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Abstract 7 

Community resilience has become an important policy and research concept for understanding and 8 
addressing the challenges associated with the interplay of climate change, urbanization, population 9 
growth, land use, sustainability, vulnerability and increased frequency of extreme flooding. 10 
Although measuring resilience has been identified as a fundamental step toward its understanding 11 
and effective management, there is, however, lack of an operational measurement framework due 12 
to the difficulty of systematically integrating socio-economic and techno-ecological factors. The 13 
study examines the challenges, constraints and construct ramifications that have complicated the 14 
development of an operational framework for measuring resilience of flood prone communities. 15 
Among others, the study highlights the issues of   proliferation of definitions and conceptual 16 
frameworks of resilience, challenges of data availability, data variability and data compatibility. 17 
Adopting the National Academies’ definition of resilience, a conceptual and mathematical model 18 
was developed using the dimensions, quantities and relationships established by the definition. A 19 
fuzzy logic equivalent of the model was implemented to generate resilience indices for three flood 20 
prone communities in the US. The results indicate that the proposed framework offers a viable 21 
approach for measuring community flood resilience even when there is a limitation on data 22 
availability and compatibility. 23 
 24 
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1.0 Introduction  27 
Developing resilience of communities has become widely recognized as critical for disaster risk 28 

management due to the increased incidents of extreme weather events, such as flooding, which 29 

have disrupted economic activities, caused huge losses, displaced people and threatened the 30 

sustainability of communities across the world (Cai et al., 2018; Cutter 2018; Mallakpour and 31 

Villarini, 2015; Montz, 2009; Oladokun et al., 2017; Su, 2016a; Wing et al., 2018).  Major 32 

international policy instruments such as the United Nations International Strategy for Disaster 33 

Reduction’s (UNISDR) 2015 Strategic Framework and the 2005 Hyogo Framework have 34 

emphasized and adopted resilience principles in disaster risk management (Cai et al., 2018; Cutter 35 

et al., 2016). For instance, the interplay of extreme floods, population growth and rapid 36 

urbanization has increased flood hazard risks such that conventional flood risk management 37 

(FRM) measures of concrete structures, levees, flood walls and other defenses have become 38 

inadequate and unsustainable across various communities (Duy et al., 2018; Guo et al., 2018; 39 

Trogrlić et al., 2018; Wing et al., 2018). Resilience has gained a lot of attention, from both policy 40 

and research perspectives, involving  using it to understand and address the challenges of land use, 41 

vulnerability and sustainability in the context  of flooding (Cohen et al., 2016; Cohen et al., 2017; 42 

Folke, 2006; Parsons et al., 2016; Sharifi, 2016).  Building community resilience has emerged as 43 

particularly relevant in dealing with flooding, which has become the most widespread and 44 

destructive of all natural hazards globally (Jha et al., 2012; Mallakpour and Villarini, 2015; Montz, 45 

2009). 46 

Consequently, there has been a shift from relying solely on large-scale flood defense and structural 47 

systems towards an approach that emphasizes the concept of community resilience as a strategic 48 

component of flood risk management (Hammond et al., 2015; Park et al., 2013). This shift is being 49 

reinforced by a consensus that since floods cannot be all together prevented; FRM must focus more 50 

on building the resilience of flood prone communities (Joseph et al., 2014; Oladokun et al., 2017; 51 

Schelfaut et al., 2011).  52 

There is a consensus that the first and fundamental step toward understanding and operationalizing 53 

resilience for flood disaster and hazard management is to have an acceptable resilience measuring 54 

template  (NRC, 2012). For instance, the ability to understand and objectively evaluate the impact 55 

of FRM programs, interventions and practices on community flood resilience is needed for making 56 



political and business cases for proactive FRM investment from both public and private sectors. 57 

Cutter (2018) suggested that an acceptable template is a basic foundation for monitoring baselines 58 

and progress in building hazard resilience.  59 

Furthermore, a measuring template will be useful as a decision support tool for the efficient 60 

deployment of scarce FRM resources and also provides a basis for monitoring resilience changes 61 

with respect to resource deployment.  For instance, Keating et al. (2017) explained that there is a 62 

need for the continued development of theoretically sound, empirically verified, and applicable 63 

frameworks and tools that help in understanding key components of resilience in order to better 64 

target resilience-enhancing initiatives and evaluate the changes in resilience as a result of different 65 

capacities, actions and hazards.  66 

Therefore, the search for an acceptable framework and empirical model for measuring resilience 67 

remains relevant and continues to attract attention (Cutter et al., 2016; Zou et al., 2018;   Cai et al., 68 

2018; Keating et al., 2017). Some existing measuring approaches, as identified in Cai et al., (2018), 69 

include the Baseline Resilience Indicators for Communities (BRIC), the Resilience Inference 70 

Measurement (RIM) framework, the National Oceanic and Atmospheric Administration (NOAA  71 

2010) Coastal Resilience Index,  the PEOPLES Resilience Framework, and the Communities 72 

Advancing Resilience Toolkit (CART). There is also the ‘5C-4R’ Zurich Alliance framework  73 

combining the ‘five capitals’ of the UK’s Department for International Development  DFID 74 

sustainable livelihoods framework (Scoones, 1998) and the four properties of a resilient system 75 

(Szoenyi, et al., 2016): the framework incorporates a technical risk grading standard (TRGS) 76 

developed by Zurich risk experts  (Keating et al. 2017).           77 

Despite the attention resilience has gained, the concept remains difficult to operationalize in the 78 

context of community flood risk management due to, among other factors, the difficulty in 79 

measuring resilience (Cutter, 2018; Fisher, 2015). Many experts and authors have noted  the 80 

difficulty in integrating indicators of the natural and human systems as well as socio-environmental 81 

factors into resilience by most of the existing frameworks (Cai et al., 2018; Cutter, 2018; Fuchs 82 

and Thaler, 2018; Qiang and Lam, 2016).  Resilience, as a multifaceted and multidimensional 83 

concept, has developed across multiple disciplines and applications such that resilience discourse 84 

has attracted multidisciplinary interests from both research and policy perspectives.  While the 85 

wide spectrum of multidisciplinary and practice interests characterizing resilience discourse has 86 



increased its understanding and generated insights,  it has also led to the emergence of  multiple  87 

variants of its definiton  as well as the absence of consensus on the conceptual framework for its 88 

measurement (Brown and Williams, 2015; Cohen et al., 2016; Cutter 2018).  For instance, 89 

resilience has been noted to have varied definitions depending on the hazard and disciplinary 90 

contexts, with over 70 definitions identified by Fisher (2015).  91 

The multiplicity of definitions has led to proliferation of conceptual models, frameworks and 92 

interpretations (Costache, 2017), such that there is difficulty in transforming resilience 93 

measurement from an abstract concept into an objective operational quantitative template. 94 

According to Cutter (2018), the difficulties in harmonizing and operationalizing these definitions 95 

have led to the emergence of a wide array of measurement approaches. Meanwhile, a pre-requisite 96 

to having an operational model, in the context of resilience measurement, is the adoption or 97 

convergence of definition by the resilience research and policy community. Such a definition 98 

should meet the following criteria: i) emanates from or receives the formal endorsement of  a 99 

widely recognized institutional platform of stakeholders,  ii) encompasses a wide spectrum of 100 

existing resilience concepts, iii) has some degree of simplicity, and  iv) enjoys high acceptance of 101 

both the research and policy community.  In a widely cited National Research Council report 102 

(NRC, 2012), the US National Academy of Sciences defines resilience as the ability of a system 103 

to prepare and plan for, absorb, recover from, and more successfully adapt to adverse events (Cai 104 

et al., 2018; Cutter, 2018). Therefore, this study has adopted this definition as the basis for the 105 

proposed framework for measuring the resilience of flood prone communities. 106 

From a systems perspective, community-resilience is a non linear collection of socio-ecological, 107 

socio-political, techno-ecological and socio-economic entities, each characterized by dynamic and 108 

complex spatiotemporal interactions.  Essentially, the concept of resilience involves the 109 

interactions of several entities each defined by some social, economic, natural, technical and 110 

environmental dimensions (Cai, et al., 2018; Norris et al., 2008). For instance, the community 111 

component was succinctly described by Cai et al. (2018) as a coupled natural and human system 112 

that manifests various sources of complexity such as nonlinearity, feedback, and uncertainty and 113 

dynamic interactions.    114 

Furthermore, coupled with the challenge of complexity and the dynamic nature of community-115 

resilience modeling is the challenge of data and computational analysis. It has been established 116 



that information and data items characterizing community-resilience system are mostly imprecise, 117 

incomplete, vague, complex, fuzzy and subjective within the context of flood risk management 118 

(Kotze and Reyers, 2016,; Oladokun,et al., 2017). These characteristics present some operational 119 

and analytical challenges for any complex model based on traditional crisp mathematics and hard 120 

computational approaches   because of data availability, data variability and data compatibility.  121 

The resilience measuring problem with its interplay of definitional ambiguities, multi-122 

dimensionality, and spatiotemporal dynamics invariably results in complex mathematical models. 123 

Such models, given the level of incompleteness, vagueness, and subjectivity that characterizes the 124 

human and socio-political aspects of resilience, offer little tractability with conventional hard 125 

computational tools and are difficult to operationalize. Hence, Oladokun et al. (2017) suggested 126 

that a resilience measuring model may be more amenable to a soft computing analytical technique 127 

such as fuzzy logic.  128 

1.1 Aim and objectives  129 

Based on the background presented above, this study is aimed at adopting a soft computing 130 

approach, a fuzzy logic computational model, for the proposed flood resilience measuring 131 

template. In particular, the objectives of  the study are  1) the development of a descriptive model 132 

that outlines our abstract interpretation of community resilience as a system, using insights from 133 

relevant literature, interactions with  experts  and observations of selected flood prone 134 

communities, 2) development of an equivalent  mathematical model of the resulting descriptive 135 

model using an appropriate tool to generate further insights, and 3) development of an equivalent 136 

fuzzy inference system suitable for  computational and  analytical purposes in the face of the 137 

aforementioned data  issues.  The next section briefly describes some relevant fuzzy logic concepts.    138 

1.2 An Overview of Fuzzy Logic 139 

Fuzzy set theory provides a mathematical tool for modeling uncertain, imprecise, vague and 140 

subjective data which represents a huge class of data encountered in most real-life situations 141 

(Adnan et al., 2015; Lincy and John, 2016). The fuzzy logic (FL) concept, introduced in 1965 by 142 

Lot A. Zadeh, is an extension of the classical set theory of crisp sets. FL, like humans, 143 

accommodates grey areas where some questions may not have a clear Yes or No answer or black 144 

and white categorization. According to Zadeh (1996), Fuzzy Logic = Computing with Words. FL 145 

mimics human reasoning and capability to summarize data and focus on decision-relevant 146 



information in problems involving incomplete, vague, imprecise or subjective information. It is a 147 

computational concept that allows for modeling of complex systems using a higher level of 148 

abstraction originating from our knowledge and experience. It provides a very powerful tool for 149 

dealing quickly and efficiently with imprecision and nonlinearity (Oladokun and Emmanuel, 150 

2014). This capability to mine expert knowledge and use limited or fuzzy data makes fuzzy 151 

inference systems (FIS) a suitable tool for resilience measurement modeling.  152 

The concept of membership function (MF) is central to FIS. In traditional logic, an element 𝑥𝑥 is 153 

either in or out of crisp set A; in other words, its degree of membership of the set is either zero or 154 

one.   However, in fuzzy logic the element 𝑥𝑥 can be in a fuzzy set B ‘partially’ by using a MF 155 

𝜇𝜇𝐵𝐵(𝑥𝑥) 𝑤𝑤hich can return any real value between 0 and 1. This returned value is the degree of 156 

membership representing the degree to which the element belongs to a fuzzy set. Therefore, in FL, 157 

the truth of any statement becomes a matter of degree. 158 

Thus for crisp set A   𝜇𝜇𝐴𝐴(𝑥𝑥) = �1    𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ 𝐴𝐴 
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 

    159 

On the other hand, for a fuzzy set, the MF may be represented as follows  160 

 𝜇𝜇𝐵𝐵(𝑥𝑥) = �
𝑖𝑖(𝑥𝑥)   𝑖𝑖𝑖𝑖 𝑏𝑏1 ≤ 𝑥𝑥 ≤ 𝑏𝑏2
𝑔𝑔(𝑥𝑥)     𝑖𝑖𝑖𝑖 𝑏𝑏2 < 𝑥𝑥 ≤ 𝑏𝑏3 

0         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 
 161 

Actually, the crisp set is a special case fuzzy set whose MF returns only zero or one. There are 162 

many functions that are used as MFs. Some widely used MFs, Generalized bell shaped, Gaussian 163 

curves, Polynomial curves, Trapezoidal, Triangular and Sigmoid MFs (Oladokun and Emmanuel, 164 

2014; Adnan et al., 2015).  The Mamdani FIS approach (Mamdani and Assilian, 1975), adopted 165 

for this study, is made up of a fuzzy inference engine characterized by the use of carefully selected 166 

MFs and a fuzzy rule base. The rule base is a set of ‘IF THEN’ statements that capture experts’ 167 

knowledge of the logic governing the problem.  The fuzzy inference system will provide a template 168 

for experts and other stakeholders to translate their perceptions of the problem and map their 169 

linguistics rating of these variables   into a resilience index based on the fuzzy relationships we 170 

define.  171 

 172 

2.0 Resilience Measuring:  A Conceptual Framework  173 



2.1 Descriptive model      174 

The design objective is to have a conceptual framework and its associated mathematical model 175 

with sufficient tractability by minimizing the number of model elements and adopting the barest 176 

minimum relationships while maintaining a reasonable level of validity. Therefore, as the 177 

theoretical basis for the proposed conceptual model, as mentioned earlier, we are adopting the 178 

resilience definition put forward by the US National Academies (NRC 2012). Conceptually this 179 

definition implies that a community’s resilience is a quantity that reflects capacities such as: 1) the 180 

community’s coping capacities, in terms of a threshold of hazard it can absorb (Hazard Absorption 181 

Capacity H), 2) its accessible resources (Resource Availability G), and 3) its resource utilization 182 

efficiency determined by factors like its preparedness and its governance processes (Resource 183 

Utilization Processes θ).  These capacities interact to define its ability to prepare for, absorb, 184 

recover from, and more successfully adapt to adverse flooding events. We attempt to conceptualize 185 

this understanding as shown in Figure 1.   186 

Each of the dimensions in Figure 1 is influenced by a number of technical, social, ecological, 187 

economic, and political factors following work that has been reported in the literature which sheds 188 

light on these factors and how they influence the dimensions (see Cohen et al., 2016; Lee et al., 189 

2013; Rose, 2017).  For example, hazard absorbing capacity H is determined by a number of 190 

techno-ecological factors such as adequacy, sophistication and use of infrastructure and 191 

technology as well as redundant capacities. It is also determined by socio-ecological and 192 

socioeconomic factors that influence both individual and institutional coping capacities. Resource 193 

availability is determined by things like community capital, political influence, and economic 194 

activities as well as ecological resources accessible to drive the quality and timeliness of recovery. 195 

Resource utilization processes are determined by the quality of governance and institutions such 196 

as judiciary, police, media, and public service. These processes influence policy formulation and 197 

implementation, the ease of doing business and the efficiency of use of resources. A detailed 198 

structured and operational rendition of the foregoing is presented in sections 2.2 and 3.3. 199 

 200 

   201 

Figure 1 here 202 



Furthermore, in the context of FRM, the framework of Figure 1 recognizes that resilience enhances 203 

recovery or that recovery is an outcome of resilience whereby when a community, as a coupled 204 

system, becomes more resilient its capacity to experience post disaster recovery increases. In other 205 

words, recovery, in terms of time taken to attain post disaster recovery and the degree of recovery 206 

attained, is influenced by its resilience. Invariably the conceptual framework implicitly suggests 207 

that recovery (recovery speed and recovery quality) can surrogate resilience. This is reasonable 208 

because post disaster recovery is driven by resilience factors such as preparedness, and coping 209 

capacity, among others. This understanding is supported by the DROP disaster resilience model 210 

of place (DROP) as illustrated in Cutter et al. (2008), reproduced in Ffigure 2. 211 

  Figure 2 here 212 

2.2 Mathematical model  213 

The next stage is to transform the conceptual framework of Figure 1 into an operational 214 

mathematical model. This is accomplished by defining a geometric model of the framework as 215 

shown in Figure 3. This model is then used to derive appropriate mathematical relationships for 216 

resilience measurement and provide some insights. 217 

2.2.1 Notations, definitions and terms 218 
We adopt the following notations, definitions and terms   to explain the components of Figure 3 in 219 
the context of flood hazard.     220 

i. Hazard Absorbing Capacity (H): (H=h: 0≤ h ≤1.0). The resilience of a community 221 

depends on the level of the flood hazard the community systems can absorb before 222 

totally collapsing or undergoing irreversible disintegration. H=1 is the highest 223 

absorbing capacity whereby the community can absorb and survive the damages and 224 

disturbance (both structural and non structural) of the most severe category of flooding 225 

conceivable. This captures various resilience factors such as coping capacity, 226 

redundancy, preparedness, sense of place attachment and other capacities as explained 227 

in Table 1.    228 

ii. Resource Availability (G).  This is the quantum of resources available to plan and 229 

pursue recovery as well as achieve recovery quality level Q (including adaptive 230 

recovery). Note that G=g (0≤ g ≤1.0) captures both economic and community capital. 231 

It is the measure of resources the community is able to attract as a result of its overall 232 



economic and political influence, its natural assets, and human capital assets (see Table 233 

1 for further details).    234 

iii. Resource Utilization Processes (θ):  With 0≤θ≤ Π/2, we define ρ (ρ = Sin θ) as system 235 

efficiency. This is a resilience component that affects recovery and revolves around 236 

factors such as preparedness, community governance, institutional systems and 237 

processes. It determines the efficiency and effectiveness of the use of resources to 238 

achieve   recovery and establish adaptive capacity. In other words, how well resources 239 

are used is as important as how much of a set of resources is used in building resilience. 240 

It measures the probity, level of accountability, level of waste, corruption, red-tapism, 241 

and bureaucracies within the system. A community with strong institutions such as a 242 

functioning judiciary and an efficient civil service, for instance, will tend to return high 243 

ρ. So an ideal or utopian community will have its G deployed at θ= Π/2, such that  ρ = 244 

Sin (θ) = Sin (Π/2)=1.  245 

iv. Recovery Quality Level (Q).  This represents the outcome of post hazard conditions in 246 

terms of restoration quality and socio-ecological functionality, among others.   247 

The following definitions apply with reference to Figure 3 248 

v. ai :  Resilience reservoir of a real system i is defined as the  area of trapezium ABFE’  249 

determined by  the hazard absorbing capacity,  at H= h, of the system, the available 250 

quantum of resources (G =g), the quality of governance processes and resource 251 

utilization systems (Sin θ) and the achievable  recovery quality (Q =q) 252 

vi. au : The resilience reservoir of an utopian (ideal)  system is defined as the area of square 253 

ACDE. This occurs at ideal FRM conditions: that is, a community system with 254 

adequate resources, perfect governance and processes with zero waste of resources and 255 

infinite hazard coping threshold when h= AE (or at maximum absorbing capacity), 256 

g=ED (maximum resource adequacy) and θ = Π/2 (perfect or utopian system with 257 

100% efficiency or Sin θ=1.0). The utopian system can achieve a perfect recovery 258 

index Q= q= 1.0 or Q=AC   259 

Extensive review of the literature was carried out to provide an informed basis for mapping 260 

FRM factors and inputs to the dimensions of resilience.  This is summarized as shown in Table 261 



1. Theoretically, the values of the dimensions H, G, θ can be estimated from adequate data on 262 

these input factors and appropriate functions.   263 

Table 1 Resilience Dimensions Input Factors  264 
Resilience 
Dimensions  

 Resilience input factors  

1. 
Hazard 
Absorbing 
capacity 
H 
  

1. Level of infrastructure in terms of sophistication and adequacy. Effectiveness of FRM 
measures such as flood and shoreline defenses, forecast and warning system,    

2. Redundant capacities. Evidence of alternatives in critical utilities, evacuation routes, 
communication and energy infrastructures, hospitals, police posts, supermarkets.   

3. Evidence of redundant housing capacity. 
4. Ecological defenses and buffer.  Evidence of complementary use of nature to improve 

threshold, e.g. using landscaping and topography, natural drainage and canals, 
vegetation cover, rain/storm water harvesting, permeable pavements, etc. 

5. Residents coping capacity.  Evidence of large portion of populace with previous flood 
experience, awareness, cohesion and place attachment  

6. Evidence of stable or growing population in spite of past events. 
7. Educational and literary level of populace   
8. Evidence of social and communal clusters to enhance coping through support, meaning, 

avoidance etc., e.g. church, local sport team, ethnic clusters.   
9. Presence of critical and strategic institutions of national importance, e.g.  university, 

military base, major ports, etc.  
10. Evidence of technology driven information dissemination, e.g. social media, sms  

(Ashraf and Routray, 2013; Cohen et al., 2017; Esteban et al., 2013; Ibanez et al., 2004; 
Lee et al., 2013; Mavhura et al., 2013)  

2. 
Resource  
Availability  
G 

1. Evidence of budgetary provision for, or commitment to, flood risk management. 
2. Evidence of thriving economic activities in the community, e.g. size of local GDP 
3. Evidence of economic strength of residents, e.g. per capita income, income level, 

housing value, savings, cooperative societies, etc.   
4. Evidence of political, institutional and economic influence that can attract grants and 

funds from national or regional sources, e.g. population  
5. Evidence of adoption of flood insurance plans.  
6. Availability of land for relocation development beyond or outside the flood plains.      
7. Evidence of community capital and community natural assets accessible for 

reconstruction, e.g. forest resources, granite and quarry deposits.  
8. Economic status of the ‘parent’ entity, e.g. the state’s or country’s GDP     

(Filion and Sands, 2016; Rose, 2017; Swalheim and Dodman, 2008; Thomas and Mora, 
2014)  

3. 
Community 
Processes 
and  
Resource 
Utilization  
θ   

1. Evidence of good governance 
2. Level of ease of doing business 
3. Evidence of strong institutions such as judiciary, police, media, and public service 
4. Evidence of culture of law and order.  
5. Ranking of internationally recognized bodies like Transparency International, World 

Bank, UN, CIA, etc. on the above     
(Begg et al., 2015; Brown and Williams, 2015; Cohen et al., 2016; Rose, 2017; 
Tompkins et al., 2004) 
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Figure 3 here 267 

2.2.2 Resilience modeling 268 

The utopian resilience reservoir is the benchmark for evaluating resilience such that actual 269 

resilience Ri can be defined as the ratio of ai to au as indicated in equation 1. 270 

𝑅𝑅𝑖𝑖 = 𝑎𝑎𝑖𝑖
𝑎𝑎𝑢𝑢

                  (1) 271 

Using the insights from Figure 1, we attempt to develop the mathematical model implied in 272 

equation 1 (note R is dimensionless since both ai and au are areas).  273 

𝑎𝑎𝑖𝑖 = 1
2

{𝐴𝐴𝐸𝐸′ + 𝐵𝐵𝐵𝐵}𝐴𝐴𝐵𝐵                (2) 274 

𝑎𝑎𝑢𝑢 = 𝐴𝐴𝐸𝐸 × 𝐸𝐸𝐸𝐸   275 

𝑎𝑎𝑢𝑢 = 𝐻𝐻 ∙ 𝐺𝐺                                 (3) 276 

Note:   𝐴𝐴𝐸𝐸′ ≡ ℎ                         (4) 277 

𝐵𝐵𝐵𝐵 = 𝐴𝐴𝐸𝐸′ − 𝐵𝐵′𝐸𝐸′ = ℎ − 𝑔𝑔𝑔𝑔𝑜𝑜𝑒𝑒𝑔𝑔                     (5) 278 

𝐴𝐴𝐵𝐵 = 𝐵𝐵′𝐵𝐵 = 𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔                                         (6) 279 

Putting 4, 5, 6 into 2  280 

⇒  𝑎𝑎𝑖𝑖 =
1
2

{ℎ + (ℎ − 𝑔𝑔𝑔𝑔𝑜𝑜𝑒𝑒𝑔𝑔)}𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 281 

𝑎𝑎𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑒𝑒𝑔𝑔   282 

𝑎𝑎𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 ± √1 − 𝑔𝑔𝑖𝑖𝑔𝑔2𝑔𝑔   283 

Recall we define ‘Efficiency of resource utilization system’ as ρ =Sinθ 284 

∴ 𝑎𝑎𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔�(1 − 𝑔𝑔2)                             (7) 285 

Putting 3 and 7 into 1  286 

𝑅𝑅𝑖𝑖 =
ℎ𝑔𝑔𝑔𝑔 − 1

2
𝑔𝑔2𝑔𝑔�(1 − 𝑔𝑔2)
𝐻𝐻𝐺𝐺

−                                (8) 287 

Without loss of generality, h and g are treated as indices such that    288 



0 ≤ ℎ ≤ 1   𝑎𝑎𝑔𝑔𝑎𝑎 0 ≤ 𝑔𝑔 ≤ 1    289 

Then H=G=1 in equation 8 which implies  290 

𝑅𝑅𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔�(1 − 𝑔𝑔2)                   (9)  291 

Equation 9 is a valid expression for resilience.  292 

That is, 𝑅𝑅𝑖𝑖 = 𝑖𝑖(ℎ,𝑔𝑔,𝑔𝑔),  293 

Where h, g and h are as explained in section 2.2.1 and their values    are decided by experts and/or 294 

stakeholders, varying depending upon the location and scale of application of the model. 295 

2.2.3 Some insights from model using some extreme values 296 
 297 
This section discusses some example cases of the model (equation 9) output using selected 298 

hypothetical extreme parameters’ values  to generate further insights into model structure (with 299 

reference to Figure 1). The ‘extreme’ scenarios analysis is used to demonstrate how each of the 300 

three 3 dimensions impacts R.   301 

Case 1:  As   𝝆𝝆 → 𝟎𝟎       𝑹𝑹 → 𝟎𝟎 302 

In fact, R= 0 when 𝑔𝑔 = 0. This may be interpreted as the case when the resource utilization 303 

processes have zero efficiency (see Figure 4) or a collapsed governance system such as when a 304 

flood disaster occurs in a community ravaged by civil war with breakdown of law and order. In 305 

such situations, community resilience is nil as all resources put into recovery will be ‘wasted,’ 306 

irrespective of the level of coping or infrastructure previously in place.  307 

 308 

Figure 4 here 309 

 310 

Case 2: As   𝝆𝝆 → 𝟏𝟏     𝑹𝑹 → 𝒉𝒉𝒉𝒉    311 

This implies that θ=Π/2 or Sinθ=1 which depicts an ideal situation when the communal processes, 312 

FRM resource administration, and utilization systems are highly efficient and near perfect.  Under 313 

this scenario, the resources g and community’s coping capacities contribute maximally to 314 

resilience (see Figure 5).  315 

 316 

Figure 5 here 317 



Case 3: 𝒉𝒉 → 𝟎𝟎         𝑹𝑹𝒊𝒊 → 𝟎𝟎      Resilience disappears when resources dry up.  318 

 319 

Case 4: h= 𝟏𝟏    Resilience is determined by resource availability and utilization  320 

 321 

Case 5:   As   𝒉𝒉 → 𝟎𝟎       𝑹𝑹 → 𝟎𝟎−      322 

From Figure 6, resilience approaches zero from negative reservoir quadrant when h=0 (i.e. coping 323 

and absorbing capacities disappear or collapse) and 𝑔𝑔 < 1 (efficiencies of resource use, 324 

preparedness, and governance systems fall below 1). The ‘Negative’ resilience reservoir quadrant 325 

characterizes vulnerable communities. Note that vulnerability is sometimes seen as the flip side of 326 

resilience (Folke et al., 2002) or a complementary community-hazard management concept 327 

(Cutter, 2018; Fekete and Montz, 2018; Shah et al., 2018). Hence from figure 6 as the 328 

absorbing/coping capacity h approaches zero, a community enters vulnerability mode because 329 

more resilience area lies below the positive plane. In other words, equation 9 suggests that a 330 

community without coping or built in absorbing capacities is vulnerable, especially if its 331 

governance structure is poor (i.e. Sinθ → 0). 332 

 333 

Figure 6 here 334 

 335 
3.0 Resilience fuzzy inference system (R-FIS):  Computer model  336 
While the resulting model of equation 9 provides useful insights, its application however is    337 

premised on the availability of clear information on input factors and adequate data for estimating 338 

model parameters, That is, complete data as described in section 2.2 and Table 1, for estimating 339 

dimensions H, G and θ.  However, there are issues of data availability and data compatibility 340 

(Parsons et al., 2016) which make it inefficient to do crisp estimation of these parameters. 341 

Therefore, to operationalize the proposed framework, a (FIS) equivalent has been developed.  342 

A computer model of the proposed R-FIS (Figure 7) was designed in the Matlab fuzzy logic 343 

development environment. The environment was adopted because it supports easy to use graphical 344 

user interface (GUI) tools and has multiple MFs for implementing a FIS. A process consisting of 345 

systematic review of the literature, interactions with experts, meetings with community leaders, 346 

interviews of other stakeholders and field observations (described in more detail in Section 4.1) 347 



was  used to gain insights for specifying the R-FIS’s design and inference engine’s elements (Table 348 

2) as well as determine appropriate IF THEN statements for the rule base (Table 3). With three 349 

input linguistic variables, each with three term sets (or possible values), there can be up to 27 350 

explicit input variable combinations, or 27 explicit fuzzy rules combinations.  Table 3 is a sample 351 

extract from the 27 ‘IF THEN’ statements of the rule base.   352 

 353 
Figure 7 here 354 

Table 2 here  355 
 356 
Table 2 Fuzzy Inference Linguistic Variables Term set and Membership Functions  357 

Linguistic Variables Term sets   Membership function  
Hazard Absorbing 

Capacity H 
Input 1 

Low PiMfunction  
High   GbellMf  

Very High  SMfunction  
Resource 

Availability G. 
Input 2 

Very Low   ZMfunction 
Low  GaussianMfunction  
High  SigMfunction 

Resource Utilization 
Processes θ. 

Input 3 

Poor PiMfunction  
Good  GaussianMfunction 

Excellent  PiMfunction 
 

Resilience Ri 
Output  

Very Low Zmfunction 
Low  Gauss2Mfunction 

Moderate  GbellMfunction 
High  PiMfunction 

Very High  PiMfunction 
 358 
 359 
 360 
 361 
Table 3: Sample rules of the R-FIS 27 Rule Base*  362 
 Rules premise Rules Consequence  Weight 

If (H is Low) & (G is Very Low ) & (θ is Poor) THEN  
If (H is Low) & (G is Low) & (θ is Excellent ) THEN   
If (H is Low) & (G is High) & (θ is Excellent) THEN   
If (H is High) & (G is High) & (θ is Excellent) THEN  
If (H is Very High) & (G is Very  Low) & (θ is Good) THEN   
If (H is Very High) & (G is High) & (θ is Good) THEN   
If (H is Very High) & (G is High) & (θ is Excellent ) THEN 

(Resilience is very low)  
(Resilience is Low)  
 (Resilience is Moderate) 
(Resilience is Moderate)  
 (Resilience is High)  
 (Resilience is High)  
(Resilience is Very High)   

1 
0.8 
0.8 
1 
0.7 
1 
1 

*Rules and weights to be determined by experts and/or stakeholders 363 

Commented [DVO2]: .. The response to (reviewer 2, 
comment to section 7)  has been provided in the section 4.1 of 
the revised  manuscript. We believe that is the most 
appropriate place to explain our methods in detail, as this 
section addresses the model itself. 



 Table 3 here  364 

Figure 8 shows the 3D surface plot resulting from an infinite combination of input factors.  The 365 

shape of the resilience surface is determined by the rules (Table 3) and the selected membership 366 

functions (Table 2) used to express the term sets. This shape can be varied by modifying the 367 

membership functions, the term sets, the rules and their weights to reflect new realities and 368 

understandings about the resilience systems. This gives flexibility to simulate various 369 

combinations of parameters in order to arrive at an optimum design.  370 

 371 

 372 

Figure 8 here 373 

 374 

3.2. Model expert scoring framework   375 

 376 

Although information and explanations in Table 1, in principle, give a general guide for evaluating 377 

and quantifying these dimensional inputs of the resilience model, there is still the need for an easy 378 

to use operational template for capturing experts’ input into the FIS in relatively standardized 379 

fashion. Table 4 is an example of such an input template designed for this study. A typical 380 

application procedure is described, in section 4.1, with the case study communities. 381 

 382 
 Table 4 here 383 
Table 4 Linguistic Variables Input Template   384 

Linguistic Variables 
Dimension  

Tick the grey box next to 
your linguistic  rating    

Tick the grey box that best reflects 
your score of your linguistic rating    

 Hazard Absorbing 
Capacity  

(H) 

Low  1  2  3   
Moderate     4  5  6   

High  7  8     
Very High   9  10     

 
Resource 

Availability  
(G) 

Low    1  2  3   
Moderate  4  5  6   

High  7  8     



Very High   9  10     
 

Resource 
Utilization 
Processes 

(θ) 
 

Poor  1  2  3   
Good   4  5  6   

Very Good  7  8     
Excellent   9  10     

Location/city     
Date of assessment  
Assessors’ name    

*Table 1 can be attached to this scoring template as a guide   385 

4.0 Model Application: Study location  386 

The following describes the application of the model using three flood prone communities in the 387 

United State (U.S.). Following decades of experience in dealing with hazards and disasters, cities 388 

and institutions in the U.S. offer considerable information and insights in community resilience 389 

systems management (Su, 2016b). Two coastal states of North Carolina and Virginia are home to 390 

many flood prone communities of various sizes with diverse socio-economic and techno-391 

ecological characteristics that readily lend themselves to a study of resilience. Both states have 392 

adopted a number of FRM programs, policies, and strategies for building flood resilience across 393 

many rural and urban communities  (North Carolina Floodplain Mapping Program, 2019; 394 

Mogollón et al., 2016). Specifically, Norfolk, VA a coastal city in Virginia with a massive naval 395 

base, Greenville, NC, a large university town, and Windsor, NC a small riverine rural town were 396 

selected (Figure 9).  Table 5 summarizes some vital socio- economic features of these 397 

communities. 398 

Figure 9 here 399 

 400 

Norfolk, located on the Chesapeake Bay and near several rivers, experiences precipitation 401 

flooding, when the intensity of rainfall exceeds stormwater drainage capacity, storm flooding from 402 

hurricanes and nor’easters, and tidal flooding due to its elevation and coastal location. Greenville, 403 

with relatively flat topography is located on the Tar River and is traversed by a number of small 404 

streams (Pitt County Development Commission, 2019). Besides riverine flooding, the relatively 405 
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flat topography of its coastal plain location leads to flooding from intense or long-lasting rain 406 

events such that the stormwater system is incapable of handling the overland flow. Located on the 407 

meandering Cashie River in eastern North Carolina, Windsor has experienced four major floods 408 

since 1999, all from tropical storms. Thus, not only are the communities different demographically, 409 

but they have rather different flood regimes and histories, with Windsor and Greenville 410 

experiencing riverine flooding, though with very different patterns of damage, and Norfolk 411 

experiencing a combination of coastal and riverine flooding. 412 

Table 5 Study Locations: Demographic and Topographic Summary  413 

 Windsor NC Greenville  NC Norfolk  VA 
Location type  Small town  City  Large city  
Types flood River/storm/ rain River /storm/  

Rain 
Coastal /river 
rain/storm  

Total Population  3,630 84,554 242,803 
%Male  59.3 45.8 51.8 
%Female  40.7 54.2 48.2 
Median income * 29,063 34,435 44,480 
Poverty rate * 27.8 32.5 21 
Median Age   38.6  26.0 29.7 
%Under 14  12.4 15.9 17.7 
%75 above  8.7 4.3 4.6 
US Citizenship * 97.9 96.8 96.6 
 Non English speaking * 5.83 6.74 10.3 
No of Households  1088 36071 85485 
%Family household  61.2 46.3 58.7 
Average household size 2.29 2.18 2.43 
%Household with   
individuals above 65  

34.1 14 20.3 

No of Housing units  1193 40564 95018 
% of housing units 
occupied  

91.2 88.9 91.0 

Mean property Value ($)*  93800 147100 193400 
** Elevation   (feet)  25 56 30 

   *Source http:// census.gov   414 
 ** United States Geological Survey Topographic Maps  415 
 416 
Table 5 here  417 

4.1 Model application: data gathering and results  418 

For the purpose of illustration, input scores were developed using the template shown in Table 4 419 

along with the guidelines in Table 1 and the communities’ information, summarized in Table 5. 420 

The sample input data were generated based on the outcome of field studies and reflective 421 



interactions with experts and stakeholders familiar with the study locations; these stakeholders 422 

include academics, government officials and community leaders. In particular the sample scoring 423 

was based on the insights derived from our understanding of their opinions, as well as demographic 424 

and socio-economic information extracted from various historical and government records, 425 

including the US census (Pitt County Development Commission, 2019; North Carolina Floodplain 426 

Mapping Program, 2019; Mogollón et al., 2016). For instance, during a 2018 workshop by the 427 

North Carolina Chapter of the American Planning Association held at Windsor, NC, the authors 428 

had the opportunity to interact with and mine the knowledge of academics, students, city managers, 429 

community leaders, relevant officials from emergency agencies, and curators of landmark centers, 430 

among others. The authors also took tours of Norfolk, VA and Greenville, NC, under the guidance 431 

of academics, GIS and FRM experts from the cities’ universities.  These interactions and the 432 

associated field studies provided insights for generating the sample scoring;: the studies involved 433 

interviews and, qualitative characterizationassessment from site observations of community flood 434 

control projects and individual property FRM retrofit systems. As an example, the perceptions of 435 

resident planning experts and other stakeholders on how some ongoing flood risk management 436 

interventions would have impacted the capacity of the community to cope with  varying flood 437 

levels was useful in classifying Hazard Absorbing Capacity, as was the extent and type of flood 438 

control and retrofit projects.        439 

Table 6 shows the results. Norfolk and Greenville both have relatively high hazard absorbing 440 

capacities, with Norfolk rated as slightly lower owing to problems associated with the disruption 441 

that regularly occurs from overland flooding combined with tidal flooding. Windsor’s is lower 442 

than Norfolk and Greenville but still moderate because of how the community has adapted to its 443 

flood risk. Not surprisingly, Norfolk has the highest resource availability and Windsor the lowest 444 

based on their size and relative wealth. At the same time, for the illustrative purposes here, size 445 

and diversity of the communities are seen to be inversely related to resource utilization processes. 446 

The model output, Resilience Index R, indicates that, based on the input values, Grenville’s 447 

resilience is slightly greater than Norfolk’s while, not surprisingly, Windsor lags rather far behind.  448 

  449 

 450 
 451 

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

http://locateincarolina.com/geography-climate/#Topography
https://flood.nc.gov/ncflood/ncfip.html
https://flood.nc.gov/ncflood/ncfip.html


 452 
 453 
 454 
 455 
Table 6 Input Scoring and R-FIS Resilience Index Output 456 

 
Experts 
Scoring  

 
Community  

Model Input Model Output 
Hazard 

Absorbing 
Capacity 

(H) 

Resource 
Availability  

(G) 

Resource 
Utilization 
Processes 

(θ) 
 

 
 

Resilience 
Index 

R 
Linguistic 
Score  

Score   Linguistic 
Score  

Score   Linguistic 
Score  

Score   

Norfolk, VA High 7.0 High 8.0 Good 6.0 0.836 
Greenville, NC High  8.0 Moderate  6.0 Very Good 8.0 0.9 
Windsor, NC  Moderate 4.0 Low 2.0 Very Good  8.0 0.477 

Table 6 here  457 

The input to output mapping implemented in Matlab fuzzy toolbox allows for infinite 458 

combinations of input factors either by sliding or inputting the respective input variable axis on 459 

the fuzzy rule interface. Figure 10 is a snapshot of the input combinations for Greenville, using the 460 

scores from Table 6. The vertical bar (red line on each) can be moved to indicate how resilience 461 

changes with a change in one or another (or all) of the three variables. The yellow shapes indicate 462 

the rules (see the subset in Table 2) that contribute to each variable’s score. All of the output, in 463 

both Table 6 and Figure 8, is based on expert insights and understandings and thus provides a 464 

dynamic template to measure resilience under different conditions. The proposed framework 465 

accommodates the understanding that community resilience should be treated as a multifaceted 466 

and multidimensional construct that can only be achieved by focusing on all aspects of a 467 

community system. While the fuzzy implementation of the  framework can be used both as a 468 

resilience index tool and  a resilience classification scheme, it is however, like many existing 469 

resilience measuring models, still dependent on the subjective opinions of experts and other 470 

stakeholders.  471 

Figure 10 here  472 

5.0 Discussion and Conclusions  473 

Many previous studies have identified  the multiplicity of definitions (Costache, 2017; Fisher, 474 

2015; Oladokun et al., 2017), as one of the major difficulties in transforming resilience 475 



measurement from an abstract concept into an objective operational framework (Costache, 2017; 476 

Fisher, 2015; Oladokun et al., 2017). This study proposes three criteria for adopting a suitable 477 

definitional basis for a framework conceptualization. These criteria which address issues such as 478 

the need to achieve model simplicity and accommodate the multidimensional nature of resilience 479 

(Brown and Williams, 2015; Cohen et al., 2016; Cutter 2018), were used to recommend the 480 

National Academies’ definition of resilience (NRC, 2012) as a robust and viable basis for 481 

developing a measurement model.   482 

Similarly,  many scholars have highlighted dealing with the complexity involved in the integration 483 

of indicators of natural and human systems into a community resilience model (Cai et al., 2018; 484 

Cutter, 2018; Fuchs and Thaler, 2018; Qiang and Lam, 2016) as a key to transforming resilience 485 

measurement from an abstract concept into an objective operational framework. SpecificallyTo 486 

that end, we adopt a 3three-component system to define the definition-conceptual model transition 487 

in a way that reflects key relationships; among technical, social, ecological, economic, and political 488 

factors; that have been reported in literature (Cohen et al., 2016; Lee et al., 2013; Rose, 2017) as 489 

key to the multidimensional treatment of resilience.  490 

Transforming the conceptual model into a quantitative template requires some sound theoretically 491 

basis, a condition noted in Keating et al., (2017) as a prequisite for developing an acepatable 492 

framework.  Hence this study recognizes that such a framework must show clear logical 493 

relationships among the various indicators and dimensions of resilience and provide logical 494 

linkages between their abstraction and empirical requirements. The geometric based mathematical 495 

modeling approach we have adopted shows these relationships and provides the linkage between 496 

conceptual model and operational requirements.  Based on this, mathematical functions were 497 

developed to establish logical relationships among key socio-technical parameters and quantities 498 

that characterize the community resilience system, thus infusing a theoretical basis into the 499 

framework. To enhance the integration of both technical and non-technical communal resiliency 500 

factors and reduce model complexity, the conceptual framework was defined using a minimum 501 

number of integrated components and interactions. This approach allows the adoption of a soft 502 

computing tool for model analysis.  While the study developed a template for data collection and 503 

illustrated its application, the template still relies on subjective opinions of experts which may be 504 

seen as a drawback of the model. Hence further research is suggested to explore the automation 505 



and standardization of the R-FIS input process by integrating with web based socio-economic and 506 

ecological rankings or indices of communities. Yet, from computational and operational 507 

perspectives, the adoption of a fuzzy inference system as an analytical tool is presented as a viable 508 

approach for harnessing the opinions and experiences of experts and residents. 509 

In conclusion, This studythis study  which is centered on the need for an acceptable template to 510 

measure flood resilience. As such, it examines the challenges, conceptual constraints and construct 511 

ramifications that have complicated the development of an operational framework for measuring 512 

the resilience of communities prone to flood hazard.  513 

Although the proliferation of conceptual models and frameworks for understanding resilience has 514 

indeed posed some challenges for development of an acceptable scenario-based measurement 515 

framework, there has been evidence of rich multidisciplinary insights resulting from the 516 

continuously evolving collaborative platforms for driving resilience research, policy and 517 

discourse. Non-linearity, multiple feedbacks and other sources of complexity constitute major 518 

challenges to achieving operational practicality and model tractability while maintaining 519 

reasonable validity. There has also been the challenge of compatibility between the natural and 520 

human variables due to the well recognized complexity inherent in community resilience. The 521 

study recommends and adopts the National Academies’ definition of resilience (NRC, 2012) as a 522 

robust and viable basis for developing a measurement model. Based on this, mathematical 523 

functions were developed to establish logical relationships among key socio-technical parameters 524 

and quantities that characterize the community resilience system, thus infusing a theoretical basis 525 

into the framework. To enhance the integration of both technical and non-technical communal 526 

resiliency factors and reduce model complexity, the conceptual framework was defined using a 527 

minimum number of integrated components and interactions. This approach allows the adoption 528 

of a soft computing tool for model analysis.   529 

In terms of insights, the resulting models from this study provide some explanations into the 530 

relationships existing among resilience factors and dimensions. For instance, the importance of 531 

good community governance, processes and resource utilization systems becomes obvious in the 532 

various scenario analyses. Furthermore, the model was able to document the relative impact of 533 

variables that contribute to or detract from resilience. Although only sample values were used, the 534 



model application was able to illustrate the relative impacts that varying levels of institutional 535 

strength and resource availability, for example, have on progress toward resilience at a place.     536 

While the study developed a template for data collection and illustrated its application, the template 537 

still relies on subjective opinions of experts which may be seen as a drawback of the model. Hence 538 

further research is suggested to explore the automation and standardization of the R-FIS input 539 

process by integrating with web based socio-economic and ecological rankings or indices of 540 

communities. Yet, from computational and operational perspectives, the adoption of a fuzzy 541 

inference system as an analytical tool is presented as a viable approach for harnessing the opinions 542 

and experiences of experts and residents. Hence, Tthe R-FIS provides a pathway for dealing with 543 

challenges of data issues such as missing data, spatiotemporal variations, and the use of subjective 544 

information because the critical input variables are locally and/or contextually defined. Thus, the 545 

proposed framework offers a viable approach for measuring flood resilience even when there are 546 

limitations of data availability and compatibility.  547 

 548 
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Table 1 .  Resilience dimensions and descriptions of input factors influencing their states   
Resilience 
Dimensions  

 Resilience input factors  

1. 
Hazard 
Absorbing 
capacity 
H 
  

1. Level of infrastructure in terms of sophistication and adequacy. Effectiveness of FRM 
measures such as flood and shoreline defenses, forecast and warning system,    

2. Redundant capacities. Evidence of alternatives in critical utilities, evacuation routes, 
communication and energy infrastructures, hospitals, police posts, supermarkets.   

3. Evidence of redundant housing capacity. 
4. Ecological defenses and buffer.  Evidence of complementary use of nature to improve 

threshold, e.g. using landscaping and topography, natural drainage and canals, 
vegetation cover, rain/storm water harvesting, permeable pavements, etc. 

5. Residents coping capacity.  Evidence of large portion of populace with previous flood 
experience, awareness, cohesion and place attachment  

6. Evidence of stable or growing population in spite of past events. 
7. Educational and literary level of populace   
8. Evidence of social and communal clusters to enhance coping through support, meaning, 

avoidance etc., e.g. church, local sport team, ethnic clusters.   
9. Presence of critical and strategic institutions of national importance, e.g.  university, 

military base, major ports, etc.  
10. Evidence of technology driven information dissemination, e.g. social media, sms  

(Ashraf and Routray, 2013; Cohen et al., 2017; Esteban et al., 2013; Ibanez et al., 2004; 
Lee et al., 2013; Mavhura et al., 2013)  

2. 
Resource  
Availability  
G 

1. Evidence of budgetary provision for, or commitment to, flood risk management. 
2. Evidence of thriving economic activities in the community, e.g. size of local GDP 
3. Evidence of economic strength of residents, e.g. per capita income, income level, 

housing value, savings, cooperative societies, etc.   
4. Evidence of political, institutional and economic influence that can attract grants and 

funds from national or regional sources, e.g. population  
5. Evidence of adoption of flood insurance plans.  
6. Availability of land for relocation development beyond or outside the flood plains.      
7. Evidence of community capital and community natural assets accessible for 

reconstruction, e.g. forest resources, granite and quarry deposits.  
8. Economic status of the ‘parent’ entity, e.g. the state’s or country’s GDP     

(Filion and Sands, 2016; Rose, 2017; Swalheim and Dodman, 2008; Thomas and Mora, 
2014)  

3. 
Community 
Processes 
and  
Resource 
Utilization  
θ   

1. Evidence of good governance 
2. Level of ease of doing business 
3. Evidence of strong institutions such as judiciary, police, media, and public service 
4. Evidence of culture of law and order.  
5. Ranking of internationally recognized bodies like Transparency International, World 

Bank, UN, CIA, etc. on the above     
(Begg et al., 2015; Brown and Williams, 2015; Cohen et al., 2016; Rose, 2017; 
Tompkins et al., 2004) 

 

 



 
Table 2.  Fuzzy inference linguistic variables term set and membership functions  
(Adnan et al., 2015; Oladokun and Emmanuel, 2014) 
Linguistic Variables Term sets   Membership function  
Hazard Absorbing 
Capacity H 
Input 1 

Low PiMfunction  
High   GbellMf  
Very High  SMfunction  

Resource 
Availability G. 
Input 2 

Very Low   ZMfunction 
Low  GaussianMfunction  
High  SigMfunction 

Resource Utilization 
Processes θ. 
Input 3 

Poor PiMfunction  
Good  GaussianMfunction 
Excellent  PiMfunction 

 
Resilience Ri 
Output  

Very Low Zmfunction 
Low  Gauss2Mfunction 
Moderate  GbellMfunction 
High  PiMfunction 
Very High  PiMfunction 

 
 



Table 3 Sample rules of the R-FIS 27 Rule Base (Rules and weights to be determined by 
experts and/or stakeholders)   
 Rules premise Rules Consequence  Weight 

If (H is Low) & (G is Very Low ) & (θ is Poor) THEN  
If (H is Low) & (G is Low) & (θ is Excellent ) THEN   
If (H is Low) & (G is High) & (θ is Excellent) THEN   
If (H is High) & (G is High) & (θ is Excellent) THEN  
If (H is Very High) & (G is Very  Low) & (θ is Good) THEN   
If (H is Very High) & (G is High) & (θ is Good) THEN   
If (H is Very High) & (G is High) & (θ is Excellent ) THEN 

(Resilience is very low)  
(Resilience is Low)  
 (Resilience is Moderate) 
(Resilience is Moderate)  
 (Resilience is High)  
 (Resilience is High)  
(Resilience is Very High)   

1 
0.8 
0.8 
1 
0.7 
1 
1 

 

 



Table 4.  Linguistic variables input template (to be used with Table 1 as a scoring guide)   

Linguistic Variables 
Dimension  

Tick the grey box next to 
your linguistic  rating    

Tick the grey box that best reflects 
your score of your linguistic rating    

 Hazard Absorbing 
Capacity  
(H) 

Low  1  2  3   
Moderate     4  5  6   
High  7  8     
Very High   9  10     

 

Resource 
Availability  
(G) 

Low    1  2  3   
Moderate  4  5  6   
High  7  8     
Very High   9  10     

 
Resource 
Utilization 
Processes 
(θ) 
 

Poor  1  2  3   
Good   4  5  6   
Very Good  7  8     
Excellent   9  10     

Location/city     
Date of assessment  
Assessors’ name    
 



Table 5 Study locations- demographic and topographic summary (Source:  http://census.gov 
and United States Geological Survey Topographic Maps)  
 Windsor NC Greenville  NC Norfolk  VA 
Location type  Small town  City  Large city  
Types flood River/storm/ rain River /storm/  

Rain 
Coastal /river 
rain/storm  

Total Population*  3,630 84,554 242,803 
Male * (%) 59.3 45.8 51.8 
Female* (%) 40.7 54.2 48.2 
Median income * ($) 29,063 34,435 44,480 
Poverty rate * (%) 27.8 32.5 21 
Median Age*  (yr) 38.6  26.0 29.7 
Under 14* (%) 12.4 15.9 17.7 
75 above* (%) 8.7 4.3 4.6 
US Citizenship *(%) 97.9 96.8 96.6 
 Non English speaking *(%) 5.83 6.74 10.3 
No of Households*  1,088 36,071 85,485 
Family household* (%) 61.2 46.3 58.7 
Average household size* 2.29 2.18 2.43 
Household with   
individuals above 65* (%) 

34.1 14 20.3 

No of Housing units*  1,193 40,564 95,018 
 housing units occupied* 
(%) 

91.2 88.9 91.0 

Mean property Value ($)*   93,800 147,100 193,400 
** Elevation  (meter )  7.62 17.07 9.14 
    
 



Table 6.  Input scoring and R-FIS resilience index output 
 

Experts 
Scoring  

 
Community  

Model Input Model Output 
Hazard 

Absorbing 
Capacity 

(H) 

Resource 
Availability  

(G) 

Resource 
Utilization 
Processes 

(θ) 
 

 
 

Resilience 
Index 

R 
Linguistic 
Score  

Score   Linguistic 
Score  

Score   Linguistic 
Score  

Score   

Norfolk, VA High 7.0 High 8.0 Good 6.0 0.836 
Greenville, NC High  8.0 Moderate  6.0 Very Good 8.0 0.9 
Windsor, NC  Moderate 4.0 Low 2.0 Very Good  8.0 0.477 
 

 



  

  

 

 

 

 

 

 

Figure 1. Resilience measuring conceptual framework 
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Figure 2: The Disaster Resilience of Place (DROP) model reproduced from Cutter et al, (2008). 

A place-based model for understanding community resilience to natural disasters. This model  

illustrates the interelationship between resilience and recovery within the hazard–resilience  

system.     
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Figure 3: Resilience conceptual model. A geometric model used to derive 
appropriate mathematical relationships of the proposed framework and provide 
some insights 
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Figure 4. Resilience area = 0 when ρ= Sin Θ= 0. A variation of model Figure 3 depicting an 
extreme case of a community with zero efficiency in resource utilization.  
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Θ= Π/2 

Figure 5. Resilience area (ai = hg). A variation of model Figure 3 depicting an extreme 
case of a community with a perfect resource utilization system (efficiency of 1.0) which 
maximizes recovery resources’ g on absorbing capacity h. 
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Figure 6.  Resilience as absorbing capacity approaches zero  
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Figure 7. Resilience fuzzy inference systems 
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Figure 8. Examples of resilience output surface plots.  



 

 

 

 

Figure 9. The study area on map showing Greenville, NC; Windsor, NC and Norfolk VA 
Source: Produced in the GIScience Center, East Carolina University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Rule setting and output for Greenville 
      Active input membership functions       Active output membership function 
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Abstract 7 

Community resilience has become an important policy and research concept for understanding and 8 
addressing the challenges associated with the interplay of climate change, urbanization, population 9 
growth, land use, sustainability, vulnerability and increased frequency of extreme flooding. 10 
Although measuring resilience has been identified as a fundamental step toward its understanding 11 
and effective management, there is, however, lack of an operational measurement framework due 12 
to the difficulty of systematically integrating socio-economic and techno-ecological factors. The 13 
study examines the challenges, constraints and construct ramifications that have complicated the 14 
development of an operational framework for measuring resilience of flood prone communities. 15 
Among others, the study highlights the issues of   proliferation of definitions and conceptual 16 
frameworks of resilience, challenges of data availability, data variability and data compatibility. 17 
Adopting the National Academies’ definition of resilience, a conceptual and mathematical model 18 
was developed using the dimensions, quantities and relationships established by the definition. A 19 
fuzzy logic equivalent of the model was implemented to generate resilience indices for three flood 20 
prone communities in the US. The results indicate that the proposed framework offers a viable 21 
approach for measuring community flood resilience even when there is a limitation on data 22 
availability and compatibility. 23 
 24 
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1.0 Introduction  27 
Developing resilience of communities has become widely recognized as critical for disaster risk 28 

management due to the increased incidents of extreme weather events, such as flooding, which 29 

have disrupted economic activities, caused huge losses, displaced people and threatened the 30 

sustainability of communities across the world (Cai et al., 2018; Cutter 2018; Mallakpour and 31 

Villarini, 2015; Montz, 2009; Oladokun et al., 2017; Su, 2016a; Wing et al., 2018).  Major 32 

international policy instruments such as the United Nations International Strategy for Disaster 33 

Reduction’s (UNISDR) 2015 Strategic Framework and the 2005 Hyogo Framework have 34 

emphasized and adopted resilience principles in disaster risk management (Cai et al., 2018; Cutter 35 

et al., 2016). For instance, the interplay of extreme floods, population growth and rapid 36 

urbanization has increased flood hazard risks such that conventional flood risk management 37 

(FRM) measures of concrete structures, levees, flood walls and other defenses have become 38 

inadequate and unsustainable across various communities (Duy et al., 2018; Guo et al., 2018; 39 

Trogrlić et al., 2018; Wing et al., 2018). Resilience has gained a lot of attention, from both policy 40 

and research perspectives, involving  using it to understand and address the challenges of land use, 41 

vulnerability and sustainability in the context  of flooding (Cohen et al., 2016; Cohen et al., 2017; 42 

Folke, 2006; Parsons et al., 2016; Sharifi, 2016).  Building community resilience has emerged as 43 

particularly relevant in dealing with flooding, which has become the most widespread and 44 

destructive of all natural hazards globally (Jha et al., 2012; Mallakpour and Villarini, 2015; Montz, 45 

2009). 46 

Consequently, there has been a shift from relying solely on large-scale flood defense and structural 47 

systems towards an approach that emphasizes the concept of community resilience as a strategic 48 

component of flood risk management (Hammond et al., 2015; Park et al., 2013). This shift is being 49 

reinforced by a consensus that since floods cannot be all together prevented; FRM must focus more 50 

on building the resilience of flood prone communities (Joseph et al., 2014; Oladokun et al., 2017; 51 

Schelfaut et al., 2011).  52 

There is a consensus that the first and fundamental step toward understanding and operationalizing 53 

resilience for flood disaster and hazard management is to have an acceptable resilience measuring 54 

template  (NRC, 2012). For instance, the ability to understand and objectively evaluate the impact 55 

of FRM programs, interventions and practices on community flood resilience is needed for making 56 



political and business cases for proactive FRM investment from both public and private sectors. 57 

Cutter (2018) suggested that an acceptable template is a basic foundation for monitoring baselines 58 

and progress in building hazard resilience.  59 

Furthermore, a measuring template will be useful as a decision support tool for the efficient 60 

deployment of scarce FRM resources and also provides a basis for monitoring resilience changes 61 

with respect to resource deployment.  For instance, Keating et al. (2017) explained that there is a 62 

need for the continued development of theoretically sound, empirically verified, and applicable 63 

frameworks and tools that help in understanding key components of resilience in order to better 64 

target resilience-enhancing initiatives and evaluate the changes in resilience as a result of different 65 

capacities, actions and hazards.  66 

Therefore, the search for an acceptable framework and empirical model for measuring resilience 67 

remains relevant and continues to attract attention (Cutter et al., 2016; Zou et al., 2018;   Cai et al., 68 

2018; Keating et al., 2017). Some existing measuring approaches, as identified in Cai et al., (2018), 69 

include the Baseline Resilience Indicators for Communities (BRIC), the Resilience Inference 70 

Measurement (RIM) framework, the National Oceanic and Atmospheric Administration (NOAA  71 

2010) Coastal Resilience Index, the PEOPLES Resilience Framework, and the Communities 72 

Advancing Resilience Toolkit (CART). There is also the ‘5C-4R’ Zurich Alliance framework  73 

combining the ‘five capitals’ of the UK’s Department for International Development sustainable 74 

livelihoods framework (Scoones, 1998) and the four properties of a resilient system (Szoenyi, et 75 

al., 2016): the framework incorporates a technical risk grading standard (TRGS) developed by 76 

Zurich risk experts  (Keating et al. 2017).           77 

Despite the attention resilience has gained, the concept remains difficult to operationalize in the 78 

context of community flood risk management due to, among other factors, the difficulty in 79 

measuring resilience (Cutter, 2018; Fisher, 2015). Many experts and authors have noted  the 80 

difficulty in integrating indicators of the natural and human systems as well as socio-environmental 81 

factors into resilience by most of the existing frameworks (Cai et al., 2018; Cutter, 2018; Fuchs 82 

and Thaler, 2018; Qiang and Lam, 2016).  Resilience, as a multifaceted and multidimensional 83 

concept, has developed across multiple disciplines and applications such that resilience discourse 84 

has attracted multidisciplinary interests from both research and policy perspectives.  While the 85 

wide spectrum of multidisciplinary and practice interests characterizing resilience discourse has 86 



increased its understanding and generated insights,  it has also led to the emergence of  multiple  87 

variants of its definiton  as well as the absence of consensus on the conceptual framework for its 88 

measurement (Brown and Williams, 2015; Cohen et al., 2016; Cutter 2018).  For instance, 89 

resilience has been noted to have varied definitions depending on the hazard and disciplinary 90 

contexts, with over 70 definitions identified by Fisher (2015).  91 

The multiplicity of definitions has led to proliferation of conceptual models, frameworks and 92 

interpretations (Costache, 2017), such that there is difficulty in transforming resilience 93 

measurement from an abstract concept into an objective operational quantitative template. 94 

According to Cutter (2018), the difficulties in harmonizing and operationalizing these definitions 95 

have led to the emergence of a wide array of measurement approaches. Meanwhile, a pre-requisite 96 

to having an operational model, in the context of resilience measurement, is the adoption or 97 

convergence of definition by the resilience research and policy community. Such a definition 98 

should meet the following criteria: i) emanates from or receives the formal endorsement of  a 99 

widely recognized institutional platform of stakeholders,  ii) encompasses a wide spectrum of 100 

existing resilience concepts, iii) has some degree of simplicity, and  iv) enjoys high acceptance of 101 

both the research and policy community.  In a widely cited National Research Council report 102 

(NRC, 2012), the US National Academy of Sciences defines resilience as the ability of a system 103 

to prepare and plan for, absorb, recover from, and more successfully adapt to adverse events (Cai 104 

et al., 2018; Cutter, 2018). Therefore, this study has adopted this definition as the basis for the 105 

proposed framework for measuring the resilience of flood prone communities. 106 

From a systems perspective, community-resilience is a non linear collection of socio-ecological, 107 

socio-political, techno-ecological and socio-economic entities, each characterized by dynamic and 108 

complex spatiotemporal interactions.  Essentially, the concept of resilience involves the 109 

interactions of several entities each defined by some social, economic, natural, technical and 110 

environmental dimensions (Cai, et al., 2018; Norris et al., 2008). For instance, the community 111 

component was succinctly described by Cai et al. (2018) as a coupled natural and human system 112 

that manifests various sources of complexity such as nonlinearity, feedback, and uncertainty and 113 

dynamic interactions.    114 

Furthermore, coupled with the challenge of complexity and the dynamic nature of community-115 

resilience modeling is the challenge of data and computational analysis. It has been established 116 



that information and data items characterizing community-resilience system are mostly imprecise, 117 

incomplete, vague, complex, fuzzy and subjective within the context of flood risk management 118 

(Kotze and Reyers, 2016; Oladokun,et al., 2017). These characteristics present some operational 119 

and analytical challenges for any complex model based on traditional crisp mathematics and hard 120 

computational approaches   because of data availability, data variability and data compatibility.  121 

The resilience measuring problem with its interplay of definitional ambiguities, multi-122 

dimensionality, and spatiotemporal dynamics invariably results in complex mathematical models. 123 

Such models, given the level of incompleteness, vagueness, and subjectivity that characterizes the 124 

human and socio-political aspects of resilience, offer little tractability with conventional hard 125 

computational tools and are difficult to operationalize. Hence, Oladokun et al. (2017) suggested 126 

that a resilience measuring model may be more amenable to a soft computing analytical technique 127 

such as fuzzy logic.  128 

1.1 Aim and objectives  129 

Based on the background presented above, this study is aimed at adopting a soft computing 130 

approach, a fuzzy logic computational model, for the proposed flood resilience measuring 131 

template. In particular, the objectives of  the study are  1) the development of a descriptive model 132 

that outlines our abstract interpretation of community resilience as a system, using insights from 133 

relevant literature, interactions with  experts  and observations of selected flood prone 134 

communities, 2) development of an equivalent  mathematical model of the resulting descriptive 135 

model using an appropriate tool to generate further insights, and 3) development of an equivalent 136 

fuzzy inference system suitable for  computational and  analytical purposes in the face of the 137 

aforementioned data  issues.  The next section briefly describes some relevant fuzzy logic concepts.    138 

1.2 An Overview of Fuzzy Logic 139 

Fuzzy set theory provides a mathematical tool for modeling uncertain, imprecise, vague and 140 

subjective data which represents a huge class of data encountered in most real-life situations 141 

(Adnan et al., 2015; Lincy and John, 2016). The fuzzy logic (FL) concept, introduced in 1965 by 142 

Lot A. Zadeh, is an extension of the classical set theory of crisp sets. FL, like humans, 143 

accommodates grey areas where some questions may not have a clear Yes or No answer or black 144 

and white categorization. According to Zadeh (1996), Fuzzy Logic = Computing with Words. FL 145 

mimics human reasoning and capability to summarize data and focus on decision-relevant 146 



information in problems involving incomplete, vague, imprecise or subjective information. It is a 147 

computational concept that allows for modeling of complex systems using a higher level of 148 

abstraction originating from our knowledge and experience. It provides a very powerful tool for 149 

dealing quickly and efficiently with imprecision and nonlinearity (Oladokun and Emmanuel, 150 

2014). This capability to mine expert knowledge and use limited or fuzzy data makes fuzzy 151 

inference systems (FIS) a suitable tool for resilience measurement modeling.  152 

The concept of membership function (MF) is central to FIS. In traditional logic, an element 𝑥𝑥 is 153 

either in or out of crisp set A; in other words, its degree of membership of the set is either zero or 154 

one.   However, in fuzzy logic the element 𝑥𝑥 can be in a fuzzy set B ‘partially’ by using a MF 155 

𝜇𝜇𝐵𝐵(𝑥𝑥) 𝑤𝑤hich can return any real value between 0 and 1. This returned value is the degree of 156 

membership representing the degree to which the element belongs to a fuzzy set. Therefore, in FL, 157 

the truth of any statement becomes a matter of degree. 158 

Thus for crisp set A   𝜇𝜇𝐴𝐴(𝑥𝑥) = �1    𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ 𝐴𝐴 
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 

    159 

On the other hand, for a fuzzy set, the MF may be represented as follows  160 

 𝜇𝜇𝐵𝐵(𝑥𝑥) = �
𝑖𝑖(𝑥𝑥)   𝑖𝑖𝑖𝑖 𝑏𝑏1 ≤ 𝑥𝑥 ≤ 𝑏𝑏2
𝑔𝑔(𝑥𝑥)     𝑖𝑖𝑖𝑖 𝑏𝑏2 < 𝑥𝑥 ≤ 𝑏𝑏3 

0         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 
 161 

Actually, the crisp set is a special case fuzzy set whose MF returns only zero or one. There are 162 

many functions that are used as MFs. Some widely used MFs, Generalized bell shaped, Gaussian 163 

curves, Polynomial curves, Trapezoidal, Triangular and Sigmoid MFs (Oladokun and Emmanuel, 164 

2014; Adnan et al., 2015).  The Mamdani FIS approach (Mamdani and Assilian, 1975), adopted 165 

for this study, is made up of a fuzzy inference engine characterized by the use of carefully selected 166 

MFs and a fuzzy rule base. The rule base is a set of ‘IF THEN’ statements that capture experts’ 167 

knowledge of the logic governing the problem.  The fuzzy inference system will provide a template 168 

for experts and other stakeholders to translate their perceptions of the problem and map their 169 

linguistics rating of these variables   into a resilience index based on the fuzzy relationships we 170 

define.  171 

 172 

2.0 Resilience Measuring:  A Conceptual Framework  173 



2.1 Descriptive model      174 

The design objective is to have a conceptual framework and its associated mathematical model 175 

with sufficient tractability by minimizing the number of model elements and adopting the barest 176 

minimum relationships while maintaining a reasonable level of validity. Therefore, as the 177 

theoretical basis for the proposed conceptual model, as mentioned earlier, we are adopting the 178 

resilience definition put forward by the US National Academies (NRC 2012). Conceptually this 179 

definition implies that a community’s resilience is a quantity that reflects capacities such as: 1) the 180 

community’s coping capacities, in terms of a threshold of hazard it can absorb (Hazard Absorption 181 

Capacity H), 2) its accessible resources (Resource Availability G), and 3) its resource utilization 182 

efficiency determined by factors like its preparedness and its governance processes (Resource 183 

Utilization Processes θ).  These capacities interact to define its ability to prepare for, absorb, 184 

recover from, and more successfully adapt to adverse flooding events. We attempt to conceptualize 185 

this understanding as shown in Figure 1.   186 

Each of the dimensions in Figure 1 is influenced by a number of technical, social, ecological, 187 

economic, and political factors following work that has been reported in the literature which sheds 188 

light on these factors and how they influence the dimensions (see Cohen et al., 2016; Lee et al., 189 

2013; Rose, 2017).  For example, hazard absorbing capacity H is determined by a number of 190 

techno-ecological factors such as adequacy, sophistication and use of infrastructure and 191 

technology as well as redundant capacities. It is also determined by socio-ecological and 192 

socioeconomic factors that influence both individual and institutional coping capacities. Resource 193 

availability is determined by things like community capital, political influence, and economic 194 

activities as well as ecological resources accessible to drive the quality and timeliness of recovery. 195 

Resource utilization processes are determined by the quality of governance and institutions such 196 

as judiciary, police, media, and public service. These processes influence policy formulation and 197 

implementation, the ease of doing business and the efficiency of use of resources. A detailed 198 

structured and operational rendition of the foregoing is presented in sections 2.2 and 3.3. 199 

 200 

   201 

Figure 1 here 202 



Furthermore, in the context of FRM, the framework of Figure 1 recognizes that resilience enhances 203 

recovery or that recovery is an outcome of resilience whereby when a community, as a coupled 204 

system, becomes more resilient its capacity to experience post disaster recovery increases. In other 205 

words, recovery, in terms of time taken to attain post disaster recovery and the degree of recovery 206 

attained, is influenced by its resilience. Invariably the conceptual framework implicitly suggests 207 

that recovery (recovery speed and recovery quality) can surrogate resilience. This is reasonable 208 

because post disaster recovery is driven by resilience factors such as preparedness, and coping 209 

capacity, among others. This understanding is supported by the DROP disaster resilience model 210 

of place (DROP) as illustrated in Cutter et al. (2008), reproduced in Figure 2. 211 

  Figure 2 here 212 

2.2 Mathematical model  213 

The next stage is to transform the conceptual framework of Figure 1 into an operational 214 

mathematical model. This is accomplished by defining a geometric model of the framework as 215 

shown in Figure 3. This model is then used to derive appropriate mathematical relationships for 216 

resilience measurement and provide some insights. 217 

2.2.1 Notations, definitions and terms 218 
We adopt the following notations, definitions and terms   to explain the components of Figure 3 in 219 
the context of flood hazard.     220 

i. Hazard Absorbing Capacity (H): (H=h: 0≤ h ≤1.0). The resilience of a community 221 

depends on the level of the flood hazard the community systems can absorb before 222 

totally collapsing or undergoing irreversible disintegration. H=1 is the highest 223 

absorbing capacity whereby the community can absorb and survive the damages and 224 

disturbance (both structural and non structural) of the most severe category of flooding 225 

conceivable. This captures various resilience factors such as coping capacity, 226 

redundancy, preparedness, sense of place attachment and other capacities as explained 227 

in Table 1.    228 

ii. Resource Availability (G).  This is the quantum of resources available to plan and 229 

pursue recovery as well as achieve recovery quality level Q (including adaptive 230 

recovery). Note that G=g (0≤ g ≤1.0) captures both economic and community capital. 231 

It is the measure of resources the community is able to attract as a result of its overall 232 



economic and political influence, its natural assets, and human capital assets (see Table 233 

1 for further details).    234 

iii. Resource Utilization Processes (θ):  With 0≤θ≤ Π/2, we define ρ (ρ = Sin θ) as system 235 

efficiency. This is a resilience component that affects recovery and revolves around 236 

factors such as preparedness, community governance, institutional systems and 237 

processes. It determines the efficiency and effectiveness of the use of resources to 238 

achieve   recovery and establish adaptive capacity. In other words, how well resources 239 

are used is as important as how much of a set of resources is used in building resilience. 240 

It measures the probity, level of accountability, level of waste, corruption, red-tapism, 241 

and bureaucracies within the system. A community with strong institutions such as a 242 

functioning judiciary and an efficient civil service, for instance, will tend to return high 243 

ρ. So an ideal or utopian community will have its G deployed at θ= Π/2, such that  ρ = 244 

Sin (θ) = Sin (Π/2)=1.  245 

iv. Recovery Quality Level (Q).  This represents the outcome of post hazard conditions in 246 

terms of restoration quality and socio-ecological functionality, among others.   247 

The following definitions apply with reference to Figure 3 248 

v. ai :  Resilience reservoir of a real system i is defined as the  area of trapezium ABFE’  249 

determined by  the hazard absorbing capacity,  at H= h, of the system, the available 250 

quantum of resources (G =g), the quality of governance processes and resource 251 

utilization systems (Sin θ) and the achievable  recovery quality (Q =q) 252 

vi. au : The resilience reservoir of an utopian (ideal)  system is defined as the area of square 253 

ACDE. This occurs at ideal FRM conditions: that is, a community system with 254 

adequate resources, perfect governance and processes with zero waste of resources and 255 

infinite hazard coping threshold when h= AE (or at maximum absorbing capacity), 256 

g=ED (maximum resource adequacy) and θ = Π/2 (perfect or utopian system with 257 

100% efficiency or Sin θ=1.0). The utopian system can achieve a perfect recovery 258 

index Q= q= 1.0 or Q=AC   259 

Extensive review of the literature was carried out to provide an informed basis for mapping 260 

FRM factors and inputs to the dimensions of resilience.  This is summarized as shown in Table 261 



1. Theoretically, the values of the dimensions H, G, θ can be estimated from adequate data on 262 

these input factors and appropriate functions.   263 

Table 1 here  264 

Figure 3 here 265 

2.2.2 Resilience modeling 266 

The utopian resilience reservoir is the benchmark for evaluating resilience such that actual 267 

resilience Ri can be defined as the ratio of ai to au as indicated in equation 1. 268 

𝑅𝑅𝑖𝑖 = 𝑎𝑎𝑖𝑖
𝑎𝑎𝑢𝑢

                  (1) 269 

Using the insights from Figure 1, we attempt to develop the mathematical model implied in 270 

equation 1 (note R is dimensionless since both ai and au are areas).  271 

𝑎𝑎𝑖𝑖 = 1
2

{𝐴𝐴𝐸𝐸′ + 𝐵𝐵𝐵𝐵}𝐴𝐴𝐵𝐵                (2) 272 

𝑎𝑎𝑢𝑢 = 𝐴𝐴𝐸𝐸 × 𝐸𝐸𝐸𝐸   273 

𝑎𝑎𝑢𝑢 = 𝐻𝐻 ∙ 𝐺𝐺                                 (3) 274 

Note:   𝐴𝐴𝐸𝐸′ ≡ ℎ                         (4) 275 

𝐵𝐵𝐵𝐵 = 𝐴𝐴𝐸𝐸′ − 𝐵𝐵′𝐸𝐸′ = ℎ − 𝑔𝑔𝑔𝑔𝑜𝑜𝑒𝑒𝑔𝑔                     (5) 276 

𝐴𝐴𝐵𝐵 = 𝐵𝐵′𝐵𝐵 = 𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔                                         (6) 277 

Putting 4, 5, 6 into 2  278 

⇒  𝑎𝑎𝑖𝑖 =
1
2

{ℎ + (ℎ − 𝑔𝑔𝑔𝑔𝑜𝑜𝑒𝑒𝑔𝑔)}𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 279 

𝑎𝑎𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑜𝑜𝑒𝑒𝑔𝑔   280 

𝑎𝑎𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 ± √1 − 𝑔𝑔𝑖𝑖𝑔𝑔2𝑔𝑔   281 

Recall we define ‘Efficiency of resource utilization system’ as ρ =Sinθ 282 

∴ 𝑎𝑎𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔�(1 − 𝑔𝑔2)                             (7) 283 

Putting 3 and 7 into 1  284 



𝑅𝑅𝑖𝑖 =
ℎ𝑔𝑔𝑔𝑔 − 1

2
𝑔𝑔2𝑔𝑔�(1 − 𝑔𝑔2)
𝐻𝐻𝐺𝐺

−                                (8) 285 

Without loss of generality, h and g are treated as indices such that    286 

0 ≤ ℎ ≤ 1   𝑎𝑎𝑔𝑔𝑎𝑎 0 ≤ 𝑔𝑔 ≤ 1    287 

Then H=G=1 in equation 8 which implies  288 

𝑅𝑅𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔 − 1
2
𝑔𝑔2𝑔𝑔�(1 − 𝑔𝑔2)                   (9)  289 

Equation 9 is a valid expression for resilience.  290 

That is, 𝑅𝑅𝑖𝑖 = 𝑖𝑖(ℎ,𝑔𝑔,𝑔𝑔),  291 

Where h, g and h are as explained in section 2.2.1 and their values are decided by experts and/or 292 

stakeholders, varying depending upon the location and scale of application of the model. 293 

2.2.3 Some insights from model using some extreme values 294 
 295 
This section discusses some example cases of the model (equation 9) output using selected 296 

hypothetical extreme parameters’ values  to generate further insights into model structure (with 297 

reference to Figure 1). The ‘extreme’ scenarios analysis is used to demonstrate how each of the 298 

three  dimensions impacts R.   299 

Case 1:  As   𝝆𝝆 → 𝟎𝟎       𝑹𝑹 → 𝟎𝟎 300 

In fact, R= 0 when 𝑔𝑔 = 0. This may be interpreted as the case when the resource utilization 301 

processes have zero efficiency (see Figure 4) or a collapsed governance system such as when a 302 

flood disaster occurs in a community ravaged by civil war with breakdown of law and order. In 303 

such situations, community resilience is nil as all resources put into recovery will be ‘wasted,’ 304 

irrespective of the level of coping or infrastructure previously in place.  305 

 306 

Figure 4 here 307 

 308 

Case 2: As   𝝆𝝆 → 𝟏𝟏     𝑹𝑹 → 𝒉𝒉𝒉𝒉    309 

This implies that θ=Π/2 or Sinθ=1 which depicts an ideal situation when the communal processes, 310 

FRM resource administration, and utilization systems are highly efficient and near perfect.  Under 311 



this scenario, the resources g and community’s coping capacities contribute maximally to 312 

resilience (see Figure 5).  313 

 314 

Figure 5 here 315 

Case 3: 𝒉𝒉 → 𝟎𝟎         𝑹𝑹𝒊𝒊 → 𝟎𝟎      Resilience disappears when resources dry up.  316 

 317 

Case 4: h= 𝟏𝟏    Resilience is determined by resource availability and utilization  318 

 319 

Case 5:   As   𝒉𝒉 → 𝟎𝟎       𝑹𝑹 → 𝟎𝟎−      320 

From Figure 6, resilience approaches zero from negative reservoir quadrant when h=0 (i.e. coping 321 

and absorbing capacities disappear or collapse) and 𝑔𝑔 < 1 (efficiencies of resource use, 322 

preparedness, and governance systems fall below 1). The ‘Negative’ resilience reservoir quadrant 323 

characterizes vulnerable communities. Note that vulnerability is sometimes seen as the flip side of 324 

resilience (Folke et al., 2002) or a complementary community-hazard management concept 325 

(Cutter, 2018; Fekete and Montz, 2018; Shah et al., 2018). Hence from figure 6 as the 326 

absorbing/coping capacity h approaches zero, a community enters vulnerability mode because 327 

more resilience area lies below the positive plane. In other words, equation 9 suggests that a 328 

community without coping or built in absorbing capacities is vulnerable, especially if its 329 

governance structure is poor (i.e. Sinθ → 0). 330 

 331 

Figure 6 here 332 

 333 
3.0 Resilience fuzzy inference system (R-FIS):  Computer model  334 
While the resulting model of equation 9 provides useful insights, its application however is    335 

premised on the availability of clear information on input factors and adequate data for estimating 336 

model parameters, That is, complete data as described in section 2.2 and Table 1, for estimating 337 

dimensions H, G and θ.  However, there are issues of data availability and data compatibility 338 

(Parsons et al., 2016) which make it inefficient to do crisp estimation of these parameters. 339 

Therefore, to operationalize the proposed framework, a (FIS) equivalent has been developed.  340 



A computer model of the proposed R-FIS (Figure 7) was designed in the Matlab fuzzy logic 341 

development environment. The environment was adopted because it supports easy to use graphical 342 

user interface (GUI) tools and has multiple MFs for implementing a FIS. A process consisting of 343 

systematic review of the literature, interactions with experts, meetings with community leaders, 344 

interviews of other stakeholders and field observations (described in more detail in Section 4.1) 345 

was used to gain insights for specifying the R-FIS’s design and inference engine’s elements (Table 346 

2) as well as determine appropriate IF THEN statements for the rule base (Table 3). With three 347 

input linguistic variables, each with three term sets (or possible values), there can be up to 27 348 

explicit input variable combinations, or 27 explicit fuzzy rules combinations.  Table 3 is a sample 349 

extract from the 27 ‘IF THEN’ statements of the rule base.   350 

 351 
Figure 7 here 352 

Table 2 here  353 
 354 
 355 
 356 
 357 
 358 
Table 3 here  359 

Figure 8 shows the 3D surface plot resulting from an infinite combination of input factors.  The 360 

shape of the resilience surface is determined by the rules (Table 3) and the selected membership 361 

functions (Table 2) used to express the term sets. This shape can be varied by modifying the 362 

membership functions, the term sets, the rules and their weights to reflect new realities and 363 

understandings about the resilience systems. This gives flexibility to simulate various 364 

combinations of parameters in order to arrive at an optimum design.  365 

 366 

 367 

Figure 8 here 368 

 369 

3.2. Model expert scoring framework   370 

 371 



Although information and explanations in Table 1, in principle, give a general guide for evaluating 372 

and quantifying these dimensional inputs of the resilience model, there is still the need for an easy 373 

to use operational template for capturing experts’ input into the FIS in relatively standardized 374 

fashion. Table 4 is an example of such an input template designed for this study. A typical 375 

application procedure is described in section 4.1 with the case study communities. 376 

 377 
 Table 4 here 378 
  379 

4.0 Model Application: Study location  380 

The following describes the application of the model using three flood prone communities in the 381 

United State (U.S.). Following decades of experience in dealing with hazards and disasters, cities 382 

and institutions in the U.S. offer considerable information and insights in community resilience 383 

systems management (Su, 2016b). Two coastal states of North Carolina and Virginia are home to 384 

many flood prone communities of various sizes with diverse socio-economic and techno-385 

ecological characteristics that readily lend themselves to a study of resilience. Both states have 386 

adopted a number of FRM programs, policies, and strategies for building flood resilience across 387 

many rural and urban communities (North Carolina Floodplain Mapping Program, 2019; 388 

Mogollón et al., 2016). Specifically, Norfolk, VA a coastal city in Virginia with a massive naval 389 

base, Greenville, NC, a large university town, and Windsor, NC a small riverine rural town were 390 

selected (Figure 9).  Table 5 summarizes some vital socio- economic features of these 391 

communities. 392 

Figure 9 here 393 

 394 

Norfolk, located on the Chesapeake Bay and near several rivers, experiences precipitation 395 

flooding, when the intensity of rainfall exceeds stormwater drainage capacity, storm flooding from 396 

hurricanes and nor’easters, and tidal flooding due to its elevation and coastal location. Greenville, 397 

with relatively flat topography is located on the Tar River and is traversed by a number of small 398 

streams (Pitt County Development Commission, 2019). Besides riverine flooding, the relatively 399 

flat topography of its coastal plain location leads to flooding from intense or long-lasting rain 400 

events such that the stormwater system is incapable of handling the overland flow. Located on the 401 

https://flood.nc.gov/ncflood/ncfip.html
http://locateincarolina.com/geography-climate/#Topography


meandering Cashie River in eastern North Carolina, Windsor has experienced four major floods 402 

since 1999, all from tropical storms. Thus, not only are the communities different demographically, 403 

but they have rather different flood regimes and histories, with Windsor and Greenville 404 

experiencing riverine flooding, though with very different patterns of damage, and Norfolk 405 

experiencing a combination of coastal and riverine flooding. 406 

 407 
Table 5 here  408 

4.1 Model application: data gathering and results  409 

For the purpose of illustration, input scores were developed using the template shown in Table 4 410 

along with the guidelines in Table 1 and the communities’ information, summarized in Table 5. 411 

The sample input data were generated based on the outcome of field studies and reflective 412 

interactions with experts and stakeholders familiar with the study locations; these stakeholders 413 

include academics, government officials and community leaders. In particular the sample scoring 414 

was based on the insights derived from our understanding of their opinions, as well as demographic 415 

and socio-economic information extracted from various historical and government records, 416 

including the US census (Pitt County Development Commission, 2019; North Carolina Floodplain 417 

Mapping Program, 2019; Mogollón et al., 2016). For instance, during a 2018 workshop by the 418 

North Carolina Chapter of the American Planning Association held at Windsor, NC, the authors 419 

had the opportunity to interact with and mine the knowledge of academics, students, city managers, 420 

community leaders, relevant officials from emergency agencies, and curators of landmark centers, 421 

among others. The authors also took tours of Norfolk, VA and Greenville, NC, under the guidance 422 

of academics, GIS and FRM experts from the cities’ universities.  These interactions and the 423 

associated field studies provided insights for generating the sample scoring; the studies involved 424 

interviews and qualitative assessment from site observations of community flood control projects 425 

and individual property FRM retrofit systems. As an example, the perceptions of resident planning 426 

experts and other stakeholders on how some ongoing flood risk management interventions would 427 

have impacted the capacity of the community to cope with varying flood levels was useful in 428 

classifying Hazard Absorbing Capacity, as was the extent and type of flood control and retrofit 429 

projects.        430 

http://locateincarolina.com/geography-climate/#Topography
https://flood.nc.gov/ncflood/ncfip.html
https://flood.nc.gov/ncflood/ncfip.html


Table 6 shows the results. Norfolk and Greenville both have relatively high hazard absorbing 431 

capacities, with Norfolk rated as slightly lower owing to problems associated with the disruption 432 

that regularly occurs from overland flooding combined with tidal flooding. Windsor’s is lower 433 

than Norfolk and Greenville but still moderate because of how the community has adapted to its 434 

flood risk. Not surprisingly, Norfolk has the highest resource availability and Windsor the lowest 435 

based on their size and relative wealth. At the same time, for the illustrative purposes here, size 436 

and diversity of the communities are seen to be inversely related to resource utilization processes. 437 

The model output, Resilience Index R, indicates that, based on the input values, Grenville’s 438 

resilience is slightly greater than Norfolk’s while, not surprisingly, Windsor lags rather far behind.  439 

  440 

 441 
 442 
 443 
 444 
 445 
 446 
Table 6 here  447 

The input to output mapping implemented in Matlab fuzzy toolbox allows for infinite 448 

combinations of input factors either by sliding or inputting the respective input variable axis on 449 

the fuzzy rule interface. Figure 10 is a snapshot of the input combinations for Greenville, using the 450 

scores from Table 6. The vertical bar (red line on each) can be moved to indicate how resilience 451 

changes with a change in one or another (or all) of the three variables. The yellow shapes indicate 452 

the rules (see the subset in Table 2) that contribute to each variable’s score. All of the output, in 453 

both Table 6 and Figure 8, is based on expert insights and understandings and thus provides a 454 

dynamic template to measure resilience under different conditions. The proposed framework 455 

accommodates the understanding that community resilience should be treated as a multifaceted 456 

and multidimensional construct that can only be achieved by focusing on all aspects of a 457 

community system. While the fuzzy implementation of the  framework can be used both as a 458 

resilience index tool and  a resilience classification scheme, it is however, like many existing 459 

resilience measuring models, still dependent on the subjective opinions of experts and other 460 

stakeholders.  461 



Figure 10 here  462 

5.0 Discussion and Conclusions  463 

Many previous studies have identified  the multiplicity of definitions as one of the major 464 

difficulties in transforming resilience measurement from an abstract concept into an objective 465 

operational framework (Costache, 2017; Fisher, 2015; Oladokun et al., 2017). This study proposes 466 

three criteria for adopting a suitable definitional basis for a framework conceptualization. These 467 

criteria which address issues such as the need to achieve model simplicity and accommodate the 468 

multidimensional nature of resilience (Brown and Williams, 2015; Cohen et al., 2016; Cutter 2018) 469 

were used to recommend the National Academies’ definition of resilience (NRC, 2012) as a robust 470 

and viable basis for developing a measurement model.   471 

Similarly, many scholars have highlighted dealing with the complexity involved in the integration 472 

of indicators of natural and human systems into a community resilience model (Cai et al., 2018; 473 

Cutter, 2018; Fuchs and Thaler, 2018; Qiang and Lam, 2016) as a key to transforming resilience 474 

measurement from an abstract concept into an objective operational framework. To that end, we 475 

adopt a three-component system in a way that reflects key relationships among technical, social, 476 

ecological, economic, and political factors that have been reported in literature (Cohen et al., 2016; 477 

Lee et al., 2013; Rose, 2017) as key to the multidimensional treatment of resilience.  478 

Transforming the conceptual model into a quantitative template requires some sound theoretically 479 

basis, a condition noted in Keating et al., (2017) as a prequisite for developing an acepatable 480 

framework.  Hence this study recognizes that such a framework must show clear logical 481 

relationships among the various indicators and dimensions of resilience and provide logical 482 

linkages between their abstraction and empirical requirements. The geometric based mathematical 483 

modeling approach we have adopted shows these relationships and provides the linkage between 484 

conceptual model and operational requirements.  Based on this, mathematical functions were 485 

developed to establish logical relationships among key socio-technical parameters and quantities 486 

that characterize the community resilience system, thus infusing a theoretical basis into the 487 

framework. To enhance the integration of both technical and non-technical communal resiliency 488 

factors and reduce model complexity, the conceptual framework was defined using a minimum 489 

number of integrated components and interactions. This approach allows the adoption of a soft 490 

computing tool for model analysis.  While the study developed a template for data collection and 491 



illustrated its application, the template still relies on subjective opinions of experts which may be 492 

seen as a drawback of the model. Hence further research is suggested to explore the automation 493 

and standardization of the R-FIS input process by integrating with web based socio-economic and 494 

ecological rankings or indices of communities. Yet, from computational and operational 495 

perspectives, the adoption of a fuzzy inference system as an analytical tool is presented as a viable 496 

approach for harnessing the opinions and experiences of experts and residents. 497 

In conclusion, this study which is centered on the need for an acceptable template to measure flood 498 

resilience examines the challenges, conceptual constraints and construct ramifications that have 499 

complicated the development of an operational framework for measuring the resilience of 500 

communities prone to flood hazard. Although the proliferation of conceptual models and 501 

frameworks for understanding resilience has indeed posed some challenges for development of an 502 

acceptable scenario-based measurement framework, there has been evidence of rich 503 

multidisciplinary insights resulting from the continuously evolving collaborative platforms for 504 

driving resilience research, policy and discourse. Non-linearity, multiple feedbacks and other 505 

sources of complexity constitute major challenges to achieving operational practicality and model 506 

tractability while maintaining reasonable validity. There has also been the challenge of 507 

compatibility between the natural and human variables due to the well recognized complexity 508 

inherent in community resilience. In terms of insights, the models from this study provide some 509 

explanations into the relationships existing among resilience factors and dimensions. For instance, 510 

the importance of good community governance, processes and resource utilization systems 511 

becomes obvious in the various scenario analyses. Furthermore, the model was able to document 512 

the relative impact of variables that contribute to or detract from resilience. Although only sample 513 

values were used, the model application was able to illustrate the relative impacts that varying 514 

levels of institutional strength and resource availability, for example, have on progress toward 515 

resilience at a place.     516 

Hence, the R-FIS provides a pathway for dealing with challenges of data issues such as missing 517 

data, spatiotemporal variations, and the use of subjective information because the critical input 518 

variables are locally and/or contextually defined. Thus, the proposed framework offers a viable 519 

approach for measuring flood resilience even when there are limitations of data availability and 520 

compatibility.  521 
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Table 1 .  Resilience dimensions and descriptions of input factors influencing their states   
Resilience 
Dimensions  

 Resilience input factors  

1. 
Hazard 
Absorbing 
capacity 
H 
  

1. Level of infrastructure in terms of sophistication and adequacy. Effectiveness of FRM 
measures such as flood and shoreline defenses, forecast and warning system,    

2. Redundant capacities. Evidence of alternatives in critical utilities, evacuation routes, 
communication and energy infrastructures, hospitals, police posts, supermarkets.   

3. Evidence of redundant housing capacity. 
4. Ecological defenses and buffer.  Evidence of complementary use of nature to improve 

threshold, e.g. using landscaping and topography, natural drainage and canals, 
vegetation cover, rain/storm water harvesting, permeable pavements, etc. 

5. Residents coping capacity.  Evidence of large portion of populace with previous flood 
experience, awareness, cohesion and place attachment  

6. Evidence of stable or growing population in spite of past events. 
7. Educational and literary level of populace   
8. Evidence of social and communal clusters to enhance coping through support, meaning, 

avoidance etc., e.g. church, local sport team, ethnic clusters.   
9. Presence of critical and strategic institutions of national importance, e.g.  university, 

military base, major ports, etc.  
10. Evidence of technology driven information dissemination, e.g. social media, sms  

(Ashraf and Routray, 2013; Cohen et al., 2017; Esteban et al., 2013; Ibanez et al., 2004; 
Lee et al., 2013; Mavhura et al., 2013)  

2. 
Resource  
Availability  
G 

1. Evidence of budgetary provision for, or commitment to, flood risk management. 
2. Evidence of thriving economic activities in the community, e.g. size of local GDP 
3. Evidence of economic strength of residents, e.g. per capita income, income level, 

housing value, savings, cooperative societies, etc.   
4. Evidence of political, institutional and economic influence that can attract grants and 

funds from national or regional sources, e.g. population  
5. Evidence of adoption of flood insurance plans.  
6. Availability of land for relocation development beyond or outside the flood plains.      
7. Evidence of community capital and community natural assets accessible for 

reconstruction, e.g. forest resources, granite and quarry deposits.  
8. Economic status of the ‘parent’ entity, e.g. the state’s or country’s GDP     

(Filion and Sands, 2016; Rose, 2017; Swalheim and Dodman, 2008; Thomas and Mora, 
2014)  

3. 
Community 
Processes 
and  
Resource 
Utilization  
θ   

1. Evidence of good governance 
2. Level of ease of doing business 
3. Evidence of strong institutions such as judiciary, police, media, and public service 
4. Evidence of culture of law and order.  
5. Ranking of internationally recognized bodies like Transparency International, World 

Bank, UN, CIA, etc. on the above     
(Begg et al., 2015; Brown and Williams, 2015; Cohen et al., 2016; Rose, 2017; 
Tompkins et al., 2004) 

 

 



 
Table 2.  Fuzzy inference linguistic variables term set and membership functions  
(Adnan et al., 2015; Oladokun and Emmanuel, 2014) 
Linguistic Variables Term sets   Membership function  
Hazard Absorbing 
Capacity H 
Input 1 

Low PiMfunction  
High   GbellMf  
Very High  SMfunction  

Resource 
Availability G. 
Input 2 

Very Low   ZMfunction 
Low  GaussianMfunction  
High  SigMfunction 

Resource Utilization 
Processes θ. 
Input 3 

Poor PiMfunction  
Good  GaussianMfunction 
Excellent  PiMfunction 

 
Resilience Ri 
Output  

Very Low Zmfunction 
Low  Gauss2Mfunction 
Moderate  GbellMfunction 
High  PiMfunction 
Very High  PiMfunction 

 
 



Table 3 Sample rules of the R-FIS 27 Rule Base (Rules and weights to be determined by 
experts and/or stakeholders)   
 Rules premise Rules Consequence  Weight 

If (H is Low) & (G is Very Low ) & (θ is Poor) THEN  
If (H is Low) & (G is Low) & (θ is Excellent ) THEN   
If (H is Low) & (G is High) & (θ is Excellent) THEN   
If (H is High) & (G is High) & (θ is Excellent) THEN  
If (H is Very High) & (G is Very  Low) & (θ is Good) THEN   
If (H is Very High) & (G is High) & (θ is Good) THEN   
If (H is Very High) & (G is High) & (θ is Excellent ) THEN 

(Resilience is very low)  
(Resilience is Low)  
 (Resilience is Moderate) 
(Resilience is Moderate)  
 (Resilience is High)  
 (Resilience is High)  
(Resilience is Very High)   

1 
0.8 
0.8 
1 
0.7 
1 
1 

 

 



Table 4.  Linguistic variables input template (to be used with Table 1 as a scoring guide)   

Linguistic Variables 
Dimension  

Tick the grey box next to 
your linguistic  rating    

Tick the grey box that best reflects 
your score of your linguistic rating    

 Hazard Absorbing 
Capacity  
(H) 

Low  1  2  3   
Moderate     4  5  6   
High  7  8     
Very High   9  10     

 

Resource 
Availability  
(G) 

Low    1  2  3   
Moderate  4  5  6   
High  7  8     
Very High   9  10     

 
Resource 
Utilization 
Processes 
(θ) 
 

Poor  1  2  3   
Good   4  5  6   
Very Good  7  8     
Excellent   9  10     

Location/city     
Date of assessment  
Assessors’ name    
 



Table 5 Study locations- demographic and topographic summary (Source:  http://census.gov 
and United States Geological Survey Topographic Maps)  
 Windsor NC Greenville  NC Norfolk  VA 
Location type  Small town  City  Large city  
Types flood River/storm/ rain River /storm/  

Rain 
Coastal /river 
rain/storm  

Total Population*  3,630 84,554 242,803 
Male * (%) 59.3 45.8 51.8 
Female* (%) 40.7 54.2 48.2 
Median income * ($) 29,063 34,435 44,480 
Poverty rate * (%) 27.8 32.5 21 
Median Age*  (yr) 38.6  26.0 29.7 
Under 14* (%) 12.4 15.9 17.7 
75 above* (%) 8.7 4.3 4.6 
US Citizenship *(%) 97.9 96.8 96.6 
 Non English speaking *(%) 5.83 6.74 10.3 
No of Households*  1,088 36,071 85,485 
Family household* (%) 61.2 46.3 58.7 
Average household size* 2.29 2.18 2.43 
Household with   
individuals above 65* (%) 

34.1 14 20.3 

No of Housing units*  1,193 40,564 95,018 
 housing units occupied* 
(%) 

91.2 88.9 91.0 

Mean property Value ($)*   93,800 147,100 193,400 
** Elevation  (meter )  7.62 17.07 9.14 
    
 



Table 6.  Input scoring and R-FIS resilience index output 
 

Experts 
Scoring  

 
Community  

Model Input Model Output 
Hazard 

Absorbing 
Capacity 

(H) 

Resource 
Availability  

(G) 

Resource 
Utilization 
Processes 

(θ) 
 

 
 

Resilience 
Index 

R 
Linguistic 
Score  

Score   Linguistic 
Score  

Score   Linguistic 
Score  

Score   

Norfolk, VA High 7.0 High 8.0 Good 6.0 0.836 
Greenville, NC High  8.0 Moderate  6.0 Very Good 8.0 0.9 
Windsor, NC  Moderate 4.0 Low 2.0 Very Good  8.0 0.477 
 

 



  

  

 

 

 

 

 

 

Figure 1. Resilience measuring conceptual framework 
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Figure 2. The Disaster Resilience of Place (DROP) model reproduced from Cutter et al, (2008). 
A place-based model for understanding community resilience to natural disasters. This model  
illustrates the interelationship between resilience and recovery within the hazard–resilience  
system.     
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Figure 3: Resilience conceptual model. A geometric model used to derive 
appropriate mathematical relationships of the proposed framework and provide 
some insights 
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Figure 4. Resilience area = 0 when ρ= Sin Θ= 0. A variation of model Figure 3 depicting an 
extreme case of a community with zero efficiency in resource utilization.  
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g 

Θ= Π/2 

Figure 5. Resilience area (ai = hg). A variation of model Figure 3 depicting an extreme 
case of a community with a perfect resource utilization system (efficiency of 1.0) which 
maximizes recovery resources’ g on absorbing capacity h. 
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𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖+ + 𝑎𝑎𝑖𝑖− 
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Figure 6.  Resilience as absorbing capacity approaches zero  
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Figure 7. Resilience fuzzy inference systems 
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Figure 8. Examples of resilience output surface plots.  



 

 

 

 

Figure 9. The study area on map showing Greenville, NC; Windsor, NC and Norfolk VA 
Source: Produced in the GIScience Center, East Carolina University 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Rule setting and output for Greenville 
      Active input membership functions       Active output membership function 
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