
Dear Editor,

please find below our responses to the Reviewer’s comments, that we upload again for your

convenience, as well as the marked-up manuscript version, where all the changes we did

are evidenced.

Kind Regards,

Manuela Volpe, on the behalf of the co-authors.



Dear Reviewers, 

we thank you for your thoughtful comments. We addressed all of them as specified in detail
in the point-to-point answers in the supplement pdf file, both in response to the general and
to the specific comments of yours.

Here, we make some general remarks, since we made one important change in the revised
manuscript. We also ask for a minor change to the title to insert in it the word “tsunami”,
which was missing in the original title. This letter is repeated in all the three responses to the
three Reviewers.

Changes to the results and to the manuscript.

We first of all need to point out that the change we made was necessary, since we found a
bug in one of the numerical codes we had written for this study. This bug was found while
performing some tests, some of them conceived for addressing your comments, particularly
as far as the robustness and the importance of the correction for the near-field sources
compared to the “noise” introduced by the tuning of the various filtering thresholds were
concerned. 

The bug consisted in a missing sum operator in the computation of the cluster probability (a
missing  cycle  over  one  variable!).  Hence,  the  probability  of  the  entire  cluster  was  not
assigned to the cluster representative. 

The new results, computed after the bug was corrected, do not differ in essence, although
the resulting probabilities are obviously overall higher. All the new Figures are enclosed.

Conversely,  for hazard intensities higher than 1 meter,  the results now show even more
pronounced differences between the “corrected” and “uncorrected” filtering procedures (new
Figure 3c). 

Our results now more clearly point out that not considering an appropriate correction for the
near field would lead to overestimate the tsunami hazard. This is true in the case of this
specific setting, though, since we found a prevalence of clusters causing coastal uplift from
the near-field sources (the situation may be the opposite as well or a mix for different source-
coast configuration). 

These uplifts would tend to diminish tsunami inundation. Hence, the tsunami hazard would
be overestimated without taking this into account. We hope this is illustrated by the new
Figure 3c. 

We now in fact  added to panel  c  of  this  Figure a new quantity,  that  is  the Mean Uplift
(hereinafter MU) on a random point on the coastline in the inner - highest resolution - grid
domain. 

The MU provides the mean - over all scenarios contributing to some hazard intensities and
all coastal points - co-seismic coastal displacement (with positive sign if uplift) plotted versus



different  hazard  intensities,  and  it  is  compared  to  the  relative  percentage  differences
between the corrected and uncorrected results. 

In more detail, the MU is obtained: 

1. for the mean model - the same considered before as far as epistemic uncertainty is
concerned;

2. for each single hazard intensity threshold, as said;
3. by  performing  a  weighted  average  of  the  uplifts  from  each  model  (represented

through the centroid of the cluster), where the weights are the annual probabilities of
the  individual  models  (of  the  individual  earthquakes  then),  set  to  zero  if  the
earthquake do not deform the coastline (i.e. for far-field sources) or if the tsunami
doesn’t  exceed  the  given  hazard  intensity  threshold;  the  weighted  average  is
normalized to the total probability of the near- and far-field sources contributing to the
tsunami hazard for that threshold; 

4. by further averaging the result along the coastline, hence the MU may be interpreted
as the mean on a random point of the coastline, from all the far-field and near-field
scenarios, the latter including those causing both subsidence and uplift (note than
that  the  absolute  MU value  in  meters  is  then  rather  small  being  averaged  over
sources that cause either uplift or subsidence, or no coastal displacement at all).

Note that the intermediate results (before applying item 4.), that is the MU on each coastal
point, for different intensity thresholds, both for single cluster representatives (red lines) and
for the weighted average (according to item 3., blue line) are plotted in the new Figure S4.
While  we  note  that  there  are  both  positive  and  negative  displacements  (red  lines
corresponding to uplift and subsidence along the coast respectively), the predominant one is
unveiled by the sum over the different clusters plotted (the a blue line).

Moreover, the results in Figure 3c now show very little differences between the “corrected”
and “uncorrected” filtering procedures at low hazard intensities, that is those below the Filter
H thresholds value of 1 meter.

In summary, for the specific case study, that is for this specific source-target configuration,
our findings show that not considering an appropriate correction for near field would lead to
overestimate  the  tsunami  hazard  for  Hmax  greater  than 1m,  and  this  overestimation  is
correlated  to  dominant  coastal  uplift.  At  lower  intensities  differences  are  small  but  not
meaningful, as the results are biased by Filter H.

We will of course add the necessary new text in the revised manuscript concerning MU and
the corresponding analysis.

New title.

We propose the following new title for this study: “From regional to local SPTHA: efficient
computation of probabilistic tsunami inundation maps addressing near-field sources”
That is, we just inserted the word “tsunami” before inundation. This would make easier to
find the article if searching NHESS for tsunami-related papers.



Kind Regards,
Manuela Volpe, on the behalf of the co-authors.



Response point-by-point to Anonymous Referee #1

The point-by-point answers are in blue color, below each Reviewer’s comment (reported in
Italic). 

# # Overall comments #

This looks to be a good paper about an important topic that is of clear interest to
NHESS readers. It is mostly well written, and describes innovative ideas which are
likely to be of broad utility in tsunami hazard assessment.

➢ My  only  ’significant’  concern  is  that  the  authors  do  not  provide  a  ’conceptual
justification’ for the differences in the results of the two filtering methods they apply,
for  the  case  of  high  H_{max}.  As  it  stands,  as  a  reader  I  don’t  know why  this
happens. Intuitively the reasons are not obvious, and as it  relies on some rather
delicate calculations (which we know are sensitive to choices of coefficients in filters,
etc).  At  the moment I  cannot be confident  that the results are ’stable’  enough to
justify the conclusion that "it is important to distinguish near and far-field sources in
the  filtering  approach".  If  the  authors  can  provide  some  ’conceptual  backing’  to
support these results, then in my judgement the paper should clearly be accepted for
publication in NHESS. In saying this, please note that I accept the fact that some
aspects of these filtering approaches cannot be completely stable (e.g. in the authors
example, results with H_{max} < 1m are not meaningful). This is expected, and not a
problem. However, they need to provide more justification that the results at higher
return periods are stable enough to justify the key conclusion.

(the answer below is the same for a similar question from Reviewer 2)

The  conceptual  explanation  traces  back  to  the  fact  that  the  two  procedures  are  not
equivalent from a physical point of view and we could roughly say that one is in principle
“correct” and the other one is “wrong”. Maybe in saying "it is important to distinguish near
and far-field sources in the filtering approach" we were not clear enough. What we wanted to
stress is that a blind filtering procedure based on offshore tsunami amplitudes produces a
non  representative  selection  of  the  important  scenarios,  as  it  could  aggregate  or  even
remove important local scenarios.

We try to explain it better below.

In the original procedure by Lorito et al., offshore tsunami amplitudes are supposed to be
representative of the coastal inundation, regardless of the source location with respect to the
coast. That was reasonable, since it considered either far field scenarios with respect to the
coast of Sicily, or scenarios which deformed the coast of Crete Island always in the same
direction, since they were all subduction earthquake on the neary Hellenic Arc. 

Indeed, offshore tsunami profiles could be strongly misleading when coseismic deformation
of  the  coast  occurs,  either  as  coastal  uplift  or  subsidence  depending  on  the  causative
earthquake.  The  coseismic  displacement  induced  by  local  earthquakes  can  modify  the



actual onshore tsunami intensity corresponding to the same offshore wave. Hence, near field
scenarios  must  be  separately  treated,  and  clustered  considering  the source  similarities,
including  the  co-seismic  coastal  displacement,  rather  than  the  offshore  tsunami  wave
similarity.

We will try to report these “conceptual” arguments in the revised manuscript as concisely as
possible.

The tuning of the thresholds in the filtering procedure is a different task, but we note that the
same thresholds have been used with and without the correction for near field, so that the
differences we found in the results obtained from the two procedures are not in our opinion
imputable to those choices. 

On the other hand, we can now support such conceptual justification providing the physical
explanation of the specific results, based on the new quantity MU (mean uplift) we calculated
and described in our introductive general remarks. This also answers to one of your specific
comments below.

In general,  lower  ‘corrected’  hazard means that  the predominant  effect  by local  sources
contributing to a specific point on the hazard curve - that is to the probability of exceedance
for a given intensity threshold - is represented by coastal uplift,  which in turn decreases
tsunami hazard. In other words, there is a prevalence of clusters represented by scenarios
causing uplift. Conversely, higher hazard would correspond to coastal subsidence.

As we said, we investigated this aspect, computing, for different intensity thresholds above
1m, the MU on a random point along the coastline of the inner grid, produced by near field
representative  scenarios  contributing  to  the  hazard  at  that  threshold,  weighted  by  the
occurrence probability associated to each scenario (corresponding to the probability of the
entire  cluster  it  represents)  and  normalized  to  the  probability  of  all  of  the  scenarios
contributing to the same intensity threshold.

The obtained positive values, although not representative of the real coastal displacement as
averaged  on  all  the  scenarios  (including  that  ones  which  do  not  produce  appreciable
coseismic  local  deformation),  indicate  that  the  dominant  contribution  to  the  coseismic
deformation is an uplift of the coast, in agreement with the percentage differences retrieved
between the two approaches.

We  hope  to  have  answered  in  this  way  to  the  “significant”  concern  expressed  by  the
Reviewer.  We must  acknowledge  that  this  comment  made us  deepen  the analysis  and
consider our results much more carefully - and indeed we found a bug.

# # Specific comments #

➢ P7, around line 10: I think you mean that you neglect a bunch of ’other’ important
sources of uncertainty, but, you do comprehensively test the filtering procedure (??
right?? – actually upon reading the full paper I’m still uncertain). At the moment the
paragraph doesn’t make it clear if your example is actually a ’strong’ evaluation of
the filtering procedure, given the idealized assumptions on the source. Please make



this clearer.
  

The test site illustrative application is not a real hazard assessment, as it is based on a quite
rough  probability  model  as  well  as  on  some strong  assumptions  regarding  the  filtering
thresholds and the source modeling. 

Nevertheless,  although relatively  simplified,  our  source model  is  still  quite  complex,  and
includes  even  epistemic  uncertainties  on  many  source  parameters,  e.g  concerning  the
seismic  rates,  the  shape  of  the  magnitude-frequency  distribution,  even  the  seismogenic
depth  for  the  two  considered  subduction  zones,  and  several  others.  It  also  includes
ensemble  uncertainty  modeling.  We  now  include  a  new  Figure  in  the  Supplementary
Materials  (Figure  S2),  which  should  make  clearer  that  the  model  deals  with  epistemic
uncertainty,  as  it  shows  the  comparison  between  the  mean  offshore  hazard  curves  at
selected points along the 50m isobath (see Figure 2a of the manuscript),  as well  as the
comparison between some quantiles of the epistemic uncertainty, for the filtered and original
set of scenarios. Please refer to Selva et al. 2016 for further details on the adopted source
model. 

So, we consider the model as fully suitable to test and describe the procedure. We anyway
restate that the aim of the application is to highlight that inaccurate (biased) evaluation of
site-specific tsunami hazard would be obtained if scenarios located in the near field of the
target  area are  not  properly  taken  into  account,  irrespectively  of  the  completeness  and
consequent complexity of the hazard assessment. A “real” application would be just more
complicated and more computationally demanding.

➢ P8, top of page – it would be good to report on some sensitivity analysis of this to
give the reader a ’feel’ for how severe these approximations are (e.g. you could halve
the number of clusters, so you don’t have to do more simulations).

The filtering procedure surely introduces some approximations and ideally the goal should
be to reduce the computational cost of PTHA while keeping the error with respect to the
whole set of sources as small as possible. In the present work, considering the illustrative
nature of the case study, we enlarged the accepted error to further reduce the number of
explicit numerical simulations. 

First  of  all,  the  most  severe  approximation  was  made  during  the  filtering  on  tsunami
amplitude: it goes without saying that a threshold of 1m might be not acceptable in case of a
real hazard assessment, while it  is an acceptable threshold for illustrative purposes. It  is
worth  stressing  that  this  filter,  independently  from  the  threshold  value,  does  not  affect
subsequent steps of the procedure, as it represents a rigid cut-off of the number of scenarios
we are accounting for.

Another  strong  assumption  was  made  regarding  the  cluster  analysis:  the  k-medoids
partitioning algorithm is based on the minimization of the sum of the intra-cluster distances,
i.e.  the  distances  between  each  element  of  a  cluster  and  the  cluster  centroid.  Strong
constraints  on the distances result  in  a more accurate partitioning,  in  terms of  similarity
between the elements of each cluster, but lead to a great number of clusters. Instead, larger
ranges  of  acceptability  increase  the  efficiency  of  the  algorithm,  in  terms  of  number  of
resulting clusters, to the detriment of the accuracy. 

As an example, we provide here a sensitivity analysis on the threshold imposed on the intra-



cluster variance (step (3a)): the new Figure S3 shows the relative differences in absolute
value between the offshore (i.e. at the control points along the 50m isobath) hazard curves
computed from the complete initial  set of sources and the filtered set (at the end of the
cluster analysis). The red box corresponds to the threshold value we chose (0.2): it appears
evident that a smaller value would have allowed a stronger constraint on the error introduced
by the cluster analysis, while considerably increasing the number of resulting clusters. Vice
versa, higher thresholds produce a smaller number of clusters, but fail in reproducing the
hazard (error up to 40%). Our choice in our opinion represented the best trade off for our
purposes. Again, in case of a real hazard assessment, the lower threshold would be likely
better.

➢ P8, bottom of page – ’it is worth noting that results at H_{max} < 1m ...’ – OK, but
because those results are not meaningful, can you please ’clip’ your figure limits so
that they do not include H_{max} < 1m. That will help the reader focus on parts of the
curve that you do consider meaningful, and ease the interpretation of the figures.

We apologise as we have misspoken: what we intended is that the hazard curves below 1m
can be (negatively) biased since they are depleted from the scenarios removed by Filter H.
Following your suggestion, we rephrased and shadowed that part of the plots in Figure 3.
This depletion is also clearly observed in new Figure S2 for low amplitudes.

➢ P9, paragraph around lines 10-15 – It’s not evident to me why method 3a should
’over-estimate’  rates  for  H_{max}>3 (or  indeed  why the difference is  reversed at
lower H_{max}).  Can you give a heuristic explanation of  why this could happen?
Without  some idea of  this,  my thinking is  ’maybe a calculation/convergence type
error’ (!). Or is it that, for large enough H_{max}, the associated local sources have a
greater tendency to be filtered than the distant ones, for some reason – and the
converse for smaller H_{max}? Definitely not obvious to me – please discuss it.

As discussed before, a lower hazard at a certain point of the hazard curve, due to the near
field correction, means that the coseismic field from local sources that dominate the hazard
produces a coastal  uplift.  We agree this was not sufficiently  proved before, but  the new
Figure  (3c),  with  the  MU superimposed  to  the  percentage  differences  between the two
approaches now should better illustrate that the overestimation is correlated to the dominant
coastal uplift.

➢ P9, paragraph around line 5 – I agree that you’ve shown that a ’blind’ cluster analysis
might  produce quite  different  results  from the 2-stage approach proposed  in  the
paper. However, I’m less confident about the stability of either procedure. Can you
really say that the 2-stage approach is better, based on the results presented here?
Consider  the following  "devil’s  advocate"  theory – from what  you’ve presented,  I
hypothesis that "Both of your approaches are strongly affected by the details of the
filtering  coefficients,  and  equally  big  differences  could  be  expected  from  merely
adjusting those in reasonable ranges". In other words, how can readers be confident
that the results are not just ’noise’? Probably you can justify this, but I don’t see it
from the current text. So please add in some discussion that explains ’why’ these
results happen, and why you expect them to be ’basically robust’ {notwithstanding
that you have to make some severe approximations for low events – that’s ok – but



at least for high events, we need some conceptual explanation of the results}.

As it should be clear now from our previous answers, involving the new Figure 3 and MU,
there are firm conceptual reasons supporting the need of a “2-stage approach”.  You are
indeed right that the results are stronger for larger amplitudes. This is clearer with the new
results.

The simplest explanation remains though the same: the original assumption that offshore
tsunami amplitudes are representative of  the coastal  inundation may fail  if  local  sources
producing appreciable coseismic deformation of  the coast  -  of  conflicting sign,  i.e.  some
uplift and some subsidence depending on the source - are involved.

Hence, one (the only?) way we can take this into account is to separate near and far field
scenarios  and  treat  local  sources removing  the approximation  introduced  by  the cluster
analysis on the tsunami amplitudes, since offshore profile can not be considered reliable for
such sources.  This considerations hold irrespectively  of the stability of  the results in our
example.  However,  our results “behave” as expected, being dependent  on the approach
used. 

Indeed,  the near  field treatment is  still  an approximation,  as we reduced the number  of
numerical  simulations  with  respect  to  the “exact”  case,  by performing a cluster  analysis
based on the coseismic fields. However, it should be a better approximation with respect to
aggregate local and remote scenarios on the basis of the offshore tsunami amplitudes. 

Moreover, our application is also aimed to investigate if  such procedure is really needed
from the point of view of results, that is if, apart from the physical meaning of the procedure,
results are actually affected by the near field correction.

The  fact  that  the  contribution  from  the  near  field  turned  out  to  be  significant,  even
investigating  a  target  site  with  relatively  low near-field  tsunamigenic  seismicity,  was  not
straightforward.

We finally stress that the two approaches (with or without the correction for near field) only
differ in the way local sources are treated: the filtering coefficients are basically consistent. In
other words, the different results can not be related to the filtering thresholds.

We repeat, the “conceptual explanation”, should now be there with the new results and the
new analysis presented. And we must acknowledge that this comment was really useful.

➢ P11, line 6 – as mentioned above, please provide more ’conceptual explanation’ as
to why this happens.

As  extensively  discussed  in  the  previous  answers,  this  is  related  to  the  coseismic
deformation induced  by local  sources,  which,  if  properly  accounted,  modify  the effective
tsunami hazard.

# # Detailed comments #
➢ P3, L31 – suggest changing ’is released’ to ’is not used’. 



➢ P5, L5: – suggest changing ’will produce as well similar inundation patterns’ to ’will
also produce similar inundation patterns’. 

➢ P5, lines 6-7 – Please provide the equation for the cost function. I looked up the 2010
paper,  but  it  appears  to  refer  to  time-series  comparisons  rather  than  H-max
comparisons. Better to make it very obvious to the reader. 

➢ P6, around lines 10-11 – It’s not clear to me how you use the co-seismic deformation
as a metric for source-proximity in the cluster analysis. Ahh, I see you do this below
around lines 25. Give that, please add "(details below)" at the end of the sentence
that finishes on line 11.

➢ P7, line 20 – there is a number with multiple ’.’ inside – this is not familiar notation to
me, do you intend to use some other separator?

We thank for your suggestions, which will  be all  addressed in the revised manuscript. In
particular, we will clarify that the cost function equation firstly introduced in the 2010 papers
to compare time series while solving inverse problems was modified by Lorito et. al 2015 for
Hmax comparison.



Response point-by-point to Anonymous Referee #2

The point-by-point answers are in blue color, below each Reviewer’s comment (reported in
Italic). 

##General comments##

This paper addresses an important topic, namely the development of onshore probabilistic
tsunami hazard assessments and overcoming the related computational challenges. It builds
on the work of Lorito et al. 2015 and Selva et al. 2016. A key innovation in this study is
efficient filtering of near-field sources based on coseismic deformation, rather than offshore
tsunami wave height. Overall, the paper is well written and concisely explains the issues and
methods used to overcome them, and is suitable for publication in NHESS with some minor
revisions.

In reviewing the paper, my main suggestions (details given below) are:

1. Siting the introduction more broadly in the PTHA literature. While this paper builds
directly on the work of Lorito et al. 2015 and Selva et al. 2016, which is heavily relied
upon in the introduction, along with the review paper by Grezio et al 2017, there are
a number of additional relevant papers related to PTHA problems that could be cited.
In my opinion, this would more neatly place this paper within the broader context of
PTHA literature, widening the appeal of the paper. I.e. this paper should be framed
as a step forward in PTHA in general, not just an update of the Lorito and Selva
methods (although it is that too). 

We fully agree and appreciate the suggestion. Citing Lorito et al. 2015 and Selva et al. 2016
was indeed mandatory. Conversely,  using only Grezio et al.  2017 to refer to PTHA was
certainly too simplistic.  We will  improve the bibliography to better frame the paper in the
context, also following your specific suggestions below. 

As a result, we added the following references, including also those stemming from other
comments below:

Brizuela,  B.,  Armigliato,  A.,  and Tinti,  S. (2014). Assessment of tsunami hazards for  the
central american pacific coast from southern mexico to northern peru. Natural Hazards and
Earth System Sciences, 14(7):1889–1903.

Burbidge, D., Cummins, P. R., Mleczko, R., and Thio, H. K. (2008). A probabilistic tsunami
hazard assessment for western australia. Pure Appl. Geophys., 165(11):2059–2088.

Davies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., Lorito, S., Basili, R.,
Selva,  J.,  Geist,  E.,  and  Baptista,  M.  A.  (2017).  A  global  probabilistic  tsunami  hazard
assessment  from earthquake sources.  Geological  Society,  London,  Special  Publications,
456.
Gailler,  A.,  Calais,  E.,  Hebert,  H.,  Roy,  C.,  and Okal,  E.  (2015). Tsunami scenarios and
hazard assessment  along  the northern  coast  of  haiti.  Geophysical  Journal  International,
203(3):2287–2302.



Geist, E. L. (2002). Complex earthquake rupture and local tsunamis. Journal of Geophysical
Research: Solid Earth, 107(B5):ESE 2–1–ESE 2–15.

Griffin, J. D., Pranantyo, I. R., Kongko, W., Haunan, A., Robiana, R., Miller, V., Davies, G.,
Horspool,  N.,  Maemunah,  I.,  Widjaja,  W.  B.,  Natawidjaja,  D.  H.,  and  Latief,  H.  (2017).
Assessing  tsunami  hazard  using  heterogeneous  slip  models  in  the  Mentawai  Islands,
Indonesia. Geological Society of London Special Publications, 441:47–70.

Gusman, A. R., Tanioka, Y., MacInnes, B. T., and Tsushima, H. (2014). A methodology for
near-field tsunami inundation forecasting: Application to the 2011 tohoku tsunami. Journal of
Geophysical Research: Solid Earth, 119(11):8186–8206.

Harbitz,  C.,  Glimsdal,  S.,  Bazin,  S.,  Zamora,  N.,  Løvholt,  F.,  Bungum,  H.,  Smebye,  H.,
Gauer, P., and Kjekstad, O. (2012). Tsunami hazard in the caribbean: Regional exposure
derived from credible worst case scenarios. Continental Shelf Research, 38:1 – 23.

Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A.,
Bustaman,  B.,  Anugrah,  S.  D.,  and  Thio,  H.  K.  (2014).  A  probabilistic  tsunami  hazard
assessment for indonesia. Nat. Hazards Earth Syst. Sci., 14(11):3105–3122.

Løvholt, F., Bungum, H., Harbitz, C. B., Glimsdal, S., Lindholm, C. D., and Pedersen, G.
(2006).  Earthquake related tsunami  hazard  along the western  coast  of  thailand.  Natural
Hazards and Earth System Sciences, 6(6):979–997.

Power,  W.,  Wang, X.,  Wallace,  L.,  Clark,  K.,  and Mueller,  C.  (2017).  The New Zealand
probabilistic tsunami hazard model: development and implementation of a methodology for
estimating tsunami hazard  nationwide.  Geological  Society,  London,  Special  Publications,
456.

Satake, K., Fujii, Y., Harada, T., and Namegaya, Y. (2013). Time and space distribution of
coseismic slip of the 2011 tohoku earthquake as inferred from tsunami waveform datatime
and space  distribution  of  coseismic  slip  of  the  2011  tohoku  earthquake.  Bulletin  of  the
Seismological Society of America, 103(2B):1473.

2. Some assessment of the sensitivity to the choices made in the filtering process (i.e.
choice  of  thresholds  etc)  and  whether  this  has  any  implication  to  the  broader
conclusions. Also whether it is possible for biases to be introduced in this process.

(the answer below is the same for a similar question from Reviewer 1)

The  conceptual  explanation  traces  back  to  the  fact  that  the  two  procedures  are  not
equivalent from a physical point of view and we could roughly say that one is in principle
“correct” and the other one is “wrong”. Maybe in saying "it is important to distinguish near
and far-field sources in the filtering approach" we were not clear enough. What we wanted to
stress is that a blind filtering procedure based on offshore tsunami amplitudes produces a



non  representative  selection  of  the  important  scenarios,  as  it  could  aggregate  or  even
remove important local scenarios.

We try to explain it better below.

In the original procedure by Lorito et al., offshore tsunami amplitudes are supposed to be
representative of the coastal inundation, regardless of the source location with respect to the
coast. That was reasonable, since it considered either far field scenarios with respect to the
coast of Sicily, or scenarios which deformed the coast of Crete Island always in the same
direction, since they were all subduction earthquake on the neary Hellenic Arc. 

Indeed, offshore tsunami profiles could be strongly misleading when coseismic deformation
of  the  coast  occurs,  either  as  coastal  uplift  or  subsidence  depending  on  the  causative
earthquake.  The  coseismic  displacement  induced  by  local  earthquakes  can  modify  the
actual onshore tsunami intensity corresponding to the same offshore wave. Hence, near field
scenarios  must  be  separately  treated,  and  clustered  considering  the source  similarities,
including  the  co-seismic  coastal  displacement,  rather  than  the  offshore  tsunami  wave
similarity.

We will try to report these “conceptual” arguments in the revised manuscript as concisely as
possible.

The tuning of the thresholds in the filtering procedure is a different task, but we note that the
same thresholds have been used with and without the correction for near field, so that the
differences we found in the results obtained from the two procedures are not in our opinion
imputable to those choices. 

On the other hand, we can now support such conceptual justification providing the physical
explanation of the specific results, based on the new quantity MU (mean uplift) we calculated
and described in our introductive general remarks. This also answers to one of your specific
comments below.

In general,  lower  ‘corrected’  hazard means that  the predominant  effect  by local  sources
contributing to a specific point on the hazard curve - that is to the probability of exceedance
for a given intensity threshold - is represented by coastal uplift,  which in turn decreases
tsunami hazard. In other words, there is a prevalence of clusters represented by scenarios
causing uplift. Conversely, higher hazard would correspond to coastal subsidence.

As we said, we investigated this aspect, computing, for different intensity thresholds above
1m, the MU on a random point along the coastline of the inner grid, produced by near field
representative  scenarios  contributing  to  the  hazard  at  that  threshold,  weighted  by  the
occurrence probability associated to each scenario (corresponding to the probability of the
entire  cluster  it  represents)  and  normalized  to  the  probability  of  all  of  the  scenarios
contributing to the same intensity threshold.

The obtained positive values, although not representative of the real coastal displacement as
averaged  on  all  the  scenarios  (including  that  ones  which  do  not  produce  appreciable
coseismic  local  deformation),  indicate  that  the  dominant  contribution  to  the  coseismic



deformation is an uplift of the coast, in agreement with the percentage differences retrieved
between the two approaches.

We  hope  to  have  answered  in  this  way  to  the  “significant”  concern  expressed  by  the
Reviewer.  We must  acknowledge  that  this  comment  made us  deepen  the analysis  and
consider our results much more carefully - and indeed we found a bug.

3. Some comment on whether other metrics besides maximum tsunami height or co-
seismic deformation could be relevant in assigning events to clusters.

Yes, sure. This might be certainly relevant, at least for far-field sources. Storing and using
the full waveforms, or considering maybe periods and polarities, or other approaches, can be
considered. 

Take into account though that this was already briefly discussed in Lorito et al. 2015. It was
tested there that after some tuning of the length of the offshore profile of control points, the
offshore height profile turned out to be a sufficiently good indicator for approximating the
inundation  afterwards.  We  may  speculate  that  this  is  due  to  the  collective  information
provided by the maximum heights themselves taken altogether, which then becomes a kind
of  maximum wave  profile.  Nevertheless,  we will  briefly  discuss  the issue in  the  revised
manuscript, also using the examples you provide in your specific comment. 

Vice-versa, as far as near-field sources are concerned, two modelled tsunamis with very
similar sources should be quite similar, except in case of a very sensitive dependence on
initial  conditions  -  like  for  the  butterfly-effect.  We  are  not  totally  convinced  but  we  will
cautiously mention the issue in the revised manuscript.

In addition, there are several minor areas for clarification to improve the communication of
the results, and a few grammatical errors.

##Specific comments##

1. Introduction
As  mentioned  above,  this  could  benefit  from  reference  to  broader  PTHA  literature,
specifically:

➢ P2L4:  Should  also  cite  other  PTHA  studies  as  incremental  gains  in  uncertainty
quantification have been made over the past decade or so. Include Burbidge et al
2008; Gonzalez et al 2009; Horspool et al 2014; Davies et al 2017, Power et al 2017
(there may be others).

➢ P2L7-8: These references (Geist and Lynett 2014; Grezio et al 2017) are not the first
to  emphasise  computational  approaches  to  PTHA  –  see  additional  references
suggested in the above point.

➢ P2L10: Should also reference Davies et al. 2017 regarding uncertainty quantification.
➢ P2L13: Gonzalez et al 2009 should be cited in reference to challenges of PTHA for

inundation.
➢ P2L16: Geist 2002 should also be mentioned here.
➢ P2L17. Mueller et al 2014 and Griffin et al.  2015 have both undertaken on-shore

tsunami  hazard  assessments  considering  heterogeneous  earthquake  rupture;



although neither was fully probabilistic, they should be mentioned here as first steps
towards  quantifying  this  uncertainty  for  inundation  hazard.  Both  also  discuss  the
effect of coseismic displacement on onshore hazard and how this can vary locally, as
discussed  on  P3L2.  Here  (P3L2)  the  discussion  could  be  expanded  to  provide
greater justification to your methodological approach to near field hazard.

These references provide as said a broader  context  to the paper  and we already listed
above those we will include in the revised manuscript. 

We will improve the introduction accordingly, following all your suggestions, for the different
categories,  such  as:  the  uncertainty  quantification,  the  computational  approaches,
challenges for PTHA inundation, rupture complexity and near-field, coseismic displacement
and onshore hazard.

➢ P1L20:  This  isn’t  true.  In  practice  many  inundation  assessments  also  use
‘representative scenarios’ for a range of return periods, not just ‘worst credible’. 

We will  clarify the statement, adding the mention to “representative scenarios” and some
appropriate references -  listed above as well,  mostly  using some scenarios  for  different
representative recurrence times sometimes combined with worst case ones, that is: Gailler
et al. 2015; Harbitz et al. 2012; Løvholt et al. 2006; Brizuela et al., 2014.

➢ P1L22: One or a limited range of inundation scenarios get used for much more than
‘a first screening’ by emergency managers. These scenarios regularly get used to
develop  emergency  management  plans,  evacuation  plans,  undertake  impact
assessments and so on. In my opinion this paragraph severely underplays the utility
of scenario hazard assessments. The main problem is that we can’t translate the
offshore probability to an onshore probability.  I  expect that even with probabilistic
inundation  hazard  maps,  single  event  scenarios  will  still  be  used for  a  range  of
emergency management scenario planning purposes – we’ll just be in a position to
actually say what the probability of the event in terms of inundation hazard is. 

Here we need to disagree a bit; or better, this is not what we meant, since we also wrote: “to
realize  very  detailed  assessments  of  specific  scenarios.”  This  goes  beyond  the  “first
screening”, in our intention. We will clarify this in the revised manuscript, also referring to
disaggregation of PTHA for selecting physically meaningful individual scenarios. Instead, we
are sorry but we are not sure we understand the statement “we can’t translate the offshore
probability to an onshore probability.”, since in this paper - as well as in other papers from
different authors - fully probabilistic inundation maps are presented.

➢ P2L20: Need to clarify that this is talking about onshore PTHA – offshore PTHA are
in general computationally affordable (though not cheap!) these days.

Agree, we will modify the text accordingly.

➢ P2L30: ‘while solving all the emerging technical and scientific issues’. This seems a
fairly bold claim! Perhaps rephrase. 



We apologise for the misunderstanding: it  was intended to emphasize that the work also
concerned the implementation of  the procedure,  which  was not  trivial.  We will  rephrase
according to your comment.

2. Method outline This section is clear and well-written

3. Implementation of an improved filtering methodology

➢ P5L4-5: How confident are you in the assumption that similar wave heights lead to
similar onshore hazard? What about other wave properties such as period, which
may be significant in determining onshore behaviour. E.g. Satake et al 2013 showed
how inundation  from the  Tohoku  tsunami  was  variably  controlled  by  long-period
components on flat coastal plains and shorter-period peaks in steep coastal areas.
While set within a tsunami warning context rather than hazard assessment context,
Gusman et al 2014 used two cycles of a tsunami waveform in identifying ‘similar’
tsunami.  I  think  some of  the  issues  are  resolved  for  near  field  tsunami  in  your
coseismic  deformation  filtering  approach  presented following,  but  it  could  still  be
good to comment on this issue here.

We generally agree and we have responded to the related general comment 3. above. We
nevertheless give some specific answers here, partly repeating our previous answer.

The general assumption that, for a given source, offshore tsunami amplitude profiles are
representative of the coastal inundation behind was applied and tested in the previous work
by Lorito et. al (2015). On the other hand, we agree that caution must be used as well, since
the previous paper did not deepen into any possible specific case.

Indeed  we  faced  for  example  the  problem  when  treating  near  field  scenarios,  as  you
observed. 

We also agree that there might be other issues. As said the wave period is an important
property  controlling  the  tsunami  impact:  in  fact,  we  someway  accounted  for  that  by
considering a control profile along the target coast, advancing a kind of ergodic hypothesis. 

Future  developments  of  our  method  could  take  into  account  a  Gusman-like  approach,
considering the tsunami time history at each point of the control profile, instead of just the
maximum  wave  height.  We  will  nevertheless  add  a  few  comments  about  this  in  the
manuscript adopting the suggested line of reasoning. We thank you for pointing this out.

➢ P6L30-35: It is not entirely clear how the distance is measured across the grid of
coseismic deformation points, and how the spatial component is handled – perhaps
also write the relevant equation to ensure clarity.

The comparison between the coseismic deformation fields is carried out point-to-point. The
squared Euclidean distance is the metric used for the cluster analysis and only the vertical
components are taken into account. We will try and rephrase for the sake of clarity.

4. The Milazzo oil refinery



➢ P8L28:  The  abbreviation  Mmax  is  very  commonly  used  to  mean  the  maximum
magnitude  for  a  given  earthquake  source  in  seismic  and  tsunami  hazard
assessment. I would suggest changing this to something else to avoid confusion.

We will change this MFmax (maximum momentum flux). This will appear as well in the new
Figures (those after correcting the results for the bug) in the Supplementary Materials.

➢ P9L11: This should be ‘overestimates the probability for a given Hmax relative to
STEP (3b).

Ok, we will modify the sentence as suggested.

➢ P9L23: Should these be >=, not =, if you’re talking about probabilities of exceedance.

Probability maps are obtained by vertically “cutting” the hazard curves for each point of the
grid, i.e. representing on a map the exceedance probability values for a fixed Hmax  . In this
sense,  the  “=”  sign  is  correct.  We  will  add  the  “(exceedance)”  in  parentheses  before
probability for clarity.

➢ P9L26-30: Use of phrase ‘positive’ and ‘negative differences’ is confusing and makes
the meaning of the paragraph somewhat ambiguous. Better to rephrase stating more
explicitly which model gives relatively higher/lower hazard etc. 

We agree  that  the  sentences  are  quite  unclear;  we  will  rephrase  them  referring  more
explicitly to higher/lower hazard. 

➢ Also, the difference between results far inland, near the coast and offshore in Figure
4a need to be explained. Why the shift from negative to positive differences at some
distance inland from the coast?

We first need to point out that Figure 4 has changed based on the new results. 

We assume that you are referring to the Figure with the differences between the probability
maps for steps 3a and 3b and for the intensity threshold of 2 meters (the top right one). We
apologise for the confusion and we will add labels where missing to all Figures. 

However, note that now this Figure is quite different from before, as it contains more positive
values. This is consistent with the new Figure 3c, where the differences are already positive
for this threshold and even larger for the 3 metres threshold. 

As  far  as  the  negative  inland  values  are  concerned,  note  that  they  occur  for  very  low
probability values. So, maybe they shouldn’t be overinterpreted. We will however comment
all the new Figures based on the new results in the revised manuscript.

➢ P10L5:  Can  anything  additional  be  said  about  possible  biases  in  the  sampling
process? Why is it likely that the sampling produced a non-representative selection
of  the  important  scenarios?  How  does  this  overall  affect  the  strength  of  you
conclusions  in  comparing the two methods (i.e.  could  the differences be random
rather than systematic).



What we meant here is that without the correction for near field, namely without a separate
treatment for remote and local sources, the filtering procedure provides a non-representative
selection of the important scenarios. 

This is due to the basic assumption that offshore tsunami amplitudes can be considered
representative  of  the onshore tsunami  impact,  which  surely  introduces a bias  when the
scenarios which deform the coastline are not separated by those that doesn’t  do it  (step
(3a)). 

For  example,  admit  that  2  different  scenarios  will  both  produce 1  meter  wave offshore.
However,  one  scenario  uplifts  the  coast  of  1  meter,  the  other  one  creates  1  meter
subsidence. The two inundations will be dramatically different, but the two scenarios would
be nevertheless grouped by (3a) under the same cluster.

Therefore, the procedure proposed as step (3b) is in principle the correct one to evaluate
site-specific  tsunami  hazard,  when  local  effects  of  coseismic  deformation  can  not  be
neglected. 

5. Conclusions 

➢ P10L10: The statement around the definition of the source scenarios seems a bit
strong. I’d suggest removing the word ‘fully’ as I doubt this has really been done.
Aleatory  uncertainty  applies  to  both  the  rate  model  and  the  source  location,
geometry, maximum magnitude etc. I’d suggest putting ‘and their mean annual rates’
prior to ‘exploring source uncertainty’.

We agree with the comment: the word “fully” here is misleading. Although in principle the
proposed methodology allow us for  a full  exploration  of  the aleatory uncertainty,   some
practical limitations are always present in real life. We will correct the text accordingly.

➢ P10L19:  Suggest  ‘from offshore  wave  amplitudes  alone’.  Also,  what  about  other
parameters  such  as  period  for  non  near-field  tsunami?  This  links  back  to  my
comments on Section 3.

Ok, got it, we’ll rephrase by saying only that it is unlikely that the assumption holds if there is
co-seismic coastal displacement.

Figures:
➢ Figure 1: Step 2 should read ‘tsunami propagation to offshore points’ 
➢ Figures 3-5 need labels for parts a), b) etc.

OK, we added labels where missing in the new figures.

##Technical corrections##
➢ Throughout: Why use STEP instead of Step? 
➢ P1L11: demonstrate not demonstrated
➢ P2L25: Rephrase to ‘This allows identification of a subset of ...’



➢ P2L29: Rephrase to ‘Here we merge the two approaches of Lorito et al....’
➢ P3L21: Change ‘resume’ to ‘summarise’. Also P10L9 
➢ P4L8: Change ‘enough representative’ to representative enough’
➢ P6L10: Change ‘and a separate modelling’ to ‘and separate modelling’
➢ P6L34-35:  Change  to  ‘while  the  stopping  criterion  is  based  on  the  Euclidean

distance’
➢ P7L16: Mediterranean Sea (not sea)
➢ P8L1: Replace ‘Namely’ with ‘That is’; delete ‘even’
➢ P8L25: Please specify the shear modulus used for the Okada calculations 
➢ P9L15: Remove ‘supposedly’
➢ P10L24: Change ‘has not to be’ to ‘is not’.
➢ P11L3-4:  I  think  this  should  read  ‘As  a  consequence,  the  effect  of  coastal

deformation on tsunami hazard can not be deduced...’
➢ P11L14: Change to ‘...the approach developed here allows consideration of a very

high number...’

We thank you for these technical  corrections, which will  be all  addressed in the revised
manuscript. Concerning the Okada calculations, a poissonian solid is assumed with λ=μ, so
that the Okada results are independent of the shear modulus.



Response point-by-point to Anonymous Referee #3

The point-by-point answers are in blue color, below each Reviewer’s comment (reported in
Italic). 

Overview: The authors did an extension of the SPTHA method previously proposed
by Lorito et al. (2015) [GJI] and Selva et al. (2016) [GJI]. A new filtering scheme for
earthquake scenarios is developed (Filter P) and the method is applied to a particular
coast (Milazzo).
Overall evaluation: The application of the SPTHA to a new region and adding some
innovations to the previously-developed method may justify publication of this work
The paper is not as good as the other two papers published before (I mean Lorito et
al. 2015; Selva et al. 2016). The current manuscript refers to the previous two papers
very frequently and does not seem to stand by its own. However, I am positive about
this work and I think it can be published in NHESS after some revisions. I made some
suggestions below.

We thank for your positive evaluation. Our manuscript in fact does not propose a totally new
method, but develops an upgrade of the method previously proposed by the cited published
papers. This is the reason for frequently referring to them.

Comments: 
➢ Page 3, “Method”: your Section 2 looks a review of the methods previously published

by Lorito  et  al.  (2015)  [GJI]  and  Selva  et  al.  (2016)  [GJI].  Your  own method  is
outlined in  Section 3.  This  is  confusing.  In fact,  your current  section 2 is  sort  of
literature review. I suggest change the title of Section 2 to “A review of SPTHA” and
then change title of Section 3 to “Methods: an improved SPTHA”.

We understood the point, although Section 2 is not properly a literature review of SPTHA but
just a summary of the original  method. Anyway,  we will  provide more suitable titles. For
example, they might be: “A review of the original method” for Section 2 and “Improvements
in the filtering procedure” for Section 3.

➢ To show the better performance of the new method over the ones published before (I
mean Lorito et al. 2015; Selva et al. 2016), a discussion or a figure is needed.  

The improved method, illustrated in Figure 1 of our manuscript, fits into the general scheme
displayed in Figure 1 of Selva et al. 2016, who already foresaw the possibility of performing
site specific tsunami hazard, although they did not addressed nor implemented or tested it.

The performances of the “new” method step (3b) are here benchmarked with respect to step
(3a), which corresponds to the original method as, although including some improvements, it
lacks the most crucial novelty, that is the separate treatment of the near-field scenarios. It is
discussed in several places that this was not done by Lorito et al. 2015. We will consider if
stressing this again while summarizing the results.

➢ Try not  to  refer  to  two previous papers  so much.  You may want  to  show more
independence.    



Ok, we will remove the references where possible.

➢ In Page 9, refer to appropriate figures when discussing the results. 

We agree, and will modify accordingly.

➢ Why you have capital letters for STEP? Is that necessary? If not, change it to “step”
because when you use capital letters, the reader assumes it is an acronym. I guess it
is not an acronym for anything.

We did not consider possible confusion with an acronym. As capital letters are not really
necessary here, we will change it.

➢ Page 5, Line 17: explain more about Filter P.

Filter  P is further explained by lines 17-29. We will  try to make it  clearer in the revised
version.

➢ Page 6, Line 2: what is intra-cluster? It is unclear. Make sure to explain more about it
and clarify how it works.

Intra-cluster variance means the variance within each cluster;  it  was used in the original
method to define the optimal number of cluster in the cluster analysis procedure, according
to the so-called Beale test. This will be better explained in the revised text.

➢ Page 6, Line 7: delete statements like “as mentioned before...” it is not suitable for
academic writing. 

➢ Page 7, Line 32: delete “as discussed in previous ....” Again not suitable. 

We accept the comments and will revise accordingly

➢ Page 8: here you use “cluster” and “scenario” interchangeably. Make sure which one
you meant.  I  assume that  you meant “Scenario”  not “cluster”.  They are different.
Cluster  is  much  bigger  than  a  single  scenario.  One  cluster  can  include  200
scenarios. In Line 13, you say: “We obtained 634 and 520 clusters for remote and
local sources, respectively, that is a total of 1154 scenarios ...”. Here the sum of 634
and  520  clusters  cannot  be  1154  scenarios.  Instead,  the  sum  of  634  and  520
clusters cannot be 1154 CLUSTERS.
  

There is no doubt that “cluster” and “scenario” are two different things. At the end of the
cluster  analysis  we  obtain  clusters  of  scenarios,  but  for  each  cluster  a  representative
scenario is selected, to which the probability of occurrence of the entire cluster is assigned,
and then the representative scenarios are the ones which are explicitly  modeled.  In this
sense a certain number of clusters corresponds to the same number of scenarios to be
simulated. We will clarify in the text.

➢ Your  conclusion has many repeats;  for  example lines  8-13.  Make sure delete all
repeats.



➢ ABSTRACT:  try  to  have  more  numbers  and  conclusions,  not  only  generic
statements.

➢ CONCLUSIONS: shorten it to a paragraph and be specific and do not repeat all stuff
again.

We will take into account the above general style suggestions in the revised text, thank you.

➢ Figure 1: The last box repeats. Delete one of them.    

The last box, relative to step (4) is repeated twice in order to highlight that step (3a) and (3b)
are completely separate paths. In our opinion, reporting step (4) just once, connected both to
step (3a) and (3b) is misleading, as it could suggest a “merging” of the results of simulations
from the two paths to evaluate SPTHA.

➢ Figure 2: Explain what are two sets of red dots. 

We agree: this information is missing in the figure caption. We will correct.
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From regional to local SPTHA: efficient computation of
probabilistic tsunami inundation maps addressing near-field sources
Manuela Volpe, Stefano Lorito, Jacopo Selva, Roberto Tonini, Fabrizio Romano, and Beatriz Brizuela
Istituto Nazionale di Geofisica e Vulcanologia, Italy
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Abstract. Site-specific Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) is a computationally demanding task, as it

requires in principle a huge number of high-resolution numerical simulations for producing probabilistic inundation maps. We

implemented an efficient and robust methodology usingthat, based on the similarity of offshore tsunamis and hazard curves in

front of a target site, uses a filtering procedure to reduce the number of numerical simulations needed, while still allowing full

treatment of aleatory and epistemic uncertainty. Moreover, we developed a strategy to identifynear-field sources are identified,5

on the basis of the tsunami coseismic initial conditions, and separately treat near-field scenarios,treated to avoid biases in the

tsunami hazard assessment. Indeed, the In fact, coastal coseismic deformation produced by local earthquakes necessarily affects

the tsunami intensity, depending on the scenario size, mechanism, and position, as coastal uplift or subsidence tend to diminish

or increase the tsunami hazard, respectively. Therefore, we proposeddeveloped two parallel filtering schemes in the far- and

the near-field, based on the similarity of offshore tsunamis and hazard curves and on the coseismic fields, respectively. This10

becomes mandatory asFor near-field sources offshore tsunami amplitudes can not represent a proxy for the coastal inundation

in case of near-field sources, and filtering is based on coseismic field. We applied the method to an illustrative use-case at the

Milazzo oil refinery (Sicily, Italy). We demonstrate that a blind filtering procedure can not properly account for local sources

and would lead to a non representative selection of the important scenarios. For the specific source-target configuration, this

results into an overestimation of the tsunami hazard, which turns out to be correlated to dominant coastal uplift. Different15

settings could produce either the opposite or a mixed behavior along the coastline. However, we show that the effects of the

coseismic deformation due to local sources can not be neglected and a suitable correction has to be employed when assessing

local scale SPTHA, irrespectively of the specific sign of coastal displacement.By comparison of the results obtained with and

without the correction for the near-field sources, for a use-case at the Milazzo oil refinery (Sicily, Italy), we demonstrate that

special treatment of local sources plays a fundamental role and is applicable in local scale SPTHA.20

Copyright statement.
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1 Introduction

In the last fifteen years, a number of large earthquakes, often accompanied by destructive tsunamis, occurred worldwide.

In several cases, the overall size of the earthquake and/or of the tsunami was unanticipated and some surprising features

were observed, in terms of event scaling (e.g., source aspect ratio, tsunami height versus earthquake magnitude) or associated

damage (Lay, 2015; Lorito et al., 2016); a striking example is the 2011 Tohoku earthquake and tsunami and the consequent5

nuclear disaster at the Fukushima Dai-ichi power plant (Synolakis and Kânoğlu, 2015). These events called the attention for a

systematic re-evaluation of current tsunami hazard estimates.

In the past, tsunami hazard was mostly studied through simulations of one or several scenarios, either “worst credible” (e.g.,

Tinti and Armigliato, 2003; Lorito et al., 2008; Tonini et al., 2011; Løvholt et al., 2012a) or representative for different selected

return periods (e.g., Løvholt et al., 2006; Harbitz et al., 2012; Brizuela et al., 2014; Gailler et al., 2015)“worst credible” earthquake10

scenarios and the associated tsunami. Such an approach can be useful either as a first screening of tsunami hazardto inform

emergency managers on the potential of tsunamis and their features or to realize very detailed assessments to inform emergency

managers on the potential impact of specific scenarios. Traditionally, the latter is often done also as a result of probabilistic

hazard disaggregation (Bazzurro and Cornell, 1999).

To account for the tsunami potential variability of the phenomena associated to tsunamis and their frequency, and for15

includingof the eventual alternative models needed for quantifying the epistemic uncertainty, the probabilistic treatment of

a large set of potential tsunami sources is essential. Probabilistic Tsunami Hazard Analysis (PTHA) probably begun with

the seminal papers of Lin and Tung (1982) and Rikitake and Aida (1988). Uncertainty quantification is one of the main goals

of PTHA, and progressively more refined uncertainty treatment was achieved following the 2004 Indian Ocean tsunamithe

Probabilistic Tsunami Hazard Analysis (PTHA) (e.g., Geist and Parsons, 2006; Burbidge et al., 2008; González et al., 2009;20

Horspool et al., 2014; Hoechner et al., 2016; Selva et al., 2016; Davies et al., 2017; Grezio et al., 2017; Power et al., 2017).

PTHA, which is becoming themore and more established as a good practice to manage risk assessment and risk mitigation

measures (Chock et al., 2016; Løvholt et al., 2017). Due to the lack of historical tsunami data, the opportunity to deal with

PTHA through a computational approach, involving the probability of all of the relevant sources and the numerical modeling of

the generated tsunamis, which is in the scope of all the above mentioned papers, ishas been recently emphasized for example by25

several reviews (Geist and Lynett, 2014; Grezio et al., 2017). This allows, for example, to account for the relative contributions

of large and small events at different mean annual rates and, even more important, to attain a quantitative treatment of the

uncertainty (e.g., Selva et al., 2016; Grezio et al., 2017).

Nevertheless, the computational procedure for a complete evaluation of PTHA, fully honoring the natural variability of the

sources, can be extremely demanding and unfeasible in some cases, particularly when inundation calculations are involved30

for a target site (González et al., 2009; Geist and Lynett, 2014). This is due to the very large number of numerical simula-

tions of tsunami generation, propagation and inundation on high resolution topo-bathymetric models which is, in principle,

required. For example, numerous realizations of heterogeneous slip are needed and usually obtained with stochastic proce-

dures (LeVeque et al., 2016; Sepúlveda et al., 2017). Indeed, heterogeneous earthquake slip is known to strongly influence the

2



tsunami run-up (Geist, 2002; Løvholt et al., 2012b; Geist and Oglesby, 2014; Davies et al., 2015; Murphy et al., 2016), not only

in the the near-field of the source (Li et al., 2016). Among some first attempts towards quantifying tsunami hazard uncertainty

related to heterogeneous earthquake slipActually, Mueller et al. (2014) and Griffin et al. (2017) should be mentioned. Recently,

Goda and De Risi (2018) proposed a multi-hazard approach including stochastic slip distributions and cascading earthquake-

tsunami risk evaluation; however they considered a limited number of tsunami scenarios, without fully characterizing the5

epistemic uncertainties associated with the key model components. Consequently, an efficient methodology is needed to make

(onshore) PTHA a computationally affordable task.

The issue has been dealt with in various ways in several studies (González et al., 2009; Thio et al., 2010; Lorito et al., 2015;

Lynett et al., 2016). In particular, Lorito et al. (2015) focused on Seismic PTHA (SPTHA), that is on hazard associated to

tsunamis generated by coseismic seafloor displacement. They developed a method for significantly reducing the computational10

cost of the assessment, by means of a source filtering procedure based on a cluster analysis. This allows the identification ofto

identify a subset of important sources able to preserve the accuracy of results. Furthermore, Selva et al. (2016) proposed a

general procedure for the joint and unbiased quantification of the aleatory and epistemic uncertainty, including the filtering

procedure by Lorito et al. (2015) while stressing the importance of source completeness.

Here, we mergedeepen into the merging of the two approaches by Lorito et al. (2015) and Selva et al. (2016), fully developing15

a method that enables the quantification of the local scale SPTHA, also devoting a big effort in refining the procedurewhile

solving all the emerging technical and scientific issues and introducing several critical improvements. On one hand, we modified

the filtering procedure to enhance its computational efficiency and to adapt it to multiple sources covering a large range of

source-target distances. On the other hand, to improve the accuracy, we applied a separate treatment for remote and local

sources, selecting near-field scenarios on the basis of the similarity of the coseismic tsunami initial conditions. This is crucial,20

as near-field sources may challenge the general assumption made by Lorito et al. (2015), where, for a given source, offshore

tsunami amplitude profiles are considered representative of the coastal inundation behind, regardless of the source location

with respect to the coast. It was reasonable in that case study, since they considered either far-field scenarios with respect

to the target coast or scenarios which deformed the coast in a definite direction, that is the coast always subsided due to

subduction earthquakes on the Hellenic Arc. In the presence of more complex (and realistic) local fault distribution, causing25

either subsidence or uplift or mixed patterns depending on the cases,: indeed, coastal uplift or subsidence due to the coseismic

displacement induced by local earthquakes can modify the actual tsunami intensity, which can be unpredictably reduced or

enhanced with respect to the corresponding offshore tsunami waveby nearby the target area (Mueller et al., 2014; Griffin et al.,

2017). Hence, in general, offshore tsunami profiles could be strongly misleading when coseismic deformation of the coast

occurs. This may in particular affectis particularly important to preserve the tail of the hazard curves (i.e. largest intensities),30

to which local sources significantly contribute, as also demonstrated by the disaggregation analysis in Selva et al. (2016). For

all these reasonsthis reason, a special treatment is needed for local sources, based on the source similarities considering the

coseismic onshore displacement, rather than the offshore tsunami wave similarity.

For illustrative purposes, we considered, as a use-case, a target site in the Central Mediterranean, that is the Milazzo oil

refinery (Sicily, Italy), in the Southern Tyrrenian sea. This site was previously selected within the framework of the EU project35
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STREST (http://www.strest-eu.org/) as a test case for multi-hazard stress test development for non-nuclear critical infrastruc-

tures.

It is worth noting that this paper is strictly methodological and is aimed to propose a computationally efficient procedure for

local scale SPTHA, rather than providing a realistic site-specific hazard assessment. In fact, for the sake of simplicity and in

order not to deflect the attention from the core of the method, no efforts have been dedicated to constrain and test the (regional)5

seismic rates, the local seismic sources and their geometry and dynamics, including slip distributions, as well as the accuracy of

topo-bathymetric data used in tsunami simulations. Moreover, the filtering procedure has been forced to minimize the number

of explicit numerical simulations, allowing a relatively larger accepted error with respect to the complete initial set of sources

due to the introduced approximations.

The paper is organized as follows: section 2 resumes the general outline of the method for SPTHA evaluation, as proposed10

by Lorito et al. (2015) and Selva et al. (2016), while the innovative developments are described in section 3; section 4 focuses

on the illustrative application; conclusive remarks are drawn in section 5.

2 A general review of the original method for SPTHAMethod outline

Using regional scale SPTHA as input for local scale (site-specific) SPTHA, through the approach proposed by Lorito et al.

(2015), is a task already foreseen by Selva et al. (2016) (see Fig. 1 therein). However, this possibility was neither applied nor15

tested in practice, since their main focus was the application to regional scale analyses. The details of the general method have

been already thoroughly described and validated in the previous studies. Here we will summarizeresume the basic concepts.

The whole general procedure for site specific SPTHA can be outlined in four steps: (1) the definition of earthquake scenarios

and their probability, allowing in principle a full exploration of source aleatory uncertainty; (2) the computation, for each

source, of tsunami propagation up to a given offshore isobath; (3) the selection of the relevant scenarios for a given site through20

a filtering procedure and the relative high-resolution tsunami inundation simulations; (4) the assessment of local SPTHA

with joint aleatory and epistemic uncertainty quantification by means of ensemble modeling, including modeling alternatives

eventually implemented at steps (1)-(3).

In step (1), all the modeled earthquakes must be defined for different seismic regions, which are assumed to be independent

from each other. The earthquake parameters and their logically ordered conditional probabilities are treated by means of25

an event tree technique. We emphasize that the common assumption that tsunami hazard is dominated at all time scales by

subduction zone earthquakes is not used: non-subduction faults, unknown offshore faults and diffuse seismicity around major

known and well mapped structures are all taken into account. This strategy attempts to prevent biases in the hazard due to

incompleteness of the source model (Basili et al., 2013; Selva et al., 2016). The seismicity related to the main and better

known fault interfaces is treated separately from the rest of the crustal and diffuse seismicity. A similar approach has been30

used in the recent TSUMAPS-NEAM project (http://www.tsumaps-neam.eu), which provided the first SPTHA model for the

North-Eastern Atlantic, Mediterranean and connected seas (NEAM) region.
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In step (2), for each scenario retrieved from step (1), the corresponding tsunami generation and propagation is numerically

modeled, and the pattern of offshore tsunami wave height above the sea level (Hmax) is evaluated on a set of points along the

50m isobath, in front of the target area. To provide the input to Lorito et al. (2015), these points may be limited to a profile in

front of the site. The length of this control profile must be tuned depending on the morphology and the extension of the target

coast: a trade-off has to be reached, as few points could make the profile not representative enough, while too many points5

could downgrade the performances of the subsequent filtering procedure (Lorito et al., 2015). Actually, the optimal length is

the shortest one that makes the offshore hazard curves stable with respect to the source selection, and further increase in length

would increase the computational effort without significantly altering the results.

In step (3), using the offshore Hmax profiles calculated at step (2), a filtering procedure is implemented to select a subset

of relevant sources, based on the similarity of the associated tsunami intensity, not on the similarity or spatial proximity10

of the sources themselves. The selected sources, each of them representative of a cluster of sources producing comparable

tsunamis offshore the target area, are then used for explicit inundation modeling on high-resolution topo-bathymetric grids.

This approach allows for a consistent and significant reduction of the computational cost, while preserving the accuracy.

However, Lorito et al. (2015) considered a limited set of sources. The extension to a much larger set of potential sources

requires some modification to the method that, along with several other improvements, are proposed in this study, as reported15

in section 3.

Incidentally, we note that other wave properties such as period or polarity could be relevant in the framework of the cluster

analysis. However, Lorito et al. (2015) briefly discussed this issue, also with respect to the length of the control profile as

discussed above. Nevertheless, this is a point probably deserving further investigation, considering that Satake et al. (2013)

showed how inundation from the Tohoku 2011 tsunami was variably controlled by long-period offshore tsunami components20

on flat coastal plains and shorter-period peaks in steep coastal areas. Indeed, Gusman et al. (2014) used two cycles of a tsunami

for identifying similar waves. Conversely, since, as described in the next section, offshore wave comparison is not here used

anymore in the near-field, this issue will not apply for local sources.

In step (4), local SPTHA is quantified. The inundation maps for each representative scenario from step (3) are aggregated

according to the probabilities provided at step (1), assigning the total probability of a cluster to the representative scenario.25

Aleatory and epistemic uncertainty are simultaneously quantified by means of an ensemble modeling approach (Marzocchi

et al., 2015; Selva et al., 2016) over alternative implementations of the previous steps. In practice, steps (1) to (3) can be iterated

for each alternative model and these alternatives can be weighted according to their credibility and the possible correlations

among the models. The results are finally integrated through ensemble modeling into a single model which expresses both

aleatory and epistemic uncertainty.30

3 Improvements in the filtering procedureImplementation of an improved filtering methodology

The described method has been tested by both Selva et al. (2016) and Lorito et al. (2015). However, Lorito et al. (2015)

focused on the filtering procedure of step (3), adopting a simplified configuration for the source variability, in which sources
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were allowed only within the Hellenic arc, that is an area relatively smaller than the full aleatory variability. On the other

hand, Selva et al. (2016) applied the approach to a regional study extended to the Ionian Sea, in Central Mediterranean. The

quantification of the local hazard is instead discussed only in theory, without proposing any application.

The original method by Lorito et al. (2015) adopted a two-stage procedure.

In the first stage, scenarios giving a negligible contribution to Hmax offshore the target area were removed, assuming they5

would lead to negligible inundation. Hereinafter, we call this stage “Filter H”.

As a second filtering stage, a Hierarchical Cluster Analysis (HCA) was carried out, separately for each earthquake magnitude

class included in the seismicity model, under the assumption that sources producingwhich produce similar offshore Hmax along

the control profile will also produce as well similar inundation patterns. The distance between two Hmax patterns from, that is

between two different scenarios u and v was measured by a cost function previously used to compare tsunami waveforms in10

source inversion studies (e.g., Lorito et al., 2010; Romano et al., 2010) and modified by Lorito et al. (2015) as

d(Hu
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v
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[
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2
∑
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where x runs over the control points on the 50m isobath. For each cluster, the scenario closer to the centroid was selected

as the reference scenario, with an associated probability corresponding to the probability of occurrence of the entire cluster.

The optimal number of clusters (i.e., the “stopping criterion”) was assessed by analyzing the variance within each cluster15

(hereinafter “intra-cluster”)intra-cluster variance as a function of the number of clusters and selecting the largest value still

producing significant changes, according to the so-called Beale test (Lorito et al., 2015, and references therein).

We implemented a different strategy to further reduce the number of explicit tsunami simulations and introduced a separate

treatment for local and remote sources. In particular, the source scenario filtering procedure was revised to improve both the

computational efficiency and the accuracy, allowing for a full scalability to the source variability of typical SPTHA (millions20

of scenarios located allover an entire basin). A schematic diagram of the new procedure is sketched in Fig. 1, with (right, step

(3b)) or without (left, step (3a)) the separation between near- and far-field.

We still kept Filter H, but also adopted an additional filter on the occurrence probability (hereinafter “Filter P”, see Fig. 1),

discarding scenarios whose cumulative mean annual rate (mean of the model epistemic uncertainty) is below a fixed threshold.

Filter P works as follows. Scenarios are sorted according to their mean annual rate and the rarer areIn practice, scenarios were25

sorted for increasing mean annual rate and the first ones were removed until the cumulated rate reaches the selected threshold.

This allows to further reduce the number of required numerical simulations. On the other hand, this operation introduces a

controlled downward bias on the estimated hazard, whose upper limit corresponds (on average) to the probability threshold

of the filter P. This threshold can be set at a negligible level in the framework of the overall analysis and/or with respect to

other uncertainties. In addition, it can be empirically checked to which extent this affects the results by analyzing the offshore30

hazard curves at the control points. This check was quantitatively done by computing the maximum deviation between the

mean hazard curves at each control point before and after Filter P was applied. We also notice that, as reported in Fig. 1, Filter

P was always applied after Filter H due to strategical reasons of optimization: in fact, the cumulate rate curve is lowered by
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the removal of small events (i.e., producing small Hmax), which are typically featured by high occurrence probability. As

a consequence, a greater number of scenarios can be removed before reaching the imposed threshold, making Filter P more

efficient.

Also the cluster analysis stage was modified. Firstly, we used a different algorithm, as the large number of source scenarios,

due to a realistic fault variability distribution, in some cases can make the HCA a computationally unaffordable task. We5

implemented the more efficient k−medoids clustering procedure (Kaufman and Rousseeuw, 2009; Park and Jun, 2009),

based on the minimization of the sum of the intra-cluster distances, that is the distances between each element of a cluster and

the cluster centroid. Strong constraints on the distances result in a more accurate partitioning, in terms of similarity among the

elements of each cluster, but lead to a great number of clusters. Instead, larger ranges of acceptability increase the efficiency

of the algorithm, in terms of number of resulting clusters, to the detriment of the accuracy. Moreover, The cluster analysis was10

performed separately for groups of scenarios with similar mean <Hmax > along the profile, instead of grouping scenarios per

earthquake magnitude classes. This makes the partitioning more efficient, as the earthquake magnitude can not be considered

the only parameter controlling the tsunami intensity, as it was for the limited set of sources adopted by Lorito et al. (2015).

The cluster distance was measured by the eq. 1same cost function implemented by Lorito et al. (2015) , but we updated the

stopping criterion, which is now related to the maximum allowed intra-cluster variance, rather than being a blind optimization15

of the number of clusters. More specifically, to control the dispersion within each cluster, we set a threshold for the maximum

allowed squared Euclidean distance. This threshold was empirically fixed by comparing the offshore hazard curves before and

after the analysis and assuming an acceptable range of variability, in analogy with the approach used for Filter P.

Finally, and probably most importantly, in order to deal more properly with the contribution from local sources, we imple-

mented two independent filtering schemes for distant and local sources. Indeed, a special treatment for near-field sources is20

needed, as the coseismic deformation can modify the actual local tsunami intensity at the nearby coast, due to coastal uplift or

subsidence. As a consequence, the offshore tsunami amplitude profiles generated by such events may fail in being represen-

tative of the coastal inundation, as assumed by Lorito et al. (2015), and a separate modeling is required, using the coseismic

deformationdisplacement as the metric for source proximity in the cluster analysis (details below). This issue was somehow

hidden in Lorito et al. (2015), again due to the relatively small aleatory variability they considered, being the source either25

in the far- or near-field, depending on the target site, but never mixed together. In addition, this separation may favor some

refinement of the near-field source discretization and modeling, such as a denser sampling of geometrical parameters and/or

the introduction of heterogeneous slip distributions.

For testing the proposed method, we replaced step (3) either with step (3a) or step (3b), as displayed in Fig. 1. The workflow

of step (3a) is substantially equivalent to the original procedure by Lorito et al. (2015), improved by all the afore mentioned30

changes related to the algorithm optimization, whereasexcept the separate treatment of near- and far-field sources, which is

included in step (3b). Step (3a) is then used in this study as a term of comparison for the new scheme.

In step (3a), three sequential tasks were performed, namely Filter H, Filter P and the cluster analysis based on the offshore

tsunami amplitudes.
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In step (3b), local and distant sources were firstly detected, based on the coseismic deformation produced by the earthquake

near and on the target coast. The procedure was then split into two parallel paths, which need to be merged at the end when

evaluating SPTHA (Fig. 1). As far as the far-field scenarios are concerned, the same workflow as step (3a) was followed.

Near-field scenarios, which in principle should be individually modeled, were also filtered in order to reduce the number of

explicit inundation simulations: this of course introduces a new approximation, which however is better than aggregating local5

and remote scenarios on the basis of the offshore tsunami amplitudes. Filter H was applied as well, but choosing a smaller

threshold value: a more conservative approach is indeed recommended at this stage, as offshore values could be strongly

misleading when significant coastal coseismic deformation of the coast occurs. Then, Filter P was employed and finally a

cluster analysis was performed, by comparing the coseismic vertical deformations, instead of the (unrepresentative) offshore

tsunami amplitudes. For each local source, the vertical component of the coseismic displacement was calculated on a 2D10

grid centered around the fault and having size equal to three times the fault length. Then, the cluster analysis was carried out,

separately for each magnitude, by comparing the coseismic fields point-to-point withinat each point of the 2D grid. In this case,

the cluster analysis is based on the squared Euclidean distance, instead of the cost function; also, while the stopping criterion

is evaluated throughon the Euclidean distance, since the coseismic field can take both positive and negative values.

The selected earthquake scenarios from step (3a) or from the two branches (near- and far-field) of step (3b) were then used15

for high-resolution inundation simulations and combined together in step (4) when evaluating SPTHA. A practical example of

the whole procedure is illustrated in the next section.

4 The Milazzo oil refinery (Sicily, Italy) use-case

The described procedure was applied to a test site, Milazzo, located on the north eastern coast of Sicily (Italy), within the

Mediterranean Sea. The site houses an oil refinery, one of the non nuclear critical infrastructures selected as case study in the20

framework of the EU project STREST (http://www.strest-eu.org/).

Due to the illustrative purposes of the present work, some strong assumptions were imposed during the filtering proce-

dure to drastically reduce the number of required explicit numerical simulationsfor the sake of simplicity. The tuning of the

filtering thresholds is not the objective of the present work; in fact, the application is aimed to highlight that inaccurate (biased)

evaluation of site-specific tsunami hazard would be obtained if scenarios located in the near-field of the target area are not25

properly taken into account, irrespectively of the completeness and consequent complexity of the hazard assessment. However,

more sanity and sensitivity tests for a finer tuning of thresholds and modeling would be mandatory in case of a real appli-

cation. For example, the modeling of near-field scenarios is expected to be dependent on the source parameters, especially

concerning the heterogeneous slip distribution on the fault plane (e.g., Geist and Oglesby, 2014), which was not included here.

HenceTherefore, the computational effort of a real assessment, including a wider source variability and more conservative30

thresholds, is expected to be more complicated and computationally demanding than this case-study.

Regarding step (1), the adopted seismicity model was previously developed in the framework of the EU project ASTARTE

(http://www.astarte-project.eu/). This model extends the method applied to the Ionian Sea in Selva et al. (2016) to the entire
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Mediterranean Sea, including the subduction interfaces of the Calabrian and Hellenic Arcs as well as crustal seismicity in the

whole basin (see Fig. 2a). On subduction zones, events of different magnitude and positions on the whole interface are allowed,

disregarding the geometry uncertainty of the slab; conversely, crustal seismicity is allowed to occur with any meaningful

geometry and mechanism in the whole seismogenic volume at different magnitude and depths. The complete set of sources

retrieved from step (1) contains about 40 millions of elements, among which 1,701,341 scenarios actually affect the target5

site (Hmax > 0.05m offshore Milazzo). Although relatively simplified, the source model includes also epistemic uncertainties

on many source parameters such as the seismic rates, the shape of the magnitude-frequency distribution, and the seismogenic

depth interval for the two subduction zones.

Tsunami amplitudes (step (2)) were computed on a control profile made of 11 points offshore the Milazzo target area (on

the 50m isobath), as reported in Fig. 2A. To save computational time, scenarios from step (1) were not individually simulated,10

but were obtained by linear combination of pre-calculated tsunami waveforms produced by Gaussian-shaped unitary sources

(Molinari et al., 2016). The Gaussian propagation has been modeled by the Tsunami-HySEA code, a non-linear hydrostatic

shallow-water multi-GPU code based on a mixed finite difference/finite volume method (de la Asunción et al., 2013; Macías

et al., 2016, 2017).

Step (3) was addressed by independently performing the two branches (3a) and (3b), as discussed in the previous section,15

and then comparing results to assess the importance of the separate treatment of the near-field sources.

In step (3a), thresholds were fixed at 1m for Filter H and 10−5yr−1 for Filter P. This resulted in discarding scenarios with

individual mean annual rate below ∼ 10−9yr−1, causing a maximum bias on the offshore mean hazard curves of about 10%

in the considered range of tsunami intensities, with respect to the curves obtained without Filter P, as explained before in

Section 3. At the end of the filtering procedure, imposing a threshold equal to 0.2 on the intra-cluster variance, we obtained20

776 clusters, each associated to a representative scenario. That isNamely, we had a reduction even above 99%. Figure S1 of

the Supplementary Material shows the comparison among the mean offshore hazard curves at the 11 control points, as well as

among some quantiles of the epistemic uncertainty, for the filtered and original set of scenarios.

It is worth stressing that the efficiency of the filters is here artificially enhanced by the imposed high thresholds, especially

as far as the Filter H is concerned. While 1m is not an acceptable value in case of a real hazard assessment, it is suitable for25

illustrative purposes. In any case, this filter, independently from the chosen threshold, is not expected to affect subsequent steps

of the procedure for tsunami intensities above the threshold. Conversely, we performed a sensitivity analysis on the threshold

imposed on the intra-cluster variance for the cluster analysis: Fig. S2 shows the percentage differences between the offshore

hazard curves computed from the complete initial set of sources and the filtered set. The red box corresponds to the chosen

threshold value (0.2): it appears evident that a smaller value would have allowed a stronger constraint on the error introduced30

by the cluster analysis, while considerably increasing the number of resulting clusters. Vice versa, higher thresholds produce

a smaller number of clusters, but fail in reproducing the hazard (error up to 40%). In case of a real hazard assessment, this

analysis would help choosing an optimal threshold.

In step (3b), we considered as local scenarios, requiring a separate processing, sources generating a coseismic vertical

displacement greater than or equal to 0.5m on a set of near-field points, that is the 11 control points on the 50m isobath plus35
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95 inland points, strategically located at the edges of the refinery storage tanks, as shown in Fig. 2B. We found 4721 scenarios

in the near-field (see Fig. 2A). Afterward, for both branches we applied Filter H and P as well, using the following thresholds:

for far-field scenarios, Filter H=1m and Filter P=5×10−6yr−1; for near-field scenarios, Filter H=0.1m, according to the more

conservative approach described in the previous section, and Filter P=5× 10−6yr−1. Note that Filter P threshold was set half

the value used in step (3a), in order to keep a total maximum theoretical bias on the hazard curves at 10−5yr−1 (as in step5

(3a)), considering that Filter P is separately applied both to far- and near-field scenarios. Then, the cluster analysis was carried

out on the tsunami amplitudes for far-field scenarios (using a threshold equal to 0.2 on the intra-cluster variance) and on the

coseismic deformation for near-field scenarios (using a 10% threshold for the intra-cluster variance). We obtained 634 and 520

clusters for remote and local sources, respectively. Thus, the total number of representative scenarios (1154) to be explicitly

modeled corresponds to a reduction above 99% of the initial set of sources.that is a total of 1154 scenarios to be explicitly10

modeled, again corresponding to a reduction above 99% of the initial set of sources.

Inundation simulations at step (3) have been carried out again with the Tsunami-HySEA code, exploiting the nested grid al-

gorithm. We used 4-level nested bathymetric grids with refinement ratio equal to 4 and increasing resolution from 0.4arc−min

(∼ 740m) to 0.1arc−min (∼ 185m) to 0.025arc−min (∼ 46m) to 0.00625arc−min (∼ 11m). The largest grid was ob-

tained by resampling the SRTM15+ bathymetric model (http://topex.ucsd.edu/WWW_html/srtm30_plus.html). The finest three15

grids have been produced by interpolation from TINITALY (inland, Tarquini et al. (2007, 2012)) and EMODNET (offshore,

http://www.emodnet-bathymetry.eu/), working on grids of 0.00625arc−min that have been resampled at 0.1arc−min and

0.025arc−min. A picture of the telescopic nested grids is provided in Fig. S1 of the Supplementary Material. The initial

conditions were differently provided for subduction and crustal seismicity. The subduction scenarios have been simulated by

modeling the slab as a 3D triangular mesh honoring the interface profile and using unitary Okada sources associated to each20

element of the mesh (i.e., to each triangle) as Green’s functions (Okada, 1985; Meade, 2007). For crustal events, the initial sea

level elevation was obtained by modeling the dislocation on rectangular faults according to the Okada model. A Kajiura-like

filter for the sea-bottom/water-surface transfer of the dislocation was also applied (Kajiura, 1963). For each simulation an

overall length of 8 hours was fixed. The results were stored as maximum wave height (Hmax, m) and maximum momentum

flux (MFmax, m3s−2), at each point of the inner grid.25

At step (4), SPTHA was evaluated in parallel using results both from steps (3a) and (3b), in order to compare the outcomes

of the two different workflows and estimate the impact of the special treatment of near-field sources on the site-specific hazard

assessment. Note that alternative models for the epistemic uncertainty were considered only at step (1), that is only as far as

the probabilistic earthquake model is concerned, since the Selva et al. (2016) model was used.

Figures 3 to 5 compare the results from steps (3a) and (3b), in terms of mean hazard curves and inundation (both probability30

and hazard) maps for Hmax. In the Supplementary Material, analogous figures for MFmax are provided (Figs. S2 to S4). At a

first glance, differences are appreciableevident in both the curves and the maps. It is worth noting that results at Hmax < 1m

can be (negatively) biased since they are depleted from the scenarios removed bycan not be considered meaningful, as that is

the chosen threshold for Filter H , both in step (3a), as clearly shown in Fig. S1, and in the far-field-branch of step (3b). Curves

and maps will be described in more detail in the following.35
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The hazard curves in Fig. 3 (panels a) and b)) show the mean (mean of the model epistemic uncertainty) exceedance prob-

ability in 50yr for Hmax (evaluated assuming a Poisson process, as in Selva et al. (2016)), plotted for each point of the finest

resolution grid. Panel c) of the same figure displays the one-by-one relative differences in terms of exceedance probability

(in 50yr), as a function of Hmax, between the step (3a) and (3b) curves at each grid point. For values of Hmax greater than

1m, the relative differences are systematically positive, meaning that without the correction for near-field scenarios (step (3a)),5

the tsunami intensity would be overestimated. We may argue that this is true in the case of this specific setting, as a lower

“corrected” hazard means that the predominant effect by local sources contributing to a specific point on the hazard curve is

due to the coastal uplift, which in turn decreases the tsunami hazard. For example, a cluster may mix far- and near-field sources,

which could be misrepresented by one far-field source selected as cluster representative. In our case, there might be a prevalence

of clusters causing coastal uplift from the near-field sources. The situation may be the opposite for a different source-target10

configuration, that is coastal subsidence could be predominant causing an hazard increase, which without correction would be

underestimated. To confirm our inference, we performed some further testing. For each hazard intensity, and only for the mean

model of the epistemic uncertainty, we computed the coseismic coastal displacement in the inner grid, averaged both over all

of the scenarios and over all of the coastal points (purple line in Fig. 3c). This quantity can be regarded as the mean uplift

(hereinafter MU) on a random point on the coastline. Scenarios of different types contribute to MU, both far-field scenarios,15

which do not alter the coastline, and near-field scenarios, which may include a mixture of sources producing both coastal

subsidence and uplift. More in detail, we firstly performed, for each Hmax, a weighted average of the coseismic displacements

from each cluster centroid, with weights equal to the annual probability of the individual earthquakes. These probabilities

are set to zero if the earthquake do not deform the coastline (i.e. for far-field sources) or if the generated tsunami does not

exceed the given Hmax value (i.e. that scenario does not contribute to the hazard at that point). The weighted average is then20

normalized to the total probability of the near- and far-field sources contributing to the tsunami hazard for that threshold.

The resulting MU on each coastal point is plotted, for different values of Hmax ≥ 1m, in Fig. S4 of the Supplementary

Material (blue lines). The displacements due to the single cluster representatives are also shown (red lines). We note that,

although single scenarios produce both positive and negative coastal displacements, the predominant contribution is unveiled

by the sum over the different clusters, which is definitely positive. Finally, we further averaged the resulting values along the25

coastline, obtaining the purple curve in Fig. 3c. We notice that the absolute MU value in meters turns out to be rather small,

as a result of the average over sources that cause either uplift or subsidence, or no coastal displacement at all. Anyway, the

obtained positive values indicate that the uplift of the coast is prevailing, consistently with the positive percentage differences

retrieved between the two approaches for Hmax > 1m. Very little differences are retrieved between the “corrected” and the

“uncorrected” filtering procedures for smaller values of Hmax, that is below the Filter H threshold.For small values of Hmax,30

the envelope of the curves obtained from step (3b) is systematically higher than that from step (3a), with a stronger negative

gradient up to 3m. This means that the largest probabilities would be underestimated without the correction for the near-field

sources. For values greater than 3m, the differences between the envelopes of the families of curves are less pronounced

and the maximum hazard is slightly - although systematically - lower for step (3b). A more complex pattern emerges when

analyzing the one-by-one relative differences in terms of exceedance probability (in 50yr), as a function of Hmax, between the35
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step (3a) and (3b) curves at each grid point (panel c) of the same figure). Note that a positive difference means that step (3a)

overestimates the probability for a given Hmax value. For values below 3m, the median confirms the underestimation without

the correction, although individual grid points are dispersed and assume both positive and negative values. For values greater

than 3m, there is a definite overestimation without the correction (step (3a)), both as far as the median and the individual points

are concerned.5

Finally, in Fig. 3d the relative differences are also shown in terms of Hmax as a function of exceedance probability (in 50yr).

In the low probability region, typicallysupposedly corresponding to high Hmax, the overestimation by step (3a) is confirmed;

conversely, for exceedance probability greater than ∼ 10−4, which is likely to correspond to small Hmax, a greater dispersion

with both positive and negative values is observedthe differences are almost all negative. In other words, in this range, for a

given average return period (ARP), the predicted Hmax turns out to be greater when step (3b) is used.10

Probability and hazard inundation maps can be achieved by vertically and horizontally cutting the hazard curves at chosen

fixed values, in order to give a geographical representation of results. As each hazard curve corresponds to a grid point, the

probability maps are obtained by plotting on a map all the probability values for a fixed value of the intensity metric. Instead,

in the hazard maps the intensity values are plotted for a fixed exceedance probability, corresponding to a given ARP. In Fig.

4 we computed the exceedance probability maps for Hmax = 2m and Hmax = 3m, while in Fig. 5 we extracted the hazard15

maps for ARP = 2× 105yr and ARP = 3× 105yr (corresponding to an exceedance probability in 50yr equal to 2.5× 10−4

and 1.7× 10−4, respectively).

For the selected values, the maps confirm what we already discussed about the curves: from the probability maps ,show

mostly positive relative differences both inland and offshore are inferred, as shown in panels (c) and (f) of Fig. 4, even larger

than 50%; these differences are positive in a larger number of points, even offshore, for the higher intensity, consistently with20

Fig. 3c. We recall that positive differences mean that the “uncorrected” procedure (step (3a)) actually overestimates the tsunami

hazard at the target site. Negative inland values are also observed for Hmax = 2m, but they occur for very low probability values

and should not be further investigated. We also notice that the area inundated with a non negligible probability decreases in

size with increasing the Hmax value, as expected. On the other hand, In the hazard maps (Fig. 5) a complex pattern is revealed

when inspecting the relative differences (panels (c) and (f)), as both positive and negative values are retrieved. This happens25

because differences are negative, namely Hmax retrieved from step (3b) is smaller than from step (3a), as the analyzed ARPs

lie in the low intensity range. The inundated area, as opposite to the previous case, is consistently more extended for larger

ARPS.We also notice that the inundated area decreases with increasing the Hmax value, as expected.

Further details about the comparison can be found by analyzing the curves and the maps for MFmaxthe maximum momentum

flux reported in Figs. S5 to S7 of the Supplementary Material . We just note that the envelope of the hazard curves obtained30

from step (3b) is definitely above the curves from step (3a) in the entire range of MFmax (see Fig. S5); moreover, when the

correction for near-field is taken into account, the inundation maps highlight an enhanced current vorticity near the docks (Fig.

S6(b,e) and S7(b,e)), which is a known effect due to the flow separation at the tip of a breakwater (Borrero et al., 2015). As the

probability and hazard maps aggregate several different sources, the hazard integral may tend to average and cancel out differ-

ent source effects, while enhancing local propagation features. The presence of such persistent physically meaningful effects35
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only in the maps retrieved using step (3b) confirms the importance of the special treatment. In other words, the blind cluster

analysis (step (3a)), exclusively based on the offshore tsunami amplitudes, likely produced a non-representative selection of

the important scenarios, as it could aggregate or even remove important local scenarios.

5 Conclusions

We proposed a computationally efficient approach to achieve robust assessment of site-specific SPTHA, developing an im-5

proved version of the method by Lorito et al. (2015) and Selva et al. (2016).

The procedure is based on 4 steps, which can be summarizedresumed as follows:(1) the definition of the whole set of

earthquake scenarios affecting the target site and their mean annual rates, fully exploring the source aleatory uncertainty;

(2) the computation of tsunami propagation up to an offshore isobath; (3) the implementation of a filtering procedure to select

relevant scenarios for the target site, which are then explicitly modeled; (4) the assessment of local SPTHA through an ensemble10

modeling approach, to jointly quantify aleatory and epistemic uncertainty, stemming from alternative models for steps (1)-(3).

In the present work we mainly focused on step (3), modifying the filtering procedure to enhance the computational effi-

ciency and introducing a separate treatment for sources located in the near-field, to take into account the effect of the coseismic

deformation on the tsunami intensity. To this aim, we implemented a new procedure including a correction for near-field and

some numerical improvements. We benchmarked the new approach against an algorithm essentially equivalent to the original15

method by Lorito et al. (2015). The correctionThis is crucial as the latteroriginal method is based on the assumption that off-

shore tsunami profile is representative of the inundation at the nearby coast, which might beis actually true if a coseismic

deformation of the coast is not involved; otherwise seafloor uplift or subsidence make the assumption invalid as the tsunami

intensity is not predictable from offshore wave amplitudes. Consequently, local and remote sources must be separately treated

by means ofand, to ensure a feasible computational effort by reducing the number of explicit inundation simulations, differ-20

ent filtering procedures must be employed in the far- and near-field. This may also allow for a specific and more detailed

parameterization of the near-field sources, to which the local hazard is known to be more sensitive.

We tested the procedure investigating a case study, i.e. Milazzo (Sicily), a test-site selected within the STREST project

(http://www.strest-eu.org/). The work has only illustrative purposes and is nothas not to be intended as a real hazard assessment

at that site, due to some simplifications in the adoptedimplemented model. The results highlight that near-field sources play25

a fundamental role, as expected, and confirm that they must be specifically dealt with when evaluating site-specific SPTHA.

Moreover,

The new implemented filtering procedure allows for a consistent reduction of the number of tsunami inundation simulations

and therefore of the computational cost of the analysis. It is worth stressing that in this specific application the computational

efficiency was artificially enhanced by limiting the source variability as well as by imposing high filter thresholds. In fact, a30

real assessment is expected to deal with a greater number of scenarios, provided that a finer tuning of the threshold values is

carried out. This may in particular affect the computational cost related to the analysis of the near-field sources, for example

when using stochastic slip distributions.
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A quantitative evaluation of the coseismic effect on the tsunami hazard is not straightforward, as it depends on which sources

contribute to each point of the hazard curves and their relative position with respect to the target site. As a consequence, coastal

deformation can not be deduced as a whole by comparing the hazard curves obtained with and without the differentiation

between far- and near-field. Here, The most striking result is that the separate treatment of near-field sources provides signif-

icantly different and physically more consistent results with respect to the “uncorrected” procedure, showing that near-field5

sources must be specifically dealt with when evaluating site-specific SPTHA. We recall that the two approaches (with or

without the correction for near-field) only differ in the way local sources are treated. Hence, the different results do not depend

on the specific filtering thresholds but just on the coseismic deformation induced by local sources, which, if properly accounted

for, modifies the effective tsunami hazard. Actually, for the specific configuration of this use-case, our findings reveal that not

considering an appropriate correction for near-field would lead to overestimate the tsunami hazard for Hmax greater than10

1m, and this overestimation is correlated to dominant coastal uplift.for relatively large intensities the tsunami hazard would

be overestimated if local sources were not explicitly modeled, suggesting a coastal uplift caused by the near coseismic field.

For relatively low intensities, the hazard curves indicate a more complex pattern and the overall maxima would be instead

underestimated without the correction for near-field. However, different cases in terms of over- and under-estimation may oc-

cur at different sites, depending on the relative source-site configuration. We also observe that Milazzo is located in an area15

featuring relatively low near-field tsunamigenic seismicity with respect to other areas in the Mediterranean sea. Nevertheless,

the method turns out to be sensitive even to relatively low displacements and allows to detect and remove significant biases

from near-field sources.

The proposed method is suitable to be applied to operational assessments, also for improving local (multi-hazard) risk

analyses (e.g. Goda and De Risi, 2018). We stress again that the approach developed here allows to consider a very high20

number of tsunami scenarios, which is necessary to sufficiently explore the natural variability of the tsunami sources and the

eventual alternative models needed for quantifying the epistemic uncertainty.

Future work will be devoted to use the procedure to perform real local hazard assessment, exploiting the regional hazard

retrieved from the TSUMAPS-NEAM project.
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Figure 1. Schematic diagram of the computational procedure to evaluate site-specific SPTHA, with special attention to step (3) (see text).
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Figure 2. a) Map of the whole simulation domain used for the application at the target site Milazzo (Sicily, Italy). The orange circles are the

geometrical centers of the crustal faults affecting the target site, while the magenta and the green regions are the slab models of the Hellenic

and Calabrian arc respectively. Blue circles are the geometrical centers of the near-field sources, as detected in step (3b) (see text). The inset

highlights the offshore points along the 50m isobath (red points). The blue rectangle within the zoom is the area displayed in the bottom

panel. b) Zoom on the Milazzo oil refinery, with the position of the 95 points at the edges of the storage tanks (red points).
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Figure 3. a) Mean hazard curves for Hmax at all points within the highest resolution grid, as obtained from step (3a) of the SPTHA procedure

(see text and Fig. 1). Grey and blue colors refer to inland and offshore points, respectively. The bold black line represents the envelope of the

curves from step (3b). Red dashed lines represent the values used to obtain probability (Fig. 4) and hazard (Fig. 5) inundation maps. b) Same

as a) but using step (3b). The bold black line is the envelope of the curves from step (3a). c) Relative differences in terms of exceedance

probability (in 50yr) as a function of Hmax, computed as [(3a)− (3b)]/(3b). The black line is the median of the point distribution; the

green dashed lines correspond to the 16th and 84th percentile. The MU, namely the mean uplift on a random point along the coastline (see

text) is also superimposed (purple line). d) Same as c) but in terms of Hmax as a function of the exceedance probability (in 50yr).
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Figure 4. Probability maps (inner grid) for Hmax derived from the hazard curves in Fig. 3 at two different thresholds (2m, 3m) for step (3a)

and (3b) and relative differences computed as [(3a)− (3b)]/(3b).
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Figure 5. Hazard maps (inner grid) for Hmax derived from the hazard curves in Fig. 3 at two different ARPs (2×105yr, 3×105yr) for step

(3a) and (3b) and relative differences computed as [(3a)− (3b)]/(3b).
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Supplementary Material

Figure S1. Offshore hazard curves at the 11 control points as obtained from the original and the filtered set of sources. The mean as well as

some significant quantiles of the epistemic uncertainty are shown.
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Figure S2. Sensitivity analysis (for step (3a)) concerning the cluster analysis threshold, showing the percentage differences between the

offshore hazard curves computed from the original and the filtered set of sources, for different tsunami intensities. The higher is the threshold,

i.e. the stronger is the imposed constraint, the more accurate is the clustering, to the detriment of the number of clusters. On the contrary,

lower thresholds lead to less clusters but enlarge the errors. The red box corresponds to the value adopted in this study.
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Figure S3. Close-up view of the topo-bathymetric nested grids used for tsunami simulations, with gradually increasing resolution (0.1,

0.025, 0.00625 arc-min). The domain of the outer grid (0.4 arc-min) is the one showed in Fig. 2 of the manuscript.
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Figure S4. Red lines: coseismic displacements along the coastline of the higher resolution grid produced by each representative scenario

contributing to different Hmax values (≥ 1m). Blue lines: weighted averages on all the scenarios.
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Figure S5. a) Mean hazard curves for MFmax at all points within the highest resolution grid, as obtained from step (3a) of the SPTHA

procedure (see text and Fig. 1). Grey and blue colors refer to inland and offshore points, respectively. The bold black line represents the

envelope of the curves from step (3b). Red dashed lines represent the values used to obtain probability (Fig. S6) and hazard (Fig. S7)

inundation maps. b) Same as a) but using step (3b). The bold black line is the envelope of the curves from step (3a). c) Relative differences

in terms of exceedance probability (in 50yr) as a function of MFmax, computed as [(3a)− (3b)]/(3b). The black line is the median of the

point distribution; the green dashed lines correspond to the 16th and 84th percentile. d) Same as c) but in terms of MFmax as a function of

the exceedance probability (in 50yr).
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Figure S6. Probability maps (inner grid) for MFmax derived from the hazard curves in Fig. S5 at two different thresholds (30m3s−2,

70m3s−2) for step (3a) and (3b) and relative differences computed as [(3a)− (3b)]/(3b).
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Figure S7. Hazard maps (inner grid) for MFmax derived from the hazard curves in Fig. S5 at two different ARPs (2× 105yr, 3× 105yr)

for step (3a) and (3b) and relative differences computed as [(3a)− (3b)]/(3b).
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