

Development and validation of the Terrain Stability model for assessing landslide instability during heavy rain infiltration.

1. Alfonso Gutiérrez-Martín^[1], Miguel Ángel Herrada^[2], José Ignacio Yenes Gallego^[3], Ricardo Castedo Ruiz^[4]

¹¹ Dr. Arquitecto, Escuela Superior de Arquitectura; Universidad de Málaga, España. E-mail: alfgutmar@uma.es

^[2] Catedrático de Universidad, Escuela Superior de Ingenieros de la Universidad de Sevilla. España. E-mail: herrada@us.es

^[3] Dr. Ingeniero José Ignacio Yenes Gallego, Jefe de Unidad, Dirección General de Infraestructuras, MINISDEF, Madrid, España. E-mail: jiengal@et.mde.es

^[4] Dr. Ingeniero Ricardo Castedo Ruiz, Departamento de Ingeniería Geológica y Minera, Universidad Politécnica de Madrid, España. E-mail: ricardo.castedo@upm.es

Abstract

14 Slope stability is a key topic, not only for engineers but also for politicians, due to the
15 considerable monetary and human losses that landslides can cause every year. In fact, it is
16 estimated that landslides have caused thousands of deaths and economic losses amounting to
17 tens of billions of euros per year around the world. The geological stability of slopes is
18 affected by several factors, such as climate, earthquakes, lithology and rock structures, among
19 others. Climate is one of the main factors, especially when large amounts of rainwater are
20 absorbed in short periods of time. Taking into account this issue, we developed an innovative
21 analytical model using the limit equilibrium method supported by a geographic information
22 system (GIS). This model is especially useful for predicting the risk of landslides in scenarios of
23 heavy unpredictable rainfall. The model, hereafter named 'Terrain Stability' or TS is a 2D
24 model, programmed in MATLAB and includes a steady state hydrological term. Many variables
25 measured in the field – topography, precipitation, type of soil – can be added, changed or
26 updated using simple input parameters. To validate the model, we applied it to a real example,
27 that of a landslide which resulted in human and material losses (collapse of a building) at
28 Hundidero, La Viñuela (Málaga), Spain, in February 2010.

29 **Keywords:** Rainfall, Slope, Limit equilibrium model, algorithm and critical surface.

1. Introduction

31 Landslides, one of the natural disasters, have resulted into significant injury and loss to human
32 life and damaged property and infrastructure throughout the world (Varnes, 1996; Parise and
33 Jibson, 2000; Dai et al., 2002; **Guha-Sapir et al., 2004**; Crozier and Glade, 2005; **Kahn, 2005**;
34 **Toya and Skidmore, 2007**; Raghuvanshi et al., 2014; **Girma et al., 2015**). Normally, heavy
35 rainfall, high relative relief and complex fragile geology with increased manmade activities,
36 have resulted in increased landslide (Gutiérrez-Martín, 2015). It is essential to identify,
37 evaluate and delineate landslide hazard prone areas for proper strategic planning and
38 mitigation (Bisson et al., 2014). Therefore, to delineate landslide susceptible slopes over large

39 areas, landslide hazard zonation (LHZ) techniques can be employed (Anbalagan, 1992;
40 Guzzetti et al., 1999; Casagli et al., 2004; Fall et al., 2006).

41 Landslides are resulted because of intrinsic and external triggering factors. The intrinsic
42 factors are mainly; geological factors, geometry of the slope (Hoek and Bray, 1981; Ayalew et
43 al., 2004; Wang and Niu, 2009).

44 The external factors which generally trigger landslides are rainfall (Anderson, 1985; Collison et
45 al., 2000; Dai and Lee, 2001). Several LHZ techniques have been developed over the past and
46 these can be broadly classified into three categories; expert evaluation, statistical methods
47 and deterministic approaches (Wu and Sidle, 1995; Leroi, 1997; Guzzetti et al., 1999; Inverson,
48 2000; Crosta and Frattini, 2003; Casagli et al., 2004; Fall et al., 2006; Lu and Godt, 2008; Rossi
49 et al., 2013; Raia et al., 2014; Canili et al., 2018; Zhang et al.; 2018). **Within these categories,**
50 **we want to highlight** the empirical models that are based on rainfall thresholds (Wilson, 1997;
51 Aleotti, 2004; Grizzetti et al., 2007; Martelloni et al., 2011). Each of these LHZ techniques has
52 its own advantage and disadvantage owing to certain uncertainties on account of factors
53 considered or methods by which factor data are derived (Carrara et al., 1995). Limit
54 equilibrium types of analyses for assessing the stability of earth slopes have been in use in
55 geotechnical engineering for many decades. The idea of discretizing a potential sliding mass
56 into vertical slices was introduced in the 20th century. **During the following few decades,**
57 **Fellenius (1936) introduced** the Ordinary method of slices (Fellenius, 1936). In the mid1950s
58 Janbu and Bishop developed advances in the method (Janbu, 1954; Bishop, 1955). The advent
59 of electronic computers in the 1960's made it possible to more readily handle the iterative
60 procedures inherent in the method, which led to mathematically more rigorous formulations
61 such as those developed by Morgenstern and Price and by Spencer (Morgenstern and Price,
62 1965; Spencer, 1967).

63 Until the 1980s, most stability analyses were performed by graphical methods or by using
64 manual calculators. Nowadays, the quickest and most detailed analyses can be performed
65 using any ordinary computer (Wilkinson et al., 2002). There are other types of software based
66 on the modeling of the probability of occurrence of shallow landslides LHZ, in more extensive
67 areas using GIS technology and '**DEM**' (**Digital Elevation Model**), as is the case of deterministic
68 **models like:** software TRIGRS, SINMAP, R-SHALSTAB, GEOTop/GEO-FS, R-Slope-stability among
69 others (Montgomery and Dietrich, 1998; Pack et al., 2001; Rigon et al., 2006; Simoni et al.,
70 2008 ; Baum et al., 2008; Mergili et al., 2014a; Mergili et al., 2014b; Michel et al., 2014; Reid et
71 al., 2015; Alvioli and Baum, 2016; Tran et al., 2018). **These** are widely used models for
72 calculating the time and location of the occurrence of shallow landslides caused by rainfall at
73 the territorial level; some even in three dimensions, in order to obtain a probabilistic
74 interpretation of the factor of safety. Currently other approaches / theoretical studies for
75 landslide prediction are used (for triggering and / or propagation) (Martelloni and Bagnoli,
76 2014; Martelloni et al., 2017). **One of the achievements of the presented study is to discretize**
77 **the potential slip mass in the critical profile of the slope, once unstable areas have been**
78 **detected through the 'LHZ' (landslide hazard zonation) programs. The TS calculation tool is not**
79 **limited to shallow landslides and debris flows, but allows analysis of deep and rotational**
80 **landslides, which often other models do not accommodate for. We use in our algorithm the**

81 hydrological variable ' r_u ' of Spencer, to consider the infiltration of rainfall in the calculation of
82 stability of the considered slope.

83 Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use
84 in geotechnical engineering for [last years](#). Currently, the vast majority of stability analyses
85 using **this method of equilibrium limit** are performed with [commercial software packages like](#)
86 SLIDE V5, SLOPE/W, Phase2, GEO-Slope, GALENA, GSTABL7, GEO5 and GeoStudio, among
87 others (Gonzalez de Vallejo et al., 2002; Acharya et al., 2016a; Acharya et al., 2016b; Johari and
88 Mousavi, 2018). [Currently there are other slope stability models based on the theory of limit](#)
89 [equilibrium that are still in analysis and testing, as is the case with the SSAP software package](#)
90 [\(Borselli, 2012\)](#), but in this case a general equilibrium method model is applied. [Secondly,](#)
91 [sometimes for commercial models, the introductions of parameters to perform calculations](#)
92 [are not very interactive](#). For the stability analysis, different approaches can be used, such as
93 the limit equilibrium methods (Cheng et al., 2007; Liu et al., 2015), the finite elements method
94 (Griffiths et al., 2007; Tschuchnigg et al., 2015; Griffiths, 2015) and the dynamic method (Jia et
95 al., 2008), among others. Limit equilibrium methods are well known, and their use is simple
96 and quick. These methods allow us to analyse almost all types of landslides, such as
97 translational, rotational, topple, creep and fall, among others (Zhou and Cheng, 2013). For the
98 stability analysis, different approaches can be used, such as the limit equilibrium methods (Zhu
99 et al., 2005; Cheng et al., 2007; Verruijt, 2010; Liu et al., 2015), the finite elements method
100 (Griffiths et al., 2007; Tschuchnigg et al., 2015; Griffiths, 2015) and the dynamic method (Jia et
101 al., 2008) among others (SSAP 2012, Slide V5-2018). Also, limit equilibrium methods can be
102 combined with probabilistic techniques [Stead et al., 2000] or with other models, like stability
103 analysis of coastal erosion (Castedo et al., 2012). However, they are limited in general to 2D
104 planes and easy geometries. Numerical methods – finite elements methods – give us the most
105 detailed approach to analysing the stability conditions for the majority of evaluation cases,
106 including complex geometries and 3D cases. Nevertheless, they present some problems, such
107 as their complexity, data introduction, mesh size effect and the time and resources they
108 require (Ramos Vásquez, 2017).

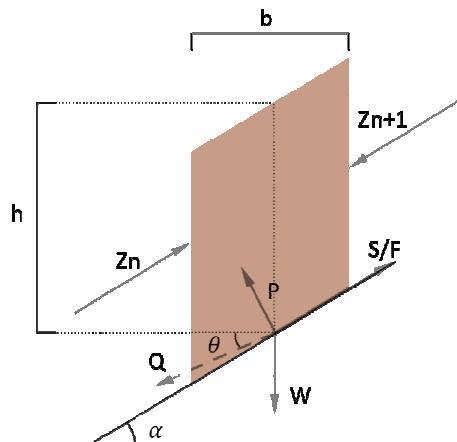
109 [The above-mentioned software packages provide useful tools for determining](#) the stability
110 through the F_s (safety factor) and for giving the most probable breakage (shearing) surfaces.
111 This technique is fast and allows the field or emergency engineer to make timely decisions.
112 Although this methodology is only available in some current software (Slide V 5.0, STB 2010,
113 Geo-Slope), and based on limit equilibrium methods, it is highly recommended because of its
114 reliability for representing real conditions in the field (Chugh, 1981). This rain infiltration
115 produces a substantial reduction of cohesion (a key soil parameter for stability) that cannot be
116 reproduced by actual software and then several real situations cannot be predicted.

117 Delft University has developed a well-known and free software programme to analyse
118 landslides, the STB 2010 (Verruijt, 2010). This programme is based on a limit equilibrium
119 technique, using a modified version of Bishop's method to calculate the F_s only for circular
120 failures. It is a user-friendly tool, but it does not allow the calculation of water infiltration on a
121 hillside. This is a critical point, as it is well known that rainfall infiltration is one of the main
122 causes of landslides worldwide (Michel et al., 2015). Reviewing these issues, a new solution
123 must be developed for cases where landslides are linked to heavy rainfall. In this study, we

124 developed a new model and programmed it using MATLAB. The primary result of this model
 125 was a stability index, namely the minimum F_s , based on the limit equilibrium technique, in this
 126 case the Bishop's method. The model also provides a possible failure curve and surface area,
 127 including the infiltration effects, which can be used to coincide with analysis of the actual
 128 event as tested with field data. Topographical data can also be introduced into the model from
 129 the digital elevation model (DEM) in a GIS.

130 2. Terrain Stability model development

131 In the model we developed the Terrain Stability (TS) model, we used the limit equilibrium
 132 technique for its versatility, calculation speed and accuracy. An analysis can be done studying
 133 the whole length of the breakage (shearing) zone or just small slices. Starting with the original
 134 method of slides developed by Petterson and Fellenius (1936), some methods are more
 135 accurate and complex (Spencer 1967; Morgenstern and Price, 1965) than others (Bishop, 1955
 136 and Janbú, 1954). Using Spencer's method (Spencer, 1967; Chung, 1986) here would mean
 137 dividing our slope into small slices that must be computed together. This method is divided
 138 into two equations, one related to the balance of forces and the other to momentum.
 139 Spencer's method imposes equilibrium not only for the forces but also for the momentum on
 140 the surface of the rupture. If the forces for the entire soil mass are in equilibrium, the sum of
 141 the forces between each slice must be also equal to zero. Therefore, the sum of the horizontal
 142 forces between slices must be zero as well as the sum of the vertical ones (equations 1 and 2).


143
$$\sum [Q \cos \theta] = 0 \quad (1)$$

144
$$\sum [Q \sin \theta] = 0 \quad (2)$$

145 In this equation, Q is the resultant of the pair of forces between slices, and θ is the angle of the
 146 resultant (Figure 1). From this, it can be stated that the sum of the moments of the forces
 147 between slices around the critical rotation centre is zero, conformed to equation 3:

148
$$\sum [QR \cos(\alpha - \theta)] = 0 \quad (3)$$

149 When the R is the radius of the curvature, α is the angle of the slope referred to each slice. This
 150 takes into account that the sliding surface is considered circular, so the radius of the curvature
 151 is constant.

152

153 **Figure 1.** Representation of the forces acting on a slice, considered in Spencer's method (Spencer, 1967).
154 *W* is the external vertical loads; *Zn* and *Zn+1* are the forces acting on the left- and right-hand side of each
155 slice, respectively, with their horizontal and vertical components; *P* and *S* are the normal and tangential
156 forces at the base of the slice; α is the angle of the slope referred to each slice, *b* is the slice width and *h*
157 is the mean height of slice (if the height is not constant).

158 These equations must be solved to get the F_s , and tilt angles of the forces among the slices (θ).
159 To solve these equations, an iterative method is required until a limiting error is reached. Once
160 F_s and θ are calculated, the remaining forces are also obtained for each slice. Spencer's
161 method is considered very accurate and suitable for almost all kinds of slope geometries and
162 may be the most complete equilibrium procedure. It may also be the easiest method for
163 obtaining the F_s (Duncan and Wright, 2005). Depending on the type of slope analysed, this
164 model is able to establish the failure curve following the typical rotational circle, among other
165 uses (Verruijt, 2010).

166 The F_s , classically defined as a ratio of stabilizing and destabilizing forces, determines the
167 stability of a slope as follows:

$$168 F_s = \frac{\Sigma(\text{Forces standing against/oppose sliding})}{\Sigma(\text{Forces that induce sliding})} \quad (4)$$

169 According to limit equilibrium methods, the two equilibrium conditions (forces and moments)
170 must be satisfied. Taking into account these elements, the F_s is then obtained from the
171 following expression (Spencer, 1967):

$$172 F_s = \frac{1}{\Sigma W \sin \alpha} \sum [c'b \sec \alpha + \tan \phi' (W \cos \alpha - ub \sec \alpha)] \quad (5)$$

173 Where ϕ' is the friction angle at the fracture surface, *u* is the pore pressure at the fracture
174 zone, *c'* is the soil cohesion, α is the angle at the base of the slice, *W* is the external vertical
175 forces and *b* the width of the slice. According to equations (4) and (5), the slope can be
176 considered unstable if its value of the safety factor ' F_s ' is lower than 1, or stable if it is equal or
177 higher than 1. It should be noted that, when applying the factor in the engineering and
178 architecture fields, the limiting value tends to be higher than 1, with common values being 1.2
179 or even up to 1.5 (Burbano et al., 2009), security coefficients that include The European
180 technical regulations and, specifically, the technical regulations of Spanish application (table
181 2.1, of the DB-C of the CTE, or Technical Code of the Building) among others. This is just a
182 confidence measure for your calculations. The F_s can also be defined as the ratio between the
183 shear strength (τ), based on the cohesion and the angle of friction values, and the shear stress,
184 based on the cohesion and the internal friction angle required to maintain the equilibrium
185 (τ_{mb}).

186 As mentioned, the minimum F_s to consider a slope stable is equal to 1. However, several
187 authors (Yong et al., 1977; Van Westen and Terlien, 1996) suggest that the angle of a slope
188 would have to be defined by a value of the F_s superior to the unity to take into account the
189 exogenous factors of the slope. Following Jimenez Salas (1981), a value of $F_s \geq 1.3$ can be
190 considered stable by most standards.

191 To analyse the slope using the Spencer's method, a set of equations must be solved to satisfy
 192 the forces and momentum equilibrium and to obtain the F_s . The values of F_s and θ are the
 193 unknowns that must be solved. Some authors suggest that the variation of θ can be arbitrary
 194 (Morgenstern y Price, 1965), although the effect of these variations in the final value of F_s is
 195 minimal. The variation of the angle depends on the soil's ability to withstand only a small
 196 intensity of the shear stress.

197 Having said that, if we assume that the forces between slices are parallel (in other words, that
 198 θ is constant), equations (1) and (2) become the same, resulting in:

199
$$\sum Q = 0 \quad (6)$$

200 The assumption that the forces between slices are parallel gives optimal results for the
 201 calculation of the critical safety coefficients in equation 5 (Spencer, 1967). To solve these
 202 equations, we used the FSOLVE function of the MATLAB software, giving an initial F_s and angle.
 203 The FSOLVE function is a tool inside the optimization toolbox from MATLAB that solves
 204 systems of nonlinear equations. When using this tool, an initial value must be provided to start
 205 the calculation.

206 When solving the normal and parallel forces at the base of the slice of the five acting forces,
 207 we obtain (Q), resulting from the forces between slices:

208
$$Q = \frac{\frac{ctb}{F} \sec \alpha + \frac{\tan \phi'}{F} (W \cos \alpha - ub \sec \alpha) - W \sin \alpha}{\cos(\alpha - \theta) [1 + \frac{\tan \phi'}{F} \tan(\alpha - \theta)]} \quad (7)$$

209 In this expression, u is the pore pressure (permanent interstitial pressure) at the base of the
 210 slice and the weight of the slice is determined by W . If we assume that the soil is uniform and
 211 its density (γ) also, the weight of a slice of height h and width b can be written:

213
$$W = \gamma b h \quad (8)$$

214 The application of a homogeneous pore pressure distribution (permanent interstitial pressure)
 215 has been included in the model (Bishop and Morgenstern, 1960). In this case, the permanent
 216 interstitial pressure on the base of the slice was determined by the following expression:

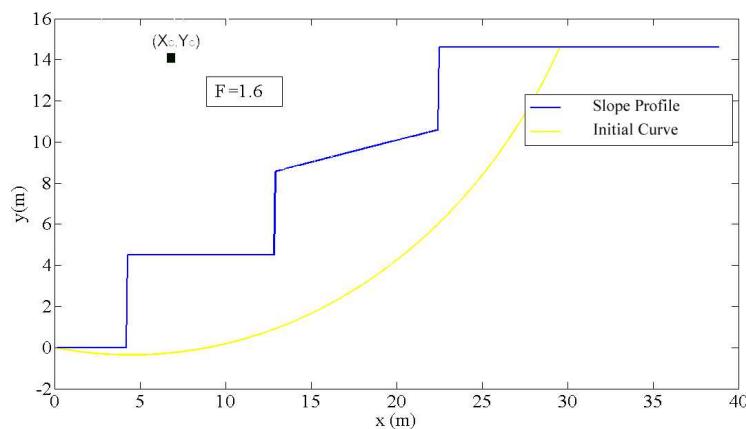
217
$$u = r_u \gamma h \quad (9)$$

218 In this expression, u is the pore pressure (permanent interstitial pressure) at the base of the
 219 slice, γ is the density of soil, h is the mean height of slice (if the height is not constant) and the
 220 weight of it affects the W evaluation.

221 The pore pressure will be hydrostatic, defined by: $u = \gamma_w (h - h_w)$, γ_w is the saturated density
 222 of soil, h and h_w is the difference between saturated and dry height. The calculation of the
 223 infiltration factor is calculated with the following equation:

224
$$r_u = \frac{u}{\gamma h} \quad (10)$$

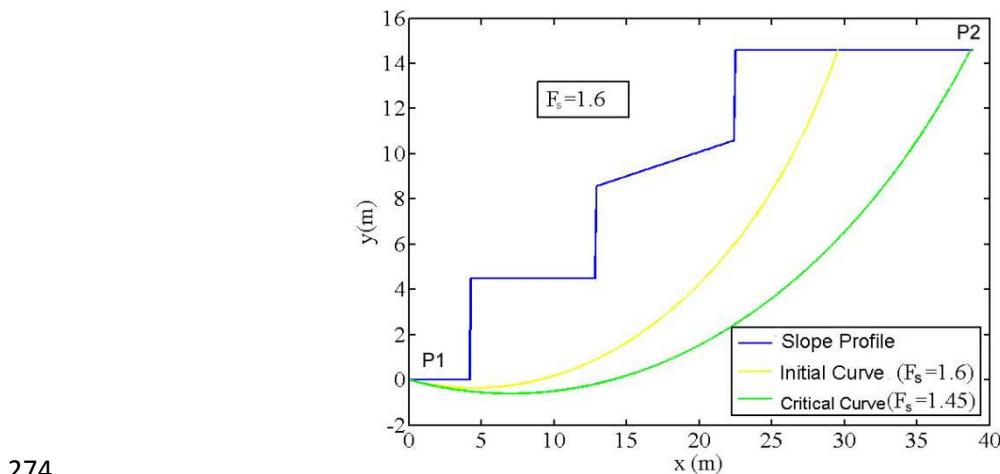
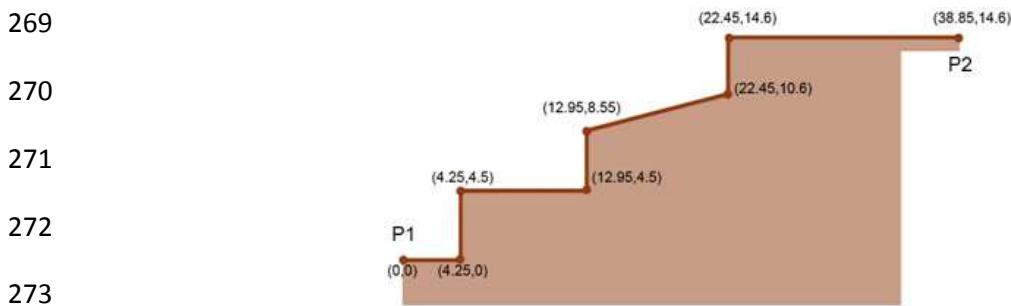
225 The factor r_u is a coefficient of pore pressure (interstitial pressure coefficient), which
 226 determines the rain infiltration factor on the slopes. As it is well known, the water that


227 infiltrates the soil may produce a modification of the pore pressure, affecting its resistant
228 capacity. This factor may vary from 0 (dry conditions) to 0.5 (saturated conditions). In the
229 article of Spencer (Spencer, 1967), assuming a homogeneous pore-pressure distribution as
230 proposed by Bishop and Morgenstern (1960), the mean pore-pressure on the base of the slice
231 can be written like the equation 7.

232 This equation is used in our proposed model for calculating the safety factor (substituting the
233 expression of u in equation 5).

234 **3. Terrain stability (TS) algorithm and tests**

235 Figure 2 shows the results of applying the Terrain Stability model to an irregular slope,
236 including the initial and final points of the first failure circle (shown in yellow). This circle
237 corresponds with the initial value introduced by the user into the FSOLVE function. The points
238 of the slope are extracted from a DEM model in ArcGIS 10 (Glennon et al., 2008). The slope
239 height is equal to 15 m, and the soil is considered uniform with the following nominal
240 properties: $\gamma = 19500 \text{ N/m}^3$, $\phi = 22^\circ$, $c = 15000 \text{ N/m}^2$, $u = 0 \text{ N/m}^2$. For the application example
241 of our algorithm in this section, we have used Geotechnical data of a cohesive soil of the Flysch
242 type of Gibraltar, (Vallejo et al., 2002).



243 The code works as follows: the initial circular failure curve is plotted using the FPLOT tool, as
244 shown in Figure 2 (yellow line). In this example, the center coordinates are equal to $xc = 7 \text{ m}$;
245 $yc = 14 \text{ m}$ and the lower cut with the slope coordinates (P1 point) equal to $xt = 0 \text{ m}$, $yt = 0 \text{ m}$.
246 The F_s obtained was 1.6, which is, in principle, a stable slope. **It must be taken into account**
247 **that the mass susceptible to sliding must be divided into a sufficient number of slices**. This
248 value is entered into our code through the parameter 'N'. In the application example of our
249 algorithm, the sliding mass was divided into $N = 500$ slices, this value of N is entered into the
250 code by the user, who decides the value of that parameter. The greater the number of slices in
251 which we divide the sliding mass, the calculation will be more accuracy. $N = 500$ slice, we
252 consider it a balanced value for an optimal calculation, which relates two fundamental
253 parameters (computer calculation capacity / capacity accuracy).

254

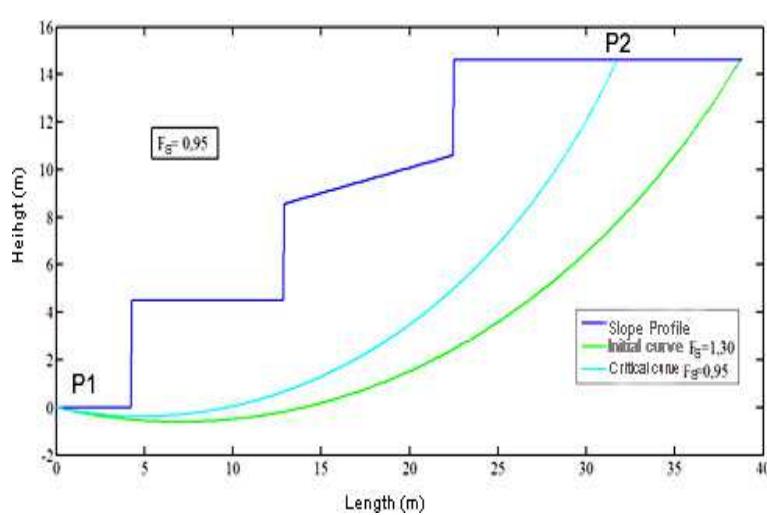
255 **Figure 2. Idealized cross section of a slope. In this example, the center** coordinates are equal to $xc = 7 \text{ m}$;
256 $yc = 14 \text{ m}$, and the lower cut with the slope coordinates (P1 point) equal to $xt = 0 \text{ m}$, and $t = 0 \text{ m}$, data
257 that the user introduces.

258 The next step is to apply Spencer's method to the different breakage surfaces until the curve
 259 with the lowest F_s is found, and that will be the critical surface susceptible to a circular slip. To
 260 determine the minimal F_s using this model, the algorithm calculates the displacement of the
 261 lower cutoff point of the critical slip from the slope, as well as the position of the center of
 262 rotation of the critical failure curve. In addition, the user must enter a series of possible
 263 circular faults. Then, the user introduces the following constraints into the programme: the
 264 initial or lower point of the failure curve (P_1) in its intersection point with the slope, which may
 265 or may not match the origin of the slope analysed. Another restriction is the centre of the
 266 failure circle, (X_c, Y_c) , that should initially cut the slope, i.e. the breaking curve must be within
 267 the feasible sliding region. With this data, the programme automatically draws a first curve, in
 268 this case the yellow line in Figure 3, and calculates the safety coefficient F_s for that initial curve.

275 **Figure 3.** Results following the application of the software showing the slope profile and surface
 276 damage. The F_s and the clearest proof of circular failure are also provided (see the yellow line). P_1
 277 coordinates are $(0, 0)$ and $P_2 (38.85, 14.6)$ in metres.

278 On the basis of this first curve (yellow line in Figure 2), the programme enforces new
 279 restrictions:

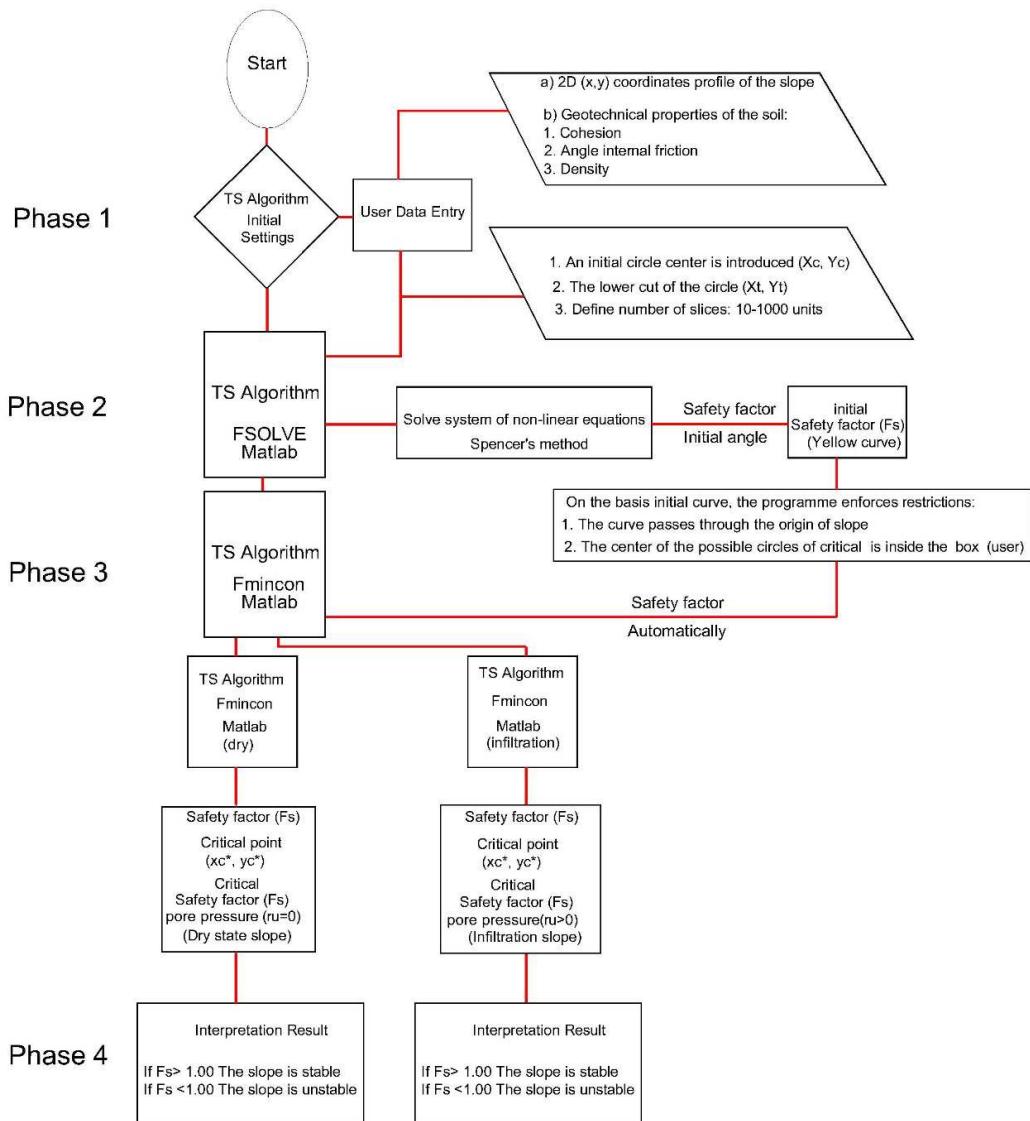
280


- The curve passes through the origin of slope $P_1 = (0, 0)$.

281

- The centre of the possible circles of critical breakage is inside the rectangular box
 282 defined as: $(x_{box\ min.} < x_c < x_{box\ max.}; y_{c\ box\ min.} < y_c < y_{box\ max.})$. Note that the coordinates are
 283 entered with the 2D expression (X, Y) .

284 Both coordinates of the rotation centre position are free and can change for every circle. From
 285 the initial failure curve, characterised by the point $x = (x_c, y_c)$, the MATLAB “fmincon” function
 286 is used to obtain a new critical point (x_c^*, y_c^*) where the F_s from the breakage curve is the
 287 minimum provided by fmincon. In this example, starting from the initial curve (yellow curve)
 288 with point $x = (7, 14)$, the TS model provides a new point $x^* = (4.4910, 28.1091, 0)$ with a new
 289 $F_s, F_s = 1.45$. In this case, the new search has been carried out with the following restrictions in
 290 the rectangular box, such as $2 \text{ m} < x_c < 8 \text{ m}$ and $16 \text{ m} < y_c < 40 \text{ m}$. These restrictions are
 291 imposed in order to determine the critical circle. With all these restrictions, and because of the
 292 first calculated curve (the yellow curve), the developed model calculates the critical curve
 293 among the number of curves selected by the user (500 in this case), as well as the failure circle
 294 centre, by applying the fmincon (MATLAB function). This defines the curve with minimum F_s
 295 (F_{min}) as the value of F_s (see green curve in Figure 3). When solving this problem, a critical
 296 selection is the lower cut-off point of the slope. According to different authors, such as Verruijt
 297 (2010) and Castedo et al. (2012), the selected point is the same as the P1 point.


298 To complete the second phase in the TS model operation, the effect of rain infiltration must be
 299 introduced by the coefficient of the pore pressure factor r_u . In this example, the infiltration
 300 factor was introduced at the base of each slice to account for the infiltration and pore pressure
 301 at the base of the break surface of the slope. If r_u increases, the cohesion of the soil mass of
 302 the slope decreases, directly affecting the reduction of the slope's F_s . The result is that a dry
 303 slope has a $F_s = 1.45$, but if including the r_u parameter equal to 0.3, the F_s decreases to a value
 304 of $F_s = 0.95$, that means an F_s below the unity, so an unstable circular failure appears (see
 305 Figure 4). Entering the infiltration factor, r_u , in Spencer's method to introduce the infiltration
 306 effects in slopes, the geotechnical cutting elements of the analysed soil are reduced, also
 307 reducing the values of the F_s , both for the initial yellow curve and the optimum green curve
 308 (Figure 3). Note that the initial curve in the run shown in Figure 4 is different from the one in
 309 Figure 3, as it depends on the data introduced.

310
 311
 312
 313
 314
 315
 316
 317
 318
 319 **Figure 4.** Outcome of the TS model after the introduction of the infiltration factor, producing an unstable
 320 circular failure ($F_s = 0.95$).

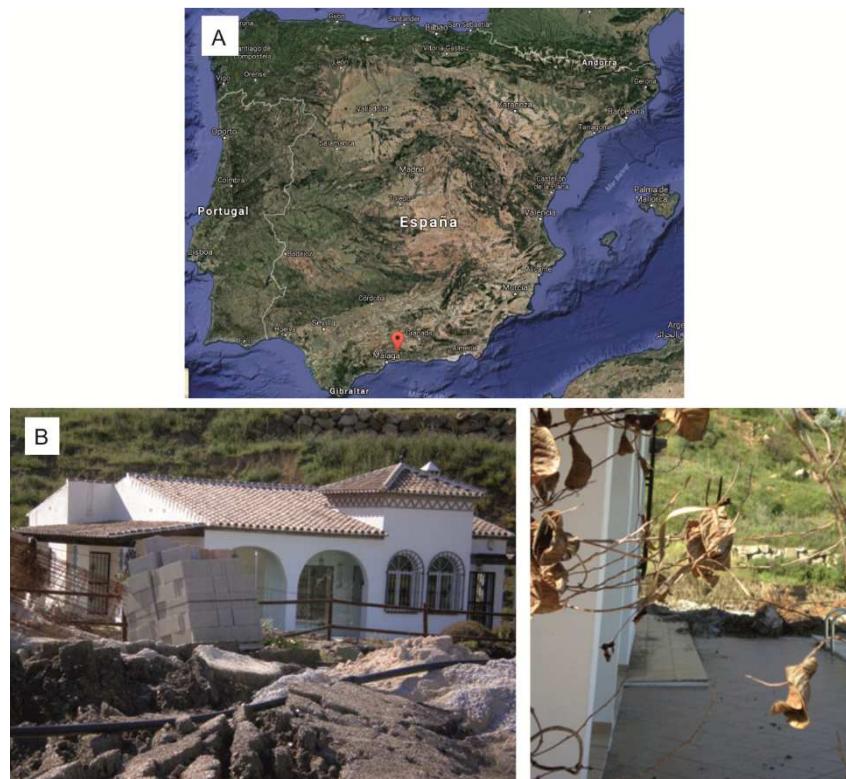
321 We can determine that if this infiltration factor value is small enough, taking into account the
 322 safety coefficients, the design may still be adequate, but critical information was missing to
 323 calculate this parameter.

324 To clarify the procedure employed in the suggested algorithm, the flowchart (block diagrams)
 325 presented in Figure 5 demonstrates the calculation and iteration process as implemented in
 326 our software.

327
 328 **Figure 5. Sequential TS algorithm (block diagrams). Numbers in parentheses refer to numbers in the**
 329 **text.**

330 1. Our algorithm (software) is more versatile compared to the STB 2010, the model
 331 developed here can analyze slope from right to left and vice versa, the STB 2010 only
 332 allows the analysis from right to left. Other software programmes, like the STB 2010,
 333 use a modified version of Bishop's method, a less accurate methodology than
 334 Spencer's method. A modified version of Bishop's method solves only the equilibrium
 335 in momentum while the Spencer method also considers the equilibrium in forces.

336 2. Another improvement made by the TS code, in comparison with others, is that the use
337 of the Spencer's method allows us to analyse any type of slope and soil profile. In this
338 procedure, we calculated the worst breaking curve by modifying the calculation points.


339 3. In the TS model, from the first slip rotational circle obtained in MATLAB, many circles
340 were then calculated using the fmincon function, with some user restrictions.
341 **However, other models**, like the STB 2010, require the definition of a quadrangular
342 region (to look for the centres of rotational failures) and a point (namely 5, see Figure
343 9) to define the curve as where the failure must pass. Also, the number of circles that
344 the STB 2010 model can analyse for their minimum value is limited to 100.

345 4. **The TS model** can detect relevant earth movements derived from rainfall infiltration,
346 both translational and rotational types (Stead et al., 2006), such as those that usually
347 occur in regions like India, the United States, South America and the United Kingdom,
348 among other places. The programmes that do not contemplate this option will
349 overestimate the F_s , potentially with great errors.

350 **The TS model has an additional advantage:** it also offers the opportunity to incorporate, in the
351 same code, the stability analysis and the effect of the infiltration factor in the rainfall regime.
352 This is a step forward from open access programs, such as STB 2010, and also alternative
353 payment software, such as Slide.

354 4. Example of this application in the municipality of La Viñuela, Málaga, Spain

355 In 2010, La Viñuela, Málaga, (Spain) experienced torrential rainfall. The main consequence was
356 a devastating landslide with serious personal and material losses, as shown in Figure 6. The
357 coordinates where this event occurred were in degrees (36.88371409801, -4.204982221126).

358

359 **Figure 6. A) Spanish map with the location of La Viñuela (Google Maps). B) Real images taken by the**
360 **authors at La Viñuela in 2010.**

361 **4.1 Geological and hydrological environment**

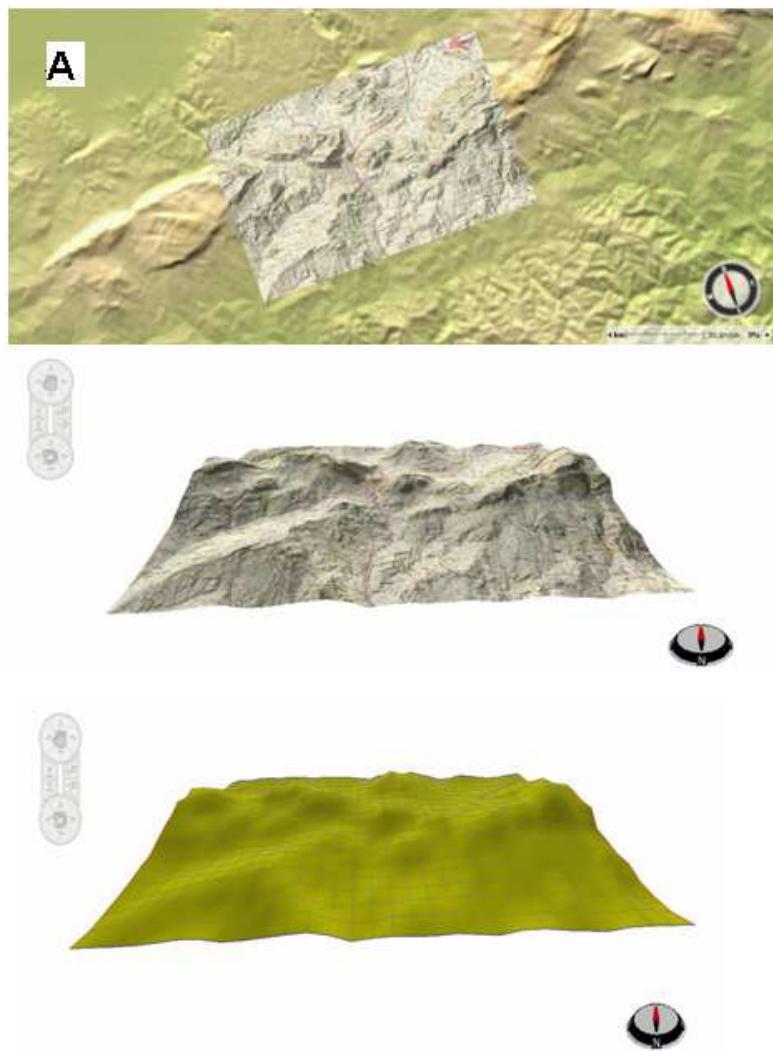
362 The study area is located in the county of La Viñuela, specifically in the Hundidero village,
363 which is located immediately north of the swamp of La Viñuela (El Hundiero) and south of The
364 Baetic System Mountain ranges (South Iberian Peninsula).

365 According to the Cruden and Varnes' classification (1996), the slide corresponds to a rotational
366 slide-like complex movement because it was generated in two sequences at different speeds.
367 This type of mechanism is characteristic of homogeneous cohesive soils, as was the one
368 analysed here (Cornforth, 2005; Rahardjo et al., 2007; Lu and Godt, 2008).

369 This event caused serious damage to different buildings. Regarding the damage caused, in the
370 initial stretch of the slope (its head), a house was dragged and destroyed and another was
371 seriously damaged. On the right bank of the mentioned house, another building was affected.
372 In total, this event left a balance of two buildings destroyed and one seriously compromised.
373 Although 15 people lived in these houses, there were no fatalities. About 20 houses were to be
374 constructed at the head of the slope; fortunately, the event happened before this
375 construction. Figure 7 shows an aerial picture from 2006 before the disaster as well as the
376 affected area and landslide in 2010.

377

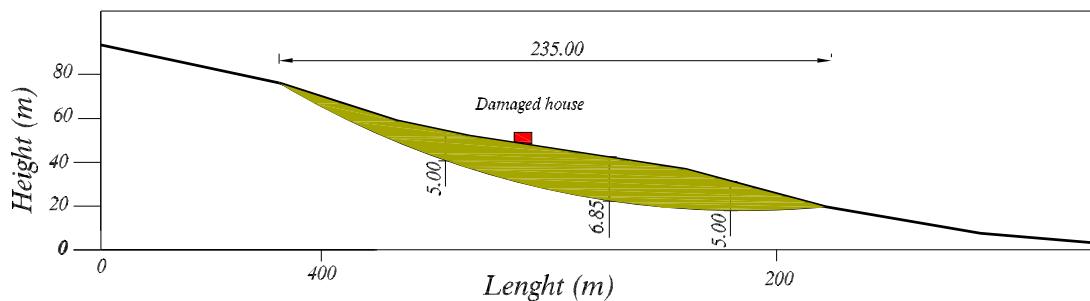
378 **Figure 7.** A) An aerial photograph from before the event (2006). B) An aerial photograph taken after the
379 landslide (2010).


380

381 **4.2 Event features and geometry**

382 For this example, we used data of IGN, the Spanish National Geographic Institute
383 (<http://centrodedescargas.cnig.es/CentroDescargas>), and downloaded bit map MTN25, that is
384 a 1:25000 topographic map in ETRS 89 coordinates and UTM projection. The downloaded map
385 is generated in a file by means of a geo-referenced digital rasterization (vector to raster
386 conversion). Specifically, we downloaded page number 1039, which is the one corresponding
387 to the landslide zone of the case study. **Figure 8** shows the area of the case study.

388


389 From this map we obtained the topographic information to acquire all necessary profiles to
390 study the landslide. Moreover, as our algorithm is a 2D model, with this topographic map we
391 study the critical curve of the slip in the most unfavourable profile of the landslide (Figure 8).

392

393 **Figure 8.** A) Topographic map in a GIS map; page number 1039 of the IGN (Spanish National Geographic
394 Institute).

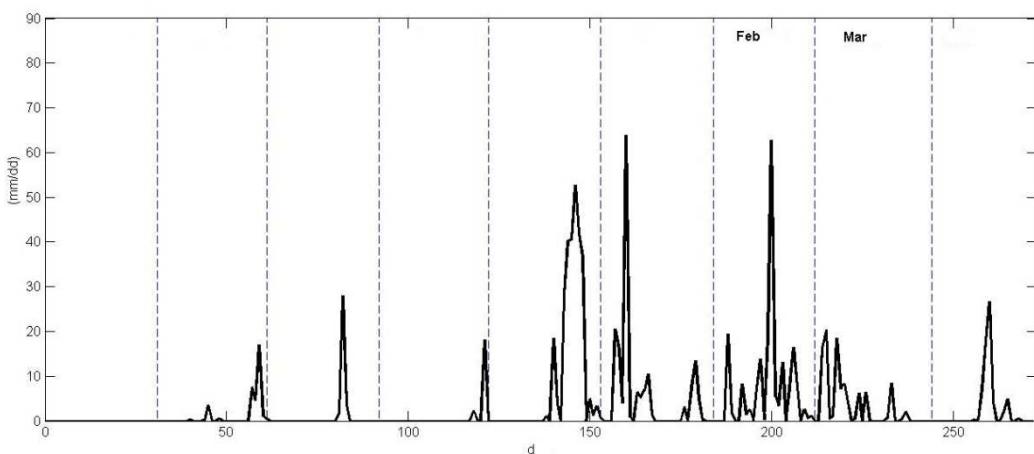
395 It is well known that mass movements, such as landslides, are highly complex morphodynamic
396 processes. We selected The Hundidero as our study area because it is prone to landslides. In
397 order to analyse this case study using our model, we first calculated the initial displaced
398 volume of the study area. According to the dimensions of the problem, the initial displaced
399 volume was calculated, equivalent to the volume of half an ellipsoid (Varnes, 1978; Beyer,
400 1987; Cruden and Varnes, 1996) that is $Vol = 1/6 \pi (width \times length \times depth)$. In our particular
401 case, the width was equal to 70 m, the length equal to 235 m and the depth equal to 5 m,
402 making up a total volume of 4.364 m^3 (Figure 9). Taking an average of 33% elongation, as
403 proposed by Nicoletti and Sorriso-Valvo (1991) and Cruden and Varnes (1996), we determined
404 that the total material displaced in this landslide had an approximate volume of 5.804 m^3 . In
405 this mass displacement, it is also necessary to consider material added by erosion and dragged
406 from the initial mass displaced. In Figure 7, the straight line indicates the first rotational
407 movement, and the zigzag line shows the planar drag and glide after the first rotational
408 movement. The green region is the total area displaced or affected by mass movement. After
409 the first circular movement, the mass moved rapidly, associated with a continuous rise in
410 incremental pore pressure and the rapid reduction of shear strength, without allowing
411 pressure dissipation.

412

413 **Figure 9.** Characterisation and longitudinal section of the rotational sliding (Geolen S.A., 2010). The
414 location of the dragged house is noted in red: Analysed by the TS model.

415 The initial spit of land had an approximate size of 235 m in length by 70 m in width. Due to this
416 initial displacement, there was a drag and a huge posterior planar displacement of about
417 550 m length, affecting a zone with several parcels of land and buildings. These sizes were
418 confirmed using aerial photography and field data. The soil is basically composed of clays of
419 variable thicknesses, of fine grain, with fluvial sediments and silty clay. The authors obtained
420 this data by conducting a field survey, as well as through the laboratory tests carried out by the
421 laboratory Geolen S.A. (Geolen, 2010). From a geological and geotechnical point of view,
422 according to a survey of those present as the laboratory extracted the materials, different
423 lithological levels can be distinguished, as shown in Table 1.

424 **Table 1.** Lithology of the area affected by the failure, according to the laboratory tests of
425 Geolen S.A. No groundwater level was detected.


Level/layers	Lithology	Depth (m)
--------------	-----------	-----------

LEVEL 1	Silty sand with natural schistose pebbles	0.90
	Silty clay with marl intercalations	4.20
LEVEL 2	Colmenar unit, upper oligocene–lower miocene	
	Sandy clay	9.00
LEVEL 3	Colmenar unit, upper oligocene–lower miocene	<i>(end of the probe)</i>

426 The laboratory tests included a sieve analysis (following UNE 103 101) in three of the samples
 427 extracted from the field, at depths of 1.80–2.00 m, of which 70.3% was composed of clay and
 428 silt; according to this, the sample is classified as cohesive. The liquid limit and the plastic limit
 429 were determined on two of the samples (following UNE 103 103 and UNE 103 104,
 430 respectively), yielding liquid limit values of 57.5% and 64.2% and a plasticity index of 37%,
 431 respectively. According to the lab results, the material can be classified as high plasticity
 432 material with the potential of having a high water content. The landslide analyzed began in
 433 February 2010, ending in March of that same year. However, based on the field inspection and
 434 the analysis of the rainfall series in the La Viñuela region in 2010 (see Figure 10), it can be
 435 inferred that the main causes of the event were:

436 • The poor geomechanical parameters of the material that formed the affected hillside,
 437 and

438 • The hydrometeorological conditions in the days preceding and days after the event,
 439 according to the histogram.

440

441 **Figure 10.** Rainfall histogram at La Viñuela from August 2009 to April 2010. *Rainfall data has been*
 442 *provided by the Spanish Meteorological Agency (Station of Viñuela).*

443 Most of the landslides observed during these days occurred as a consequence of exceptionally
 444 intense rainfalls. The precipitation data was provided by the meteorological station of La
 445 Viñuela (Figure 10). It can be observed that large amounts of precipitation fell during the
 446 months of December, January, February and March of 2010, with peaks of most 60 l/m² in a
 447 single day (January and February). In total, 890 l/m² fell in the 2009-2010 hydro cycle, which
 448 ended at the end of April 2010. This is a key point in slope stability to consider when dealing
 449 with areas capable of having high infiltration rates.

450 The rotational slide analysed had occurred between level 2 and level 3, when the water
 451 content reached that depth, as confirmed by the infiltration calculations in the terrain (see
 452 graphs in Figure 9, reaching depths of up to 5 m). Two direct shear tests (consolidated and
 453 drained) were conducted in unaltered samples extracted from the boreholes at 3.00–3.60 m
 454 and 4.00–4.60 deep. The cut-off values of the soil are specified in Table 2. Those values were
 455 used in the developed software to obtain the safety coefficient and the theoretical failure
 456 curve.

457 **Table 2.** Summary chart of the characteristics of the soil analysed at the GEOLEN S.A. laboratory: ϕ the
 458 angle of internal friction, c the cohesion, γ_{Sat} the saturated specific gravity and γ_a the apparent specific
 459 gravity.

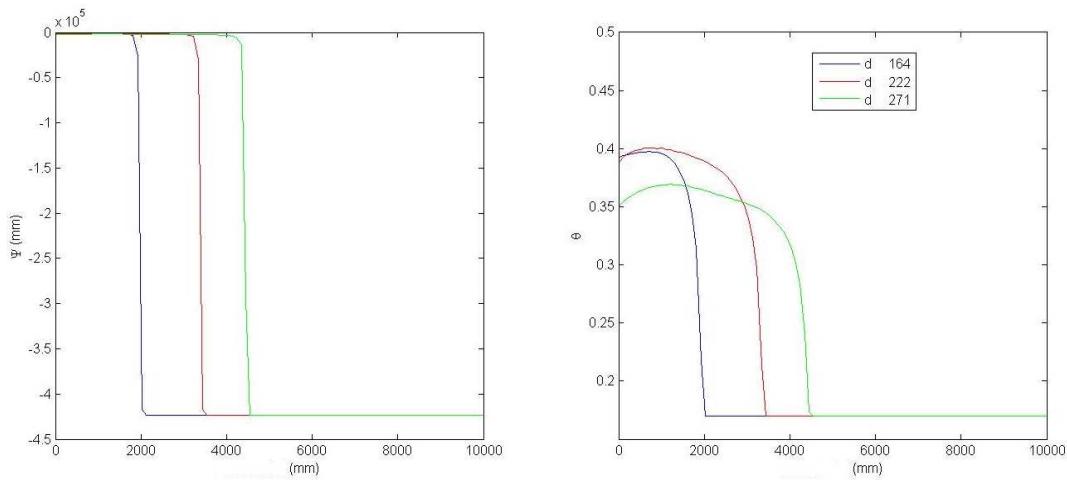
Soil parameter	Result	Units
ϕ	17	°
c	0.27	N/mm ²
γ_{Sat}	2000	N/mm ³
γ_a	1650	N/mm ³

460

461 The dynamic and continuous tests were carried out by the Geolen S.A. laboratory with an
 462 automatic penetrometer ROLATEC ML-60 A type. The data obtained was transcribed by the
 463 number of strokes to advance the 20 cms tip, which is called the “penetration number” (N_{20}).

464 This test is included in the ISO 22476-2:2005 standard as a dynamic probing super heavy, and
 465 consists of penetrating the ground with a conical tip of standard dimensions. The depth of the
 466 failed mass can be estimated, as well as the theoretical failure curve for an increase in the soil
 467 consistency (see data in Table 3).

468 The change in the geomechanical response of the soil takes place at a depth of 4–5 m,
 469 according to the results of N_{20} and US (samples without changes) taken along the analysed
 470 column. In this case, the sloped ground mass showed a characteristic striking relationship of a
 471 displaced terrain (Gonzalez de Vallejo et al., 2002). This differs from the underlying or
 472 unmoved terrain, which indicated a more consistent striking relationship that was taken within
 473 the area of the landslide behind the house drawn in accordance with the analysis of the hits
 474 N_{20} from Table 3.


475 **Table 3.** Summary chart of the soil analysed at the GEOLEN S.A. laboratory. **Bold** values show, according
 476 to the data of the field penetrometers, the depth mobilized by the rotational sliding.

Depth (m)	Hits N_{20}	Consistency	Admissible stress (N/mm ²)
0.00 – 1.00	4	Soft	0.03
1.00 – 2.00	3	Soft	0.02
2.00 – 3.00	6	Slightly hard	0.04
3.00 – 4.00	7	Slightly hard	0.05
4.00 – 5.00	10	Slightly hard	0.07
5.00 – 6.00	19	Moderately hard	0.12
6.00 – 7.00	52	Hard	0.31
7.00 – 8.00	63	Hard	0.35
8.00 – 8.60	84	Hard	0.44

477

478 **4.3 Input data**

479 To analyse the topography of the critical section, we obtained the DEM data from ArcGIS 10
 480 software programme (Esri, 2010), with a scale of 1:1000, through Spanish National Geography
 481 Institute (IGN) raster maps, with adequate accuracy. These data were interpolated to a 2 m
 482 grid using a triangulated network interpolation methodology. Orthophotos proved very useful
 483 to locate the landslide with accuracy and to validate the field survey. The model developed
 484 here applies to failure in an initiation zone, in addition to predicting landslides, including those
 485 induced by the infiltration of critical rains.

486

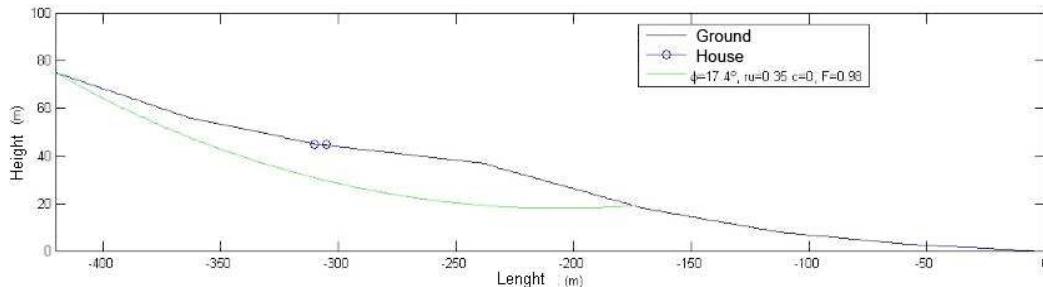
487 **Figure 11.** Left: hydraulic potential. Right: volumetric water content. Both have been plotted as a
 488 function of the depth (mm) at different times (d).

489 To complete the input data, we plotted the hydraulic potential and the volumetric water
 490 content, as a function of depth in the ground for different time steps, using a previously
 491 developed infiltration model, as shown in Figure 11 (Herrada et al., 2014). The figure shows
 492 the evolution of how the wetting front advances can be observed. These reached almost 5 m
 493 deep at the end of April 2010.

494

495 **4.2 Analytical results**

496 We applied the TS model using topographic data obtained from the ArcGIS 10 software
 497 program. We did so to obtain the degree of stability of the sliding land based on the angle of
 498 internal friction, the cohesion, the density and the angle of the slope we analyzed. Figure 9
 499 shows the analytical results from the real slope, by studying and analyzing the most
 500 unfavorable profile of the landslide studied. In addition we compared the results given by the
 501 developed TS model and the results given by STB 2010 model, using free surfaces in both
 502 cases. In our model the worst curve (shown in green) was calculated automatically from the
 503 initial curve (shown in blue), resulting in $F_s = 2.300$, in the dry state (Figure 12).



504

505 **Figure 12.** Top: TS model with a critical failure of $F_s = 2.300$. Bottom: results from the STB 2010 model
506 with an F_s of 2.063.

507 As can be noted, the failure curves are similar, and the safety coefficients F_s only differ by
508 0.237. In both cases, the results indicated are conservative estimates, resulting in a stable
509 slope that was not realistic, as was the case in La Viñuela. In order to get the most
510 unfavourable curve, which would match the analysis of the actual event, the pore coefficient
511 must be introduced. At the first runs of the model, the r_u was equal to zero (dry soil – Figure 9),
512 but if this value is changed to $r_u = 0.35$, the results are quite different (Figure 13). The resulting
513 failure was near the surface and the top cut with the slope found relatively near the houses.
514 Taking into account the infiltration of rainwater, the slope analysed in the TS model showed a
515 value of $F_s = 0.98$, in other words, that it was unstable.

516 This calculation and the theoretical failure curve provided by our model was able to reproduce,
517 in a realistic way, the landslide which occurred in La Viñuela. Our model found that the critical
518 surface area that corresponded with the profile of the terrain was $12.927.45 \text{ m}^2$, which closely
519 matches the real situation. In the STB 2010 programme, it was $7.825.35 \text{ m}^2$; therefore, our
520 prediction was more accurate.

521

522 **Figure 13.** A new calculation including the pore coefficient r_u showing the worst curve in green. The
523 houses dragged by the landslide.

524 As mentioned, the STB 2010 model does not allow stability calculations to apply to rainfall
525 infiltration on a hillside. Hence, it is not capable of predicting a hillside's instability in a critical
526 rainfall scenario, which was critical in the slope analysed. The STB 2010 model found that the
527 hillside studied had an F_s of $F_s = 2.063$; that means it was a very stable slope. Consequently,
528 our original algorithm TS model appears to be more efficient and accurate.

529 If we compare the results of the penetrometric tests (Table 3) and the laboratory tests (Geolen
530 2010) summarized in the actual critical surface in the most unfavourable profile of landslide
531 (Figure 9), with those offered by our algorithm TS (Figure 13) to which we apply the infiltration
532 factor $r_u=0.35$, (high interstitial pressure) we can check the similarity between the two critical
533 surface of the landslide.

534 A value of $r_u = 0.35$ has been introduced in the calculation and the code gave us a value of the
535 slope safety factor of $F_s = 0.95$ (unstable), when in the dry state the code calculated a safety
536 factor of $F_s = 2.300$ (stable). The calculation of the safety factor in the STB 2010 program; that
537 lacks the analysis of infiltration in the calculation, offered a result of $F_s = 2.063$ (stable).

538 Using the STB 2010 program, we would not have been able to previously detect the landslide
539 of the case study of the paper, calculation that is not normally done in the stability
540 calculations; with the calculation with our code we could have avoided the collapse of the
541 building.

542 With these results, The Terrain Stability analysis performed using the developed model defines
543 fairly well the slip-breaking curve that intuitively appears to be susceptible to failure, especially
544 when heavy rains occur. As an example, the landslides which occurred in the La Viñuela area
545 could only have been predicted if the infiltration had been taken into account. Even then, it
546 could not have been done with other available software programmes, which were not able to
547 consider it.

548 **5. Conclusion**

549 The terrain stability (TS) analysis defines fairly well the critical surface to landslide in 2D of
550 each profile of the analyzed slope and the safety slip factor (F_s). We developed this model due
551 to the need for a useful tool to predict landslides, especially when heavy rains occur.

552 The TS model we developed uses the Spencer's method, which is more precise than the
553 modified Bishop method, model used by other software such as the case of the STB 2010, so it

554 differs in the results it provides for the F_s . It also takes into account the factor of water
555 infiltration due to critical rains, which other software programmes do not consider. A failure
556 surface can be determined by constraints using the MATLAB function fmincon. The data
557 needed to run the model include soil and climate properties that may vary in space and time.
558 The exit indices of the analysis (F_s) should be interpreted in terms of relative risk. The methods
559 implemented in the TS model are based on data structures, which are based on the data entry
560 of the elevation model (DEM), so we obtain a topographic map, a key element to obtain the
561 topographic profile to be studied with our algorithm.

562 In the case study analysed, the slope was initially stable and was so determined by the analysis
563 performed with the STB 2010 model. However, the slope became unstable due to the heavy
564 rains of that hydrological period, which called for the application of the pore pressure
565 coefficient r_u . For analysing cases of heavy rain, this model is a powerful tool for determining
566 slope stability. In addition, thanks to the great versatility of this model, it is applicable to any
567 analysis in other parts of the world, based on the methods of limit equilibrium (Spencer, 1967).
568 The TS model can also be used in combination with GIS software, SINMAP, TRIGRS model and
569 aerial photographic analysis, as well as mapping techniques or even as part of other models
570 like the coastal recession models (Castedo et al., 2012).

571 6. References

572 Aenor Institut: Geotechnical investigation and testing - Field testing - Part 2: Dynamic
573 probing (ISO 22476-2:2005), Madrid, Spain, 2008.

574 Aleotti, P.: A warning system for rainfall-induced shallow failures, Eng. Geol. 73:247–
575 265, 2004.

576 Alvioli, M., Baum, R. L.: Parallelization of the TRIGRS model for rainfall-induced
577 landslides using the message passing interface, Environmental Modelling & Software 81, 122–
578 135, <http://dx.doi.org/10.1016/j.envsoft.2016.04.002>, 2016.

579 Anbalagan, R.: Landslide hazard evaluation and zonation mapping in mountainous
580 terrain, Eng. Geol. 32, 269–277, 1992.

581 Anderson, M. G., Howes, S.: Development and application of a combined soil water-
582 slope stability model. Q. J. Eng. Geol. London, 18: 225-236, 1985.

583 Ayalew, L., Yamagishi, H., Ugawa, N.: Landslide susceptibility mapping using GIS-based
584 weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture,
585 Japan, Landslides 1, 73–81, 2004.

586 Acharya, K. P., Bhandary, N. P., Dahal, R. K., Yatabe, R.: Seepage and slope stability
587 modelling of rainfall-induced slope failures in topographic hollows, Geomatics, Natural Hazards
588 and Risk, 7:2, 721-746, DOI:10.1080/19475705.2014.954150, 2016a.

589 Acharya, K. P., Yatabe, R., Bhandary, N. P., Dahal, R. K.: Deterministic slope failure
590 hazard assessment in a model catchment and its replication in neighbourhood terrain,
591 Geomatics, Natural Hazards and Risk, 7:1, 156-185, DOI:10.1080/19475705.2014.880856,
592 2016b.

599 Ayenew, T., Barbieri, G.: Inventory of landslides and susceptibility mapping in the
600 Dessie area, Northern Ethiopia, Eng. Geol. 77, 1–15, 2004.

601

602 Baum, R. L., Savage, W. Z., Godt, J. W.: TRIGRS-A Fortran program for transient rainfall
603 infiltration and grid-based regional slope-stability analysis, Version 2.0. US geological survey
604 open-file report 424, 38 <https://pubs.usgs.gov/of/2008/1159/>, 2008.

605

606 Bishop, A. W., Morgenstern, N. R.: Stability coefficients for earth slope, Geotechnique
607 10, 129–150, 1960.

608 Bishop, A. W.: The Use of the slip circle in the Stability Analysis of Slope, Geotechnique
609 5: 1:7–16, 1955.

610 Beyer, W. H.: Handbook of Mathematical Sciences. 6th ed., Boca Raton/Florida, 1987.

611 Bisson, M., Spinetti, C., Sulpizio, R.: Volcaniclastic flow hazard zonation in the sub-
612 apennine vesuvian area using GIS and remote sensing, Geosphere 10,
613 <http://dx.doi.org/10.1130/GES01041.1>, 2014.

614

615 Borselli, L.: SAPP 4.2.0.: Advanced 2D Slope stability Analysis by LEM by SSAP software,
616 SSAP code Manual, version 4.2.0, available at: <http://www.Ssap.Eu/Manualessap2010.Pdf>,
617 2012.

618

619 Burbano, G., del Cañizo, L., Gutiérrez, J. M., Fort, L., Llorens, M., Martínez, M.,
620 Paramio, J. R., Simic, D.: Guía de cimentaciones en obras de carretera, Ministerio Fomento,
621 Madrid, 2009.

622

623 Canili, E., Mergili, M., Thiebes, B., Glade, T.: Probabilistic landslide ensemble
624 prediction systems: lessons to be learned from hydrology, Nat. Hazards Earth Syst. Sci., 18,
2183–2202. <https://doi.org/10.5194/nhess-18-2183-2018>, 2018.

625

626 Carrara, A., Cardinali, M., Guzzetti, F., Reichenbach, P.: GIS technology in mapping
627 landslide hazard. In: Carrara, A., Guzzetti, F. (Eds.), Geographical Information System in
628 Assessing Natural Hazard, Kluwer Academic Publisher, Netherlands, 135–175, 1995.

629

630 Casagli, N., Catani, F., Puglisi, C., Delmonaco, G., Ermini, L., Margottini, C.: An
631 inventory-based approach to landslide susceptibility assessment and its application to the
632 Virginio River Basin, Italy, Environ. Eng. Geosci. 3, 203–216, 2004.

633

634 Castedo, R., Murphy, W., Lawrence, J., Paredes, C.: A new process–response coastal
635 recession model of soft rock cliffs, Geomorphology, 177, 128–143, 2012.

636

637 Cheng, Y. M., Lansivaara, T., Wei, W. B.: Two-dimensional slope stability analysis
638 by limit equilibrium and strength reduction methods, Computers and Geotechnics 34, 3, 137–
150, 2007.

639

640 Chugh, A. K., Smart, J. D.: Suggestions for slope stability calculations. Computers &
Structures 14, 1–2, 43–50, 1981.

641

642 Collison, A., Wade, S., Griffiths, J., Dehn, M.: Modelling the impact of predicted
643 climate change on landslide frequency and magnitude in SE England. Eng. Geol. 55, 205–218,
2000.

644 Crosta, G. B., Frattini, P.: Distributed modelling of shallow landslides triggered by
645 intense rainfall, *Natural Hazards and Earth System Sciences* (2003) 3: 81–93, 2003.

646

647 Crozier, M. J., Glade, T.: Landslide hazard and risk: issues, concepts, and approach. In:
648 Glade, T., Anderson, M., Crozier, M. (Eds.), *Landslide Hazard and Risk*. Wiley, Chichester, 1–
649 40, 2005.

650

651 Cruden, D. M. and Varnes, D. J.: Landslides types and processes. In: *Landslides*
652 investigation and mitigations, *Transportation Research Board Special report 24*, Turner y
653 Shuster eds., 36–75, 1996.

654 CTE: Technical building Code, Basic Document Structural Safety DB-SE. Ministry of
655 Development, Spain, available at: <https://www.codigotecnico.org/>, 2007.

656 Dai, F. C., Lee, C. F.: Terrain-based mapping of landslide susceptibility using a
657 geographical information system: a case study, *Can. Geotech. J.* 38, 911–923, 2001.

658

659 Dai, F. C., Lee, C. F., Ngai, Y. Y.: Landslide risk assessment and management: an
660 overview. *Eng. Geol.* 64, 65–87, 2002.

661

662 Duncan, J. M., Wright, S. G.: *Soil Strength and Slope Stability*, John Wiley, Hoboken,
663 N. J., 2005.

664 Duncan, J. M.: *Landslide Types and Processes. Landslides investigations and mitigation*.
665 Ed. Turner A. Special Report, TRB., 1996.

666 Environmental Systems Research: Institute Geographic information system (platform
667 and resources ArcGIS), California, EEUU, available at: <http://www.esri.es/arcgis/productos/>,
668 2017.

669 Fall, M., Azzam, R., Noubactep, C.: A multi-method approach to study the stability of
670 natural slopes and landslide susceptibility mapping, *Eng. Geol.* 82, 241–263, 2006.

671

672 Fellenius W.: Calculation of the stability o Heat dams. Washington, D.C.: In Proceeding
673 of the 2nd Internacionnal Congress on Large Dams, - Vols. 4, 445. -4:445, 1936.

675 Geolen Engineering: Geotechnical study in the Viñuela. Sevilla, Spain, available at:
676 <http://www.geolen.es>, 2010.

677 Girma, F., Raghuvanshi, T. K., Ayenew, T., Hailemariam, T.: Landslide hazard zonation in
678 Ada Berga District, Central Ethiopia – a GIS based statistical approach, *J. Geomatics* 90, 25–38,
679 2015.

680 Glennon, R., Harlow, M., Minami, M., Booth, B: *ArcGis 9. ArcMap Tutorial*. Esri North
681 Carolina. U.S.A., 2008.

682 González de Vallejo, L., Ferrer, M., Ortuno, L., Oteo, C.: *Ingeniería Geológica*. Madrid:
683 Prentice Hall, 2002.

684 Griffiths, D. V., Marquez, R. M.: Three-dimensional slope stability analysis by elasto-
685 plastic finite elements. *Géotechnique* 57, Nº. 6, 537–546, 2007.

686 Griffiths, D. V.: Slope stability analysis by finite elements. A guide to the use of
687 Program slope 64, Geomechanics Research Center Colorado School of Mines, available at:
688 http://inside.mines.edu/~vgriffit/slope64/slope64_user_manual.pdf, 2015.

689 Guha-Sapir, D., Hargitt, D., and Hoyois, G.: Thirty years of natural Disasters 1974 –
690 2003: The Numbers, Centre for Research on the Epidemiology of Disasters, available at:
691 <http://www.unisdr.org/eng/library/Literature/8761.pdf>, 2004.

692 Gutiérrez-Martín, A.: El agua de infiltración de lluvia, agente desestabilizador de
693 taludes en la provincia de Málaga. Modelos constitutivos, Doctoral Thesis, University of
694 Granada, 2015.

695 Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P.: Landslide hazard evaluation:
696 a review of current techniques and their application in a multi-scale study, central Italy.
697 Geomorphology 31 (1–4), 181–216, 1999.

698 Herrada, M. A., Gutiérrez-Martín, A., Montanero, J. M.: Modeling infiltration rates in a
699 saturated/unsaturated soil under the free draining condition. *Journal of Hydrology*, 515, 10–
700 15, 2014.

701 Hoek, E., Bray, J.W.: *Rock Slope Engineering* (revised thirded.), Inst. of Mining and
702 Metallurgy, London, 1981.

703 Iverson, R. M.: Landslide triggering by rain infiltration. *Water Resources Research*
704 36(7): 1897-1910, 2000.

705 Janbu, N.: Stability analysis of slopes with dimensionless parameters. In: Harvard
706 University soil mechanics series, vol 46, 1954.

707 Jiménez Salas, J. A., Justo Alpañes, J.L.: *Geotecnia y Cimientos II*, Ed. Rueda, Madrid,
708 1981.

709 Jia, G. J., Tian, Y., Liu, Y., Zhang, Y.: A static and dynamic factors-coupled forecasting
710 model of regional rainfall-induced landslides: A case study of Shenzhen, *Science China: Technological Sciences* 51. Suppl. 2, 164-175, 2008.

712 Johari, A., Mousavi, S.: An analytical probabilistic analysis of slopes based on limit
713 equilibrium methods, *Bulletin of Engineering Geology and the Environment*, 1-15, 2018.

714 Khan, M. E.: The Death Toll from Natural Disasters: The Role of Income, Geography,
715 and Institutions, *Review of Economics and Statistics* 87, 2, 271-284, 2005.

716

717 Leroi, E.: Landslide risk mapping: problems, limitation and developments. In: Cruden,
718 Fell (Ed.), *Landslide Risk Assessment*. Balkema, Rotterdam, 239–250, 1997.

719

720 Liu, S. Y., Shao, L. T., Li, H. J.: Slope stability analysis using the limit equilibrium method
721 and two finite element methods. *Computers and Geotechnics* 63, 291-298, 2015.

722 Lu, N., Godt, J.:Infinite slope stability under steady unsaturated seepage conditions.
723 Water Resources Research, Vol. 44, W11404, doi:10.1029/2008WR006976, 2008.

724

725 Martelloni, G, Segoni, S, Fanti, R., Catani, F.: Rainfall thresholds for the forecasting of
726 landslide occurrence at regional scale. Landslides DOI: 10.1007/s10346-011-0308-2, 2011.

727

728 Martelloni, G., Bagnoli, F.: Infiltration effects on a two-dimensional molecular
729 dynamics model of landslides, Nat. Hazards, 73(1):37–62, 2014.

730

731 Martelloni, G., Bagnoli, F., Guarino, A.: A 3D model for rain-induced landslides based
732 on molecular dynamics with fractal and fractional water diffusion, Commun Nonlinear Sci
733 Numer Simulat, 50:311–329, 2017.

734

735 Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F., Fellin, W.: Spatially distributed three
736 dimensional slope stability modelling in a raster GIS, Geomorphology 206: 178-195.
737 <http://doi.org/10.1016/j.geomorph.2013.10.008>, 2014a.

738

739 Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-Muntau, B., Rossi, M.,
740 Guzzetti, F.: A strategy for GIS-based 3-D slope stability modelling over large areas,
741 Geoscientific Model Development 7 (6), 2969-2982 <http://doi.org/10.5194/gmd-7-2969-2014>,
742 2014b.

743

744 Michel, G. P., Kobiyama, M., Fabris, R.: Comparative analysis of SHALSTAB and SINMAP
745 for landslide susceptibility mapping in the Cunha River basin, southern Brazil, Journal of Soils
746 and Sediments 7. 1266–1277, 2014.

747

748 Michel, G. P., Kobiyama, M., Fabris, R.: Critical rainfall to trigger landslides in Cunha
River basin, southern Brazil, Natural Hazards 75, 2369-2384, 2015.

749

750 Montgomery, D., Dietrich, W.: R-SHALSTAB: A digital terrain model for mapping
751 shallow landslide potential, to be published as a technical report by NCASI, available at:
752 <http://calm.geo.berkeley.edu/geomorph/shalstab/index.htm>,<https://grass.osgeo.org/grass74/manuals/addons/r.shalstab.html>, 1998.

753

754 Morgenstern, N. R., Price, V. E.: The analysis of the stability of general slip surfaces,
755 Geotechnique 15, 79-93, 1965.

756

757 National Geographic Institute: Geological and raster maps. Madrid, Spain, available
at: <http://www.ign.es/web/ign/>, 2017.

758

759 Nicoletti, P. G., Sorriso-Valvo, M.: Geomorphic controls of the shape and mobility of
rock avalanches, GSA Bulletin 103 (10): 1365-1373, 1991.

760

761 Pack, R. T., Tarboton, D. G., Goodwin, C. N.: Assessing Terrain Stability in a GIS using
762 SINMAP. In: 15th annual GIS conference, GIS 2001, Vancouver, British Columbia, February 19-
22, 2001.

763

764 Parise, M., Jibson, R.W.: A seismic landslide susceptibility rating of geologic units
765 based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge,
766 California earthquake, Eng. Geol. 58, 251–270, 2000.

767

768 Raghuvanshi, T. K., Negassa, L., Kala, P. M.: GIS based grid overlay method versus
769 modeling approach – a comparative study for Landslide Hazard Zonation (LHZ) in Meta Robi
770 District of West Showa Zone in Ethiopia, Egypt. *J. Remote Sens. Space Sci.* 18, 235–250, 2015.

771 Raia, S., Alvioli, M., Rossi, M., Baum, R. L., Godt, J. W., F Guzzetti, F.: Improving
772 predictive power of physically based rainfall-induced shallow landslide models: a probabilistic
773 approach, *Geosci. Model Dev.* 7 (2), 495-514, <https://doi.org/10.5194/gmd-7-495-2014>, 2014.

774

775 Ramos Vásquez, A. A.: Análisis de estabilidad de taludes en rocas, Simulación con LS-
776 DYNA y comparación con Slide, Trabajo Fin de Máster, Máster Universitario en Ingeniería
777 Geológica, ETSI Minas y Energía, Universidad Politécnica de Madrid, 2017.

778 Reid, M. E., Christian, S. B., Brien, D. L., Henderson, S. T.: Scoops-3D - Software to
779 analyze Three-Dimensional Slope Stability Throughout a Digital Landscape, Version 1.0,
780 Virginia: U.S. Geological Survey, 2015.

781

782 Rigon, R., Bertoldi, G., Over, T. M.: 2GEOtop: A distributed hydrological model with
783 coupled water and energy budgets, *Journal of Hydrometeorology* 7 (3), 371-388
784 <https://doi.org/10.1175/JHM497.1>, 2006.

785

786 Rossi, G., Catani, F., Leoni, L., Segoni, S., Tofani, V.: HIRESSS: A physically based slope
787 stability simulator for HPC applications, *Nat. Hazards Earth Syst Sci* 13(1):151–66, 2013.

788

789 Simoni, S., Zanotti, F., Bertoldi, G., Rigon, R.: Modelling the probability of occurrence of
790 shallow landslides and channelized debris flows using GEOtop-FS. *Hydrol Processes*;22(4):532-
791 545. <https://doi.org/10.1016/j.proeps.2014.06.006>, 2008.

792

793 Spencer, E.: A method of analysis of analysis of the stability of embankments assuming
794 parallel interslice forces, *Géotechnique* 17, 11-26, 1967.

795

796 Toya, H., Skidmore, M.: Economic development and the impacts of natural disasters,
Economics Letters, 94(1), 20-25. DOI: 10.1016/j.econlet.2006.06, 2007.

797

798 Tran, T. V., Alvioli, M., Lee, G., An, H. U.: Three-dimensional, time-dependent modelling
799 of rainfall-induced landslides over a digital landscape: a case study. *Landslides*, 1-14
<http://doi.org/10.1007/s10346-017-0931-7>, 2018.

800

801 SLIDE V5: 2D limit equilibrium slope stability for soil and rock slopes, user's guide,
802 available at: <https://www.rockscience.com/>, 2018.

803

804 Stead, D., Eberhardt, E., Coggan, J. S.: Developments in the characterization of complex
805 rock slope deformation and failure using numerical modelling techniques, *Eng. Geology* 83, 1-
806 3:217-235, 2006.

807

808 Tschuchnigg, F., Schweiger, H. F., Sloan, S. W.: Slope stability analysis by means of
809 finite element limit analysis and finite element strength reduction techniques. Part II: Back
analyses of a case history, *Computers and Geotechnics* 70, 178-189, 2015.

810

811 Van Westen, C. J., Terlien, M. J. T.: An approach towards deterministic landslide
812 hazard analysis in gis. A case study from Manizales (Colombia), *Earth Surface Processes and
Landforms* 21. 9:853-868, 1996.

813 Varnes, D. J.: Slope movement types and processes, In R.L. Schuster and R. J. Krizek
814 (Eds.) *Landslides: analysis and control*. Transportation Research Board. Special report 176: 11-
815 33, 1978.

816 Varnes, D. J.: *Landslide Types and Processes*. In: Turner, A.K., Schuster, R.L. (Eds.),
817 *Landslides: Investigation and Mitigation*, Transportation Research Board Special Report 247,
818 National Academy Press, National Research Council, Washington, D.C., 1996.

819

820 Verruijt, A.: *STB—SLOPE: Stability Analysis Program*. Delft University. Available at:
821 <http://geo.verruijt.net>, 2010.

822 Wang, X., Niu, R.: Spatial forecast of landslides in three gorges based on spatial data
823 mining. *Sensors* 9, 2035–2061, 2009.

824 Wilkinson, P. L., Anderson, M. G., Lloyd, D. M., Renaud, P. N.: Landslide hazard and
825 bioengineering: towards providing improved decision support through integrated numerical
826 model development, *Environment Modelling and software* 17:4, 333-344, 2002.

827

828 Wilson, R. C., Jayko, A. S.: Preliminary maps showing rainfall thresholds for debris-flow
829 activity, San Francisco Bay Region, California. US Geological Survey Open-File Report 97-745 F,
830 1997.

831 Wu, W., Sidle, R. C.: A Distributed Slope Stability Model for Steep Forested Basins.
832 *Water Resour. Res.*, 31(8), 2097–2110, doi:10.1029/95WR01136, 1995.

833

834 Yong, R. N., Alonso, E., Tabba, M. M., Fransham, P. B.: Application of Risk Analysis to
835 the Prediction of Slope Stability. *Canadian Geotechnical Journal* 14, 540-553, 1977.

836 Zhang, S., Zhao, L., Delgado-Tellez, R., Bao, H.: A physics-based probabilistic forecasting
837 model for rainfall-induced shallow landslides at regional scale, *Nat. Hazards Earth Syst. Sci.*, 18,
838 969–982. <https://doi.org/10.5194/nhess-18-969-2018>, 2018.

839 Zhou, X. P., Cheng, H.: Analysis of stability of three-dimensional slopes using the
840 rigorous limit equilibrium method. *Eng Geol* 160:21–33, 2013.

841 Zhu, D. Y., Lee, C. F., Qian, Q. H., Chen, G. R.: A concise algorithm for computing the
842 factor of safety using the Morgenstern–Price method, *Canadian Geotechnical Journal*, Vol. 42-
843 1, 272-278, <https://doi.org/10.1139/t04-072>, 2005.