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1 Point-by-point response

1.1 Referee 1

For the point-by-point response to mr Paprotny, please see5

nhess-2018-231-RC1.

1.2 Referee 2

For the point-by-point response to mr Jongman, please see
nhess-2018-231-RC2.

1.3 Editor10

First of all we thank you for your comments that will help us
improve our paper. In response to your final editor report, we
would like to discuss our interpretation of the points you have
raised and consult with you whether you think our intended
additional analysis will be sufficient.15

1. In particular the notion of assessing uncertainty has not
been addressed to my satisfaction. The authors say a number
of times that it is difficult to assess uncertainty, or validate,
and that using model output is justifiable because the focus
of the paper is the method, rather than results. However, for20

a proper justification that the method is valid, an assessment
of its uncertainty and/or validation against some real data
(synthetic events against actual events from observations as
suggested by Jongman) is required. The lowest hanging fruit
to do this to my mind, is to benchmark the method against25

a set of observations, and perform assessment of the robust-
ness of the method by testing a number of assumptions (for

instance the GPD quantile threshold). This will require some
additional work.

We think this is a fair point and propose the follow- 30

ing amendment to assess uncertainty. We will explore dif-
ferent settings for the three parameters used for event
identification/description, to explore the parameter space
around the settings we chose. Limited by long compu-
tational times, we think it is feasible to provide the re- 35

sults of 3*3*3=27 different parameter choices, thereby
exploring the sensitivity of parameter choices. With re-
gards to the uncertainty of parameter choice in the sta-
tistical model, we found a recent study entirely dedicated
to this aspect https://rd.springer.com/article/10.1007/s11069- 40

017-3135-5, and hope that providing reference to this article
will be sufficient. We think that the synthetic data cannot di-
rectly be compared against observations at gauging stations,
since it comprises hypothetical scenarios that have not oc-
curred. The observed data has to be a likely subset of the 45

synthetic, which is a point that we will better clarify in the re-
vision by more accurately stating the objectives of this study.

2. Compare against work by previous authors as sug-
gested by Jongman. Even if this is qualitatively done, for in-
stance by comparing a spatial plot of outcoming correlations 50

of events against correlations found by Jongman et al., 2015
over a certain area would give a reasonable idea if the meth-
ods show the same spatial correlation patterns. I leave it to
the authors to find a method to compare.

We think this is a good idea and are prepared to compare 55

our results to those of Jongman (2014). We won’t be able to
produce the exact same figures (not for all pixels), but will
be able to produce spatial dependence figures entailing the
298 chosen representative locations, which we think should
be sufficient for comparison. 60
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3. The comment on the used hydrologic/hydraulic model
by Jongman needs to be better elaborated upon. They claim
that "no hydrological/hydraulic model has been used for this
study", but they do depend strongly on results by Alfieri et al.
2014, that are generated using a hydrology/hydraulics model5

cascade. The authors should explain what this entails, and
discuss if and how the schematization can result in correla-
tions that have no relation with reality but are a result of the
schematization. Further "we do not have data of reality" may
also not be true. There will certainly be basins in the study10

region where daily discharge data can easily be obtained by
the authors.

We will better clarify on which aspect we focus on specif-
ically, and will better reference to the source of the modelled
data used as input in this study. We do think that comparison15

with time series of local discharge measurements is outside
the scope of this study (which takes the modelled data as in-
put). We will, however, summarise the findings of the study
in which the modelled discharge data was generated, in par-
ticular their conclusions on the comparison between directly20

observed and modelled discharge data.
4. the missing fields author contributions, competing in-

terests and disclaimer have to be treated. We will fill out
these missing fields (we thought that they were provided as
“optional” in the latex template).25

2 List of relevant changes

We have:

1. completely rewritten the abstract,

2. tried to improve the positioning in the introduction,

3. more clearly stated the objectives, framework and qual- 30

ity checks,

4. tried to clarify the different types of events discussed,

5. expanded the comparison with other literature in section
5.4,

6. moved parts to the discussion section as suggested, 35

7. expanded the discussion with a sensitivity analysis, for
which we had to do a lot extra computation and rewrit-
ing of scripts,

8. added a section on the applicability of the study,

9. improved the quality of the figures as suggested, 40

10. revised the conclusions.
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Abstract. Flood risk assessments are required for long-term
planning, e.g. for investments in infrastructure and other
urban capital. Vorogushyn et al. (2018) call for new
methods in large-scale ‘Flood Risk Assessment’ (FRA)
to enable the capturing of system interactions and5

feedbacks. With the increase of computational power,
large-scale, continental FRAs have recently become feasible
(Ward et al., 2013; Alfieri et al., 2014; Dottori et al., 2016; Vousdoukas, 2016; Winsemius et al., 2016; ?)
.
:::
We

:::::::
present

:
a
::::

new
:::::::

method
::
to
::::::::

generate
::::::::
spatially

:::::::
coherent

::::
river

::::::::
discharge

:::::
peaks

::::
over

::::::::
multiple

::::
river

::::::
basins,

::::::
which

:::
can10

::
be

::::
used

:::
for

:::::::::::
event-based

::::::::::
probabilistic

:::::
flood

::::
risk

:::::::::
assessment

::
on

::
a

::::::::::::::
continental-scale.

:::
We

::::
first

::::::
extract

:::::::
extreme

::::::
events

::::
from

::::
river

::::::::
discharge

::::
time

:::::
series

::::
data

::::
over

::
a
::::
large

:::
set

:::
of

:::::::
locations

::
by

::::::::
applying

:::::
new

::::::::::::::::
peak-identification

::::
and

:::::::::::::
peak-matching

:::::::
methods.

:::::
Then

:::
we

:::::::
describe

:::::
these

:::::
events

:::::
using

:::
the

::::::::
discharge15

::::
peak

::
at

:::::
each

::::::::
location,

:::::
whilst

::::::::::
accounting

:::
for

::::
the

:::
fact

::::
that

::
the

:::::::
events

:::
do

:::
not

::::::
affect

:::
all

:::::::::
locations.

::::::
Lastly

:::
we

:::
fit

:::
the

::::::::::::
state-of-the-art

::::::::::
multivariate

:::::::
extreme

:::::
value

:::::::::
distribution

::
to
:::
the

::::::::
discharge

:::::
peaks,

::::
and

:::::::
generate

:::::
from

:::
the

:::::
fitted

:::::
model

::
a
::::
large

::
set

:::
of

:::::::
spatially

::::::::
coherent

::::::::
synthetic

::::::
events.

::::
We

::::::::::
demonstrate20

::
the

:::::::::
capability

:::
of

::::
this

::::::::
approach

::
in

:::::::::
capturing

:::
the

::::::::
statistical

:::::::::
dependence

:::::
over

::
all

::::::::::
considered

::::::::
locations.

::::
We

::::
also

::::::
discuss

::
the

:::::::::
limitations

:::
of

:::
this

::::::::
approach

:::
and

:::::::::
investigate

:::
the

::::::::
sensitivity

::
of

:::
the

:::::::
outcome

::
to

::::::
various

::::::
model

::::::::::
parameters.

Copyright statement. The author’s copyright for this publication is25

transferred to HR Wallingford, Deltares and GfZ.

3 Introduction

Flood events cause large damages worldwide (Desai et al.,
2015). Moreover, widespread flooding can potentially cause
large damage in a short time window. Therefore, large-scale30

(
::::
Flood

::::
risk

::::::::::
assessments

:::::::
(FRAs)

:::
are

::::::::
required

:::
for

::::::::
long-term

::::::::
planning,

::
e.g. pan-European) events and for instance

maximum probable damages are of interest, in particular for
the (re)insurance industry, because they want to know the
chance of their widespread portfolio of assets getting affected35

by large-scale events (Jongman et al., 2014).
Using a pan-European data set of modelled, gridded river

discharge data, we tracked discharge waves in all major
European river basins. We synthetically generated a large
catalogue of synthetic, pan-European events, consisting of40

spatially coherent discharge peak sets.

3.1 General approaches to FRA

::
for

:::::::::::
investments

::
in

::::::::::::
infrastructure

::::
and

:::::
other

::::::
urban

::::::
capital.

::::::::
Following

:::
the

::::::::
definition

:::
of

:::
risk

:::::::::::
(Field, 2012)

:
,
::::::
simply

:::
put

::
as

:::::::::
probability

::
of

:::::::
damage,

::::
FRA

:::::::
requires

::
an

::::::::::::
approximation

:::
of

::
the45

:::
risk

:::::
curve

:::::
under

:::::::::
stationary

::::::
climate

:::::::::
conditions

::::
and

:
a
::::::
current

:::::::::
distribution

:::
of

::::
asset

::::::
values.

:
Typically, for FRAs a chain of

models is applied, covering the entire risk cascade from haz-

ardous extreme events down to flood damages or casualties
resulting from inundation (e.g. expected annual dam- 50

age, loss of life). The chain can be run in continuous mode
(Cameron et al., 1999; Boughton and Droop, 2003; Borgomeo et al., 2015; Falter et al., 2015)
, or with separate events
(Vorogushyn et al., 2010; Gouldby et al., 2017).
Event-based model runs require initial conditions for 55

each event, introducing the challenge to include the
influence of antecedent conditions in sequences of events
(Berthet et al., 2009; Schröter et al., 2015). Running the
models in continuous mode has the advantage that pre-event
conditions such as e.g. soil moisture state or pre-event river 60

flow are explicitly simulated by the model chain. Continuous
simulation can be, however, computationally much more
expensive.

Following the definition of risk (Field, 2012), simply put
as probability of damage, FRA requires an approximation 65

of the risk curve under stationary climate conditions and
a current distribution of asset values. The risk curve

:::
risk

::::
curve

::
represents the probability of damages and is ap-

proximated by the evaluation of a comprehensive set of
hazard scenarios

:
.
::::
The

:::::
chain

:::
can

::
be

::::
run

::
in

:::::::::
continuous

:::::
mode 70

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cameron et al., 1999; Boughton and Droop, 2003; Borgomeo et al., 2015; Falter et al., 2015)

:
,
:::::::::

or
:::::::::::

with
:::::::::::::::

separate
::::::::::::

events

::::::::::::::::::::::::::::::::::::::
(Vorogushyn et al., 2010; Gouldby et al., 2017).

::::
To

::::::
drive

::
the

::::::
chain

:::
of

:::::::
models,

::::::::
boundary

:::::::
forcing

:::
is

::::::::
required.

::::
This

:::::::
typically

:::::::::
comprises

::
a
:::::
large

:::
set

:::
of

::::::::
synthetic

:::::::
forcing

::::
data, 75

which represent a series of flood events in space and time.
The latter are typically generated as synthetic data with
models conditioned on observations.

Fluvial flood events occur where water escapes the
river in an uncontrolled fashion. Such flood events are 80

driven by discharge waves, which cause the exceedance of
bankful conditions or cause dikes to fail. Each discharge
wave occurs in a particular time window , which varies
for each location. With an increasing spatial scale, events
overlap in time and merge into a space-time continuum. 85

For a
::::::::::
Widespread

::::::::
flooding

::::
can

:::::::::
potentially

::::::
cause

:::::
large

::::::
damage

:::
in

::
a

:::::
short

::::
time

::::::::
window.

::::::::::
Continental

::::::
events

::::
and,

::
for

::::::::
instance,

:::::::::
maximum

::::::::
probable

::::::::
damages

:::
are

:::
of

:::::::
interest.

::
In

:::::::::
particular,

::::
the

:::::::::::
(re)insurance

::::::::
industry

::::::
wants

:::
to

:::::
know

::
the

:::::::
chance

:::
of

::
a
:::::::::::

widespread
::::::::
portfolio

:::
of

::::::
assets

::::::
getting 90

::::::
affected

:::
in

::
a
::::::

short
::::
time

::::::::
window

:::::::::::::::::::
(Jongman et al., 2014)

:
.
::::::

With
:::::

the
::::::::::

increase
::::

in
::::::::::::::

computational
::::::::

power,

::::::::::::::
continental-scale

::::::
FRAs

:::::
have

::::::::
recently

::::::::
become

:::::::
feasible

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ward et al., 2013; Alfieri et al., 2014; Dottori et al., 2016; Vousdoukas, 2016; Winsemius et al., 2016; Paprotny et al., 2017; Serinaldi and Kilsby, 2017)

:
.
:::::::::::::::::::::
Vorogushyn et al. (2018)

:::
call

:::
for

::::
new

::::::::
methods

:::
for

:
large- 95

scale FRA , the challenge arises how to define and
simulate large-scale, synthetic river discharge events
, retaining their statistical properties in space (spatial
dependence/coherence)

:
to

:::::::
enable

:::
the

:::::::::
capturing

:::
of

::::::
system

:::::::::
interactions

::::
and

::::::::::
feedbacks.

::::
The

:::::
focus

::
in

::::
this

:::::
study

::
is
:::

on 100

:::::::::::
methodology

:::::::
required

:::
for

::::
the

:::::::::
generation

::
of

::
a
:::::
large

:::
set

::
of

:::::::
synthetic

::::::::::::::
continental-scale

::::::::
discharge

::::::
events

:::
for

:::::
fluvial

:::::
FRA.
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3.1 Flood events in space and time

3.0.1 The challenge of event definition

River discharge events
::::
River

::::::::
discharge

:::::
waves

::::
may

:::::
cause

:::
the5

:::::::::
exceedance

::
of

:::::::
bankful

:::::::::
conditions

::
or

::::
may

:::::
cause

:::::
dikes

::
to

:::
fail.

::::
They

:::
are

::::::::
dynamic,

::::
i.e. show a wave-like behaviour. Travel

times of discharge waves (
:
in

:::::
large

::::
river

::::::
basins

:::
can

:::
be

::::
long,

i.e. time lags between flow
::::::::
discharge peaks at different lo-

cations ) in large river basins can be long. Therefore
::
can10

::
be

:::::
large.

:::::
With

:::::
large

::::::
travel

:::::
times, a new discharge wave

may be generated upstream, while the previous discharge
wave has not yet reached the river mouth. Furthermore, dis-
charge waves in river basins are triggered by atmospheric
events that may span across multiple river basins. Finally,15

discharge waves in different river basins may be related to
a single atmospheric event, but do not occur at the same
time. Hence, considering large-spatial scales, going beyond
the boundaries of a single catchment, imposes a challenge on
the definition of large-scale, ,

:::::
since

:::::::::
catchments

::::
have

:::::::
different20

:::::::
response

::::::
times.

::::
With

:::
an

:::::::::
increasing

::::::
spatial

::::::
scale,

:::::::
dynamic

:::::
events

::::
start

::::::::::
overlapping

::
in

::::
time

::::
and

:::::
merge

::::
into

:
a
:::::::::
space-time

:::::::::
continuum.

:::
For

::
a

::::::::::::::
continental-scale

::::
FRA,

:::
the

::::::::
challenge

:::::
arises

:::
how

:::
to

::::::
define

::::::::
observed

:::::::::::::::
continental-scale

:
river discharge

events
:::
and

::::
how

::
to

:::::::
simulate

::::::::
synthetic

::::::::::::::
continental-scale

::::
river25

::::::::
discharge

::::::
events

:::::
while

:::::::::
retaining

:::
the

:::::::::
observed

::::::::
statistical

::::::::
properties

::
in

:::::
space

::::::
(spatial

::::::::::::::::::::
dependence/coherence).

3.0.1 Blocks vs dynamic events

We distinguish between two groups of event identification
methods: methods based on time blocks and methods based30

on dynamic events. Using blocks, events are defined within
fixed time windows and described by their statistical proper-
ties, e.g. annual maximum peak flows

:::::::
discharge. The main

advantage of blocks is its simplicity, allowing statistical
properties to be directly derived.35

::::::
rapidly

::::::::
captured. Dynamic events are defined as events in

space-time
::::
with

:::::::
spatially

:::::::
varying

::::
time

:
windows, which are

based on the discharge values. This may result in a spatially
varying time window for each event. As described above,
at large spatial scales small-scale

:::::::
dynamic events at differ-40

ent locations may overlap
::
in

::::
time and form one single long-

lasting spatio-temporal event. Hence, a practical definition of

:::::::
dynamic space-time windows is required.

3.0.1 Handling dynamic events in a statistical event
generator45

L1-6 are different locations. Sets 1-4 describe a discharge
event. Generally, dynamic discharge events do not occur at
all locations, such that peaks (P) cannot be identified for all
locations. Therefore, auxiliary values (A) have to be used to
fill in the gaps. L1 L2 L3 L4 L5 L6 Set 1 P P P P A A Set 250

A P P A P A Set 3 P A P P P A Set 4 P P A P P P

Historically, observations have been made at specific
locations, e.g. discharge gauge stations at certain locations
along rivers cite. Therefore, most event identification
methods are designed for local frequency analysis of 55

discharge waves, starting with the identification of ‘local
events’, i.e. events at certain locations.

In reality, discharge waves will not occur at all gauged
locations within a reasonable time window. The larger the
spatial scale in which discharge waves are considered, the 60

more likely it is they are spread out in time. Therefore, an
extraction of a dynamic event from a space-time continuum,
trying to obtain local peaks for all locations, will lead
to a matrix of incomplete peak sets. Gaps emerge at
locations, where no event occurs within a reasonable time 65

window. Current statistical methods for multivariate event
generation cannot handle a matrix with missing components
(Keef et al., 2009). Therefore, ‘auxiliary values’, i.e. values
that do not represent flood wave peaks, are required
in order to fill up the gaps (see Table 1). Different 70

methods exist to assign auxiliary values, for different
purposes. Gouldby et al. (2017) analysed different coastal
flood variables with an event-based approach, where they
adopted concurrent values at all locations where particular
thresholds had not been exceeded (i.e. no local event). 75

Keef et al. (2009) relaxed the time constraint, where they
considered the values at all locations within a -3 to +3 days
time window.

In this study, we analysed
:::
We

:::::::
analysed

:
pan-European dis-

charge waves in the space-time continuum, which are char- 80

acterised by significant time lags between peaks at multiple

:::::
distant

:
locations. We applied a new method of dynamic event

identification where we aimed to capture discharge events
in each major European river basin, after which we used
a block-based method to merge them to spatially-coherent, 85

pan-European events. The so-derived events were analysed
and used

:::
We

::::::::
analysed

::::
the

:::::::::::::
pan-European

::::::
events

:::::
with

::::::::
discharge

:::::
peaks

::::
and

::::
used

:::::
them

:
to parameterise a stochas-

tic event generation model. The
:::::::::
event-based

:::::::::
generator

::
of

::::::::
discharge

:::::
peaks.

:::::
Using

:::
the

:::::::::
generator,

::
we

:::::::::
simulated

:::::::
synthetic 90

::::
peak

::::
sets,

:::::
after

:::::
which

:::
we

:::::::::
compared

:::
the

:
statistical proper-

ties of synthetic events produced by the event generator
were finally compared

::
the

::::::::
synthetic

::::
sets to those of the ob-

served.
::::::
Finally,

:::
we

:::::::::
discussed

:::
the

:::::
main

:::::::::
limitations

:::
of

:::
the

:::::::::::
methodology

:::
and

:::
the

::::::
choice

::
of

::::::::
parameter

:::::::
settings.

:
95

4 Data and Framework
::::::::::::
Methodology

The network of major European rivers and a subset of 298
representative locations (red dots).

4.1
::::::::

Observed
::::
data

In this study we
:::
We

::
used a gridded discharge 100

::::::::
reanalysis

::
data set covering major river networks in
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Europe(Alfieri et al., 2014). This dataset
:
,
:::::::

which
::::

was

:::::::
obtained

:::::
with

::::
the

:::::::::::::::
well-established

:::::::::::
LISFLOOD

::::::
model

:::::::::::::::::::::::
(Van Der Knijff et al., 2010).

:::::
This

::::
data

::::
set

:
resulted from

a hydrological model driven by a climate re-analysis data
set for the period 1990 to 2015 and

::::
2015.

::
It
:

has a spatial5

resolution of 5x5km and a daily temporal resolution. A high
temporal resolution is critical for river discharge waves to be
tracked in the extended river networks (Fig. (2).

:::::::
network.

In order to keep the computational costs reasonable,
the network was reduced to the major streams and trib-10

utaries.
::::
This

::::::
means

:::::
that,

::::::::
although

::::
the

:::::
input

:::::
data

::::
was

:::::::::::::
two-dimensional

:::
in

:::::
space

:::::
(x,y),

:::
we

:::::::::
considered

:::
the

:::::::
network

::
of

::::::::::::
1-dimensional

:::::
rivers

::::
(s).

:
For high-order small streams

to be included, even higher temporal resolution (hourly)
:
a

:::::
higher

::::::
spatial

::::
and

::::::::
temporal

:::::::::
resolution

:
would be required15

for wave tracking.
::::::::
Although

:::
the

::::
data

::::
was

:::::::
derived

:::::
from

:
a

:::::::
modelled

::::::::::
re-analysis

::::
data

::::
set,

:::
we

::::
refer

:::
to

:::
the

:::::
used

:::::
subset

::
of

::::
data

::
as

:::::::::
‘observed

:::::
data’

::
as

::
it
:::::::::
comprises

:::::::::::
observations

::
of

:::::
reality,

::::::::::
contrasting

:::::
with

:::::::::
‘synthetic

:::::
data’

:::::
which

:::::::::
comprises

:::
data

::::::
values

::
of

::::
what

::::
may

::::::::::::
hypothetically

::::::
occur.20

4.2
:::::::::
Objectives,

::::::::::
framework

::::
and

::::::
quality

::::::
check

1. Event 
Identification 

Continuous 

Descriptors 

Events 

3. Multivariate statistics 

Observed data 

25 years 10.000 years 

Observed 
Events 

Observed 
Descriptors 

Synthetic 
Descriptors 

2. Event 
Description 

Figure 1. Framework
::

The
:::::::

applied
:::::::::
framework,

:::::
which

::::::::
comprises

::::
three

::::
steps.

::::
First,

:::::
events

:::
are

:::::::
identified

::
in

::
the

:::::::
observed

::::
data.

::::::
Second,

::
the

:::::::
observed

:::::
events

:::
are

::::::::
described,

::::::::
providing

:
a
:::::
matrix

::
of
:::::::
observed

::::::::
descriptors.

::::::
Third,

:::::::::
multivariate

:::::::
statistics

::
is

::::::
applied

::
to

:::::::
generate

:
a

::::
large

:::::
matrix

::
of

::::::
coherent

:::::::
synthetic

:::::::::
descriptors.

::
In

:::
this

:::::
study

:::::
there

:::::
were

:::
two

::::::::::
objectives.

::::
First,

:::
to

::::::
capture

::
the

::::::
spatial

::::::::::
dependence

::::::::
structure

:::::::
between

:::::
peaks

::
of

::::::::
discharge

:::::
events

:::
at

::::::::
different

::::::::
locations

::::::
spread

::::
out

:::::::
through

:::::::
Europe

::::::
(OBJ1).

:::::::
Second,

::
to

:::::::
generate

::
a

::::
large

:::
set

::
of

:::::::
synthetic

::::::::
discharge25

:::::
peaks,

::::::
filling

::
up

::::
the

::::::::
observed

::::::::::
distributions

:::::
while

::::::::
retaining

::
the

::::::::
observed

::::::::::
dependence

::::::::
structure

::::::
(OBJ2).

:

The framework for the generation of synthetic peak sets
consists

::::::::
consisted

:
of three consecutive steps, see Fig.(1).

First, we identified pan-European
::
the

::::::::::::
identification

:::
of30

::::::::::::::
continental-scale events in the continuous data on the en-

Figure 2.
:::
The

::::::
network

::
of

:::::
major

:::::::
European

::::
rivers

:::
and

::
a

::::
subset

::
of

:::
298

::::::::::
representative

:::::::
locations

:::
(red

:::::
dots).

tire river network
:::::::::::
pan-European

:::::
river

:::::::
network

:::::::
(OBJ1). To

achieve this, we started by identifying local events (single
location), for which we applied a new method of time se-
ries analysis, ‘Noise Removal’ (NR), at every location

::::
(grid 35

::::
cell) in the river network. These local events were then con-
nected to neighbouring locations to obtain river basin events,
to be subsequently merged to pan-European events, which
span across multiple river basins.

Second, to
:::::::
Second,

:::
the

::::::::::
description

::
of

:::
the

::::::::::::
pan-European 40

:::::
events

:::::::
(OBJ1).

:::
To

:
reduce the dimension (number of loca-

tions) for statistical analysis while trying to maintain an ac-
ceptable spatial coverage, we selected 298 representative lo-
cations within the network of major European rivers, see
Fig.(2). At these representative locations, we described the 45

local
::::::::::::::
continental-scale discharge events by their peaks, where

peaks on different representative locations were connected
using the pan-European events.

Third, we
::::
local

::::::
peaks.

:::::
Third,

:::
the

:::::::::
generation

::
of

::
a

:::::::
synthetic

::::::::
descriptor

:::
set

:::::
using

::::::::::
multivariate

::::::::
statistical

:::::::
analysis

:::::::
(OBJ2). 50

:::
We fitted a multivariate extreme value

::::::::::
dependence model to

the series of discharge peaks covering 25 years,
:

retaining
the observed spatial correlation structure. The

::::::
Finally

:::
,the

fitted statistical model was finally used to simulate a large
set of synthetic discharge peaks (comprising 10,000 synthetic 55

years), characterised by spatial coherence.

:::
We

:::::::::
considered

:::
the

:::::::::
following

::
as

:::
the

::::
key

:::::::
features

:::
for

:::
the

::::::
quality

::
of

:::
the

:::::::::
generated

::::::::
synthetic

::::
data

:::
set.

:::::
First,

::
it
::::::

should

::::
hold

:
a
:::::
much

:::::
larger

::::::
variety

::
of

:::::::::::
hypothetical

:::::::::
(synthetic)

:::::
events

:::
than

:::::
those

::::::::
included

::
in

:::
the

::::::::
observed

:::
data

::::::
(KF1).

:::::::
Second,

:::
the

:::::::::
dependence

::::::::
structure

::
of

:::
the

::::::::
synthetic

::
set

:::::
needs

:::
to

::::
agree

::::
with
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:::
that

::
of

:::
the

::::::::
observed,

:::::
since

:::
the

::::::::
observed

::::
data

:::
set

:::::
should

:::
be

:
a

:::::
likely

:::::
subset

::
of

:::
the

::::::::
synthetic

::::
data

::
set

::::::
(KF2).

:

5 Events5

5.1 Single-location events

When

Figure 3.
:
a)

:::
All

::::
local

::::::
minima

::::
and

:::::::
maxima.

::
b)

:::::::
Removal

::
of

::::
noise

::::
using

::
the

:::::
value

::::::
window.

::
c)

:::::::
Removal

:
of
:::::
noise

::::
using

::
the

::::
time

::::::
window.

:::::
When

::::::
using

:::::
the

:::::::::
popular

:::::::::::::::::::::
‘Peaks-Over-Threshold’

::::::
method

::::::
(POT)

:::
per

::::::::
location,

:::
all

::::::
events

::::::
below

::
a
::::::::
particular

:::::::
threshold

::::
are

:::::::::
dropped.

:::::
This

:::
is

:::::::::::
appropriate

::::
for

:::::
event10

:::::::::::
identification

:::::
only

:::::
when

:::::::
events

:::::
show

:::
a
::::::::::::

homogeneous

::::::::::::::::::::::
‘extremeness-per-location’.

::::::::::
However,

:::::::
when

::
studying

discharge waves moving through the river network by
‘extremeness-per-location’, a complex

::::::::::::
heterogeneous

:
be-

haviour can be expected. Relatively extreme events upstream15

may become less extreme moving downstream when the
lower part of the river basin is not activated. Or, in contrast,
relatively non-extreme events at different upstream branches
can generate a relatively extreme event at confluences
downstream due to wave superposition. However, when20

using the popular ‘Peaks-Over-Threshold’ method (POT), all
events below a particular threshold are dropped. Therefore,

::
To

:::::::
address

:::
the

:::::::::::::
heterogeneity,

:
we developed a new noise

removal algorithm to capture local events which manages to
eliminate small local peaks which

:::
that are part of a bigger25

event (noise), while retaining small events which
:::
that

:
may be

spatially connected to larger events upstream or downstream.
This is a key feature to the wave tracking

:
,
:
which will be

explained
:::::::::
introduced in Sect.[5.2].

The prodecure
::::::::
procedure of NR is as follows. First, we 30

identified all local minima µ and maxima M
:::
are

::::::::
identified,

defined as the points where the sign of the increment changes
from positive to negative and vice versa. We started from
a local minimum and ended with a local minimum, see
Fig.(3a). Second, we identified small perturbations

::::
small 35

:::::::::::
perturbations

:::
are

:::::::::
identified

:
as noise and removed them,

where we applied the following procedure
:::
are

::::::::
removed,

:::::
where

:::
the

::::::::
following

::::::::
algorithm

::
is
:::::::
applied:

1. Define a series Y =
(µ1,M1,µ2, ..,µn−1,MnM ,µnµ) and calculate 40

dY =
∣∣µ1 −M1,M1 −µ2, ..,MnM −µnµ

∣∣.
2. Either calculate the ‘NR value window’ δy = fy ×
max(dY ), where fy is a fraction to set, or set δy di-
rectly.

3. Select
:::
Find

::
i
:::

by
::::::::
selecting

:
the smallest difference in 45

value dYi =min(dY ). If dYi < δy , remove Yi−1 and
Yi from Y , then recalculate dY . Repeat this step

:::
This

:::
step

::
is

:::::::
repeated

:
until there is nothing left to remove.

An example of the NR value window filtering is displayed in
Fig.(3b). Third, we made

::
to

:::::
make

:
sure that two local min- 50

ima were
::
are

:
not too close in time, for which we applied the

following procedure
:::
the

::::::::
following

::::::::
algorithm

::
is

::::::
applied:

1. Define a series T = (tµ1
, tµ2

, .., tµn) and calculate dT =(
tµ2 − tµ1 , tµ3 − tµ2 , .., tµn − tµn−1

)
.

2. Either calculate the ‘NR time window’ δt = ft× 55

max(dT ), where ft is a fraction to set, or set δt directly.

3. Select
::::
Find

:
i
:::
by

:::::::
selecting the smallest difference in time

i= argminidTi:::::::::::::
dTi =min(dT ). If µi−1 < µi, j = i,

else j = i−1. IfMj−1 <Mj , k = j−1, else k = j. Re-
move Y2j−1, Y2k and Tj , then recalculate dT . Repeat 60

this step until there is nothing left to remove.

An example of the
:::
NR

:
time window filtering is displayed

in Fig.(3c). Fourth, for each location we defined the day of
each remaining maximum ±1 day as a local discharge event

:
a

::::
local

:::::
event

:::
can

::
be

::::::
chosen

::
to

:::
last

:::::
from

::::::::
minimum

::
to

::::::::
minimum, 65

::
or

::
to

:::
be

::::
only

::::
the

::::
time

::::
step

:::
in

:::::
which

::::
the

::::
peak

:::::::
occurs,

::
or

::::::::
something

::
in
::::::::
between.

An example of the noise removal method. Blue dots are
local minima, green dots are local maxima, red dots are
local minima or maxima that are identified as ‘noise’ and are 70

removed.
We set the NR value window fraction relatively low

(fy = 0.01)
:::::::::::
fy = 0.01[−], such that many small local events

were retained. However, by setting the fraction low, small
perturbations (noise) made it difficult to spatially separate 75

events. This was ameliorated by using the NR time win-
dow ft = 10days

::::::::::
δt = 10days, ensuring a minimal time be-

tween local minima. These NR parameters were identified
by trial and error, which will be explained

:::
The

::::::
choice

::
of

:::
NR

:::::::::
parameters

:::
will

:::
be

:::::::::
elaborated in Sect.[5.2

::::
7.2.1].
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5.2 River basin events

River discharge waves generally propagate through the net-5

work in downstream direction, introducing time lags between
the moments the waves pass at different locations. Time
lags are difficult to estimate, because the celerity of river
discharge waves can be highly nonlinear. Wave

:::
The

:::::
wave

celerity is a function of
::
the

:
hydraulic depth and changes10

in a nonlinear way when overbank flow occurs and flood-
plains become inundated. When using gauge data (point-
observations), combining local events to events that span
multiple locations, time lags are typically addressed using
time windows. The gridded data set used in this study al-15

lowed us to try a new method to combine local events to river
basin events, which we refer to as ‘wave tracking’. Each loca-
tion in the river network is physically connected to its neigh-
bouring locations, therefore allowing

:::::
which

::::::
allows waves to

be tracked throughout the entire river network. Wave tracking20

is robust to nonlinearities
:::::::::::
non-linearities

:
in the wave celerity,

and therefore it allows to better address time lags, so that,
when we compare peaks at different locations in Sect.[6], we
make sure they are of the same discharge wave.

To track river discharge waves, we applied the following25

procedure. First, we separated local events by applying NR
to time series at every location in the river network, where
of each local event we retained the day of the peaks ±1
day. Second, we identified separate events per river branch
by capturing the polygons in the branch’s space-time image,30

see Fig.(4). The settings of the NR were adjusted by trial and
error to try to obtain consistent polygons in space (low noise
removal), but separated in time (high noise removal). Third,
we merged the events of different river branches based on
overlap of event time coordinates at the confluences.

:::
This35

::::::::
procedure

:::::::
resulted

::
in

:
a
:::::::
variable

:::::::
number

::
of

::::::
tracked

::::::::
discharge

:::::
waves

:::
per

::::
river

:::::
basin.

:

a) A particular branch of the river Rhine. b) The
continuous discharge data on the river branch, where the
river mouth is located at s= 0km and the head water is40

located around s= 1100km. c) Events on the river branch.
The polygons (i.e. coloured islands of data separated by the
grey field) are discharge waves moving through the river
branch.

5.3 Pan-European events45

Precipitation events, which are the main driving source of
river discharge events, span across different river basins.
Therefore, large discharge events in adjacent river basins are
likely to be correlated. To account for this correlation, we had
to define events that included discharge waves across differ-50

ent river basins (in this study pan-European events). Since
discharge waves do not span across different river basins (by
definition), such events should be connected to each other in
a different way. Discharge waves in different basins are not
synchronised, which adds additional complexity. In order to 55
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Figure 4.
::
a)

::
A
::::::::

particular
::::::

branch
:::

of
:::
the

::::
river

::::::
Rhine.

:::
b)

:::
The

::::::::
continuous

::::::::
discharge

::::
data

::
on

:::
the

:::::
river

::::::
branch,

:::::
where

:::
the

::::
river

:::::
mouth

:
is
::::::
located

::
at

:::::::
s= 0km

:::
and

:::
the

::::
head

::::
water

::
is
::::::
located

:::::
around

::::::::::
s= 1100km.

::
c)

::::::
Events

::
on

:::
the

:::::
river

::::::
branch.

:::
The

::::::::
polygons

:::
(i.e.

::::::
coloured

::::::
islands

::
of

::::
data

:::::::
separated

::
by

:::
the

::::
grey

::::
field)

:::
are

:::::::
discharge

::::
waves

::::::
moving

::::::
through

:::
the

::::
river

::::::
branch.

:::::
obtain

:
a
:::::::
method

::
to construct pan-European events, which on

one hand consider
::
the

::::
one

::::
hand

::::::::
considers

:
discharge waves

in river basins and on the other hand account
:::::::
accounts

:
for

trans-basin dependency
:::::::::
dependence, we propose a combined

approach of wave tracking and ’‘global time windows’. 60

The following procedure was adopted. First, we set up the

:::::::::
subsequent

:
global time windows . As soon as the first peak
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Figure 5.
::::
From

::
a

:::::::
particular

:::::::::::
Pan-European

::::
event,

::::::::
snapshots

::::
(days

::::
since

:::
the

::::
start

::
of

::
the

:::::
event)

:::
are

::::::::
displayed.

:::
Red

:::::
points

::::::
indicate

:::
the

::::
cells

::
of

::
the

::::
river

::::::
network

:::
that

::::
were

:::::::
activated

:::
by

::
the

:::::
event.

was detected at any location in the river network, a global
time window was opened, to be subsequently closed after
21 days. Continuing after the last global time window, this5

procedure was repeated and
:::
with

::
a
::::::
length

::
of

:::::::::::
δl = 21days,

:::::
which

:
resulted in 428 global time windows in the period

1990-2015 (i.e. 428 pan-European events).
::
We

::::
will

::::::
discuss

::
the

::::::
length

::
of
::::

the
:::::
global

:::::
time

:::::::
windows

:::
in

::::
Sect.[

::::
7.2.1].

:
Sec-

ond, to each global time window we assigned complete,10

tracked discharge waves. To do this, we let each discharge
wave be represented by its first time coordinate, i.e. the day
when the discharge wave started somewhere (upstream) in
the river basin. The discharge wave was then assigned to the

global time window in which this day occurred. If, per river 15

basin, multiple discharge waves were assigned to a particu-
lar global time window, we only retained the discharge wave
with the largest discharge value.

::::
This

::::::::
procedure

:::::::
resulted

::
in

:::
428

::::::::::::
pan-European

::::::
events.

:
An example of a pan-European

event is displayed in Fig.(5). 20

From a particular Pan-European event, snapshots (days
since the start of the event) are displayed. Red points indicate
the cells of the river network that were activated by the event.

The length of the global time window of 21 days
was found by a trial and error procedure, considering the
following trade-off. To each pan-European event, one river
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basin event should be assigned, which in an ideal world
would give one local event for each representative location.
However, depending on the window length, multiple river5

basin events may be assigned or there may be no river basin
event to assign to the global time window. Therefore, when
applying a relatively large global time window, the frequency
of discharge waves in river basins with high frequencies
will be underestimated, whereas a relatively small global10

time window will lead to a large percentage of missing
local events at the representative locations. Since we were
dealing with a large-scale analysis, the percentage of missing
events at representative locations was relatively large and
therefore decisive for the choice of a relatively large global15

time window (21 days).

5.4 Event description

The pan-European event identification resulted in 428 events,
which we

::
We

:
aimed to describe by the discharge peaks of

the events
::
the

::::::::::::
pan-European

:::::
events

:::
by

::::
their

:::::
peak

::::::::
discharge,20

at 298 representative locations on the river network. How-
ever, the pan-European events did not yield discharge peaks
at all representative locations for each events.

:::::
event,

::
i.e

:::
the

:::::::
observed

:::::::::
descriptor

::::::
matrix

:::
had

:::::
gaps.

:::
To

:::
be

::::
able

::
to

::::::
capture

::
the

::::::
spatial

:::::::::::
dependence

:::::::
structure

:::
in

::::
Sect.[

:
6],

:::
we

::::
had

::
to
:::

fill25

::
the

:::::
gaps

::
by

::::::::
assigning

:::::::::
‘auxiliary

::::::
values’.

::::
This

::::
will

::
be

::::::
further

::::::::
discussed

::
in

::::
Sect.[

::::
7.2.1]

:
.

:::
We

::::::
applied

:::
the

:::::::::
following

:::::::::
procedure.

:::
At

::::::::
locations

:::::
where

::
an

:::::
event

::::::::
occurred,

:::
we

::::::::
extracted

:::
the

::::::::
discharge

:::::
peak.

:
Where

no event occurred (36% of the entries in the observed de-30

scriptor matrix), we had to fill the gaps by assigning
:::::
filled

::
the

::::
gaps

:::::
using auxiliary values. Per representative location (i.e.

column-wise) we set up a number of local time windows in
between the peaks of identified events, corresponding to the
number of gaps between those respective peaks. Within each35

of these local time windows, we selected the maximum value
as auxiliary value.

:::
This

:::::::::
procedure

:::::::
resulted

::
in
::

a
:::::::::
(complete)

:::::::
observed

:::::::::
descriptor

::::::
matrix.

::::::
Fig.(6)

::::::
shows

:::
the

:::::::::
correlation

::
of

:::
the

::::::::::
descriptors

::::
with

::::
those

:
at
::::::::

Vienna.
:::::
Good

:::::::::
agreement

::::
was

::::::
found

::::
with

::::
the

:::::
work

::
of 40

:::::::::::::::::
Jongman et al. (2014)

:
.
::
It
::::
can

::
be

:::::::::
observed

:::
that

::::
the

::::::
highest

:::::::::
correlation

::::
was

:::::
found

::
at

::::::
nearby

::::::::
locations

::::::
within

:::
the

:::::
same

::::
river

:::::
basin.

:::::::::
However,

:::::::::
significant

:::::::::
correlation

::::
was

::::::
found

::
in

:::::
nearby

::::::::
locations

::::
that

::::
were

:::
not

::
in

:::
the

:::::
same

::::
river

:::::
basin,

:::::
which

::::::::
confirmed

::::
the

::::::::::
importance

::
of

::::::::::
identifying

::::::
events

::::::::
spanning 45

:::::::
multiple

::::
river

::::::
basins.

::
In

:::::
order

:::
to

:::::
align

::::
with

::::
the

::::::::::::
corresponding

:::::::::
literature

::
in

::::::::
statistical

::::::
models

::::
for

::::::::::
multivariate

::::::::
extreme

::::::
values,

:::
in

:::
the

:::
next

:::::
Sect.[

:
6]

:::::::
columns

::
of

::::
the

::::::::
observed

:::::::::
descriptor

::::::
matrix

:::
will

:::
be

:::::::
referred

::
to

::
as

::::::::
margins

:::
and

:::
the

:::::
large

::::::
values

::
in

::::
each 50

::::::
column

::::
will

::
be

:::::::
referred

::
to

::
as

:::
the

::::::
upper

:::
tails

:::
of

:::
the

:::::::
marginal

::::::::::
distributions.

:

Figure 6.
::::::::
Correlation

::
of

::::::::
descriptors

::
at
:::
all

::::::::::
representative

:::::::
locations

:::::
versus

::::::::
descriptors

::
at

:::::
Vienna

:::::
(black

::::
dot).

6 Multivariate statistical model

6.1 Marginal distributions

Standard visual checks of the ‘goodness-of-fit’ of the GPD. 55

The dashed lines represent the 95% tolerance interval.
We fitted Generalised Pareto Distributions (GPDs) (Coles

et al., 2001) to the upper tail of the marginal distributions,
i.e. for each column in the observed descriptor matrix. The
issue of threshold choice for GPDs is well-discussed in the 60

literature (Northrop et al., 2017). After comparing the model
fit

::
fits, we used the ζm = 0.94 empirical quantile as marginal

threshold for the GPD at each location. This threshold was
found by trial and error, where we

:::::
which

::::
will

::
be

:::::::::
elaborated

::
in

::::
Sect.[

::::
7.2.2]

:
.
:::
We tested the quality of the marginal GPD fits 65

with a standard method, comparing the empirical quantiles
and probabilities against the modelled, including checks of
the tolerance intervals, see Fig. (??). .

:

6.2 Multivariate dependence model

To be able to capture the dependence between sets of de- 70

scriptors (i.e. rows in the observed descriptor matrix), we
started by transforming the marginals to the uniform space.
This transformation is applied in many other analyses, e.g.
copulas (Genest and Favre, 2007; Nelsen, 2007). Values be-
low the marginal threshold used to fit the GPDs in Sect.[6.1] 75

were transformed using the empirical marginal distribution
and values above the marginal threshold were transformed
using the GPDs. We applied a model with two different com-
ponents to capture the dependence structure, one for the non-
extreme part and one for the extreme part. 80

The dependence structure of the non-extreme part was
captured using a

::::::::::::
non-parametric,

:
multivariate kernel density

:::::
model

:
with Gaussian kernels. We transformed the (entire)

uniform marginals to the normal space, with the mean µ= 0
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and the standard deviation sd= 1. Bandwidths for the ker- 85

nels where selected using the method of Silverman (2018).
To capture the dependence of the extreme part we chose

the model of Heffernan and Tawn (2004), hereafter referred
to as ‘HT04’. HT04 is a pair-wise dependence model that can
be described as a method of lines, Yi = aY−i+Y b−iZ. Two5

HT04 model fits are required for each pair of marginals, with
either marginal as the conditioning marginal Yi and the other
as the dependent marginal Y−i. Each fit holds two parame-
ters, a and b, after which a residual Z is calculated from each
observed data point. The data used to fit the model are the10

pairs where the conditioning marginal Yi is larger than a fit-
ting threshold ζf . With an infinite number of samples drawn
from HT04, each model fit would result in as many pair-wise
lines as there are data points. However, for simulation a sub-
set of these lines is used, since HT04 should be applied only15

if the largest marginal in the set is above a particular simula-
tion threshold .

To fit HT04, we transformed the (entire) uniform
marginals to the Laplace space (Keef et al., 2013). We
obtained HT04 model fits in the Laplace space using20

maximum likelihood, with each marginal as conditioning
variable and all other marginals as dependent variables,
resulting in a total of 298*297 model fits, where we
chose the fitting threshold ζf = 0.9, which was a trade-off
between variance and bias. HT04 was recently applied25

for fluvial flooding (Keef et al., 2009; Lamb et al., 2010; ?)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Keef et al., 2009; Lamb et al., 2010; Schneeberger and Steinberger, 2018)
and for coastal flooding (Wyncoll and Gouldby, 2015;
Gouldby et al., 2017), in which the model fitting procedure
is described in more detail.30

6.3 Simulation

We split the observed uniform descriptor matrix into a ‘non-
extreme’ part, and an ‘extreme’ part. Each row in which not a
single descriptor exceeded an extremal simulation threshold
ζe = 0.98 was determined to be non-extreme (23%), the rest35

(77%) was determined to be extreme (somewhere). For the
non-extreme sets, we re-sampled from the non-parametric
model. For the extreme sets, we re-sampled from HT04,
where the model fit was used of the marginal that was
the largest by quantile in the set. All sets were re-sampled40

N = Tsim/Tobs times, where Tobs is the duration of the ob-
served data (25 years) and Tsim is the duration of the syn-
thetic data (10.000 years). After the simulation, we trans-
formed the marginals of the synthetic descriptor matrix to
respect the fitted GPDs, thereby slightly distorting

:
.
::::
This45

::::::
implies

::::
that

:::
we

::::::
forced

:::
the

::::::::
synthetic

::::::::
marginals

:::
to

::::
have

:::
the

::::
same

::::::::::
distribution

::
as

:::
the

:::::::::::::
corresponding

:::::::
observed

:::::::::
marginals.

::::::::
However,

::
by

::::::
forcing

::::
this

::::::::::::
transformation

:::
we

::::::
slightly

:::::::
distorted

the dependence structure.

6.4 Validation
:::::::
Quality

::
of

:::
the

::::::::
synthetic

::::::::::
descriptor

::
set50

Pair-wise plots of three descriptors. Red is the observed data
and blue is the simulated data.

Pair-wise comparison of the tail-end of the marginals
for all 298 locations. For a selection of high quantiles we
counted the fraction F of events where extremes at both 55

locations exceeded the respective quantile divided by the
total number of quantile exceedances. The upper panel shows
the fractions in the observed data, the middle panel shows the
fractions in the synthetic data and the lower panel shows the
pair-wise difference between the observed and the synthetic 60

fractions.
Using multivariate extreme value analysis, we extended

the observed descriptor matrix with synthetic data, obtain-
ing a (large) synthetic descriptor matrix. The patterns in the
larger synthetic descriptor matrix had to match the patterns 65

found in the smaller observed descriptor matrix. We focused
on two main patterns; marginal distributions (a column-
wise pattern) and dependence structure (a row-wise pattern).
To respect the fitted marginal distributions and, simultane-
ously, retain the dependence structure is challenging. There 70

is no perfect method for these two objectives. We chose
to respect the fitted distributions and so

::::::::::
distributions

::::
fitted

::
to

:::
the

::::::::
observed

:::::::::
marginals,

:::
for

::::::
which

:::
we

:::::::::::
transformed

:::
the

:::::::
synthetic

:::::::::
marginals

::
to
:::::::

follow
:::
the

::::::::::::
corresponding

::::::::
observed

::::::::::
distributions,

:::
as

::::::::
described

::
in

::::
Sect.[

::
6.3].

:::::::::
Therefore,

:
we had to 75

compare the dependence structure in the observed
:::::::
synthetic

data with the synthetic
:::::::
observed.

A
::
To

::::::
further

:::::::::
investigate

:::
the

::::::::::
dependence

::::::::
structure,

::::::
Fig.(7)

:::::
shows

:
a
:

sample of the observed descriptors versus the syn-
thetic descriptorsis shown in Fig. (??).

:
. It can be observed 80

that we managed to capture the
::
fill

::::
the

:::::::::::
distributions

::
of

::
the

:::::::::
individual

::::::::::
descriptors

:::::
well

:::::
(KF1)

::::::
while

::::::::
retaining

:::
the

:::::::
observed

:
dependence structure reasonably well

:::::
(KF2), as the

simulated descriptors follow the trends in the observed data.
Fig.(8) shows the pair-wise, spatial correlation structure 85

between descriptors at different locations. Rather than choos-
ing distance

::
the

:::::::
distance

::::::::
between

::::::::
locations along the river

branch, we chose geospatial distance such that we could
compare locations not only within river basins, but also
across different river basins. The Spearman correlation coef- 90

ficients of the observed descriptors and the synthetic descrip-
tors agree very well

:::::
(KF2), which indicates that the general

spatial dependence structure is similar in the observed de-
scriptor matrix and in the synthetic descriptor matrix. The
difference indicates an overall slightly higher (positive or 95

negative) correlation in the observed descriptor matrix. A
shift from positive to negative correlation can be observed
around 2000− 2500km, which may be related to large-scale
atmospheric patterns.

Following up on the general check of correlation between 100

the entire descriptor sets, we specifically checked if we man-
aged to capture the tail-end correlations. Fig.(9) shows that
the general behaviour of co-occurrence of extremes was rel-
atively well captured in the dependence model

:::::
(KF2). The

general pattern in the synthetic descriptors is reasonably sim-



Dirk Diederen: Spatially coherent discharge peaks 11

Figure 7.
:::::::
Observed

::::::
(purple)

::::::
versus

:::::::
synthetic

:::::::
(yellow)

::::::::
descriptors

::
at
::::
three

::::::::
locations.

::::
The

::::
lower

:::::
panel

:::::
shows

::::::
scatter

::::
plots

:::::::
pair-wise

:::
by

::::::
location,

:::
the

:::::::
diagonal

:::::::
compares

:::::::::
distributions

::
of
:::::::
observed

:::
and

:::::::
synthetic

:::
per

::::::
location

:::
and

:::
the

:::::
upper

::::
panel

:::::
shows

:::
the

:::::::
pair-wise

:::::::::
correlations

::
of

::
the

::::::::
observed,

:::::::
synthetic

:::
and

::
all.

ilar to the pattern in the observed descriptors. A small pos-
itive bias can be observed, which shows that the depen-5

dence model slightly underestimated the frequency of joint
occurrence of extremes. The zero difference generally falls
within the lower quartile. Moreover, the higher the quantile
for which we checked the exceedance, the fewer quantile ex-
ceedances to count, which lead to a larger spread in the dif-10

ference between the observed and the synthetic set.

7
:::::::::
Discussion

7.1
:::::::::

Limitations

::::::::::
Historically,

:::::::::::
observations

::::::
have

:::::
been

::::::
made

:::
at

:::::::
specific

::::::::
locations,

:::
e.g.

:::::::::
discharge

:::::
gauge

:::::::
stations

::
at

::::::
certain

::::::::
locations 15

::::
along

::::::
rivers.

:::::::::
Therefore,

:::::
most

:::::
event

::::::::::::
identification

:::::::
methods

::
are

::::::::
designed

:::
for

::::
local

::::::::
frequency

:::::::
analysis

::
of

:::::::::
discharge

:::::
waves,

::::::
starting

::::
with

:::
the

::::::::::::
identification

::
of

:::::
‘local

:::::::
events’,

::::
i.e.

:::::
events

:
at
::::::
certain

::::::::
locations

::::::::::::::::::
(Tarasova et al., 2018)

:
.
:::::
When

:::::::::
addressing

:::::
spatial

:::::::::::
dependence

::::::
using

:::
an

:::::::::::
event-based

:::::::::
approach,

:::
the 20
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Figure 8. Spatial correlation structure of the observed descriptors versus the synthetic descriptors, summarised by pair-wise Spearman
correlation. The upper panel shows the correlation in the observed data, the middle panel shows the correlation in the synthetic data and the
lower panel shows the difference between the observed and the synthetic correlation for each pair. The left column shows the correlation
between all pairs of locations, right shows only the pairs that are in the same river basin.

Figure 9.
:::::
Spatial

:::::::
extremal

::::::::
correlation

::
of

:::
the

:::::::
observed

:::::::::
descriptors

:::::
versus

:::
the

:::::::
synthetic

:::::::::
descriptors.

:::
For

::
a
:::::::
selection

::
of

::::
high

:::::::
quantiles

:::
we

::::::
counted

::
the

:::::::
fraction

:
F
::

of
:::::

events
:::::

where
:::::::

extremes
::
at
::::
both

:::::::
locations

:::::::
exceeded

:::
the

::::::::
respective

::::::
quantile

::::::
divided

::
by

:::
the

:::
total

::::::
number

::
of
:::::::

quantile

:::::::::
exceedances.

::::
The

::::
upper

:::::
panel

:::::
shows

:::
the

::::::
fractions

::
in
:::

the
:::::::
observed

::::
data,

:::
the

:::::
middle

:::::
panel

:::::
shows

:::
the

:::::::
fractions

:
in
:::

the
:::::::
synthetic

::::
data

:::
and

:::
the

::::
lower

::::
panel

:::::
shows

:::
the

:::::::
pair-wise

::::::::
difference

::::::
between

:::
the

:::::::
observed

:::
and

::
the

:::::::
synthetic

::::::::
fractions.

:::::::
difficulty

::::::
arises

::::
that

:::::::::
discharge

::::::
waves

::::
will

::::
not

::::::
occur

::
at

::
all

:::::::
gauged

::::::::
locations

:::::::
within

::
a
::::::::::

reasonable
::::
time

::::::::
window.

:::
The

::::::
larger

:::
the

::::::
spatial

:::::
scale

::
in

::::::
which

::::::::
discharge

::::::
waves

:::
are

:::::::::
considered,

::::
the

:::::
more

:::::
likely

:::
it

::
is

::::
they

::::
are

::::::
spread

::::
out

::
in

::::
time.

::::::::::
Therefore,

::
an

:::::::::
extraction

:::
of

::
a
::::::::

dynamic
:::::

event
:::::

from

:
a
::::::::::
space-time

::::::::::
continuum,

:::::
trying

:::
to

::::::
obtain

:::::
local

:::::
peaks

:::
for

::
all

:::::::::
locations,

::::
will

:::::
lead

::
to

::
a
:::::::

matrix
::
of

::::::::::
incomplete

:::::
peak 5

:::
sets.

:::::
This

:
is
:::::::::::
problematic,

:::::::
because

::::::
current

::::::::
statistical

:::::::
methods
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Table 1.
:::::
L1-L6:::

are
::::::
different

:::::::
locations.

::::
Sets

:::
1-4

::::::
describe

:
a
:::::::
discharge

::::
event.

:::::::::
Generally,

:::::::
dynamic

:::::::
discharge

::::::
events

::
do

::::
not

:::::
occur

::
at

::
all

:::::::
locations,

::::
such

:::
that

:::::
peaks

::
(P)

::::::
cannot

::
be

:::::::
identified

:::
for

::
all

:::::::
locations.

::::::::
Therefore,

::::::
auxiliary

:::::
values

:::
(A)

::::
have

::
to

::
be

::::
used

::
to

::
fill

::
in

:::
the

::::
gaps.

::
L1: ::

L2: ::
L3: ::

L4: ::
L5: ::

L6:

:::
Set

:
1

:
P

:
P

:
P

:
P

:
A

:
A

:::
Set

:
2

:
A

:
P

:
P

:
A

:
P

:
A

:::
Set

:
3

:
P

:
A

:
P

:
P

:
P

:
A

:::
Set

:
4

:
P

:
P

:
A

:
P

:
P

:
P

::
for

:::::::::::
multivariate

:::::
event

::::::::::
generation

::::::
cannot

::::::
handle

::
a
::::::

matrix

::::
with

:::::::
missing

:::::::::::
components

::::::::::::::::
(Keef et al., 2009)

:
.
:::::::::
Therefore,

::::::::
‘auxiliary

::::::
values’,

:::
i.e.

::::::
values

:::
that

:::
do

:::
not

:::::::
represent

:::::
flood

::::
wave

:::::
peaks,

:::
are

::::::::
required

::
in

:::::
order

:::
to

:::
fill

::
up

::::
the

::::
gaps

::::
(see

:::::
Table5

::
1).

::::::::
Different

::::::::
methods

:::::
exist

::
to

::::::
assign

::::::::
auxiliary

::::::
values,

:::
for

:::::::
different

::::::::
purposes.

:::::::::::::::::::
Gouldby et al. (2017)

:::::::
analysed

:::::::
different

::::::
coastal

::::
flood

::::::::
variables

::::
with

:::
an

::::::::::
event-based

::::::::
approach,

:::::
where

:::
they

::::::::
adopted

::::::::::
concurrent

::::::
values

:::
at

::::
all

::::::::
locations

::::::
where

::::::::
particular

:::::::::
thresholds

:::
had

::::
not

:::::
been

::::::::
exceeded

::::
(i.e.

:::
no

::::
local10

:::::
event).

::::::::::::::::
Keef et al. (2009)

:::::
relaxed

::::
the

::::
time

:::::::::
constraint,

:::::
where

:::
they

::::::::::
considered

:::
the

::::::
values

:::
at

::
all

:::::::::
locations

::::::
within

:
a
:::

-3
::
to

::
+3

:::::
days

::::
time

:::::::
window.

:::::
Since

::::
we

::::
were

:::::::
dealing

::::
with

::
a

::::
large

::::::
number

::
of

::::::::
locations

:::
and

::::
with

:::::
large

::::
time

::::
lags,

::::::
neither

::
of

::::
these

:::::::
methods

:::::
were

::::::::::
appropriate.

:::::::::
Therefore,

::::
we

:::::
found

::::::::
auxiliary15

:::::
values

:::::
using

::::
local

::::
time

:::::::::
windows,

:::::
where

:::::
these

::::
time

:::::::
windows

::::::::
depended

::
on

:::
the

::::
gaps

:::
per

::::::::
location.

7.2
::::::::
Sensitivity

::::
and

::::::::::
uncertainty

7.2.1
::::::
Events

::
In

::::
Sect.[

:::
4.2]

:
,
:::
we

:::::
stated

:::
the

::::::::
objective

:::
to

::::::
capture

:::
the

::::::
spatial20

:::::::::
dependence

:::::::::
structure

:::::::
between

::::::
peaks

:::
of

::::::::
discharge

::::::
events

:
at
::::::::

different
::::::::

locations
:::::::

spread
:::
out

:::::::
through

:::::::
Europe

:::::::
(OBJ1),

::
for

:::::::
which

::::::
events

:::::
had

:::
to

:::
be

::::::::::
identified.

:::
In

::::
the

:::::
event

:::::::::::
identification

:::::::::
procedure,

:::
we

::::
used

::::
three

:::::
main

:::::::::
parameters

:::
for

::
the

::::::::::::
identification

::
of

::::::::::::
pan-European

::::::
events:

:::
the

::::
value

:::::::
window25

::::::
fraction

:::
fy :::

and
::::
time

:::::::
window

::
δt::

of
:::
the

:::::
noise

:::::::
removal

::::::
method

:::::
(Sect.[

:::
5.1]

::
),

:::
and

::::
the

:::::
length

:::
of

:::
the

::::::
global

::::
time

::::::::
windows

::
δl

::
for

::::
the

::::::::::::
pan-European

:::::
events

::::::
(Sect.[

:::
5.3]

:
).

:::
We

:::::
were

::::::
dealing

::::
with

:::
the

::::::::
following

::::::::
trade-off.

::::
For

::::
each

::::::::::::
pan-European

:::::
event,

:::
one

:::::::::
discharge

::::
peak

::::::
could

:::
be

::::::::
assigned

:::
to

::::
each

::::::::
location.30

::::::::
However,

::::::::
depending

:::
on

:::
the

:::::
length

::
of

:::
the

:::::
global

::::
time

:::::::
window,

::::
there

::::
may

:::
be

:::
no

::::
river

:::::
basin

::::::
event

::
to

::::::
assign

::
to

::::
the

:::::
global

::::
time

:::::::
window,

::::
i.e.

::
a
:::::::
missing

:::::::::
discharge

:::::
peak,

:::
or

:::::::
multiple

::::
river

:::::
basin

::::::
events

::::
may

:::
be

::::::::
assigned

::::
from

::::::
which

:::::
only

:::
one

::::::::
discharge

::::
peak

:::::
could

::
be

:::::::
retained

:::
per

:::::
global

:::::
time

::::::
window

:::
per35

:::::::
location.

:::::::::
Therefore,

::
a
::::::::
relatively

:::::
large

::::::
global

::::
time

:::::::
window

:::
lead

:::
to

:::
the

::::::::::::::
underestimation

::
of

::::
the

::::::::
frequency

:::
of

::::::::
discharge

:::::
waves

::
in

::::
river

::::::
basins,

:::::::
whereas

::
a
::::::::
relatively

:::::
small

:::::
global

::::
time

::::::
window

::::
lead

:::
to

:
a
:::::

large
::::::::::
percentage

::
of

:::::::
missing

:::::
local

:::::
events

:
at
:::
the

::::::::::::
representative

::::::::
locations.

:::::
Since

:::
we

::::
were

:::::::
dealing

::::
with

:
a 40

Figure 10.
::::::::
Sensitivity

::
of

::::
fna,

:::::
which

::
is
:::

the
:::::::

fraction
::
of

::::::
missing

:::::
values

:
in
:::

the
:::::::
observed

::::::::
descriptor

::::::
matrix,

:
to
:::

the
::::
three

::::
main

::::::
settings

:::
used

:::
for

:::
the

::::::::::
identification

::
of

:::::
events

::
in

::::
Sect.[

:
5].

:::
fy :

is
:::
the

:::
NR

::::
value

::::::
window

::::::
fraction,

::
δt::

is
:::
the

:::
NR

::::
time

::::::
window,

::
δl::

is
:::
the

:::::
length

::
of

::
the

:::::
global

::::
time

::::::::
windows.

::::::::::::::
continental-scale

:::::::
analysis,

:::
the

:::::::
fraction

:::
of

::::::
missing

::::::
values

::
in

::
the

::::::::
observed

:::::::::
descriptor

::::::
matrix

:::
fna::::

was
::::::::
relatively

:::::
large

:::
and

:::::::
therefore

:::::::
decisive

:::
for

:::
our

::::::
choice

::
of

:::::::::
parameter

:::::::
settings.

:::::::
Fig.(10)

::::::
shows

::::
the

:::::::::
sensitivity

:::
of

:::::
fna,

::::::
which

:::
is

:::
the

:::::::::
percentage

::
of
::::::::

missing
::::::

peaks
::
in

::::
the

::::::::
observed

:::::::::
descriptor 45

:::::
matrix

::::::
(Sect.[

::
5.4]

:
).

::::::
When

:::::
more

:::::
noise

::::
was

:::::::::
removed,

:::
i.e.

:::::
larger

::
fy::::

and
:::
δt,::::::

events
::::

had
::

a
:::::
larger

::::::::
fraction

::
of

:::::::
missing

:::::
peaks,

::::
i.e.

:::::
larger

:::::
fna.

::
In

::::::::
contrast,

::
a
::::::

larger
::
δl:::::

lead
::
to
::

a

::::::
smaller

:::::::
fraction

::
of

:::::::
missing

:::::
peaks

::::
fna,

:::::
since

:::
the

::::::
chance

:::
was

:::::
larger

:::
for

:::
an

:::::
event

::
to

:::::
occur

:::
at

:
a
:::::::::

particular
:::::::
location

:::::
given 50

::::
more

:::::
time.

::::::
When

::::::::::
comparing

:::
the

:::::::::
sensitivity

:::
of

:::
the

:::::
three

:::::::::
parameters,

::
it
:::
can

:::
be

:::::::
observed

::::
that

:::
the

:::::::
outcome

::
is
::::::::
relatively

:::::
stable

::::
with

::::::
regard

::
to

:::
the

::::::
choice

:::
of

::
fy::::

and
:::
δt,:::::::

whereas
:::
the

:::::::::
percentage

::
of

::::::::
missing

:::::
peaks

::::
fna::::::

could
::::
vary

:::::
quite

::
a
:::

lot

::::
with

::
δl.:::::

Our
::::
final

:::::::
choices

:::
are

::::::::::::
fy = 0.01[−],

:::::::::::
δt = 10days 55

:::
and

:::::::::::
δl = 21days.

::
A
::::::
lower

::
δl :::::

would
:::::

have
::::::
caused

:::
too

:::::
many

:::::
peaks

:::::
being

:::::::
missing,

::::::
which

::::::
would

::::
have

::::
lead

:::
to

::::::::
unreliable

::::::::
estimation

::
of
:::
the

::::::::::
dependence

::::::
model.

:

7.2.2
::::::::::
Dependence

:::::::::
structure

::
In

:::::
Sect.[

:::
4.2]

:
,
:::
we

::::::
stated

:::
the

::::::::
objective

:::
to

::::::::
generate

:
a
:::::

large 60

::
set

:::
of

::::::::
synthetic

:::::::::
discharge

::::::
peaks,

::::::
filling

:::
up

:::
the

::::::::
observed

::::::::::
distributions

::::::
while

:::::::::
retaining

::::
the

::::::::
observed

:::::::::::
dependence

:::::::
structure

:::::::
(OBJ2).

:::
We

:::::::
defined

:::::
what

:::
we

:::::::::
considered

::::
two

:::
key

::::::
features

::::
for

:::
the

::::::
quality

:::
of

:::
the

:::::::::
generated

::::
data

:::
set.

:::::
First,

::
it

:::
had

::
to

::::
hold

:
a
:::::

much
::::::

larger
::::::
variety

::
of

::::::::::
hypothetical

:::::::::
(synthetic) 65

:::::
events

:::::
than

:::::
those

::::::::
included

:::
in

:::
the

::::::::
observed

:::::
data

::::::
(KF1),

:::::
which

:::
we

:::::::
achieved

:::
by

::::::::
sampling

:
a
:::::
large

::::::
number

:::
of

:::::::
synthetic

:::::::::
descriptors

::::
and

::::::::::::
transforming

:::::
them

:::
to

::::::
follow

::::
the

:::::
same

:::::::::
distribution

::
as

:::::
fitted

::
to

:::
the

::::::::
observed.

:::::::
Second,

::
the

::::::::::
dependence

:::::::
structure

::
of

:::
the

::::::::
synthetic

:::
set

::::::
needed

::
to

:::::
agree

::::
with

:::
that

::
of

:::
the 70

::::::::
observed,

::::
since

:::
the

::::::::
observed

:::
data

:::
set

:::
had

::
to
:::
be

:
a
:::::
likely

:::::
subset

::
of

:::
the

::::::::
synthetic

:::
data

:::
set

::::::
(KF2),

::::::
which

:::
we

:::::::
achieved

::::
with

:::
the

:::::::::
dependence

:::::::
model,

::
of

:::::
which

::::
the

:::::
results

:::::
were

:::::::::::
demonstrated
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Figure 11.
:::::::
Sensitivity

:::
of

:::
fc,

:::::
which

::
is

:::
the

::::
mean

:::
of

:::
the

::::::
absolute

::::::::
differences

::
in

::::::::
correlation

:::::::
between

:::
the

:::::::
synthetic

:::
and

:::
the

:::::::
observed

:::::::
descriptor

:::
sets

:::
for

::
all

::::::::
locations,

::
to

:::
the

::::
three

::::
main

::::::
settings

::::
used

::
for

::
the

::::::::
statistical

::::::
analysis

::
in

::::
Sect.[

:
6]

:
.
::
qm::

is
:::
the

::::::
quantile

::::::::
threshold

::
for

::
the

:::::
GPDs,

:::
qd :

is
:::

the
::::::
quantile

::::::::
threshold

::
for

:::::
HT04,

:::
qs :

is
:::
the

::::::
quantile

:::::::
threshold

::
for

:::
the

::::::::
simulation

::::
from

:::::
HT04.

::
in

::::::::::::
Fig.(8)-Fig.(9).

::::
We

::::::
further

::::::::::
investigated

:::
the

:::::::::
sensitivity

::
of

::
the

::::::
results

:::
for

:::::
KF2,

::::
using

::
a
::::::::
summary

::::::::
descriptor

::
of

:::::::
Fig.(8).

:::::::
Fig.(11)

:::::
shows

::::
the

:::::::::
sensitivity

::
of

:::
fc,::::::

which
::
is

:::
the

:::::
mean

:::::::
absolute

:::::::::
difference

::
in
:::::::::

Spearman
::::::::::

correlation
::::::::

between
:::
the5

:::::::
synthetic

::::
and

:::
the

::::::::
observed

:::::::::
descriptor

:::
sets

:::
for

:::
all

::::::::
locations.

::
No

:::::
clear

:::::
trend

:::
was

:::::
found

:::
for

:::::
both

:::
qm,

:::::
which

::
is
:::
the

:::::::
quantile

:::::::
threshold

::::
for

::::
the

::::::
GPDs,

::::
and

::::
qs, ::::::

which
::
is

::::
the

:::::::
quantile

:::::::
threshold

:::
for

::::
the

:::::::::
simulation

::::
from

::::::
HT04.

::
A
:::::

local
::::::::
minimum

:::
was

:::::
found

:::
for

:::
qd,

:::::
which

::
is

:::
the

:::::::
quantile

:::::::
threshold

::
to
:::::
select

:::
the10

:::::::
observed

:::::::::
descriptors

:::
to

:::::
which

:::
the

:::::
HT04

::::::
model

:::
was

:::::
fitted.

:

:
A
:::::::

recent,
:::::
more

:::::::::::::
comprehensive

:::::
study

:::
of

:::
the

:::::::
sources

::
of

:::::::::
uncertainty

::
in

::
a

::::::::::
probabilistic

:::::
flood

:::
risk

::::::
model

::::
was

:::::::
provided

::
by

::::::::::::::::
Winter et al. (2018)

:
,
:::
who

:::::
used

::
the

:::::::::
framework

::::::::
provided

::
by

::::::::::::::::::::::
Hall and Solomatine (2008)

:
.15

7.3
:::::::::::
Applicability

::
to

:::::::::::::
European-scale

:::::
FRA

:::
The

:::::::::
generated

:::::::
synthetic

:::::::::
descriptor

:::
set

::::
can

::
be

::::
used

:::
to

::::
drive

::
an

::::::::::
event-based

:::::
chain

:::
of

:::::::
models,

:::::
which

:::::
may

:::::::
cascade

::::
from

:
a
::::::::
hydraulic

::::::
model

:::
of

:::
the

:::::
river

::::::::
network

:::::::
coupled

:::::
with

::
an

:::::::::
inundation

:::::
model

:::
to

::
a
:::::::
damage

::::::
and/or

:::
life

::::::
safety

:::::::
models.20

::
To

:::::
drive

:::
an

:::::::::
inundation

:::::::
model,

::::::::
synthetic

::::::::
discharge

::::::
events

::::
have

::
to

::
be

::::::::::::
reconstructed

:::::
from

:::
the

::::::::
synthetic

::::::::
descriptor

::::
sets,

:::::
which

:::::::::::
corresponds

::
to

:::::
what

::::::
would

:::
be

:::::
step

::
4

::
in

:::::::
Fig.(1),

::::::
moving

:::::
down

:::::
from

::::::::
synthetic

:::::::::
descriptors

:::::::
towards

::::::::
synthetic

::::::
events.

::::
This

:::
step

:::::::::
comprises

:::::
fitting

:::::::::
discharge

::::::::::
hydrographs

::
to25

::
the

::::::::
synthetic

::::::::::
descriptors

:::
and

::::::::
assigning

:::::
time

::::
lags.

::::::::
Difficulty

:::
can

::
be

::::::::
expected

::
in

::::
that

:::
the

::::::::
synthetic

::::::::
descriptor

:::
set

:::::::
partially

::::::
consists

:::
of

::::::::
synthetic

::::::::
discharge

:::::
peaks

::::
and

:::::::
partially

:::::::
consists

::
of

::::::::
synthetic

:::::::::
auxiliary

:::::::
values.

::::
For

:::
the

:::::::::
synthetic

::::::
peaks,

::::::::::
hydrographs

::::
can

:::
be

:::::::::::::
reconstructed

:::
by

::::::
fitting

:::
a

::::::
typical30

:::::::::
(triangular)

::::::::::
hydrograph

:::::
shape

::
to

::
the

::::::::
synthetic

:::::
peaks,

:::::::
whereas

::
for

::::
the

::::::::
synthetic

::::::::
auxiliary

:::::::
values,

::
it

::::
will

:::
not

:::
be

:::::::
entirely

::::
clear

::::
how

::
to
:::

fit
::
a

::::::::::
hydrograph.

:::::
Time

::::
lags

:::
for

:::
the

::::::::
synthetic

:::::::::
descriptors

::::
sets

:::
can

:::
be

::::
used

:::::
from

:::
the

::::::::
observed

:::::::::
descriptors

:::
sets,

::::::
which

::::::
would

::::::::
implicitly

::::
use

:::
the

::::::::::
assumption

:::
that

:::::
travel 35

:::::
times,

:::
i.e.

::::
wave

:::::::::
celerities,

:::
are

::::::::::
independent

::
of

:::::::::
magnitude.

:

8 Conclusions

We used a new ‘noise removal’
:::
and

::::::
‘wave

:::::::
tracking’

:
method,

with which we successfully tracked
::::::::
identified

:
discharge

waves in all major European river basins and clustered these 40

river basin events to pan-European events using a global
time window. With two multivariate dependence models

:
a

::::::
mixture

::::::::::
multivariate

::::::::::
dependence

::::::
model, we managed to cap-

ture the dependence structure between discharge peaks of
daily discharge at 298 different locations on the river net- 45

work of major European rivers. We created a synthetic data
set, comprising 10.000 years of synthetic peak sets

:::::::
discharge

:::::
peaks with a similar dependence structure as in the observed
discharge peaks

:::
data, thereby showing spatially coherence.

This data set will be used to generate discharge hydrographs 50

to drive a European-wide inundation model for large-scale,

::::::::::::::
continental-scale flood risk assessment.
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