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Abstract. We present a new method to generate spatially coherent river discharge peaks over multiple river basins, which can

be used for event-based probabilistic flood risk assessment on a continental-scale. We first extract extreme events from river

discharge time series data over a large set of locations by applying new peak-identification and peak-matching methods. Then

we describe these events using the discharge peak at each location, whilst accounting for the fact that the events do not affect

all locations. Lastly we fit the state-of-the-art multivariate extreme value distribution to the discharge peaks, and generate from5

the fitted model a large set of spatially coherent synthetic events. We demonstrate the capability of this approach in capturing

the statistical dependence over all considered locations. We also discuss the limitations of this approach and investigate the

sensitivity of the outcome to various model parameters.
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1 Introduction10

Flood events cause large damages worldwide (Desai et al., 2015). Flood risk assessments (FRAs) are required for long-term

planning, e.g. for investments in infrastructure and other urban capital. Following the definition of risk (Field, 2012), simply

put as probability of damage, FRA requires an approximation of the risk curve under stationary climate conditions and a

current distribution of asset values. Typically, for FRAs a chain of models is applied, covering the entire risk cascade from

hazardous extreme events down to flood damages or casualties resulting from inundation (e.g. expected annual damage, loss15

of life). The risk curve represents the probability of damages and is approximated by the evaluation of a comprehensive set

of hazard scenarios. The chain can be run in continuous mode (Cameron et al., 1999; Boughton and Droop, 2003; Borgomeo

et al., 2015; Falter et al., 2015), or with separate events (Vorogushyn et al., 2010; Gouldby et al., 2017). To drive the chain of

models, boundary forcing is required. This typically comprises a large set of synthetic forcing data, with models conditioned

on observations.20

Widespread flooding can potentially cause large damage in a short time window. Continental events and, for instance,

maximum probable damages are of interest. In particular, the (re)insurance industry wants to know the chance of a widespread
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portfolio of assets getting affected in a short time window (Jongman et al., 2014). With the increase in computational power,

continental-scale FRAs have recently become feasible (Ward et al., 2013; Alfieri et al., 2014; Dottori et al., 2016; Vousdoukas,

2016; Winsemius et al., 2016; Paprotny et al., 2017; Serinaldi and Kilsby, 2017). Vorogushyn et al. (2018) call for new methods

for large-scale FRA to enable the capturing of system interactions and feedbacks. The focus in this study is on methodology

required for the generation of a large set of synthetic continental-scale discharge events for fluvial FRA.5

River discharge waves may cause the exceedance of bankful conditions or may cause dikes to fail. They are dynamic,

i.e. show a wave-like behaviour. Travel times of discharge waves in large river basins can be long, i.e. time lags between

discharge peaks at different locations can be large. With large travel times, a new discharge wave may be generated upstream,

while the previous discharge wave has not yet reached the river mouth. Furthermore, discharge waves in river basins are

triggered by atmospheric events that may span across multiple river basins. Finally, discharge waves in different river basins10

may be related to a single atmospheric event, but do not occur at the same time, since catchments have different response

times. With an increasing spatial scale, dynamic events start overlapping in time and merge into a space-time continuum.

For a continental-scale FRA, the challenge arises how to define observed continental-scale river discharge events and how to

simulate synthetic continental-scale river discharge events while retaining the observed statistical properties in space (spatial

dependence/coherence).15

We distinguish between two groups of event identification methods: methods based on time blocks and methods based

on dynamic events. Using blocks, events are defined within fixed time windows and described by their statistical properties,

e.g. annual maximum discharge. The main advantage of blocks is its simplicity, allowing statistical properties to be rapidly

captured. Dynamic events are defined as events with spatially varying time windows, which are based on the discharge values.

As described above, at large spatial scales small-scale dynamic events at different locations may overlap in time and form one20

single long-lasting spatio-temporal event. Hence, a practical definition of dynamic space-time windows is required.

We analysed pan-European discharge waves in the space-time continuum, which are characterised by significant time lags

between peaks at distant locations. We applied a new method of dynamic event identification where we aimed to capture

discharge events in each major European river basin, after which we used a block-based method to merge them to spatially-

coherent, pan-European events. We analysed the pan-European events with discharge peaks and used them to parameterise a25

stochastic event-based generator of discharge peaks. Using the generator, we simulated synthetic peak sets, after which we

compared the statistical properties of the synthetic sets to those of the observed. Finally, we discussed the main limitations of

the methodology and the choice of parameter settings.

2 Methodology

2.1 Observed data30

We used a gridded discharge reanalysis data set covering major river networks in Europe, which was obtained with the well-

established LISFLOOD model (Van Der Knijff et al., 2010). This data set resulted from a hydrological model driven by a
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climate re-analysis data set for the period 1990 to 2015. It has a spatial resolution of 5x5km and a daily temporal resolution. A

high temporal resolution is critical for river discharge waves to be tracked in the extended river network.

In order to keep the computational costs reasonable, the network was reduced to the major streams and tributaries. This

means that, although the input data was two-dimensional in space (x,y), we considered the network of 1-dimensional rivers

(s). For high-order small streams to be included, a higher spatial and temporal resolution would be required for wave tracking.5

Although the data was derived from a modelled re-analysis data set, we refer to the used subset of data as ‘observed data’ as

it comprises observations of reality, contrasting with ‘synthetic data’ which comprises data values of what may hypothetically

occur.

2.2 Objectives, framework and quality check
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Figure 1. The applied framework, which comprises three steps. First, events are identified in the observed data. Second, the observed events

are described, providing a matrix of observed descriptors. Third, multivariate statistics is applied to generate a large matrix of coherent

synthetic descriptors.

In this study there were two objectives. First, to capture the spatial dependence structure between peaks of discharge events10

at different locations spread out through Europe (OBJ1). Second, to generate a large set of synthetic discharge peaks, filling up

the observed distributions while retaining the observed dependence structure (OBJ2).

The framework for the generation of synthetic peak sets consisted of three consecutive steps, see Fig.(1). First, the identi-

fication of continental-scale events in the continuous data on the entire pan-European river network (OBJ1). To achieve this,

we started by identifying local events (single location), for which we applied a new method of time series analysis, ‘Noise15

Removal’ (NR), at every location (grid cell) in the river network. These local events were connected to neighbouring loca-

tions to obtain river basin events, to be subsequently merged to pan-European events, which span across multiple river basins.

Second, the description of the pan-European events (OBJ1). To reduce the dimension (number of locations) for statistical anal-
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Figure 2. The network of major European rivers and a subset of 298 representative locations (red dots).

ysis while trying to maintain an acceptable spatial coverage, we selected 298 representative locations within the network of

major European rivers, see Fig.(2). At these representative locations, we described the continental-scale discharge events by

their local peaks. Third, the generation of a synthetic descriptor set using multivariate statistical analysis (OBJ2). We fitted a

multivariate dependence model to the series of discharge peaks covering 25 years, retaining the observed spatial correlation

structure. Finally ,the fitted statistical model was used to simulate a large set of synthetic discharge peaks (comprising 10,0005

synthetic years), characterised by spatial coherence.

We considered the following as the key features for the quality of the generated synthetic data set. First, it should hold a

much larger variety of hypothetical (synthetic) events than those included in the observed data (KF1). Second, the dependence

structure of the synthetic set needs to agree with that of the observed, since the observed data set should be a likely subset of

the synthetic data set (KF2).10

3 Events

3.1 Single-location events

When using the popular ‘Peaks-Over-Threshold’ method (POT) per location, all events below a particular threshold are

dropped. This is appropriate for event identification only when events show a homogeneous ‘extremeness-per-location’. How-

ever, when studying discharge waves moving through the river network by ‘extremeness-per-location’, a heterogeneous be-15

haviour can be expected. Relatively extreme events upstream may become less extreme moving downstream when the lower

4



Figure 3. a) All local minima and maxima. b) Removal of noise using the value window. c) Removal of noise using the time window.

part of the river basin is not activated. Or, in contrast, relatively non-extreme events at different upstream branches can generate

a relatively extreme event at confluences downstream due to wave superposition. To address the heterogeneity, we developed

a new noise removal algorithm to capture local events which manages to eliminate small local peaks that are part of a bigger

event (noise), while retaining small events that may be spatially connected to larger events upstream or downstream. This is a

key feature to the wave tracking, which will be introduced in Sect.[3.2].5

The procedure of NR is as follows. First, all local minima µ and maxima M are identified, defined as the points where the

sign of the increment changes from positive to negative and vice versa, see Fig.(3a). Second, small perturbations are identified

as noise and are removed, where the following algorithm is applied:

1. Define a series Y = (µ1,M1,µ2, ..,µn−1,MnM ,µnµ) and calculate dY =
∣∣µ1 −M1,M1 −µ2, ..,MnM −µnµ

∣∣.
2. Either calculate the ‘NR value window’ δy = fy ×max(dY ), where fy is a fraction to set, or set δy directly.10

3. Find i by selecting the smallest difference in value dYi =min(dY ). If dYi < δy , remove Yi−1 and Yi from Y , then

recalculate dY . This step is repeated until there is nothing left to remove.

An example of the NR value window filtering is displayed in Fig.(3b). Third, to make sure that two local minima are not too

close in time, the following algorithm is applied:

1. Define a series T = (tµ1
, tµ2

, .., tµn) and calculate dT =
(
tµ2

− tµ1
, tµ3

− tµ2
, .., tµn − tµn−1

)
.15

2. Either calculate the ‘NR time window’ δt = ft×max(dT ), where ft is a fraction to set, or set δt directly.
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3. Find i by selecting the smallest difference in time dTi =min(dT ). If µi−1 < µi, j = i, else j = i− 1. If Mj−1 <Mj ,

k = j− 1, else k = j. Remove Y2j−1, Y2k and Tj , then recalculate dT . Repeat this step until there is nothing left to

remove.

An example of the NR time window filtering is displayed in Fig.(3c). Fourth, a local event can be chosen to last from minimum

to minimum, or to be only the time step in which the peak occurs, or something in between.5

We set the NR value window fraction relatively low fy = 0.01[−], such that many small local events were retained. However,

by setting the fraction low, small perturbations (noise) made it difficult to spatially separate events. This was ameliorated by

using the NR time window δt = 10days, ensuring a minimal time between local minima. The choice of NR parameters will be

elaborated in Sect.[5.2.1].

3.2 River basin events10

River discharge waves generally propagate through the network in downstream direction, introducing time lags between the

moments the waves pass at different locations. Time lags are difficult to estimate, because the celerity of river discharge

waves can be highly nonlinear. The wave celerity is a function of the hydraulic depth and changes in a nonlinear way when

overbank flow occurs and floodplains become inundated. When using gauge data (point-observations), combining local events

to events that span multiple locations, time lags are typically addressed using time windows. The gridded data set used in this15

study allowed us to try a new method to combine local events to river basin events, which we refer to as ‘wave tracking’. Each

location in the river network is physically connected to its neighbouring locations, which allows waves to be tracked throughout

the entire river network. Wave tracking is robust to non-linearities in the wave celerity, and therefore it allows to better address

time lags, so that, when we compare peaks at different locations in Sect.[4], we make sure they are of the same discharge wave.

To track river discharge waves, we applied the following procedure. First, we separated local events by applying NR to time20

series at every location in the river network, where of each local event we retained the day of the peaks ±1 day. Second, we

identified separate events per river branch by capturing the polygons in the branch’s space-time image, see Fig.(4). The settings

of the NR were adjusted by trial and error to try to obtain consistent polygons in space (low noise removal), but separated in

time (high noise removal). Third, we merged the events of different river branches based on overlap of event time coordinates

at the confluences. This procedure resulted in a variable number of tracked discharge waves per river basin.25

3.3 Pan-European events

Precipitation events, which are the main driving source of river discharge events, span across different river basins. Therefore,

large discharge events in adjacent river basins are likely to be correlated. To account for this correlation, we had to define events

that included discharge waves across different river basins (in this study pan-European events). Since discharge waves do not

span across different river basins (by definition), such events should be connected to each other in a different way. Discharge30

waves in different basins are not synchronised, which adds additional complexity. In order to obtain a method to construct
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Figure 4. a) A particular branch of the river Rhine. b) The continuous discharge data on the river branch, where the river mouth is located

at s= 0km and the head water is located around s= 1100km. c) Events on the river branch. The polygons (i.e. coloured islands of data

separated by the grey field) are discharge waves moving through the river branch.

pan-European events, which on the one hand considers discharge waves in river basins and on the other hand accounts for

trans-basin dependence, we propose a combined approach of wave tracking and ‘global time windows’.
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Figure 5. From a particular Pan-European event, snapshots (days since the start of the event) are displayed. Red points indicate the cells of

the river network that were activated by the event.

The following procedure was adopted. First, we set up subsequent global time windows with a length of δl = 21days, which

resulted in 428 global time windows in the period 1990-2015 (i.e. 428 pan-European events). We will discuss the length of the

global time windows in Sect.[5.2.1]. Second, to each global time window we assigned complete, tracked discharge waves. To

do this, we let each discharge wave be represented by its first time coordinate, i.e. the day when the discharge wave started

8



somewhere (upstream) in the river basin. The discharge wave was then assigned to the global time window in which this day

occurred. If, per river basin, multiple discharge waves were assigned to a particular global time window, we only retained

the discharge wave with the largest discharge value. This procedure resulted in 428 pan-European events. An example of a

pan-European event is displayed in Fig.(5).

3.4 Event description5

We aimed to describe the pan-European events by their peak discharge, at 298 representative locations on the river network.

However, the pan-European events did not yield discharge peaks at all representative locations for each event, i.e the observed

descriptor matrix had gaps. To be able to capture the spatial dependence structure in Sect.[4], we had to fill the gaps by assigning

‘auxiliary values’. This will be further discussed in Sect.[5.2.1].

We applied the following procedure. At locations where an event occurred, we extracted the discharge peak. Where no event10

occurred (36% of the entries in the observed descriptor matrix), we filled the gaps using auxiliary values. Per representative

location (i.e. column-wise) we set up a number of local time windows in between the peaks of identified events, corresponding

to the number of gaps between those respective peaks. Within each of these local time windows, we selected the maximum

value as auxiliary value. This procedure resulted in a (complete) observed descriptor matrix.

Figure 6. Correlation of descriptors at all representative locations versus descriptors at Vienna (black dot).

Fig.(6) shows the correlation of the descriptors with those at Vienna. Good agreement was found with the work of Jongman15

et al. (2014). It can be observed that the highest correlation was found at nearby locations within the same river basin. However,

significant correlation was found in nearby locations that were not in the same river basin, which confirmed the importance of

identifying events spanning multiple river basins.

In order to align with the corresponding literature in statistical models for multivariate extreme values, in the next Sect.[4]

columns of the observed descriptor matrix will be referred to as margins and the large values in each column will be referred20

to as the upper tails of the marginal distributions.
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4 Multivariate statistical model

4.1 Marginal distributions

We fitted Generalised Pareto Distributions (GPDs) (Coles et al., 2001) to the upper tail of the marginal distributions, i.e. for

each column in the observed descriptor matrix. The issue of threshold choice for GPDs is well-discussed in the literature

(Northrop et al., 2017). After comparing the model fits, we used the ζm = 0.94 empirical quantile as marginal threshold for5

the GPD at each location. This threshold was found by trial and error, which will be elaborated in Sect.[5.2.2]. We tested

the quality of the marginal GPD fits with a standard method, comparing the empirical quantiles and probabilities against the

modelled, including checks of the tolerance intervals.

4.2 Multivariate dependence model

To be able to capture the dependence between sets of descriptors (i.e. rows in the observed descriptor matrix), we started by10

transforming the marginals to the uniform space. This transformation is applied in many other analyses, e.g. copulas (Genest

and Favre, 2007; Nelsen, 2007). Values below the marginal threshold used to fit the GPDs in Sect.[4.1] were transformed using

the empirical marginal distribution and values above the marginal threshold were transformed using the GPDs. We applied a

model with two different components to capture the dependence structure, one for the non-extreme part and one for the extreme

part.15

The dependence structure of the non-extreme part was captured using a non-parametric, multivariate kernel density model

with Gaussian kernels. We transformed the (entire) uniform marginals to the normal space, with the mean µ= 0 and the

standard deviation sd= 1. Bandwidths for the kernels where selected using the method of Silverman (2018).

To capture the dependence of the extreme part we chose the model of Heffernan and Tawn (2004), hereafter referred to as

‘HT04’. HT04 is a pair-wise dependence model that can be described as a method of lines, Yi = aY−i+Y b−iZ. Two HT0420

model fits are required for each pair of marginals, with either marginal as the conditioning marginal Yi and the other as the

dependent marginal Y−i. Each fit holds two parameters, a and b, after which a residual Z is calculated from each observed

data point. The data used to fit the model are the pairs where the conditioning marginal Yi is larger than a fitting threshold ζf .

With an infinite number of samples drawn from HT04, each model fit would result in as many pair-wise lines as there are data

points. However, for simulation a subset of these lines is used, since HT04 should be applied only if the largest marginal in the25

set is above a particular simulation threshold .

To fit HT04, we transformed the (entire) uniform marginals to the Laplace space (Keef et al., 2013). We obtained HT04

model fits in the Laplace space using maximum likelihood, with each marginal as conditioning variable and all other marginals

as dependent variables, resulting in a total of 298*297 model fits, where we chose the fitting threshold ζf = 0.9, which was

a trade-off between variance and bias. HT04 was recently applied for fluvial flooding (Keef et al., 2009; Lamb et al., 2010;30

Schneeberger and Steinberger, 2018) and for coastal flooding (Wyncoll and Gouldby, 2015; Gouldby et al., 2017), in which

the model fitting procedure is described in more detail.
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4.3 Simulation

Figure 7. Observed (purple) versus synthetic (yellow) descriptors at three locations. The lower panel shows scatter plots pair-wise by

location, the diagonal compares distributions of observed and synthetic per location and the upper panel shows the pair-wise correlations of

the observed, synthetic and all.
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We split the observed uniform descriptor matrix into a ‘non-extreme’ part, and an ‘extreme’ part. Each row in which not a

single descriptor exceeded an extremal simulation threshold ζe = 0.98 was determined to be non-extreme (23%), the rest (77%)

was determined to be extreme (somewhere). For the non-extreme sets, we re-sampled from the non-parametric model. For the

extreme sets, we re-sampled from HT04, where the model fit was used of the marginal that was the largest by quantile in the

set. All sets were re-sampled N = Tsim/Tobs times, where Tobs is the duration of the observed data (25 years) and Tsim is the5

duration of the synthetic data (10.000 years). After the simulation, we transformed the marginals of the synthetic descriptor

matrix to respect the fitted GPDs. This implies that we forced the synthetic marginals to have the same distribution as the

corresponding observed marginals. However, by forcing this transformation we slightly distorted the dependence structure.

4.4 Quality of the synthetic descriptor set

Figure 8. Spatial correlation of the observed descriptors versus the synthetic descriptors, summarised by pair-wise Spearman correlation.

The upper panel shows the correlation in the observed data, the middle panel shows the correlation in the synthetic data and the lower panel

shows the difference between the observed and the synthetic correlation for each pair. The left column shows the correlation between all

pairs of locations, right shows only the pairs that are in the same river basin.

Using multivariate extreme value analysis, we extended the observed descriptor matrix with synthetic data, obtaining a10

(large) synthetic descriptor matrix. The patterns in the larger synthetic descriptor matrix had to match the patterns found in

the smaller observed descriptor matrix. We focused on two main patterns; marginal distributions (a column-wise pattern)

and dependence structure (a row-wise pattern). To respect the fitted marginal distributions and, simultaneously, retain the

dependence structure is challenging. There is no perfect method for these two objectives. We chose to respect the distributions
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fitted to the observed marginals, for which we transformed the synthetic marginals to follow the corresponding observed

distributions, as described in Sect.[4.3]. Therefore, we had to compare the dependence structure in the synthetic data with the

observed.

To further investigate the dependence structure, Fig.(7) shows a sample of the observed descriptors versus the synthetic

descriptors. It can be observed that we managed to fill the distributions of the individual descriptors well (KF1) while retaining5

the observed dependence structure reasonably well (KF2), as the simulated descriptors follow the trends in the observed data.

Fig.(8) shows the pair-wise, spatial correlation structure between descriptors at different locations. Rather than choosing the

distance between locations along the river branch, we chose geospatial distance such that we could compare locations not only

within river basins, but also across different river basins. The Spearman correlation coefficients of the observed descriptors and

the synthetic descriptors agree very well (KF2), which indicates that the general spatial dependence structure is similar in the10

observed descriptor matrix and in the synthetic descriptor matrix. The difference indicates an overall slightly higher (positive

or negative) correlation in the observed descriptor matrix. A shift from positive to negative correlation can be observed around

2000− 2500km, which may be related to large-scale atmospheric patterns.

Following up on the general check of correlation between the entire descriptor sets, we specifically checked if we managed

to capture the tail-end correlations. Fig.(9) shows that the general behaviour of co-occurrence of extremes was relatively15

well captured in the dependence model (KF2). The general pattern in the synthetic descriptors is reasonably similar to the

pattern in the observed descriptors. A small positive bias can be observed, which shows that the dependence model slightly

underestimated the frequency of joint occurrence of extremes. The zero difference generally falls within the lower quartile.

Moreover, the higher the quantile for which we checked the exceedance, the fewer quantile exceedances to count, which lead

to a larger spread in the difference between the observed and the synthetic set.20

5 Discussion

5.1 Limitations

Table 1. L1-L6 are different locations. Sets 1-4 describe a discharge event. Generally, dynamic discharge events do not occur at all locations,

such that peaks (P) cannot be identified for all locations. Therefore, auxiliary values (A) have to be used to fill in the gaps.

L1 L2 L3 L4 L5 L6

Set 1 P P P P A A

Set 2 A P P A P A

Set 3 P A P P P A

Set 4 P P A P P P
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Figure 9. Spatial extremal correlation of the observed descriptors versus the synthetic descriptors. For a selection of high quantiles we

counted the fraction F of events where extremes at both locations exceeded the respective quantile divided by the total number of quantile

exceedances. The upper panel shows the fractions in the observed data, the middle panel shows the fractions in the synthetic data and the

lower panel shows the pair-wise difference between the observed and the synthetic fractions.

Historically, observations have been made at specific locations, e.g. discharge gauge stations at certain locations along rivers.

Therefore, most event identification methods are designed for local frequency analysis of discharge waves, starting with the

identification of ‘local events’, i.e. events at certain locations (Tarasova et al., 2018). When addressing spatial dependence using

an event-based approach, the difficulty arises that discharge waves will not occur at all gauged locations within a reasonable

time window. The larger the spatial scale in which discharge waves are considered, the more likely it is they are spread out in5

time. Therefore, an extraction of a dynamic event from a space-time continuum, trying to obtain local peaks for all locations,

will lead to a matrix of incomplete peak sets. This is problematic, because current statistical methods for multivariate event

generation cannot handle a matrix with missing components (Keef et al., 2009). Therefore, ‘auxiliary values’, i.e. values that

do not represent flood wave peaks, are required in order to fill up the gaps (see Table 1). Different methods exist to assign

auxiliary values, for different purposes. Gouldby et al. (2017) analysed different coastal flood variables with an event-based10

approach, where they adopted concurrent values at all locations where particular thresholds had not been exceeded (i.e. no

local event). Keef et al. (2009) relaxed the time constraint, where they considered the values at all locations within a -3 to +3

days time window. Since we were dealing with a large number of locations and with large time lags, neither of these methods

were appropriate. Therefore, we found auxiliary values using local time windows, where these time windows depended on the

gaps per location.15
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Figure 10. Sensitivity of fna, which is the fraction of missing values in the observed descriptor matrix, to the three main settings used for

the identification of events in Sect.[3]. fy is the NR value window fraction, δt is the NR time window, δl is the length of the global time

windows.

5.2 Sensitivity and uncertainty

5.2.1 Events

In Sect.[2.2], we stated the objective to capture the spatial dependence structure between peaks of discharge events at different

locations spread out through Europe (OBJ1), for which events had to be identified. In the event identification procedure, we

used three main parameters for the identification of pan-European events: the value window fraction fy and time window δt of5

the noise removal method (Sect.[3.1]), and the length of the global time windows δl for the pan-European events (Sect.[3.3]).

We were dealing with the following trade-off. For each pan-European event, one discharge peak could be assigned to each

location. However, depending on the length of the global time window, there may be no river basin event to assign to the global

time window, i.e. a missing discharge peak, or multiple river basin events may be assigned from which only one discharge

peak could be retained per global time window per location. Therefore, a relatively large global time window lead to the10

underestimation of the frequency of discharge waves in river basins, whereas a relatively small global time window lead to a

large percentage of missing local events at the representative locations. Since we were dealing with a continental-scale analysis,

the fraction of missing values in the observed descriptor matrix fna was relatively large and therefore decisive for our choice

of parameter settings.

Fig.(10) shows the sensitivity of fna, which is the percentage of missing peaks in the observed descriptor matrix (Sect.[3.4]).15

When more noise was removed, i.e. larger fy and δt, events had a larger fraction of missing peaks, i.e. larger fna. In contrast,

a larger δl lead to a smaller fraction of missing peaks fna, since the chance was larger for an event to occur at a particular

location given more time. When comparing the sensitivity of the three parameters, it can be observed that the outcome is

relatively stable with regard to the choice of fy and δt, whereas the percentage of missing peaks fna could vary quite a lot with

δl. Our final choices are fy = 0.01[−], δt = 10days and δl = 21days. A lower δl would have caused too many peaks being20

missing, which would have lead to unreliable estimation of the dependence model.
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Figure 11. Sensitivity of fc, which is the mean of the absolute differences in correlation between the synthetic and the observed descriptor

sets for all locations, to the three main settings used for the statistical analysis in Sect.[4]. qm is the quantile threshold for the GPDs, qd is the

quantile threshold for HT04, qs is the quantile threshold for the simulation from HT04.

5.2.2 Dependence structure

In Sect.[2.2], we stated the objective to generate a large set of synthetic discharge peaks, filling up the observed distributions

while retaining the observed dependence structure (OBJ2). We defined what we considered two key features for the quality of

the generated data set. First, it had to hold a much larger variety of hypothetical (synthetic) events than those included in the

observed data (KF1), which we achieved by sampling a large number of synthetic descriptors and transforming them to follow5

the same distribution as fitted to the observed. Second, the dependence structure of the synthetic set needed to agree with that

of the observed, since the observed data set had to be a likely subset of the synthetic data set (KF2), which we achieved with

the dependence model, of which the results were demonstrated in Fig.(8)-Fig.(9). We further investigated the sensitivity of the

results for KF2, using a summary descriptor of Fig.(8).

Fig.(11) shows the sensitivity of fc, which is the mean absolute difference in Spearman correlation between the synthetic10

and the observed descriptor sets for all locations. No clear trend was found for both qm, which is the quantile threshold for the

GPDs, and qs, which is the quantile threshold for the simulation from HT04. A local minimum was found for qd, which is the

quantile threshold to select the observed descriptors to which the HT04 model was fitted.

A recent, more comprehensive study of the sources of uncertainty in a probabilistic flood risk model was provided by Winter

et al. (2018), who used the framework provided by Hall and Solomatine (2008).15

5.3 Applicability to European-scale FRA

The generated synthetic descriptor set can be used to drive an event-based chain of models, which may cascade from a hydraulic

model of the river network coupled with an inundation model to a damage and/or life safety models. To drive an inundation

model, synthetic discharge events have to be reconstructed from the synthetic descriptor sets, which corresponds to what would

be step 4 in Fig.(1), moving down from synthetic descriptors towards synthetic events. This step comprises fitting discharge20
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hydrographs to the synthetic descriptors and assigning time lags. Difficulty can be expected in that the synthetic descriptor

set partially consists of synthetic discharge peaks and partially consists of synthetic auxiliary values. For the synthetic peaks,

hydrographs can be reconstructed by fitting a typical (triangular) hydrograph shape to the synthetic peaks, whereas for the

synthetic auxiliary values, it will not be entirely clear how to fit a hydrograph. Time lags for the synthetic descriptors sets can

be used from the observed descriptors sets, which would implicitly use the assumption that travel times, i.e. wave celerities,5

are independent of magnitude.

6 Conclusions

We used a new ‘noise removal’ and ‘wave tracking’ method, with which we successfully identified discharge waves in all major

European river basins and clustered these river basin events to pan-European events using a global time window. With a mixture

multivariate dependence model, we managed to capture the dependence structure between discharge peaks of daily discharge at10

298 different locations on the river network of major European rivers. We created a synthetic data set, comprising 10.000 years

of synthetic discharge peaks with a similar dependence structure as in the observed data, thereby showing spatially coherence.

This data set will be used to generate discharge hydrographs to drive a European-wide inundation model for continental-scale

flood risk assessment.
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