(3c). Fourth, for each location we defined the day of each remaining

maximum ±1 day as a local discharge event.

We set the NR value window fraction relatively low (fy = 0.01), such that many small local events were retained. However,

by setting the fraction low, small perturbations (noise) made it difficult to spatially separate events. This was ameliorated by5

using the NR time window ft = 10days, ensuring a minimal time between local minima. These NR parameters were identified

by trial and error, which will be explained in Sect.[3.2].

3.2 River basin events

River discharge waves generally propagate through the network in downstream direction, introducing time lags between the

moments the waves pass at different locations. Time lags are difficult to estimate, because the celerity of river discharge waves10

can be highly nonlinear. Wave celerity is a function of hydraulic depth and changes in a nonlinear way when overbank flow

occurs and floodplains become inundated. When using gauge data (point-observations), combining local events to events that

span multiple locations, time lags are typically addressed using time windows. The gridded data set used in this study allowed

us to try a new method to combine local events to river basin events, which we refer to as ‘wave tracking’. Each location in

the river network is physically connected to its neighbouring locations, therefore allowing waves to be tracked throughout the15

entire river network. Wave tracking is robust to nonlinearities in the wave celerity, and therefore it allows to better address time

lags, so that, when we compare peaks at different locations in Sect.[4], we make sure they are of the same discharge wave.

To track river discharge waves, we applied the following procedure. First, we separated local events by applying NR to time

series at every location in the river network, where of each local event we retained the day of the peaks ±1 day. Second, we

identified separate events per river branch by capturing the polygons in the branch’s space-time image, see Fig.(4). The settings20

of the NR were adjusted by trial and error to try to obtain consistent polygons in space (low noise removal), but separated in

time (high noise removal). Third, we merged the events of different river branches based on overlap of event time coordinates

at the confluences.

3.3 Pan-European events

Precipitation events, which are the main driving source of river discharge events, span across different river basins. Therefore,25

large discharge events in adjacent river basins are likely to be correlated. To account for this correlation, we had to define events

that included discharge waves across different river basins (in this study pan-European events). Since discharge waves do not

span across different river basins (by definition), such events should be connected to each other in a different way. Discharge

waves in different basins are not synchronised, which adds additional complexity. In order to construct pan-European events,
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Figure 3. An example of the noise removal method. Blue dots are local minima, green dots are local maxima, red dots are local minima or

maxima that are identified as ‘noise’ and are removed.

which on one hand consider discharge waves in river basins and on the other hand account for trans-basin dependency, we30

propose a combined approach of wave tracking and ’global time windows’.
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Figure 4. a) A particular branch of the river Rhine. b) The continuous discharge data on the river branch, where the river mouth is located

at s = 0km and the head water is located around s = 1100km. c) Events on the river branch. The polygons (i.e. coloured islands of data

separated by the grey field) are discharge waves moving through the river branch.

The following procedure was adopted. First, we set up the global time windows. As soon as the first peak was detected at

any location in the river network, a global time window was opened, to be subsequently closed after 21 days. Continuing after

the last global time window, this procedure was repeated and resulted in 428 global time windows in the period 1990-2015 (i.e.

428 pan-European events). Second, to each global time window we assigned complete, tracked discharge waves. To do this,

we let each discharge wave be represented by its first time coordinate, i.e. the day when the discharge wave started somewhere

(upstream) in the river basin. The discharge wave was then assigned to the global time window in which this day occurred.5

If, per river basin, multiple discharge waves were assigned to a particular global time window, we only retained the discharge

wave with the largest discharge value. An example of a pan-European event is displayed in Fig.(5).

The length of the global time window of 21 days was found by a trial and error procedure, considering the following trade-

off. To each pan-European event, one river basin event should be assigned, which in an ideal world would give one local event

for each representative location. However, depending on the window length, multiple river basin events may be assigned or10

there may be no river basin event to assign to the global time window. Therefore, when applying a relatively large global time

window, the frequency of discharge waves in river basins with high frequencies will be underestimated, whereas a relatively

small global time window will lead to a large percentage of missing local events at the representative locations. Since we

were dealing with a large-scale analysis, the percentage of missing events at representative locations was relatively large and

therefore decisive for the choice of a relatively large global time window (21 days).
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Figure 5. From a particular Pan-European event, snapshots (days since the start of the event) are displayed. Red points indicate the cells of

the river network that were activated by the event.
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3.4 Event description

The pan-European event identification resulted in 428 events, which we aimed to describe by the discharge peaks of the events

at 298 representative locations on the river network. However, the pan-European events did not yield discharge peaks at all

representative locations for each events.

Where no event occurred (36% of the entries in the observed descriptor matrix), we had to fill the gaps by assigning auxiliary

values. Per representative location (i.e. column-wise) we set up a number of local time windows in between the peaks of iden-

tified events, corresponding to the number of gaps between those respective peaks. Within each of these local time windows,

we selected the maximum value as auxiliary value.

4 Multivariate statistical model

4.1 Marginal distributions5

We fitted Generalised Pareto Distributions (GPDs) (Coles et al., 2001) to the upper tail of the marginal distributions, i.e. for

each column in the observed descriptor matrix. The issue of threshold choice for GPDs is well-discussed in the literature

(Northrop et al., 2017). After comparing the model fit, we used the ζm = 0.94 empirical quantile as marginal threshold for the

GPD at each location. This threshold was found by trial and error, where we tested the quality of the marginal GPD fits with a

standard method, comparing the empirical quantiles and probabilities against the modelled, including checks of the tolerance10

intervals, see Fig.(6).

4.2 Multivariate dependence model

To be able to capture the dependence between sets of descriptors (i.e. rows in the observed descriptor matrix), we started by

transforming the marginals to the uniform space. This transformation is applied in many other analyses, e.g. copulas (Genest

and Favre, 2007; Nelsen, 2007). Values below the marginal threshold used to fit the GPDs in Sect.[4.1] were transformed using15

the empirical marginal distribution and values above the marginal threshold were transformed using the GPDs. We applied a

model with two different components to capture the dependence structure, one for the non-extreme part and one for the extreme

part.

The dependence structure of the non-extreme part was captured using a multivariate kernel density with Gaussian kernels.

We transformed the (entire) uniform marginals to the normal space, with the mean µ= 0 and the standard deviation sd= 1.20

Bandwidths for the kernels where selected using the method of Silverman (2018).

To capture the dependence of the extreme part we chose the model of Heffernan and Tawn (2004), hereafter referred to as

‘HT04’. HT04 is a pair-wise dependence model that can be described as a method of lines, Yi = aY−i +Y b−iZ. Two HT04

model fits are required for each pair of marginals, with either marginal as the conditioning marginal Yi and the other as the

dependent marginal Y−i. Each fit holds two parameters, a and b, after which a residual Z is calculated from each observed25

data point. The data used to fit the model are the pairs where the conditioning marginal Yi is larger than a fitting threshold ζf .
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Figure 6. Standard visual checks of the ‘goodness-of-fit’ of the GPD. The dashed lines represent the 95% tolerance interval.

With an infinite number of samples drawn from HT04, each model fit would result in as many pair-wise lines as there are data

points. However, for simulation a subset of these lines is used, since HT04 should be applied only if the largest marginal in the

set is above a particular simulation threshold .
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To fit HT04, we transformed the (entire) uniform marginals to the Laplace space (Keef et al., 2013). We obtained HT0430

model fits in the Laplace space using maximum likelihood, with each marginal as conditioning variable and all other marginals

as dependent variables, resulting in a total of 298*297 model fits, where we chose the fitting threshold ζf = 0.9, which was

a trade-off between variance and bias. HT04 was recently applied for fluvial flooding (Keef et al., 2009; Lamb et al., 2010;

Wyncoll et al., 2013) and for coastal flooding (Wyncoll and Gouldby, 2015; Gouldby et al., 2017), in which the model fitting

procedure is described in more detail.

4.3 Simulation

We split the observed uniform descriptor matrix into a ‘non-extreme’ part, and an ‘extreme’ part. Each row in which not

a single descriptor exceeded an extremal simulation threshold ζe = 0.98 was determined to be non-extreme (23%), the rest5

(77%) was determined to be extreme (somewhere). For the non-extreme sets, we re-sampled from the non-parametric model.

For the extreme sets, we re-sampled from HT04, where the model fit was used of the marginal that was the largest by quantile

in the set. All sets were re-sampled N = Tsim/Tobs times, where Tobs is the duration of the observed data (25 years) and

Tsim is the duration of the synthetic data (10.000 years). After the simulation, we transformed the marginals of the synthetic

descriptor matrix to respect the fitted GPDs, thereby slightly distorting the dependence structure.10

4.4 Validation

Figure 7. Pair-wise plots of three descriptors. Red is the observed data and blue is the simulated data.
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Figure 8. Spatial correlation structure of the observed descriptors versus the synthetic descriptors, summarised by pair-wise Spearman

correlation. The upper panel shows the correlation in the observed data, the middle panel shows the correlation in the synthetic data and the

lower panel shows the difference between the observed and the synthetic correlation for each pair. The left column shows the correlation

between all pairs of locations, right shows only the pairs that are in the same river basin.

Using multivariate extreme value analysis, we extended the observed descriptor matrix with synthetic data, obtaining a

(large) synthetic descriptor matrix. The patterns in the larger synthetic descriptor matrix had to match the patterns found in the

smaller observed descriptor matrix. We focused on two main patterns; marginal distributions (a column-wise pattern) and de-

pendence structure (a row-wise pattern). To respect the fitted marginal distributions and, simultaneously, retain the dependence15

structure is challenging. There is no perfect method for these two objectives. We chose to respect the fitted distributions and so

we had to compare the dependence structure in the observed data with the synthetic.

A sample of the observed descriptors versus the synthetic descriptors is shown in Fig.(7). It can be observed that we managed

to capture the dependence structure reasonably well, as the simulated descriptors follow the trends in the observed data. Fig.(8)

shows the pair-wise, spatial correlation structure between descriptors at different locations. Rather than choosing distance

along the river branch, we chose geospatial distance such that we could compare locations not only within river basins, but also

across different river basins. The Spearman correlation coefficients of the observed descriptors and the synthetic descriptors5

agree very well, which indicates that the general spatial dependence structure is similar in the observed descriptor matrix and

in the synthetic descriptor matrix. The difference indicates an overall slightly higher (positive or negative) correlation in the

observed descriptor matrix. A shift from positive to negative correlation can be observed around 2000− 2500km, which may

be related to large-scale atmospheric patterns. Following up on the general check of correlation between the entire descriptor

sets, we specifically checked if we managed to capture the tail-end correlations. Fig.(9) shows that the general behaviour of co-10
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Figure 9. Pair-wise comparison of the tail-end of the marginals for all 298 locations. For a selection of high quantiles we counted the fraction

F of events where extremes at both locations exceeded the respective quantile divided by the total number of quantile exceedances. The

upper panel shows the fractions in the observed data, the middle panel shows the fractions in the synthetic data and the lower panel shows

the pair-wise difference between the observed and the synthetic fractions.

occurrence of extremes was relatively well captured in the dependence model. The general pattern in the synthetic descriptors

is reasonably similar to the pattern in the observed descriptors. A small positive bias can be observed, which shows that

the dependence model slightly underestimated the frequency of joint occurrence of extremes. The zero difference generally

falls within the lower quartile. Moreover, the higher the quantile for which we checked the exceedance, the fewer quantile

exceedances to count, which lead to a larger spread in the difference between the observed and the synthetic set.

5 Conclusions

We used a new ‘noise removal’ method, with which we successfully tracked discharge waves in all major European river basins

and clustered these river basin events to pan-European events using a global time window. With two multivariate dependence

models, we managed to capture the dependence structure between discharge peaks of daily discharge at 298 different locations

on the river network of major European rivers. We created a synthetic data set, comprising 10.000 years of synthetic peak sets

with a similar dependence structure as in the observed discharge peaks, thereby showing spatially coherence. This data set will

be used to generate discharge hydrographs to drive a European-wide inundation model for large-scale, flood risk assessment.
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