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Abstract: Research in the field of earthquake prediction has a long history, but the inadequacies of 

traditional approaches to the study of seismic threats have become increasingly evident. Remote 

sensing and earth observation technology, an emerging method that can rapidly capture information 

concerning anomalies associated with seismic activity across a wide geographic area, has for some 10 

time been believed to be the key to overcoming the bottleneck in earthquake prediction studies. 

However, a multi-parametric method appears to be the most promising approach for increasing the 

reliability and precision of short-term seismic hazard forecasting, and thermal infrared (TIR) 

anomalies are important earthquake precursors. While several studies have investigated the 

correlation among TIR anomalies identified by the robust satellite techniques (RST) methodology 15 

and single earthquakes, few studies have extracted TIR anomalies over a long period within a large 

study area. Moreover, statistical analyses are required to determine whether TIR anomalies are 

precursors to earthquakes. In this paper, RST data analysis and the Robust Estimator of TIR 

Anomalies (RETIRA) index were used to extract the TIR anomalies from 2002 to 2018 in the 

Sichuan region using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 20 

temperature (LST) data, while the earthquake catalog was used to ascertain the correlation between 

TIR anomalies and earthquake occurrences. Most TIR anomalies corresponded to earthquakes, and 

statistical methods were used to verify the correlation between the extracted TIR anomalies and 

earthquakes. This is the first time that the ability to predict earthquakes has been evaluated based on 

the positive predictive value (PPV), false discovery rate (FDR), true-positive rate (TPR) and false-25 

negative rate (FNR). The statistical results indicate that the prediction potential of RST with use of 

MODIS is limited with regard to the Sichuan region.  

 

Key Words: Thermal infrared anomalies, land surface temperature, MODIS, earthquake 



2 
 

 

1. Introduction 

Changes in the surface temperature of the earth’s crust prior to the occurrence of earthquakes 

have been attested to by numerous observations (Tronin et al., 2002). Thermal infrared (TIR) remote 

sensing has recently emerged as a promising technique for detecting seismic precursors. Anomalous 5 

TIR emissions have been detected by satellite sensors prior to the occurrence of major earthquakes 

(Piroddi et al., 2014). Several studies have detected space-time anomalies in TIR satellite imagery, 

ranging from weeks to days both before and after earthquakes (Wang, 1984; Gorny et al., 1988; 

Qiang et al., 1991; Tronin, 1996; Tramutoli et al., 2001; Ouzounov and Freund, 2004; Tramutoli et 

al., 2015). The investigation of TIR signals as seismic precursors has gained traction worldwide, 10 

particularly in Russia, China, India, the United States, and Italy, while Saraf et al. observed similar 

short-term anomalies in the epicentral regions of earthquakes in India, Algeria, Iran, China, Pakistan 

and Indonesia using National Oceanic and Atmospheric Administration Advanced Very High 

Resolution Radiometer (NOAA-AVHRR), Terra/Aqua-Moderate Resolution Imaging 

Spectroradiometer (MODIS) and passive microwave Defense Meteorological Satellite Program 15 

Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data, applying the term ‘transient TIR 

anomalies (Saraf et al., 2009).  

There are few analytical techniques that can isolate residual TIR variations potentially 

associated with earthquake occurrence from TIR signals of normal variability attributable to other 

causes (Tramutoli et al., 2005). However, in over 10 years (since 2001) of applying the general 20 

robust satellite techniques (RST) (Tramutoli, 1998; Valerio, 2005; Tramutoli, 2007) methodology to 

the investigation of this issue, the potential of this approach for discriminating anomalous TIR 

signals potentially associated with seismic activity from normal fluctuations in Earth’s thermal 

emissions related to other causes (e.g., meteorological), independent of seismic activity, has been 

verified (Eleftheriou et al., 2016). RST is based on the Robust AVHRR Technique (RAT), which 25 

was developed for environmental monitoring using NOAA/AVHRR observations (Tramutoli, 1998). 

Since that time, most reported applications of RAT have demonstrated the technique’s reliability 

and exportability for different satellite sensors and geographic areas, and RAT has evolved into RST 

(Tramutoli, 2007). RST comprises two main steps: the first is characterization of behavior under 

normal conditions; and the second is establishment of the change-detection criteria that should be 30 



3 
 

specified for each class of phenomenon considered, and for the selected technology and the time 

and place of the observation (Tramutoli, 2007). 

Several studies have used RST to extract and analyze the space-time distribution of TIR 

anomalies (henceforth, all TIR anomalies mentioned were extracted using RST) relating to different 

earthquakes. Using MODIS land surface temperature (LST) data, Pergola et al. studied the 6 April 5 

2009 Abruzzo earthquake and found that spatially extended and time-persistent TIR anomalies 

(Robust Estimator of TIR Anomalies [RETIRA] > 3) occurred with some degree of space-time 

correlation with earthquakes of various magnitudes that had occurred in Italy during the period 

under consideration (15 March–15 April), and from 7 days prior to the main shock in Abruzzo 

(Pergola et al., 2010). Meanwhile, Bellaoui et al. studied the 21 May 2003 Boumerdes earthquake 10 

and detected a TIR anomaly that had persisted for 1 week during the preceding month (Bellaoui et 

al., 2017). Several studies have also used data from other satellites: Aliano et al. used 8 years’ worth 

of Meteosat TIR observations to analyze the 21 May 2003 Boumerdes/Thenia (Algeria) earthquake 

and found that the area of interest was affected by significant positive thermal anomalies (S/N > 

2.5–3) around 1 month before the main shock (Aliano et al., 2007), while Lisi et al. studied the 6 15 

April 2009 Abruzzo earthquake using NOAA/AVHRR TIR observations and identified TIR 

anomalies that had some degree of space-time correlation with the Abruzzo earthquake’s epicenter 

between 30 March and 1 April (Lisi et al., 2010). Genzano et al. also studied the 2009 Abruzzo event 

using different satellite data (5 years of Meteosat Second Generation/Spinning Enhanced Visible 

and Infrared Instrument [MSG/SEVIRI] observations, 15 years of NOAA/AVHRR observations, 20 

and 8 years of Earth Observation System [EOS]/MODIS observations), but no similar results have 

been observed (Genzano et al., 2010). In addition to analyzing the TIR anomalies for a single 

earthquake, Tramutoli et al. studied the causes of TIR anomalies: a test over an area affected by 

variable gas emissions, to determine the correlation between TIR anomalies and seismicity, found 

that general gas dispersion models and spatial features lend support to the hypothesis of a robust 25 

relationship between greenhouse gas emissions and TIR anomalies related to seismic 

activity(Tramutoli, Aliano et al., 2013).  

Several researchers have conducted long-term statistical analyses to determine the correlation 

between TIR anomalies and earthquakes. Genzano et al. used GMS-5/VISSR TIR measurements to 

investigate earthquakes with M > 4 that occurred in a wide area surrounding Taiwan, during the 30 
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month of September from 1995 to 2002; the false-positive rate (FPR) remained at zero when 

earthquakes with M > 4 or 4.5 were considered, and the FPR remained under 6% when a threshold 

of  M > 5 was applied (Genzano, Filizzola et al., 2015). Tramutoli et al. studied earthquakes with 

M > 4 in the southern Apennines in Italy’s Po plain from July 2012 to June 2013 and found that the 

FPR was less than 33%, while the missing rate was as high as 67% (Tramutoli, Corrado et al., 2015). 5 

Eleftheriou et al. studied earthquakes that occurred in Greece between 2004 and 2013 using TIR 

images acquired with MSG/SEVIRI, and found that more than 93% of all identified TIR anomalies 

occurred in the prefixed space-time window around the time and location of earthquakes with M > 

4, with an overall FPR < 7% (Eleftheriou, Filizzola et al., 2016). It seems that RST is an effective 

means of extracting TIR anomalies that occur as precursors to earthquakes, but no such study has 10 

hitherto been conducted on the Chinese mainland. 

Several studies, however, have proven that some individual earthquake results are unreliable. 

Some so-called TIR anomalies are caused by meteorological anomalies that are unrelated to 

earthquakes. For example, Matthew et al. studied the Gujarat (India) earthquake of 2001, and found 

that previous studies, which had indicated the presence of TIR anomalies prior to the earthquake, 15 

were unreliable. They concluded that there was no robust evidence for the existence of LST 

anomalies prior to the 2001 Gujarat earthquake, and that cloud cover was a possible cause of the 

anomalies (Blackett et al., 2011). As such, rigorous statistical analyses of TIR anomalies over long 

periods are necessary. 

In this paper, RST is applied to a mountainous area in China. Long-term analysis (from Sept. 20 

2002 to Mar. 2018) is used to verify the correlation between TIR anomalies and earthquakes. Based 

on the statistical results, the earthquake prediction potential of RST will be evaluated. 

 

2. Study area 
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Fig.1 The distribution of faults in East-Southern Gansu province and its neighboring regions. 

 

The southeastern Gansu province and its neighboring regions were selected as the study area, 

to assess the correlation between TIR anomalies and earthquakes from September 2002 to March 5 

2018. As shown in Fig.1, the range of the study area is 27°𝑁 𝑡𝑜 37°𝑁 , 97°𝐸 𝑡𝑜 107°𝐸 . The 

study region is located at the intersection of Gansu, Qinghai, and Sichuan provinces; it also includes 

the intersection of the northern section of the north-south seismic belt and the Kuma seismic belt. 

Structures in this area are complex and strong earthquakes are frequent (Yang, Zhang et al., 2002). 

The area is on the eastern edge of the Tibetan Plateau, belonging to the upper part of the rhombic 10 

block in the southeast Gansu province. The Xian River fault, the Longmen Shan Fault, and the 

Anning River fault intersect here, and the structure is Y-shaped. This type of geomorphology is 

widely encountered in plate tectonics, and the Longmen Shan fault in the north-northeast direction 

becomes a steep slope in the southeast Sichuan Basin and an erosion plateau northwest of the study 

area. 15 

 

3. Data and method 

3.1 Data introduction 

MODIS data are used to calculate the TIR anomalies, and the earthquake information used for 



6 
 

statistical analysis was provided by China Earthquake Datacenter (http://data.earthquake.cn). 

The MODIS instrument is used on both the Terra and Aqua spacecrafts. It has a swath width of 

2,330 km and views the Earth’s entire surface every 1 to 2 days. Its detectors measure 36 spectral 

bands between 0.405 and 14.385 μm, and it can acquire data at three spatial resolutions: 250, 500, 

and 1,000 m. In this study, nighttime MODIS LST daily data (MYD11C1) are used to extract TIR 5 

anomalies. Because LST data are susceptible to solar radiation during the daytime, nighttime data 

are selected for use. The LST data were retrieved at 5,600 m using the generalized split-window 

algorithm. In the day/night algorithm, daytime and nighttime LSTs are retrieved from pairs of day 

and night MODIS observations in seven TIR bands. Moreover, the daily nighttime cloud mask data 

(MYD35L2) are used to exclude the LST data covered by the cloud. The resolutions of the cloud 10 

mask data are 250 and 1,000 m, so the resolution must be downscaled to correspond with the LST 

data. 

Earthquakes caused by block movement and crust compression represent an extreme type of 

geological movement; earthquakes are instantaneous bursts of accumulated energy, and they may 

result in the presence of TIR anomalies across a large area. Earthquake occurrences within the study 15 

area will also cause TIR anomalies close to its boundaries; therefore, for the earthquakes that 

occurred within the area 25°𝑁 𝑡𝑜 40°𝑁, 95°𝐸 𝑡𝑜 110°𝐸 will also be analyzed to examine the 

TIR anomalies at 27°𝑁 𝑡𝑜 37°𝑁, 97°𝐸 𝑡𝑜 107°𝐸. However, earthquakes attributed to ground 

subsidence and anthropogenic factors are not associated with TIR anomalies, and therefore 

earthquakes where depth = 0 are excluded from analysis. Tronin et al. observed that anomalies were 20 

sensitive to crustal earthquakes with a magnitude of more than 4.7 and over a distance of up to 1,000 

km (Tronin et al., 2002). Therefore, we selected earthquakes of M ≥ 3.5  and depth > 0 that 

occurred within the area of 25°𝑁 𝑡𝑜 40°𝑁, 95°𝐸 𝑡𝑜 110°𝐸 for analysis, and after screening, a 

total of 3,615 earthquakes satisfied these conditions.  

 25 

3.2 RST Methodology 

The RST approach is based on multi-temporal analyses of historical satellite observational 

datasets acquired under similar observational conditions (Eleftheriou et al., 2016). Since the surface 

environment is relatively constant, high- and low-temperature locations are also relatively consistent. 

Over time, the infrared brightness temperature will change, albeit very gradually and in small 30 
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increments with obvious seasonal characteristics. Aside from the influences of meteorological 

factors and earthquake TIR anomalies, the brightness temperature within the same area and during 

the same time period exhibits robust stability and regularity. Therefore, the basic principle that 

guides RST is that the background field is constructed to extract the thermal anomalies, and the 

mean and variance of the LST are used to evaluate the degree of TIR anomaly. 5 

This method consists of three main steps, as follows: 

 Pre-processing 

RST is used to construct a reference, which is considered to be in a normal state under no 

influence from other factors, and to measure and extract the anomalies at the corresponding time. 

𝑉(𝑟, 𝑡) are LST data in location r at time t. Therefore, the first step is to eliminate the data affected 10 

by clouds, and to remove outliers. 

 To eliminate the effect of day-to-day climatological changes or seasonal time drifts, pre-

processing is applied to the daily LST data: 

∆V(r, t) = V(r, t) − V(t)   (1) 

Where ∆𝑉(𝑟, 𝑡) is the difference between the value of LST acquired at time t in location r and 15 

its spatial average, 𝑉(𝑡),  computed in the investigated area considering only those pixels 

belonging to the same class; in this study area, all pixels belong to the land class. 

 The cloud mask is constructed using cloud mask data (MYD35L2). To ensure that only 

cloud-free radiances contribute to the computation of the reference fields (RFs), not only 

those pixels but also the 24 pixels in the surrounding 5× 5 area (frequently belonging to 20 

cloud edges) are excluded from the following RFs computations (Eleftheriou et al., 2016). 

A1(𝑟, t) = {
0, 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑟 𝑤𝑎𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑐𝑙𝑜𝑢𝑑𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2) 

 An outlier-mask is constructed. 

This step is to determine the outliers, and these values should be excluded from the construction 

of the background field and the extraction of TIR anomalies. 25 

A2(r, t, τ) = δ1(r, t, τ) ∗ δ2(r, t, τ) ∗ δ3(r, t, τ)   (3) 

As it is shown in eq. (3), 𝛿1, 𝛿2, 𝛿3 are three kinds of data that should be excluded from the 

construction of backfields. As demonstrated by Aliano et al. and Genzano et al., the spatial 

distribution of clouds over a thermal heterogeneous scene can significantly change the value 
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of ∆𝑉 in the cloud-free pixels(Aliano et al., 2008; Genzano et al., 2009). The large cloud cover 

area will introduce a cold spatial average effect to the computation of the RFs, so that when 

𝑉(𝑟, 𝑡) < 𝜇𝑉 − 2 ∗ 𝜎𝑉   (here, 𝜇𝑉  is the temporal average and the 𝜎𝑉  is its standard, these 

pixels’ values will be excluded, Eleftheriou et al., 2016). 

δ1(r, t, τ) = {
0, 𝑖𝑓 𝑉(𝑟, 𝑡) − 𝜇𝑉(𝑟, 𝜏, 𝑇) < −2 ∗ 𝜎𝑉(𝑟, 𝑡, 𝜏), 𝑡 < 𝜏

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 5 

Moreover, even where no cold spatial average effect is produced, extended cloud coverage can 

determine the V(t) values and the values of the considered signal ∆𝑉(𝑟, 𝑡) , scarcely 

representative of the actual conditions of cloud-free pixels, so that when the cloudy fraction of 

the land portion of the scene is > 80%, all pixels must be excluded from the computation of 

the RFs (Eleftheriou et al., 2016). 10 

δ2(r, t, τ) = {
0, 𝑖𝑓 𝑐𝑙𝑜𝑢𝑑𝑦 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑛𝑑 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑐𝑒𝑛𝑒 𝑖𝑠 > 80%

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5) 

𝛿3 is used to remove the outliers (where k ≥ 2), and its expression is as follows:  

δ3(r, t, τ) = {
1, 𝑖𝑓 |𝑉(𝑟, 𝑡) − 𝜇𝑉(𝑟, 𝜏, 𝑇)| < 𝑘𝜎𝑉(𝑟, 𝑡, 𝜏)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (6) 

𝛿(𝑟, 𝑡, 𝜏) = 𝛿1(𝑟, 𝑡, 𝜏) ∗ 𝛿2(𝑟, 𝑡, 𝜏) ∗ 𝛿3(𝑟, 𝑡, 𝜏)  computed using an iterative k 𝜎 -clipping 

technique, which begins by computing  𝛿(𝑟, 𝑡, 𝜏)  based on the first determination of 15 

𝜇𝑉(𝑟, 𝜏, 𝑇) and 𝜎𝑉
2(𝑟, 𝜏, 𝑇) , and continues by updating their values using only space-time 

locations with 𝛿(𝑟, 𝑡, 𝜏) = 1, as follows: 

𝜇′
∆𝑉
2 (𝑟, 𝜏, 𝑇) ≡

∑ [∆𝑉(𝑟,𝑡)∙𝐴(𝑟,𝑡)]∀𝑡∈𝑇

∑ 𝐴(𝑟,𝑡)∀𝑡∈𝑇
   (7) 

𝜎′
∆𝑉
2

(𝑟, 𝜏, 𝑇) ≡
∑[∆𝑉(𝑟,𝑡)∙𝐴(𝑟,𝑡)−𝜇∆𝑉(𝑟,𝜏)]2

∑ 𝐴(𝑟,𝑡)∀𝑡∈𝑇
   (8) 

The process should be iterated until no further exclusions are determined, using the latest 20 

determination of 𝛿 (Tramutoli, 1998). And the final result of  𝛿 is the 𝐴2 what we want. 

 Computing Reference Fields  

 The 𝜇∆𝑉(𝑟, 𝜏, ∆𝑇) is the mean of location r for time series T. The variance 𝜎∆𝑉
2 (𝑟, 𝜏, 𝑇) is 

applied at time 𝜏  using homogeneous historical records collected under the temporal 

constraint 𝑡 ∈ 𝑇 (t < τ) and the 𝑉𝑅𝐸𝐹(𝑟, 𝜏, ∆𝑇) is the background field. 25 

A(r, T) = A1(𝑟, t) ∗ A2(𝑟, t)   (9) 

𝑉𝑅𝐸𝐹(𝑟, 𝜏, 𝑇) ≡
∑ [∆𝑉(𝑟,𝑡)∙𝐴(𝑟,𝑡)]∀𝑡∈𝑇

∑ 𝐴(𝑟,𝑡)∀𝑡∈𝑇
   (10) 
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𝜎∆𝑉
2 (𝑟, 𝜏, 𝑇) ≡

∑[∆𝑉(𝑟,𝑡)∙𝐴(𝑟,𝑡)−𝜇∆𝑉(𝑟,𝜏)]2

∑ 𝐴(𝑟,𝑡)∀𝑡∈𝑇
   (11) 

 Change-detection 

 The RETIRA (Robust Estimator of TIR Anomalies, Filizzola, 2004) must be computed, 

and the bigger the absolute value is, the more evident the anomaly is. ( , , )V r T  is 

the RETIRA of location r at time 𝜏, which belongs to the time series T. 5 

[ ( , ) ( , , )
( , , )

( , , )

REF
V

V

V r V r T
r T

r T

 


 




 
     (12) 

 Whether ( , , )V r T is affected by cloud should be determined. From the results, it 

may easily be concluded that some areas will lack data at certain times, and for these 

scenarios a special value must be implemented to indicate that these data are affected by 

clouds and should be excluded from the ensuing analyses. 10 

 

3.3 Identification of TIR anomalies 

After the calculation of ( , , )V r T  , the next step is to identify the TIR anomalies and 

correlate them with earthquake occurrences. In this paper, a ( , , )V r T   that exceeds the 

threshold indicates the presence of a TIR anomaly; further conditions will be applied to confirm the 15 

correlation. For ( , , )V r T  and 𝑒𝑞(𝑟, 𝑡), only in those cases where the following conditions 

are satisfied can it be concluded that the TIR anomaly is related to 𝑒𝑞(𝑟, 𝑡): 

1) The RETIRA ( , , )V r T  > 2. In Eleftheriou’s study, the threshold was set at 4 

(Eleftheriou et al., 2016) ; however, from a statistical perspective, when the value is greater 

than two times the standard deviation, it already falls within the abnormal category. In this 20 

study, therefore, the threshold is set at 2.  

2) The 𝑉(𝑟, 𝑡) is not blocked by clouds or affected by other factors. 

3) Spatial persistence: The TIR anomalies cluster together and are not isolated, being part of 

a group covering at least 150 𝑘𝑚2 within an area of 1° ∗ 1° (400 pixels in the images). 

4) Temporal persistence: At least one more TIR anomaly appears within 7 days after the first 25 

TIR anomaly. 
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5) The TIR anomalies appear 30 days before or 15 days after the 𝑒𝑞(𝑟, 𝑡) (Eleftheriou et al., 

2016) . 

6) The shortest distance from a given point in the TIR anomalies group to the epicenter 

of 𝑒𝑞(𝑟, 𝑡) is less than 𝑅𝐷 = 100.43𝑀. 

Where the TIR anomalies satisfy conditions 1), 2), 3) and 4), but do not satisfy at least either 5) 5 

or 6), TIR anomalies are present with no corresponding earthquake. There are also cases wherein 

no TIR anomalies occur. 

 

4. Results and analysis 

A comprehensive statistical analysis and the TIR extraction results are detailed in this chapter. 10 

In chapter 4.1, a statistical analysis is conducted to ascertain the basic seismological conditions in 

the study area, while the statistical results for the correlation between earthquakes and TIR 

anomalies are presented and analyzed in chapter 4.2. Finally, an analysis of the earthquake 

prediction potential of RST is presented in chapter 4.3. 

 15 

4.1 Statistical analysis of earthquake activity in the study area 

Prior to investigating the correlation between TIR anomalies and earthquakes, a simple analysis 

of the temporal and spatial characteristics of the earthquakes is required. 

First, the temporal distribution shows that the seismicity from 2002 to 2018 was most active in 

2008, and that it increased in frequency and violence from that time. The bottom of Fig. 2 indicates 20 

that there were 3,615 earthquakes in the study area(3.5 ≤ M ≤ 4, 2,262; 4 ≤ M ≤ 5, 1,124; 5 ≤

M ≤ 6,  198; 6 ≤ M ≤ 7,  26; and 7 ≤ M ≤ 8,  5. Therefore, the study area is characterized by 

severe seismic activity. As may be seen from the upper part of Fig. 2, the average earthquake 

frequency during period A (from 2002.09 to 2007.12) was around 78. However, the total number of 

earthquakes in 2008 increased to 981 including the May 12 2008 Ms 8.0 Wenchuan Earthquake, the 25 

most serious earthquake in China in recent years. Although the frequency decreased substantially 

after 2008 (the average frequency during this period was 243), it remained much higher than it had 

been during period A. The temporal distribution indicates that seismic activity prior to 2008 had 

been relatively weak, but in 2008, the seismic activity was extremely intense and reached its peak. 

After 2008, seismicity in this area continued to maintain this intensity. 30 
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Fig. 2 The temporal distribution from 2002.09 to 2018.03 of earthquakes with M ≥ 3.5 in the study 

area, and the distribution of seismic frequency with earthquake magnitude.  

Table 1 Catalog of earthquakes with 𝐌 ≥ 𝟓. 𝟎 prior to 2008 

Date Latitude\°𝐍 Longitude\°𝐄 Depth\km Magnitude 

2003.07.21 25.95 101.23 6 6.4 

2003.10.16 25.92 101.30 5 6.2 

2003.10.25 38.35 100.93 13 6.1 

2003.08.18 29.57 95.60 33 6 

2003.10.25 38.32 100.97 10 6 

2006.07.19 33.03 96.35 30 5.9 

2002.12.14 39.82 97.33 22 5.8 

2005.08.05 26.55 103.15 21 5.6 

2006.03.30 35.50 95.40 18 5.6 

2003.11.13 34.75 103.93 10 5.5 

2006.07.22 28.02 104.13 9 5.5 

2006.08.25 28.03 104.01 7 5.5 
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2006.06.21 33.07 104.90 15 5.4 

2006.07.18 33.07 96.28 20 5.4 

2007.07.22 38.35 101.30 19 5.3 

2004.09.07 34.73 103.92 19 5.2 

2005.09.05 27.18 103.72 10 5.2 

2003.08.21 27.42 101.27 5 5.1 

2003.10.17 25.97 101.27 7 5.1 

2003.11.01 25.93 101.22 3 5.1 

2004.11.27 25.17 98.02 12 5 

2005.01.05 32.28 101.55 5 5 

2005.03.15 25.07 99.08 2 5 

2006.07.23 33.03 96.05 30 5 

 

Further evidence is presented in Table 1, where earthquakes of M ≥ 5.0 that occurred during 

period A (from 2002.09 to 2007.12) are detailed. There were 229 earthquakes of M ≥ 5.0, while 

the total number during period A was 24, which accounted for 10.48% overall; the duration of period 

A accounted for 33.87% of the total timeframe (i.e., period A + period B). Moreover, there were no 5 

earthquakes of M ≥ 6.5 during period A, but there were 14 earthquakes of M ≥ 6.5 during period 

B (from 2008.01 to 2018.03). All of this evidence indicates that seismic activity during period B 

was significantly more violent and frequent. 
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Fig. 3 The spatial distribution of earthquakes in the study area. The orange rectangle represents the 

study area (27°𝑁 𝑡𝑜 37°𝑁,97°𝐸 𝑡𝑜 107°𝐸). Earthquakes beyond the parameters of the study area 

are shown because earthquakes close to the study area may also cause TIR anomalies within the 

study area. 5 

 

Figure 3 shows the spatial distribution of earthquakes within the study area. The results indicate 

that seismic events are clustered primarily in the west and center of the study area 

(25°N to 40°N ,95°E to 110°E ) which are mountainous regions. The earthquakes are mainly 

aggregated along faults, with a much sparser spatial distribution in the east and in the Sichuan Basin. 10 

There is a clustering phenomenon centered on earthquakes of M ≥ 6, since earthquakes usually 

occur along the fault lines of active geological movements. 

The purpose of investigating the temporal and spatial characteristics of earthquakes is to acquire 

a general understanding of the seismic activities within the study area. There is another important 

reason, however, which is to avoid significant accumulation of earthquakes within a short timeframe, 15 

and concentrated within a small area, with the result that the same TIR anomaly corresponds to 

numerous earthquakes; this phenomenon excessively distorts the statistical results presented above. 

Around 233 earthquakes were observed to occur after the May 12 2008 Ms 8.0 Wenchuan 

earthquake, in locations close to the epicenter of Wenchuan event. In chapter 4.2, the statistical 
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analysis will be divided into two sections: one dealing with the earthquakes that occurred during 

period C (from 2008.04 to 2008.07), and the other dealing with those that occurred outside of period 

C. 

 

4.2 Statistical analysis of the correlation between TIR anomalies and earthquakes 5 

In this section, TIR anomalies are extracted and a statistical analysis of the correlation between 

TIR anomalies and earthquakes of M ≥ 4 is conducted. Evaluation of the TIR anomalies conforms 

strictly to the guidelines detailed in chapter 3.3. 

 

Fig .4 Two examples of the correlation between TIR anomalies and earthquakes: on the left is the 10 

TIR anomaly recorded on 2006.12.29 that corresponded to two earthquakes, and on the right is the 

TIR anomaly recorded on 2010.10.22 that did not correspond to earthquakes. 

 

As shown in Fig. 4, the TIR anomalies are extracted using RST and the identification rules are 

applied to determine the correlation between TIR anomalies and earthquakes. After  15 
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extraction, the total number of TIR anomalies is 58 and the correlation results are presented in Fig. 

5. Considering the examples reported in Fig. 4, which are summarized in rows 17 and 34, the cells 

in yellow corresponding to the first day of TIR anomaly are 2006-12-29 and 2010-10-22, 

respectively. It may be concluded based on Fig. 5 that 30 TIR anomalies correspond to earthquakes, 

while the other 28 (rows 1, 2, 3, 4, 7, 8, 9, 13, 15, 16, 18, 19, 20, 21, 22, 31, 34, 36, 38, 41, 42, 43, 5 

44, 45, 49, 50, 51 and 54) do not. The correlation rate is 51.7%. It may be seen from Fig. 6 that most 

TIR anomalies appear as precursors to earthquakes. 

  

Fig. 6 Distribution of TIR anomalies with respect to earthquake occurrences for different classes of 

magnitude.  10 

 

 However, as mentioned in section 4.1, period C may be associated with a significant increase 

in the total number of TIR anomalies and the correlation rate. As such, the experiment was also 

performed without period C, and the number of TIR anomalies is still 58, while the correlation rate 

is 51.7%, both of which are the same as the former result. Theoretically, the high earthquake 15 

frequency and magnitudes of period C should generate numerous TIR anomalies and correlate 

strongly with earthquakes. However, only a single TIR anomaly corresponding to five earthquakes 

was observed. Figure 7 may indicate the reason for this: earthquakes cluster along several faults, 

but the spatial locations of these faults are always blocked by cloud cover with a percentage in 

excess of 90%. With the lengthy persistence of cloud coverage over a large area, the TIR anomalies 20 

caused by earthquakes during period C cannot be extracted using RST.  
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Comprehensive analysis of Fig. 5 reveals that there are 22 TIR anomalies in period A, 15 of 

which do not correspond to earthquakes, while of 36 TIR anomalies in period B, 13 do not 

correspond to earthquakes and the correlation rate reaches 63.9%, which is significantly higher than 

51.7%. Figures 2 and 8 illustrate this phenomenon: in period A, the earthquake intensity magnitudes 

are small, the frequency is low, and almost half of all earthquakes occur in the cloudy region, or 5 

adjacent to it; therefore, it is difficult to determine any correspondence between the earthquakes and 

the extracted anomalies, and some anomalies may have not been extracted owing to the cloud cover. 

Regarding the results from period B, the frequency and magnitudes of earthquakes in sparsely 

clouded areas are significantly increased, so that TIR anomalies are more likely to be extracted and 

more likely to correspond to earthquakes. 10 

 

 

Fig. 7 The distribution of earthquakes and the frequency of each pixel blocked by cloud cover in 

period C; higher values indicate that the pixels are more frequently blocked by clouds. 
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Fig.8 The distribution of earthquakes in periods A and B and the frequency of each pixel being 

blocked by cloud cover in period C; higher values indicate that the pixels are more frequently 

blocked by clouds. 

 5 

4.3 Evaluation of the earthquake prediction potential of RST using MODIS LST data in Sichuan 

area 

With the aim of evaluating the earthquake prediction potential of RST using MODIS LST data 

for the Sichuan area, the true-positive rate (TPR) of correspondence between TIR anomalies and 

earthquakes with M ≥ 4.0 alone is insufficient. Therefore, four types of data are incorporated, with 10 

four types of ratio calculated as follows: 

TP1: True-positive 1, the total number of TIR anomalies that correspond to earthquakes. 

FP: False-positive, the total number of TIR anomalies that do not correspond to any earthquakes. 

TP2: True-positive 2, the total number of earthquakes that correspond to TIR anomalies. 

FN: False-negative, the total number of earthquakes that do not correspond to any TIR 15 

anomalies. 

Positive predictive value (PPV): The ratio of TIR anomalies that correspond to earthquakes to 

the total number of TIR anomalies. 

False discovery rate (FDR): The ratio of TIR anomalies that do not correspond to any 

earthquakes to the total number of TIR anomalies. 20 

TPR: The ratio of earthquakes that correspond to TIR anomalies to the total number of 
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earthquakes. 

FNR: The ratio of earthquakes that do not correspond to any TIR anomalies to the total number 

of earthquakes. 

 

Table 2 Statistical results of earthquakes with M ≥ 𝟓. 𝟎 5 

𝐌 ≥ 𝟓. 𝟎 

TP1 FP TP2 FN 

15 43 27 223 

PPV: 25.9%  TP1/(TP1+FP) TPR: 10.8%  TP2/(TP2+FN) 

FDR:74.1%  FP/(TP1+FP) FNR: 89.2%  FN/(TP2+FN) 

 

For a more accurate understanding of the eight parameters, an example is presented in Table 2. 

The example considered the earthquakes of M ≥ 5.0, and the results indicate that 58 (TP1+FP) TIR 

anomalies appeared over the duration of the study period, and 15 (TP1) of these correspond to 

earthquakes while the other 43 (FP) do not; as such, the probability of exact correspondence between 10 

TIR anomalies and earthquakes is 25.9% (PPV), while the probability of no correspondence is 74.1% 

(FDR). Moreover, 250 (TP2+FN) earthquakes of M ≥ 5.0 were recorded in the study area; 27 (TP2) 

of these correspond to TIR anomalies, while the other 223 (FN) do not; as such, the probability of 

exact correspondence between the earthquakes and TIR anomalies is 10.8% (TPR) while the 

probability of no correspondence is 89.2% (FNR). We have calculated the earthquakes with M ≥15 

m (m = {3.5, 3.6, 3.7,…,7.8, 7.9, 8.0}), and the experiments are conducted both with and without 

period C. The results show that these do not differ significantly, so in this section only the results 

including period C are discussed. 
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Fig. 9 The statistical results of earthquakes including period C (from 2008.04 to 2008.07), and the 

curves TP1, FP, TP2, FN, PPV and TPR, which correspond to the examples presented in Table 2. 

Table 3 Detailed results of earthquakes including period C (from 2008.04 to 2008.07) 

M TP1 FP TP2 FN PPV FDR TPR FNR 

3.5 37 21 97 3518 0.638  0.362  0.027  0.973  

3.6 35 23 87 2946 0.603  0.397  0.029  0.971  

3.7 34 24 79 2465 0.586  0.414  0.031  0.969  

3.8 32 26 70 2094 0.552  0.448  0.032  0.968  

3.9 30 28 66 1817 0.517  0.483  0.035  0.965  

4 30 28 63 1574 0.517  0.483  0.038  0.962  

4.1 29 29 59 1291 0.500  0.500  0.044  0.956  

4.2 27 31 54 1076 0.466  0.534  0.048  0.952  

4.3 26 32 51 917 0.448  0.552  0.053  0.947  

4.4 26 32 49 762 0.448  0.552  0.060  0.940  

4.5 23 35 48 691 0.397  0.603  0.065  0.935  

4.6 23 35 45 556 0.397  0.603  0.075  0.925  

4.7 20 38 40 451 0.345  0.655  0.081  0.919  
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4.8 19 39 37 382 0.328  0.672  0.088  0.912  

4.9 18 40 33 279 0.310  0.690  0.106  0.894  

5 15 43 27 223 0.259  0.741  0.108  0.892  

5.1 13 45 25 188 0.224  0.776  0.117  0.883  

5.2 13 45 24 156 0.224  0.776  0.133  0.867  

5.3 12 46 20 117 0.207  0.793  0.146  0.854  

5.4 12 46 20 114 0.207  0.793  0.149  0.851  

5.5 12 46 19 75 0.207  0.793  0.202  0.798  

5.6 10 48 15 58 0.172  0.828  0.205  0.795  

5.7 9 49 14 41 0.155  0.845  0.255  0.745  

5.8 9 49 14 33 0.155  0.845  0.298  0.702  

5.9 9 49 14 31 0.155  0.845  0.311  0.689  

6 9 49 12 26 0.155  0.845  0.316  0.684  

6.1 7 51 10 19 0.121  0.879  0.345  0.655  

6.2 7 51 10 17 0.121  0.879  0.370  0.630  

6.3 7 51 8 12 0.121  0.879  0.400  0.600  

6.4 7 51 8 10 0.121  0.879  0.444  0.556  

6.5 6 52 6 7 0.103  0.897  0.462  0.538  

6.6 4 54 4 6 0.069  0.931  0.400  0.600  

6.7 2 56 2 5 0.034  0.966  0.286  0.714  

6.8 1 57 1 4 0.017  0.983  0.200  0.800  

6.9 1 57 1 4 0.017  0.983  0.200  0.800  

7 1 57 1 4 0.017  0.983  0.200  0.800  

7.1 1 57 1 3 0.017  0.983  0.250  0.750  

7.2 1 57 1 2 0.017  0.983  0.333  0.667  

7.3 1 57 1 1 0.017  0.983  0.500  0.500  

7.4 0 58 0 1 0.000  1.000  0.000  1.000  

7.5 0 58 0 1 0.000  1.000  0.000  1.000  

7.6 0 58 0 1 0.000  1.000  0.000  1.000  
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7.7 0 58 0 1 0.000  1.000  0.000  1.000  

7.8 0 58 0 1 0.000  1.000  0.000  1.000  

7.9 0 58 0 1 0.000  1.000  0.000  1.000  

8 0 58 0 1 0.000  1.000  0.000  1.000  

 

As may be seen from Fig 9, PPV declines as the magnitude increases, while FP is also clearly 

seen to increase. This phenomenon indicates that with increased magnitude, the number of TIR 

anomalies that correspond to the earthquakes decreases. TPR and FN can be seen to decrease 

steadily as the total number of earthquake samples decreases.  5 

The ratios (PPV and TPR) demand closer attention, however. First, a general perceptual analysis 

reveals that PPV decreases steadily as M increases, while TPR increases when M≤ 6.5  and 

M=6.8~7.3 ≤ 6.6 and M = 7.2, 7.3; the maximum TPR is 50% when M = 7.3, and TPR decreases 

when M=6.5~6.8 = 6.7~7.1 . When M is 3.5 and 4.0, PPV is 63.8% and 51.7%, respectively, 

indicating that when a TIR anomaly is evident, there is a 63.8% (51.7%) possibility that earthquakes 10 

of M ≥ 3.5 (4.0) will occur. When M is 5, 6, or 7, PPV is 25.9%, 15.5%, 1.7%, and these are much 

lower than the PPV of M = 3.5 and 4.0. It may be concluded from the change in the PPV curve that 

where a TIR anomaly is present, there will be a more than 50% possibility of an earthquake with M 

≥3.5 (4.0) in the study area. It does not necessarily follow, however, that when there is a TIR anomaly, 

there will be strong earthquakes with M ≥ 5.0 in the study area. On the contrary, the probability that 15 

earthquakes of high magnitude will occur remains low. 

The TPR curve indicates the probability that an associated TIR anomaly will be present when 

earthquakes occur. When M =3.5 the TPR is 2.7%, and as M increases, TPR increases steadily, 

although it remains low when M ∈ [3.5, 5.4] and the TPR is lower than 20%. The results show that 

lower-magnitude earthquakes are relatively less likely (less than 20%) to correspond to TIR 20 

anomalies, while earthquakes of M ≥ 6.0, which are very destructive, have a relatively high 

likelihood of corresponding. High correspondence is particularly significant with regard to 

earthquake prediction: it indicates that destructive earthquakes are considerably more likely to be 

predictable in this case. 

According to both sets of results, we may conclude that when a TIR anomaly is present, there 25 

is a 51.7% possibility that an earthquake of M ≥ 4.0 will occur, and in the case of earthquakes of M 
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≥ 6.0 occurs, more than one third correspond to TIR anomalies. Most TIR anomalies correspond to 

earthquakes of M ≥ 4.0. However, when M ≥ 6.0, the PPV is relatively low, resulting in a higher 

false alarm rate for strong earthquakes. TPR increases with magnitude, and when M = 7.3, it is 50%. 

It may be concluded based on the TPR curve that the greater an earthquake’s magnitude, the more 

effective this method is likely to be in predicting it. However, the PPV and TPR are low, or the FDR 5 

and FNR, which are negative with regard to the predictive potential of RST, are high. Overall, the 

false alarm rate for M ≥ 4.0 is 48.3%, and as M increases so too does FDR. The missing rate for M 

≥ 4.0 is 96.2%, and it seems that when M < 5.5, there is no obvious correlation between TIR 

anomalies and earthquakes; nevertheless, TPR tends to increase when M increases, though its 

maximum remains at 50%, which is also an unsatisfactory value. As such, the prediction potential 10 

of RST using MODIS LST data in the Sichuan area is limited. However, it doesn’t indicate that the 

RST is not effective for earthquake prediction, on the contrary, many other cases prove that this 

method is very effective for extracting TIR anomalies. The low PPV and TPR may be caused by the 

limitation of RST, nature of MODIS LST data, special topographic and weather background of study 

area, or something else.  15 

 

5. Discussion 

To compare these results with those from previous similar studies, a summaries of four such 

studies are presented in Table 3. It is evident that PPV is relatively lower in this study than in the 

others, so it is important to verify its actual added value in comparison with a random alarm function 20 

(see, for example, Eleftheriou et al., 2016). The detailed method is available in chapter 3.4 of 

Eleftheriou et al. (2016), and the result is presented in Fig. 10. When M ≥ 3.5, the point is at the 

upper extreme of the random guess, with the result that there is no obvious correlation between TIR 

anomalies and earthquakes with M ≥ 3.5; rather, the correlation appears to be casual. When M ≥

4.0  and M≥ 4.5 , both of these points are still very close to the line, though at the lower part, 25 

meaning that a non-casual correlation is actually present among the extracted TIR anomalies and 

earthquakes (M ≥ 4.0 and ≥ 4.5). However, the correlation is not strong. The result in this study 

is different from that achieved by Eleftheriou: in her study, the strong correlation between the TIR 

anomalies and earthquakes is much more evident. This may be attributable to the fact that, as shown 

in Fig. 8, the east and southeast corner of the study area is consistently blocked by clouds, i.e., for 30 
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over 90% of the time. Several earthquakes also occur in this area, but insufficient data prevents 

correlation between the earthquakes and TIR anomalies, and they are inevitably classified into FNR, 

which is v in Molchan error analysis, making the correlation weaker. For M ≥ 5.0, 5.5 and 6.0, 

the points are clear under the random guess, and as M increases, the non-causal correlation is 

strengthened. 5 

Tronin indicated that the anomaly was sensitive to crustal earthquakes that were of a magnitude 

greater than 4.7 over a distance of up to 1,000 km (Tronin, Hayakawa et al., 2002). In this study, 

however, when M = 4.7, the TPR is 9.6% and the FNR is 90.4%, and at the point in Fig. 10 at which 

M ≥ 4.5 is very close to the random guess, the statistical result does not support the theory that the 

TIR anomaly is sensitive to the earthquakes of M ≥ 4.7. When M ≥ 5.9, earthquakes appear to be 10 

sensitive to TIR anomalies, as may be seen from Table 3. This failure to conform to previous 

conclusions may be attributable to the regional structure and geological movement, cloud cover, and 

effectiveness of the method for extracting TIR anomalies, among other factors. Further study is 

required, however. 

 15 

Table 4 A general summary of research on the statistical correlation between TIR anomalies 

and earthquakes 

Author Data Source Study area Duration PPV 

Genzano GMS-5/VISSR Taiwan 
1995.09-

2002.09 

100%(M≥ 4 or 4.5) 

94%(M≥ 5.0) 

Tramutoli  
Italian southern 

Apennines 

2012.07-

2013.06 
67% 

Eleftheriou 

Alexander 
MSG/SEVIRI Greece 2004-2013 93% (M≥ 4.0) 

Ying Zhang MODIS 
China, Sichuan 

Area 

2002.09-

2018.03 
51.7%(M≥ 4.0) 

 

 We calculated the total number of TIR anomalies and numbers of FP for each month in both 

studies, and found that in Eleftheriou’s study TIR anomalies clustered in November, September, 20 

January and February, while in the present study they cluster in November, September and January. 
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A line indicating the percentage of area not blocked by clouds in the Sichuan region is also illustrated 

in Fig. 11. In this paper, there is a significant positive proportional correlation between the number 

of TIR anomalies and the area not blocked by clouds. When the percentage is high, the number of 

TIR anomalies is also high, and when the percentage is low, the number of TIR anomalies is low. 

Therefore, while several TIR anomalies related to earthquakes may be present, they are blocked by 5 

cloud cover and cannot be extracted. However, the question of what the true cause is, i.e., cloud 

clover, seasonal weather, or some other factor, remains to be answered satisfactorily. Moreover, 

another interesting phenomenon is that several TIR anomalies that do not correspond to any 

earthquakes cluster in November and September, both of which are cold months that do not tend to 

be cloudy. Therefore, the clustering of numerous FPs during these 2 months also remains to be fully 10 

investigated.  

 

Fig. 10 Molchan error diagram analysis computed for different classes of magnitude and TIR 

anomalies during the study period (from 2002.09 to 2018.03); the red circles refer to earthquakes 

that occurred before and after the appearance of TIR anomalies. 15 
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Fig. 11 The monthly average percentage of the area not blocked by clouds in Zhang’s study region, 

i.e., that of this study. The bar chart presents the numbers of various types of TIR anomaly. ‘Total 

in Z’ is the total number of TIR anomalies in this study; ‘FP in Z’ is the number of TIR anomalies 

that do not correspond to any earthquakes in this study; ‘Total in E’ is the total number of TIR 5 

anomalies in Eleftheriou’s study; ‘FP in E’ is the number of TIR anomalies that do not correspond 

to any earthquakes in Eleftheriou’s study. 

 

6. Conclusions 

(1) Statistical analysis of 18 years’ worth of data on the correlation between earthquakes and TIR 10 

anomalies indicate that 51.7% of TIR anomalies correspond to earthquakes of M ≥ 4.0 in the 

Sichuan region, and the higher the M, the more likely it is that the earthquakes will correspond 

to TIR anomalies. The low PPV and TPR may be attributable to the large portions of the study 

region that are covered by clouds throughout the year. 

(2) The low PPV and TPR suggest that the earthquake prediction potential of RST using MODIS 15 

LST data with regard to the Sichuan region is limited. For stronger earthquakes, with M ≥ 6.0, 

although the false alarm rate is high, the missing rate is relatively low. RST was applied to the 

study area and was found to have significant predictive potential with regard to strong 

earthquakes. 

(3) There is no obvious correlation between earthquakes of M < 5.0  and the TIR anomalies 20 

extracted using RST and MODIS LST data in the Sichuan region. However, the underlying 

causes of this situation merit further investigation. 
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(4) The RST proposed in this study and in Eleftheriou’s study is still considerably affected by cloud 

cover and seasonal influences. It is necessary to improve and optimize algorithms and statistical 

methods that facilitate the exclusion of cloud and seasonal influences. 

 

Reference 5 

Aliano, C., Corrado, R., Filizzola, C. and Pergola, N. Robust Satellite Techniques (RST) for Seismically 

Active Areas Monitoring: the Case of 21st May, 2003 Boumerdes/Thenia (Algeria) Earthquake. Analysis 

of Multi-temporal Remote Sensing Images, 2007. MultiTemp 2007. International Workshop on the, 

2007. 

Aliano, C., Corrado, R., Filizzola, C., Genzano, N., Pergola, N., Tramutoli, V. "Robust TIR satellite 10 

tecniques for monitoring earthquake active regions: limits, main achievements and perspectives." Ann 

Geophys 51:303-317, 2008. 

Bellaoui, M., Hassini, A. and Kada, B. "Pre-seismic Anomalies in Remotely Sensed Land Surface 

Temperature measurements: the Case Study of 2003 Boumerdes Earthquake." Advances in Space 

Research 59(10), 2017. 15 

Blackett, M., Wooster, M. J. and Malamud, B. D. "Correction to &ldquo;Exploring land surface 

temperature earthquake precursors: A focus on the Gujarat (India) earthquake of 2001." Geophysical 

Research Letters 38(18): L15303, 2011. 

Filizzola, C., Pergola, N., Pietrapertosa, C. and Tramutoli, V. "Robust satellite tecniques for seismically 

active areas monitoring: a sensitvity analysis on September 7, 1999 Athens's earthquake." Phys Chem 20 

Earth 29: 517-527, 2004. 

Eleftheriou, A., Filizzola, C., Genzano, N., Lacava, T., Lisi, M., Paciello, R., Pergola, N., Vallianatos, F. and 

Tramutoli, V. "Long-Term RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes 

Occurred in Greece in the Period 2004–2013." Pure & Applied Geophysics 173(1): 285-303, 2016. 

Genzano, N., Aliano, C., Corrado, R., Filizzola, C., Lisi, M., Mazzeo, G., Paciello, R., Pergola, N., Tramutoli, 25 

V. "RST analysis of MSG-SEVIRI TIR radiances at time of the Abruzzo 6 April 2009 earthquake." Nat. 

Hazards Earth Syst Sci 9:2073-2084, 2009. 

Genzano, N., Corrado, R., Coviello, I., Grimaldi, C. S. L., Filizzola, C., Lacava, T., Lisi, M., Marchese, F., 

Mazzeo, G. and Paciello, R. A multi-sensors analysis of RST-based thermal anomalies in the case of the 

Abruzzo earthquake. Geoscience and Remote Sensing Symposium, 2010. 30 

Genzano, N., Filizzola, C., Paciello, R., Pergola, N. and Tramutoli, V. "Robust Satellite Techniques (RST) 

for monitoring earthquake prone areas by satellite TIR observations: The case of 1999 Chi-Chi 

earthquake (Taiwan)." Journal of Asian Earth Sciences 114(2): 289-298, 2015. 

Gorny, V. I., Salman, A. G. and Tronin, A. A. "The earth outgoingIRradiation as an indicator of seismic 

activity." 1988. 35 

Lisi, M., Filizzola, C., Genzano, N. and Grimaldi, C. S. L. "A study on the Abruzzo 6 April 2009 earthquake 

by applying the RST approach to 15 years of AVHRR TIR observations." Natural Hazards & Earth System 

Sciences 10(2): 395-406, 2010. 

Ouzounov, D. and Freund, F. "Mid-infrared emission prior to strong earthquakes analyzed by remote 

sensing data." Advances in Space Research 33(3): 268-273, 2004. 40 

Pergola, N., Aliano, C., Coviello, I. and Filizzola, C. "Using RST approach and EOS-MODIS radiances for 

monitoring seismically active regions: a study on the 6 April 2009 Abruzzo earthquake." Natural Hazards 



28 
 

& Earth System Sciences 10(2): 239-249, 2010. 

Piroddi, L., Ranieri, G., Freund, F. and Trogu, A. "Geology, tectonics and topography underlined by 

L'Aquila earthquake TIR precursors." Geophysical Journal International 197(3): 1532-1536, 2014. 

Qiang, Z. J., Xu, X. D. and Dian, C. G. "Case 27 thermal infrared anomaly precursor of impending 

earthquakes." Chinese Science Bulletin 149(4): 159-171, 1991. 5 

Saraf, A. K., Rawat, V., Choudhury, S., Dasgupta, S. and Das, J. "Advances in understanding of the 

mechanism for generation of earthquake thermal precursors detected by satellites." International 

Journal of Applied Earth Observation & Geoinformation 11(6): 373-379, 2009. 

Tramutoli, V. "Robust AVHRR techniques (RAT) for environmental monitoring: theory and applications." 

Proc Spie 3496(3496): 101-113, 1998. 10 

Tramutoli, V. Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and 

Mitigation: Theory and Applications. Analysis of Multi-temporal Remote Sensing Images, 2007. 

MultiTemp 2007. International Workshop on the, 2007.  

Tramutoli, V. Robust Satellite Techniques (RST) for natural and environmental hazards monitoring and 

mitigation: ten year of successful applications. International Symposium on Physical Measurements and 15 

Signatures, 2005. 

Tramutoli, V., Aliano, C., Corrado, R., Filizzola, C., Genzano, N., Lisi, M., Martinelli, G. and Pergola, N. 

"On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas 

observed using robust satellite techniques (RST)." Chemical Geology 339(2): 157-168, 2013. 

Tramutoli, V., Bello, G. D., Pergola, N. and Piscitelli, S. "Robust satellite techniques for remote sensing 20 

of seismically active areas." Annals of Geophysics 44(2): 295-312, 2001. 

Tramutoli, V., Corrado, R., Filizzola, C., Genzano, N., Lisi, M., Paciello, R. and Pergola, N. "One year of 

RST based satellite thermal monitoring over two Italian seismic areas." Bollettino Di Geofisica Teorica 

Ed Applicata 56(2): 275-294, 2015. 

Tramutoli, V., Corrado, R., Filizzola, C., Genzano, N., Lisi, M. and Pergola, N. "From visual comparison to 25 

Robust Satellite Techniques: 30 years of thermal infrared satellite data analyses for the study of 

earthquake preparation phases." Bollettino Di Geofisica Teorica Ed Applicata 56(2): 167-202, 2015. 

Tramutoli, V., Cuomo, V., Filizzola, C., Pergola, N. and Pietrapertosa, C. "Assessing the potential of 

thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaell (Izmit) 

earthquake, August 17, 1999." Remote Sensing of Environment 96(3): 409-426, 2005. 30 

Tronin, A. A. "Satellite thermal surveyâ€”a new tool for the study of seismoactive regions." International 

Journal of Remote Sensing 17(8): 1439-1455, 1996. 

Tronin, A. A., Hayakawa, M. and Molchanov, O. A. "Thermal IR satellite data application for earthquake 

research in Japan and China." Journal of Geodynamics 33(4–5): 519-534, 2002. 

Wang, L. "ANOMALOUS VARIATIONS OF GROUND TEMPERATURE BEFORE THE TANGSHAN AND 35 

HAICHENG EARTHQUAKES." Journal of Seismological Research, 1984. 

Yang, L. M., Zhang, Y. and Zhang, F. F. "STUDY ON MUTUAL FEATURES OF MIDDLE EARTHQUAKES 

ACTIVITIES BEFORE MIDDLE-STRONG EARTHQUAKES IN EAST-SOUTHERN GANSU PROVINCE AND ITS 

NEIGHBOR REGIONS." Platean Earthquake Research, 2002. 

 40 


