
Reply to reviewer 1

This paper presents a significant enhancement of a Norwegian method for the estimation of extreme floods, based
on an event-based rainfall-runoff simulation. It introduces a stochastic process for the assignment of the initial hydro-
logical conditions before the simulated events, as well as for the intensity and the temporal dynamic of the simulated
precipitation events. This method is compared to the initial method (which considers only a reference precipitation on
given condition), and to a classical FFA. The presented method is interesting, both in terms of methodology and statis-
tical results. It is well explored, with a detailed sensitivity analysis.

We thank the reviewer for the positive comment on the method and the very detailed review of the manuscript.
However, the paper could be greatly improved by a better writing and more illustrations, particularly about the

stochastic PQRUT which deserves a detailed step by step explanation of the simulation procedure (text and diagram),
and also the probabilistic models for precipitation.

We agree that the explanation of the procedure can be improved. In the revised version, we have added step by step procedure:

1. Extract flood events for a given catchment and identify the critical storm duration
For each season:

2. Aggregate the precipitation data to match the critical duration for the catchment

3. Extract POT precipitation events and fit a GP distribution

4. Fit probability distributions for the initial discharge, soil moisture deficit and SWE values for the season

5. Generate precipitation depth from the fitted GP distribution

6. Disaggregate the precipitation depth to a 1 hour time step by matching the dates of the identified POT flood events (from
step 3) to dataseries of precipitation with hourly timestep

7. Sample a temperature sequence by matching the dates of the identified POT flood events (from step 1) to the dataseries
of temperature with hourly timestep

8. Sample initial conditions for snow water equivalent (SWE), soil moisture deficit and initial discharge from their distri-
butions (step 5), accounting for co-variation using a multivariate normal distribution

9. Simulate streamflow values using the calibrated PQRUT model for the sample event

10. Repeat steps 6.-9. 100 000 times

11. Estimate the annual exceedance probability from the total of 400 000 (100 000 for each season) samples using plotting
positions

We have also included a diagram to illustrate the link between the different steps.
Regarding the sensitivity analysis, which is very important to understand the key factors and options of this new

method, its writing also should be better organized and illustrated. It lacks a basic but important study of the impact
of the random drawing (e.g. by performing 100 different simulations) and of the number of the simulated events on the
extreme quantiles estimation. The later seems to be an issue here for high return periods.

These two issues are somewhat related. The effect of the random seed will be minimised if larger number of simulations
are used. In addition, increasing the number of simulations will increase the robustness of the extreme quantiles. However,
the number of simulations that are needed will depend on the return period of interest. Here we have considered a long return
period, 1000-years, so this issue is indeed relevant. We have included two additional variables in the sensitivity analysis:
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50 simulations using different random seeds
Length of simulation, of up to 400,000 , 100,000 for each season (in increments of 40,000). It is not feasible to consider longer
simulations due to computational times.

I would recommend a significant revision of this paper, mostly to improve its structure, its writing and the illustra-
tions provided. Detailed comments/suggestions are provided to the authors in that follows.

We hope that our revisions will significantly improve the writing and the structure of the paper.
Abstract
For those not familiar with PQRUT, it could be added in the abstract that the stochastic PQRUT is an exten-

sion/evolution of the " standard" PQRUT routine, applied since many years in Norway (dates and references to be
provided). The differences between the estimates can be up to 200% for some catchments, which highlights the uncer-
tainty in these methods This is not a good message for hydrological engineering, a less pessimistic phrasing could be "[.
. . ] 200% for some catchments where the uncertainties of the compared methods are high and combine unfavourably".

The reason, we did not include this information is that we wanted to emphasise that the method can be applied to any
catchment with snowmelt/mixed flood regime. But as our study area is in Norway, we have revised the abstract as:

The estimation of extreme floods is associated with high uncertainty, in part due to the limited length of streamflow records.
Traditionally, statistical flood frequency analysis and an event-based model (PQRUT) using a single design storm have been
applied in Norway. We here propose a stochastic PQRUT model, as an extension of the standard application of the event-based
PQRUT model, by considering different combinations of initial conditions, rainfall and snowmelt, from which a distribution of
flood peaks can be constructed. . . . . The differences between the stochastic PQRUT and the statistical flood frequency analysis
are within 50% in most places. However, the differences between the stochastic PQRUT and the standard implementation of
the PQRUT model are much higher, especially in catchments with a snowmelt flood regime.

§1 - Introduction Page 1, line 14: For example, floods with a 500-year return period are sometimes used to [. . . ] As
most of the estimates evoked in the paper are 100 or 1000-yr. floods, and example of the use of such quantiles in Norway
could useful.

We will revise the paragraph as follows:
The estimation of low-probability floods is required for the design of high-risk structures such as dams, bridges, levees, etc.

For example, floods with a 100-year return period are sometimes required for the design of levees and the design and safety
evaluation of high-risk dams requires the estimation of flood hydrographs for the 1000-year return period and, in some cases,
floods with magnitudes of up to the Probable Maximum Flood (PMF). Page 1, line 17: Flood mapping also usually requires
input hydrographs This is also the case for dam safety assessment.

This sentence has been revised -See answer above
Page 1, line 21: When longer return periods are needed I guess the author means " longer than the record length",

i.e. return period of 100 yr. or above.

Yes, this is correct. For clarity, this will be changed to:
When return periods that are longer than the observed record length are needed, the process requires extrapolation

of the fitted statistical distribution. Page 2, line 6: have been shown to produce average errors between 27 and 70%
Please mention on what estimation this error is computed (observed quantiles or estimated ones, of which return pe-
riod).

These errors are based on table 1 in the paper by Salinas et al 2013, which provides a comparative assessment of different
studies in ungauged basins. The values are calculated using the RMSNE (root mean square normalised error) for Q100 (q100)
and we have expressed them as percentage. We have revised as: As the physical processes in the catchments are usually not
directly considered in the analysis, estimating the flood quantiles in ungauged basins using regression or geostatistical methods
can produce average RMSNE (root mean square normalised error) values of between 27 and 70% (Salinas et al., 2013), or even
higher for the 100-year return period.
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Page 2, line 32: they are computationally inefficient. . . Another writing could be "[. . . ] they are computationally
demanding, as long continuous periods have to be simulated to estimate extreme quantiles".

Yes, this is in fact a better way to write this.
Page 3, line 6: millions of rainfall events can be sampled from the MEWP model. . . More exactly, millions of synthetic

rainfall events can be generated, assigned to a probability estimated from the MEWP model, and inserted. . .

Yes, we agree with the revision.
Page 3, line 21: it requires the generation of a temperature sequence for the event I would add " a temperature se-

quence for the event, coherent with the simulated rainfall, and a snow water. . . "

We have revised this sentence as:
as it requires the generation of a temperature sequence for the event that is consistent with the rainfall sequence used and a

snow water equivalent as an initial condition.
Page 3, line 22: The assumption of a fixed rate of snowmelt [. . . ] and a joint probability model needs to be consid-

ered Does it mean that a fixed snowmelt is usually added without consideration to the rest of the variables which will
characterize the simulated event? What kind of joint probability model should be added?

To increase the clarity, these sentences has been rewritten as: The assumption of a fixed rate of snowmelt which is based on
typical temperatures, as is often used in Norway for the single event-based design method, can introduce a bias in the estimates.
The joint probability of both rainfall and snowmelt needs to be considered to obtain a probability neutral value (Nathan and
Bowles, 1997).

Page 24, line 24: SEFM which has been applied in several USGS studies To my knowledge, I am not sure it is USGS
(although SEFM is evoked in the USGS Bulletin 17C " Guidelines for Determining Flood Flow Frequency" of 2018),
but several application of SEFM for dam safety studies have been delivered to USBR (US Bureau of Reclamation).

Yes, it should be USBR.
Page 3, line 34: due to the large uncertainty in both the event-based model and the statistical flood frequency analysis

I am not comfortable with this writing. With two identical methods (say a classical FFA), but with two distributions fit-
ted on two different samples, estimations would be different, and in that case this difference is completely linked to the
uncertainties of the FFA (and mainly the sample uncertainty). But with different methods, these differences can also be
produced by discrepancies between methods which should be treated per se, in order to assess the method themselves.
So the interpretation of the difference should, in my opinion, not only rely on uncertainties.

This sentence has been deleted.
Page 3, line 35: To better understand the differences between these methods, a sensitivity analysis of the stochastic

PQRUT is performed Here I have somehow the opposite comment from above: this sensitivity analysis of stochastic
PQRUT is more about dealing with the uncertainties of stochastic PQRUT, not the differences between methods.

This is true, the sensitivity analysis will provide a better understanding of the uncertainty. However, the sensitivity analysis
can also help us determine the reasons for the differences between the models. For example, the standard PQRUT assumes
that fully saturated conditions are used. By testing the sensitivity of the model to the initial soil moisture deficit, we can check
whether assuming fully saturated conditions contributes to the difference between these two methods.

We have revised this section as:
In order to understand the uncertainty and the differences with the standard PQRUT model, a sensitivity analysis of the

stochastic PQRUT is performed by considering the effect of the initial conditions, model parameters and rainfall intensity on
the flood frequency curve.
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§2 - Stochastic event-based model Page 4, line 18: The study area consists of a set of 20 catchments A more logical
phrasing could be " The study area in Norway, with a dataset of 20 catchments located throughout the whole country"

We have revised this sentence.
Page 5, line 6: for Krinsvatn, Lk and the area covered by marsh, M, is more than 10In the Table 1, Lk and M values

are 9 and 1.1 %, respectively.

This is correct, we have revised as: but for Krinsvatn, the Lk is higher and the area covered by marsh, M, is 9Page 5, line
28: the correlation of the method was found to be higher To which values the results of this disaggregation method have
been correlated? Hourly or 3-hourly rainfall observations?

The disaggregated data were compared to the 3-hour observations in the study undertaken by Vormoor and Skaugen to pro-
duce the gridded disaggregated data. Page 5, line 29: simply dividing the seNorge data into eight equal parts To be clearer,
I suggest " simply dividing the seNorge daily data into eight equal 3- hourly values".

The sentence has been revised as suggested. Page 5, line 29: disaggregated to a 1-hour time step using a uniform distri-
bution to match the time resolution of the discharge data, although a 3-hour time step could also be used I don’t fully
understand this. Was the 3-hour value affected randomly to one hour or divided into three? Why is it possible to use
the 3-hour value with an hourly model?

The rainfall data was then divided into three equal parts, i.e. using a uniform distribution. The PQRUT model can be used
with any timestep. Considering that the median catchment size is around 140 km2, a timestep of 3 hours should be sufficient for
modelling the peak flows. As the model has previously been calibrated and regionalised using a 1 -hour timestep, we decided
to use this timestep (instead of 3-hours). A similar comment was raised by reviewer 2 and the section was revised to include
these suggestions as well:

The HIRLAM atmospheric model for northern Europe has a 0.1 degree resolution (around 10 km2) and we used a temporal
distribution of three hours. The HIRLAM data set was first downscaled to match the spatial resolution of the seNorge data
and the precipitation of the HIRLAM data was rescaled to match the 24-hour seNorge data (Vormoor and Skaugen, 2013).
Then, these rescaled values were used to disaggregate the seNorge data to a 3-hour time resolution. The method was validated
against 3-hour observations, and the correlation of the method was found to be higher than that obtained by simply dividing
the seNorge data into eight equal 3 -hourly values (Vormoor and Skaugen, 2013). These datasets were further disaggregated to
a 1-hour time step by dividing into three equal parts to match the time resolution of the streamflow data.

Page 6, line 1: remotely sensed data Assimilating remotely sensed data in a hydrological model is not an easy task,
especially soil moisture. Any reference to provide that would apply to the context of this paper?

Using the remotely-sensed data currently available is probably not ideal as these data have a coarse spatial resolution (around
20km2). A review of the use of this data is given in Brocca et al (2017). This reference has been added to the revised version:
Sources of these data can be e.g. remotely sensed data (see, for example, the review provided in Brocca et al. (2017)) or gridded
hydrological models.

Page 6, line 2: the DDD hydrological model was used Please provide a reference which introduces this model.

The reference to the DDD model comes earlier in the manuscript, i.e. on p 4 .
Page 6, line 7: exceeds 0.3 of its (dynamic) capacity Please define what is a dynamic capacity here.

In this case, dynamic refers to the concept that the volume of the saturated zone and unsaturated varies in time as explained
in the previous sentence. This has been deleted.

Page 6, line 11: the so-called critical duration A reference can be provided here to define this concept: Meynink, W.
J. Cordery, I. (1976). Critical duration of rainfall for flood estimation. Water Resources Research, 12(6), 1209-1214.
Thanks for this, we have included this citation.

4



Page 6, lines 12-14: In order to determine [. . . ] had to be determined for each catchment I don’t find this sentence
useful, considering what is written before and after it.

The sentence has been deleted.
Page 6, lines 14: flood events over a certain quantile threshold (0.9) were extracted. On what data this POT sample

was extracted: daily or hourly discharges?

The sample is based on daily discharge, we have revised as: To determine the critical duration, flood events from the daily
time series over a quantile threshold (in this case, 0.9) were extracted.

Page 6, lines 18-25: An alternative to this could be to study the correlation between the peak daily value and the
precipitation of that day (which we could call P0), the sum P0 to P-1, P0 to P-2 and so on. . . When the correlation
coefficient stops to increase significantly, it means that the correct length of the " precipitation window" is reached,
thus the critical duration is estimated. This is likely to be more robust than studying the correlation between the peak
daily discharge and the individual precipitations the days before.

This is an interesting suggestion. In this study, it is important to specify a critical duration in order to capture the “full”
rainfall event producing the peak flow (otherwise the peak flow is likely to be underestimated). We implemented the procedure
proposed by reviewer but we did not find much difference between the two methods. In fact, this alternative gives shorter
critical durations in some cases (i.e. 1-day for Krinsvatn instead of 48 hours). As our study area consists of small catchments
and the shortest window we are using is 1-day, the critical duration is then also 1 day (for 17 out of 20 catchments), rather than
being longer.

Page 6, lines 22-24: In some catchments (mostly those having a snowmelt flood regime), no significant correlation was
found between discharge and precipitation In that case, some processing of the flood is needed, e.g. only considering the
" snowfree" seasons, or adding a threshold on the precipitation over the preceding days in the POT selection of floods.
This could prevent using an arbitrary duration.

We have incorporated this and now only the relatively snow-free season (SON) have been considered.
Page 6, line 28: the sequence of the input data must be prescribed for the stochastic simulation What means " pre-

scribed"? Is it generated? Is it randomly drawn from the observed sequences?

Yes, we have revised to “generated”.
Page 7, line 1: a Generalized Pareto distribution was fitted to the series of selected Events A figure with the corre-

sponding fits and observations for the example catchments would be welcome.

We have added a return level plot that shows the fit to the observations for both GP and Exponential distributions.
Page 7, line 6: introduced in section ??

Section 2.1.2 , the reference has been corrected.
Page 7, line 7: Using the fitted Generalized Pareto (GP) distribution, precipitation depths were simulated Does it

mean that probabilities where randomly drawn then the corresponding precipitation depths deduced from the fitted
GPD? How many events are drawn?

This is correct, the sentence will be rewritten as:
The precipitation depths were generated (for 100,000 events) from the fitted GP distribution for each season. Originally, 160

000 (40 000 per season) simulations (around 10 000 to 20 000 years) were used, we have now increased this number to 400
000 events.

Page 7, line 8: a storm hyetograph was first sampled How is it sampled? I guess it comes from the hyetographs col-
lection corresponding to the POT selection of precipitation events, but with what consideration to season, intensity, etc.?
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Yes, it was sampled from the collection of hyetographs, the seasonality was considered but not the precipitation depth This
has been revised in the manuscript.

Page 7, line 10: Pi and P are not defined in the disaggregation formula.

We have revised as:
where Phsim is the simulated 1-hour precipitation intensity, Pdsim is the simulated daily intensity and Pi is the 1 -hour

disaggregated SeNorge intensity
Page 7, line 15: Output from DDD model runs Have the DDD models been calibrated on local data? If yes, some

words about the calibration method are welcome. I guess the DDD models are used at daily time-step, is it true?

Yes, a daily time step was used. The following sentence has been added to the text The model was calibrated for the selected
catchments at a daily timestep using a MCMC routine (Petzoldt, 2010).

Page 7, lines 21-25: The writing is not clear, and neither is the equation of the mixed distribution (what is x ?). As
far as I understood, it is about randomly switching between a trivariate (discharge, moisture, snow) and a bivariate
(discharge, moisture) distribution depending on the probability of having snow on a given season. Is p also drawn for
the simulation?

We agree that this was not clearly described, we have revised this section as follows: The probability p for switching between
the trivariate and bivariate distributions is based on the historical data for SWE higher than 0.

Page 7, line 26: The correlation between the observed and simulated variables is shown in Figure 4 Apparently, sl is
the soil moisture deficit. Contrary to SWE and Qobs which are " observable" variables, sl is linked to a model (here
DDD). So it should be introduced, in relation with the DDD model structure.

The soil moisture deficit is presented in Skaugen and Onof (2013). The soil moisture deficit is the difference between the
volume of the unsaturated zone and the volume already present in the soil moisture zone.

Page 8, line 5: for estimating design floods and safety check floods for dams in Norway This type of application is
perhaps documented in (Andersen, 1983), but this reference is not easily accessible on line, and is written in Norwegian,
so a accessible reference documenting this type of application would be welcome.

A reference to the NVE report is now provided:
The PQRUT model is a simple, event-based, 3-parameter model (Fig. 6) which is used, amongst other things, for estimating

design floods and safety check floods for dams in Norway (Wilson et al., 2011).
Page 8, line 14: The general procedures used for the PQRUT calibration are described in Filipova et al. Some details

about this calibration would be welcome, e.g. which flood events sample is considered (is it the same as the one used in
§2.2 for critical duration)?

In the calibration, the 45 highest flood events were considered. This sample most likely overlaps with the events selected for
the critical duration. The sentence has been revised as:

The PQRUT model was calibrated for the 45 highest flood events by using the DDS (Dynamically Dimensioned Search)
optimization routine (Tolson and Shoemaker, 2007) and the Kling Gupta efficiency (KGE) criterion (Gupta et al., 2009) as the
objective function.

Page 8, lines 15-17: This additional parameter lp should be documented in the structure of the PQRUT model pre-
sented in the Figure 5. Furthermore, I am not sure that it can be considered as a parameter, more likely it is an internal
state variable which vary from event to event.

We agree in this case, lp can be considered as a state variable. The figure has been updated to include lp.
Page 8, line 18: the value of this parameter was set to the initial soil moisture deficit, estimated using DDD This is an

important assumption: it means that some internal variables of DDD (which ones, this is not documented) are used to
estimate another one in PQRUT. This is far from obvious to accept for two very different models, running at different
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time steps: what has be done to check this " compatibility"?

As we already discussed (see answer to Page 7, line 26 ), the DDD model is able to provide realistic values for soil moisture
deficit. As we are interested in the antecedent soil moisture conditions and not the variation of the soil moisture deficit during
rainfall event, the timestep is not of such importance. Other options would be to use soil moisture data from remote sensing or
based on antecedent precipitation but these values are much less accurate. In addition, the soil moisture deficit values are not
as important (as suggested by the sensitivity analysis) for high return periods.

Page 8, line 23: Cs is a coefficient accounting for the relation between temperature and snowmelt Properties It is
usually called a " degree-day" coefficient (although used at a hourly time step here).

Both terms are used in literature but, as this is used in hourly time step, we prefer to use temperature index method
Page 8, line 30: The term under the bar should be " power to k" not be multiplied by k.

This seems to be correct- multiplied by k. The return period for the POT events is: T= 1/(k (1-P)) where k- is the number of
events and P is the non-exceedance probability

Page 9, line3: These simulated events were compared with the POT flood events extracted from the observations At
this point, I don’t clearly understand the simulation process. Some lines detailing the simulation process (sequence of
random drawings, number of simulation, processing of events, etc.), as well as a diagram, are really necessary to the
reader before entering into the analysis of the simulations.

The description has been revised (see previous answers). The simulated CDFs look affected by under-sampling above the
500 yr. return period (i.e. not enough simulations of this range), which interrogates the robustness of the 1000 yr. estimations
which are assessed in the paper.

More simulations (400 000 instead of 160 000) have been used to address this issue (also see previous answers).
Page 9, line 7: large variation in precipitation values Which duration is considered here? Daily? It is the total depth

– in this case 24 or 48 hours. This is now also explained in the text. The comparison to the 100 yr. precipitation depths
estimated thanks to the GP fit evoked in §2.3 would be useful.

A figure (fig 4) that shows the return level plots (which shows 100 -year return period) has been added to the revised version
of the paper.

Page 9, line 14: even though fully saturated conditions are used in the event-based PQRUT model I don’t understand
this: the lp variable (variable initial loss) has been introduced in §2.5 to depart from this fully saturated hypothesis.

Most commonly, fully saturated conditions are assumed for the standard PQRUT model. The reason for using the variable
lp is to allow us to simulate flood events for which the initial conditions are not fully saturated.

Page 9, line 16: A sensitivity analysis was performed for the three test catchments Once again, the detailed protocol of
this analysis deserves to be presented for a better understanding of the results. Some information is given in Table 3 but
would deserve to be detailed in the text. A more logical " progression" of the different setups could be: 2, 3 (statistical
hypothesis on precipitation), then 4 (temporal disaggregation), then 5,6,7 (simple hydrological assumptions) and finally
1 (PQRUT parameters). This would apply for the Table 3, as well as for the writing of §2.7

A similar comment was also raised by reviewer 2. In response to these comments we have included a table that illustrates
the set up in the revised version of the manuscript.

Page 9, lines 24-28: I am not fully convinced by this explanation based on BFI. The sensitivity to initial loss should be
linked to the possible values of initial loss in relation with the high quantiles of precipitation. I would be interested by
looking at those values (maximum initial loss and 10, 100 and 1000 yr. precipitation) for the three catchments.

This is a good suggestion. We have included this analysis in the revised version: A reason for this is that for Øvrevatn, higher
soil moisture conditions are associated with higher rainfall quantiles. For example, for Øvrevatn, precipitation depths with a
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1000-year return period are associated with median soil moisture conditions of 37 mm, while for Krinsvatn, it is 30.8 mm and
for Hørte, it is 16.7 mm.

Page 9, line 31: In addition, Krinsvatn shows high sensitivity to snowmelt This is in contradiction with Page 9, line 10
(for Krinsvatn [. . . ] in most cases snowmelt does not contribute to the extreme floods). Any comment?

Krinsvatn shows a high sensitivity to excluding the snow component in the simulation. The reason is that the snowmelt is
negative (there is snow accumulation). The sentence was revised as:

In addition, Krinsvatn shows a high sensitivity to the snowmelt component (21% higher) and also a step change in the
frequency curve, even though the soil moisture deficit is higher. This can also be explained by the fact that the snowmelt
contribution is negative (there is snow accumulation), as can also be seen in Table 2.

Page 10, line 7: Ovrevatn and Horte showed sensitivity (28.9%) to the choice of the statistical distribution for mod-
elling precipitation A figure showing the precipitation distribution for each catchment (both observed and modelled by
GP, and EXP) would be welcome to illustrate lines 7 to 10.

We have a add return level plot that shows the fit to the observations for both GP and EXP (see answer above)
§3- Comparison with standard methods Page 10, line 27: the standard implementation of the event-based PQRUT

method This is the first mention of such a " standard" implementation. I think this would deserve to be presented at
the very beginning of the paper, which proposes a " stochastic PQRUT" being a significant enhancement from the "
standard PQRUT". The context of this study would thus be better understood.

As of now, the Introduction provides a detailed overview of the methods for estimating extreme floods. Presenting the
standard methods used in Norway in the introduction will narrow the scope, as potentially the international interest of this
manuscript.

Page 10, line 29: the annual maximum series were extracted from the observed daily mean streamflow series Why
not using a GPD with the POT sample of floods extracted for the study of the critical duration?

The fitting of a GEV distribution to the AMAX series represents a standard implementation of the flood estimation guidelines
in Norway (Midttømme et al. 2011). This is the reason why we used the AMAX series instead of the POT events.

Page 10, line 31: to obtain instantaneous peak values, the return values were multiplied by empirical ratios, obtained
from regression equations Here I don’t understand why the POT flood events extracted from observations (shown in
the plots of the Figure 6) has not been used to fit either a GPD, or a GEV after extraction of annual maxima. More
comments about this would be welcome.

Much longer series of data are available at daily timestep than at sub-daily timesteps, as technology making sub-daily series
widely available was only introduced during the 1980s, whereas many daily records are over 100 years in length. Fitting a
GPD distribution to the instantaneous peak flows and using this model to predict the 100 -year return period will involve much
higher uncertainty.

Page 11, line 11: obtained from growth curves based on the 5-year return period value If I understand properly,
the shape of the design hyetograph is based on the growth curves considered at the 5 yr. return period. Are the ratios
between the different duration values at this return period deduced from empirical distribution, or inferred from a
fitted distribution? Later on, this must be scaled to define a 100 or 1000 yr. hyetograph. What precipitation distribution
(duration and model) are these extreme values deduced from?

The Gumbel distribution is used to derive the growth curves, while the ratios between the different durations are derived
from an empirical distribution following a procedure developed by NERC in the UK in the 1970s and later applied in Norway,
based on Norwegian data. This section has been revised: The standard implementation of PQRUT involves using a precipitation
sequence that combines different intensities, obtained from growth curves based on the 5-year return period value fitted using
a Gumbel distribution while the ratios between the different durations are derived from empirical distribution (Førland, 1992).
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Page 11, line 15: The performance of the three models was validated by using two different tests In that case, dealing
with 100 or 1000 yr. flood estimations, it’s more about " comparing different approaches".

Even though the uncertainty is high for these return periods, a check that the data is within the confidence interval can be
used as a validation (e.g Lamb et al 2016).

Lamb, R., Faulkner, D., Wass, P. and Cameron, D.: Have applications of continuous rainfall-runoff simulation realized the
vision for process-based flood frequency analysis?, Hydrol. Process., 30(14), 2463–2481, doi:10.1002/hyp.10882, 2016.

Page 11, line 20: As discussed, due to the difficulty in assigning initial conditions for the event-based PQRUT model
I don’t understand this sentence, and to which discussion it refers.

This refers to the fact that fully saturated conditions are used in the standard implementation of the PQRUT model. The
following sentence was added: The standard implementation of the event-based PQRUT model was not evaluated based on
QS as initial conditions could not be assigned for low return periods. As this model is usually used to calculate high quantiles
(Q100 or higher), fully saturated conditions are assumed for its implementation.

Page 11, line 22: the regional equations were used Which regional equations? For PQRUT parameters?

Yes, we used the regional equations for the PQRUT parameters. This is now correct in the revision.
Page 11, line 25: equation of QS + observed probabilities (Qobsi) are calculated using Gringorten positions for the

POT series The POT series are used here, contrary to the daily (transposed to peak) annual maximum values that have
been fitted in the statistical approach. Another option (already mentioned in my remark for page 10, line 29) could be
to fit the statistical method on the POT sample, which would have allowed to keep it as a " benchmark" method, given
more sense to the comparison presented (or conversely using the " peak-from-daily" observations for the QS calcula-
tion).

This is a good point; the daily flows were used for the QS calculation. We have revised the description of the method: In
Eq. 5 the observed probabilities (Qobsi) are calculated using Gringorten positions for the peak AMAX series that were derived
from the daily values. The modelled probabilities that correspond to the observed events are calculated by using the statistical
flood frequency analysis and the Stochastic PQRUT model, as described previously.

Page 11, line 30: the results vary between catchments as shown in fig 8 I don’t find this figure very useful, the reader
is unable to interpret the coloured dots. An alternative, aside the boxplots, could be some scatter plots (statistical Q100
and Q1000 v/s standard and stochastic PQRUT, statistical QS v/s standard and stochastic PQRUT, etc.).

We have included a figure that shows the QS for each catchment.
Page 11, line 32: we can conclude that the performance of the standard PQRUT model is poorer than the performance

of the statistical flood frequency analysis and the stochastic PQRUT model The results which ground this conclusion
are not explicitly presented. The only clue given to the reader is the Figure 8 which only presents the distribution of
QS scores for FFA and stochastic PQRUT. The results, in terms of QS score as well as confidence interval, should be
presented in a table and in an adequate figure.

In addition to the figure that shows the QS, we have included a figure that shows the number of models that are within the
confidence interval for Q100 for each catchment.

Page 12, line 3: The violin plots (fig. 9) See remarks on Figure 9 below.

Figure 9 shows both violin plots and boxplots (overlayed in gray). In order to increase the readability of the figure, only the
boxplots are now plotted.

Page 12, line 7: Reasons for this may be that higher precipitation intensity or snowmelt is used To assess this, the
values of the reference hyetographs used in standard PQRUT deserve to be presented and compared to the simulated
precipitation values of stochastic PQRUT (like the values of the Table 2 for Q100).
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The results for Q1000 obtained from the stochastic PQRUT are now lower (after increasing the number of simulations).
Page 12, line 8: the absolute differences between the two methods are larger in catchments with lower temperature

(fig. 9) I wonder how this can be deduced of illustrated by Figure 9, it is more likely somehow in Figure 10.

Apologies for this error, the figure numbers have now been updated.
Page 12, line 17: which might be due to the uncertainty in estimating the parameters for the GEV distribution I don’t

understand this interpretation which appears rather quick and subjective to me. We agree, this section has been deleted
in the revised manuscript.

Page 12, lines 18-21: This using of the study of Rogger et al. (2012) is off topic for me here, as it is based on Gumbel,
whereas the FFA is done here with GEV, which is more flexible.

This is true, this is the reason that in the paper we specifically discuss the fact that the Gumbel distribution was used in the
study of Rogger et al. (2012). This section has been deleted.

§4- Conclusions Page 13, line 10-15: Another modelling option could be to run the event-based simulation with the
DDD model, already used for the initial condition. In that case, an hourly version of DDD should also be calibrated (with
local observations or regionally), in compatibility with the daily version used for initial conditions. I am not fully aware
of the potential difficulties of this, but it would be a more homogeneous approach in terms of hydrological modelling.
Any comment about this?

Yes, this is a possibility. However, in large catchments it is not as important to use a subdaily timestep, as the peak and daily
flows are similar.

Page 13, line 28: easily incorporate the uncertainty associated with this choice This is a very good remark: the stochas-
tic process here adequately models a variable which, when represented in a deterministic way (i.e. fixed initial condi-
tions), appears as highly uncertain.

Yes, this has also been discussed in several other studies.
Page 13, line 31: based on an assessment of the uncertainty characterizing the individual methods This is an inter-

esting suggestion, but it has to be added that a proper expression of uncertainty for a rather sophisticated method like
stochastic PQRUT is far from trivial, and is still to be investigated. . .

This sentence has been deleted.
Tables Table 1 Units are missing, as well as legend of the columns in the caption. Table 2: Units are missing, precip-

itations could be rounded to the next mm. For Krinsvatn, the probability to find the Q100 events in one season or the
other could be provided.

The two tables have now been revised.
Figures Figure 3: Not very informative, re-scaling storm hyetograph is not something difficult to understand. A set

of different " typical" hyetographs could instead be presented for the three catchments, ideally illustrating the poten-
tial diversity of storm dynamic. A new figure was added. Figure 4: " for Krinsvatn catchment" could be added in the
caption, as well as the number of observed and simulated events.

The figure has been updated.
Figure 6: The remarkable return periods (10, 100 and 1000 yr.) should be distinguished in the plots (by a bolder

vertical line for example).

The figure has been updated.
Figure 7: There are too many distributions in the plots, their interpretation is not easy. Two plots could be edited for

each catchment, having for example only the " calibrated" simulation in common. An uncertainty band around the "
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calibrated" simulation would be useful to assess the intrinsic uncertainty of the simulation process.

The figure has been updated.
Figure 8: See comment of page 11, line 32.

This will be added.
Figure 9: I am not convinced by the usefulness of the violin plots here considering the limited number of values per

scores (20 catchments). Box plots with outliers would have been sufficient and more readable. Captions of the methods
sometimes overlap.

Reply to reviewer 2

General Comments: As I understood, the main purpose of the work is to propose a methodology to overcome the
limitations of more commonly applied event based modelling for flood frequency estimations by a stochastic modelling
of preconditions, including SWE, and meteorological input. The individual modelling of the different aspects are de-
scribed in the manuscript, however, it is hard to follow how the different parts are connected. A preceding sub-section
with a less detailed step by step explanation of methodology, maybe including a schematic illustration (inputs/ models/
methods / output), could help to better explain the methodology.

A similar comment has been made by reviewer 1. We have added a step by step description and also included a diagram to
illustrate the link between the different steps.

For the validation of the disaggregation procedure the disaggregated data were compared against hourly station
data. Is this correct? I would be interesting to see how well the disaggregation procedure was performing (For example
showing a obs-sim, QQ-plot). It is stated that it works better than equal divisions which is not surprising. What is the
advantage of the further equal division to 1h if it is stated that 3-houers are already enough? Further, it is not obvious
why the gridded seNorge.no Data are matched to the HIRLAM data if they are in the needed temporal resolution al-
ready?

The HIRLAM data is a hindcast dataset with a spatial resolution of around 10 km2 and a temporal resolution of 3 hours.
The gridded seNorge data is obtained by triangulation of the observed rainfall dataseries; it has a spatial resolution of 1km2,
and a temporal resolution of 24-hours. As the HIRLAM data has a higher temporal resolution than the seNorge data, the
HIRLAM data was used to disaggregate the seNorge data to a 3-hour timestep. The performance, including the validation of
the disaggregation procedure, is described in Vormoor and Skaugen (2013).

For the work presented here, the precipitation data were further disaggregated to a 1-hour time step by dividing into three
equal parts. This was simply done for convenience, as the PQRUT model has previously been calibrated relative to 1-hour
streamflow data and similar climate input data (i.e. 1-hour data derived from 3-hour data by dividing into three equal parts). A
similar comment was raised by reviewer 1, and this section will be revised to include the above clarifications.

We have revised the paragraph as:
The HIRLAM atmospheric model for northern Europe has a 0.1 degree resolution (around 10 km2) and we used a temporal

distribution of three hours. The HIRLAM data set was first downscaled to match the spatial resolution of the seNorge data
and the precipitation of the HIRLAM data was rescaled to match the 24-hour seNorge data (Vormoor and Skaugen, 2013).
Then, these rescaled values were used to disaggregate the seNorge data to a 3-hour time resolution. The method was validated
against 3-hour observations,and the correlation of the method was found to be higher than that obtained by simply dividing the
seNorge data into eight equal 3 -hourly values (Vormoor and Skaugen, 2013). These datasets were further disaggregated to a
1-hour time step by dividing into three equal parts to match the time resolution of the streamflow data.

A 1000 years event is extrapolated from daily observation series (length not further specified). Furthermore the re-
sults are then multiplied by empirical factors, to match sub-daily peak flows. I am not aware of the engineering practice
in Norway, however, I am not sure about the meaning of the results by this extreme extrapolation and at least this
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should be critically discussed.

The fitting of an extreme value distribution to estimate the return level for periods longer than the length of a time series
is a standard procedure, both in hydrological investigations and in engineering practise. As suggested by the reviewer, the
uncertainty of the estimates does increase significantly for longer return periods, relative to the length of record. The length of
the daily streamflow series considered here, however, justifies the use of an ‘at-site’ (cf. a regional) flood frequency analysis as
the minimum length is 31 years, while the median is 65 years of data. The following sentences will be added to the text:

In addition, the length of the daily streamflow series justifies the use of at-site flood frequency analysis (Kobierska et al.,
2017); the minimum length is 25 years, while the median is 65 years of data. However, it is expected that the uncertainty will
be high when the fitted GEV distribution is extrapolated to a 1000-year return period. The 1000-year return period is used
here, however, as it is required for dam safety analyses in Norway (e.g. Midttømme, et al., 2011; Table 1). More robust, but
potentially less reliable, estimates could be obtained using a 2-parameter Gumbel, rather than a 3-parameter GEV distribution
(Kobierska et al., 2017).

The sensitivity analysis is interesting, however, also confusing including Figure 7 and Table 3. It is not obvious on
what basis the percentage difference is calculated. This is also not clear in the follow up comparison of the methods.
What exactly is the calibrated model? Also the section misses an explanation of the shaded area which is prominently
displayed in Figure 7. Furthermore, the different precipitations settings tested are not well explained. A table, summa-
rizing the different tested aspects, would help to guide the reader.

Thank you for these comments and suggestions. The shaded area represents the simulations based on the 5% and 95%
confidence intervals for the regression equations for PQRUT. We have included a table to describe the set up and we have also
revised the paragraph that describes the sensitivity analysis as follows:

A sensitivity analysis was performed for the three test catchments, Hørte, Øvrevatn and Krinsvatn, in order to determine the
relative importance of the initial conditions, precipitation, the parameters of PQRUT, the effect of the random seed and length
of simulation on the flood frequency curve. To test the sensitivity of the model, we have used several different model runs and
calculated the percentage difference of each of these model runs relative to the standard model setup , as shown in Fig.8. More
detailed information on the set up is given in Table 3. As these catchments are located in different regions and exhibit different
climatic and geomorphic characteristics, we hypothesize that the flood frequency curve will be sensitive to different parameters
and hydrological states, as well as local climate and catchment characteristics. The results are summarised in Table 4.

The Figures and especially the captions should be improved, as they are often not self-explanatory. This includes also
missing units, labels and abbreviations. Maybe consider a professional language proof reading.

In the revised version of the article, we have tried to improve the language usage.
Specific Comments: The abbreviation PQRUT, used from beginning (abstract), is not introduced on page 4 or rather

page 8. Please declare the meaning of PQRUT first time mentioned.

The abbreviation PQRUT comes from P-precipitation, Q- discharge and RUT -routing, this has been updated.
The characterizations of catchments and chosen abbreviations are introduced on P4 and repeated later (P5, l5) with-

out brackets (e.g. “sparse vegetation over tree line (B)” and “sparse vegetation over tree line B”). Either use brackets
throughout the manuscript or only use the abbreviation. Additionally by choosing more selfexplanatory abbreviations
or using full words (eg. forest; marsh), would be easier to understand, especially in Table 1.

The abbreviation are now explained in the table caption.
P.5 l.15: The last sentence does not contain important informations and could be omit

We prefer to keep this sentence as it gives useful information on how the data is derived and increases the reproducibility of
the study.
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P.6 l.1: The addition “,which can be used for modelling in ungagged basins.” could be omitted, as it seems not con-
nected to the procedure.

This sentence has been deleted.
P.6 l.2: A citation should be added to the DDD model or the corresponding R-package.

The reference is provided earlier in the manuscript, p4.
P.6 l.11: In my opinion, the meaning of the “critical duration” rather reflects the link between the duration and in-

tensity of precipitation “events” of a certain probability, than to ensure the modelling of the complete flood hydrograph.

This is a good point, the sentence will be revised to:
When simulating flood response with an event-based model, it is important to specify the so-called critical duration (Meynink,

W. J., Cordery, I. 1976) to ensure that the flood peak is correctly modelled. The critical duration is an important factor which
effectively links the duration and the intensity of precipitation events of a given probability.

P.6 l.32: “individual risk seasons could have been defined”. One wonders why it was not done? If not so important
for the result, please consider to omit this half sentence.

This sentence has been deleted. We used this season definition to match the seasonal definition used by the Norwegian
Meteorological Institute.

P.8 l.12-17: Please check grammar and style of the section.

This section has been revised to also address the issues raised by reviewer 1 as follows.
The PQRUT model was calibrated for the 45 highest flood events by using the DDS (Dynamically Dimensioned Search)

optimization routine (Tolson and Shoemaker, 2007) and the Kling Gupta efficiency (KGE) criterion (Gupta et al., 2009) as
the objective function. An additional variable, the soil deficit, lp, was introduced to account for initial losses to the soil zone.
The reason for this is that, even though fully saturated conditions are assumed when the model is used to estimate PMF or
other extreme floods with low probabilities, the model needs to account for initial losses when actual (more frequent) events
are simulated. This procedure is described in more detail in Filipova et al. (2016). In addition, regional values can be used in
ungauged or poorly catchments (Andersen et al., 1983; Filipova et al., 2016).

P.8 l.28: Was there a specific reason for using the “Gringorten plotting” position?

The Gringorten plotting positions provide unbiased quantile estimates for the Gumbel distribution. In this case, we don’t
know the distribution. However, the difference between the plotting positions is usually higher for the low and high quantiles.
As reviewer 1 suggests we have increased the number of simulations. This means that differences derived from plotting position
formulas will be relatively small when estimating the 1000 -year return period.

P.12 l.3: A more detailed explanation what exactly is analyzed here is missing.
The sentence will be revised to: A comparison of the stochastic PQRUT with the standard methods for flood estimation shows
that there is a large difference between the results of the three methods for both Q100 and Q1000 (Fig. 12 and 13).

P.12 l.25: Maybe the catchment steepness should be introduced in the section “study area”.
We have now added the catchment steepness to the “study area” section.
P.13 l.25: Why is it peak to volume? I thought it is daily mean to daily max discharge?

This refers to converting the daily volume (obtained from the daily mean) to the peak value.
Table 1: Missing units. Furthermore, the variables could be sorted and clustered more logically (e.g. temperature and

precipitation; Q and AMAX).

Thanks, the units have now been included.
Table 3: Why are 100 values sampled? Does T mean the threshold Parameter Trt ?
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For the sensitivity analysis we used 50 samples, as larger number will increase the computational time. We assume that this
number is sufficient to calculate the intervals. Trt refers to the parameter of the PQRUT model, thanks for spotting this error.

Figure 2: Labels and units are missing

This has been corrected for the revised version of the manuscript.
Figure 3: Labels and units are missing

This has been corrected for the revised version of the manuscript.
Figure 7: is confusing because of the large number of different colored lines. Maybe two plots can help to distinguish

between the different aspects as for example the precipitation input and other aspects. The legend is confusing as well.
GDP was fitted to what? Y-Axes should start at 0, x-axes missing a label and to be consistent with the rest of the work
it should not exceed 1000.

This issue was also raised by reviewer 1 and the figure will be improved and revised based on the newer, longer simulations.
Figure 8: It is impossible to distinguish between 20 colors. Do the colors have any meaning? If they should be recog-

nizable, numbering would be a better option. The numbers could then also be used in Figure 10, so the link between the
performance of the model and the results are given.

The colors just represent different catchments but also as reviewer 1 suggests. We have replaced this figure with a boxplot
that shows the performance of the methods at each catchment.

Figure 9: What exactly is shown in the plots. Please add a more detailed explanation.

The figure has now been replaced. Instead, now we are using boxplots to show the differences in the performance of the
three methods.

Figure 10: The scale “percentage difference” should be unambiguous. The base of the “difference” should be clarified.

We have revised the description of the figure as:
Results of the comparison between stochastic PQRUT, PQRUT and GEV for the values of the 1000-year return level. The

absolute differences (calculated by dividing the estimate by the average of all models) are correlated with catchment properties.
Positive correlations are given by red and negative by blue.
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Abstract. The estimation of extreme floods is associated with high uncertainty, in part due to the limited length of streamflow

records. Traditionally,
::::::::
statistical flood frequency analysis or

:::
and

::
an

:
event-based model

::::::::
(PQRUT)

:
using a single design storm

have been applied . We propose here an alternative, stochastic
::
in

:::::::
Norway.

:::
We

::::
here

:::::::
propose

::
a

::::::::
stochastic

:::::::
PQRUT

::::::
model,

::
as

:::
an

::::::::
extension

::
of

:::
the

:::::::
standard

::::::::::
application

::
of

:::
the event-based modelling approach. The stochastic PQRUT method involves Monte

Carlo procedure to simulate
::::::
PQRUT

::::::
model,

:::
by

:::::::::
considering

:
different combinations of initial conditions, rainfall and snowmelt,5

from which a distribution of flood peaks can be constructed. The stochastic PQRUT was applied for 20 small and medium-

sized catchments in Norway and the results show good fit to the observations
:::
give

:::::
good

:::
fits

::
to

::::::::
observed

:::::::::::::::::
peak-over-threshold

:::::
series. A sensitivity analysis of the method indicates that the soil saturation level is less important than the rainfall input and

the parameters of the PQRUT model for flood peaks with return periods higher than 100 years, and that excluding the snow

routine can change the seasonality of the flood peaks. Estimates for the 100- and 1000-year return level based on the stochastic10

PQRUT model are compared with results for a) statistical frequency analysis, and b) a standard implementation of the event-

based PQRUT method. The differences between the estimates can be up to 200% for some catchments, which highlights the

uncertainty in these methods
:::::::
stochastic

::::::::
PQRUT

:::
and

:::
the

:::::::::
statistical

::::
flood

:::::::::
frequency

:::::::
analysis

:::
are

::::::
within

:::::
50%

::
in

:::::
most

::::::
places.

::::::::
However,

:::
the

:::::::::
differences

::::::::
between

:::
the

::::::::
stochastic

::::::::
PQRUT

:::
and

:::
the

::::::::
standard

:::::::::::::
implementation

::
of

::::
the

:::::::
PQRUT

:::::
model

::::
are

:::::
much

::::::
higher,

::::::::
especially

::
in

::::::::::
catchments

::::
with

:
a
::::::::
snowmelt

:::::
flood

::::::
regime.15

1 Introduction

The estimation of low-probability floods is required for the design of high-risk structures such as dams, bridges, levees, etc. For

example, floods with a 500-year
:::::::
100-year return period are sometimes used to evaluate the risk of scour to bridges (Ries, 2007)

,
:::::::
required

:::
for

:::
the

:::::
design

:::
of

:::::
levees

:
and the design and safety evaluation of high-risk dams requires that

:::
the

:::::::::
estimation

::
of

:::::
flood

::::::::::
hydrographs

:::
for

:::
the

::::::::
1000-year

:::::
return

::::::
period

:::
and, in some cases, floods with magnitudes of up to the Probable Maximum Flood20

(PMF)are estimated. An overview of design flood standards for reservoir engineering in different countries is provided in Ren

et al. (2017). Flood mapping also usually requires input hydrographs for flood events with return periods of up to 1000 years.

Methods for estimating these floods can be generally classified into three groups: 1) statistical flood frequency analysis; 2) the

single design event simulation approach; and 3) derived flood frequency simulation methods.
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At gauged sites, statistical flood frequency analysis involves fitting a distribution function to the annual maxima or peak

over threshold flood events and calculating the quantile of interest. When longer return periods are
:::::
return

:::::::
periods

::::
that

:::
are

:::::
longer

::::
than

:::
the

::::::::
observed

:::::
record

::::::
length

:::
are needed, the process requires extrapolation of the fitted statistical distribution, which

:
.
::::
This introduces a high degree of uncertainty due to the number of limited observations relative to the estimated quantile (e.g.

Katz et al., 2002). Significant progress has been made in methods for reducing this uncertainty by incorporating historic or5

paleo-floods
::::::::::
paleo-flood data (Parkes and Demeritt, 2016), where available. Another way to “extend” the hydrological record

in order to reduce the uncertainty is to combine data series from several different gauges by identifying pooling groups or

hydrologically similar regions, where this is possible. It has been found, however, that the identification of such hydrological

regions can be difficult in practice (Nyeko-Ogiramoi et al., 2012). The application of statistical flood frequency analysis in

ungauged basins is also problematic. As the physical processes in the catchments are
::::::
usually

:
not directly considered in the10

analysis, estimating the flood quantiles in ungauged basins using regression or geostatistical methods have been shown to

produce average errors
:::
can

:::::::
produce

:::::::
average

::::::::
RMSNE

::::
(root

::::::
mean

::::::
square

:::::::::
normalised

:::::
error)

::::::
values

:::
of between 27 and 70%

(Salinas et al., 2013)
:
, or even higher

::
for

::::
the

:::::::
100-year

::::::
return

::::::
period. In addition, the complete hydrograph is often needed

in practice. Although multivariate analysis of flood events (e.g. flood peaks, volumes and durations) can be used to generate

hydrographs for specific return periods, the methods are not easily applied (Gräler et al., 2013).15

The second method for extreme flood estimation is the design event approach in which single realizations of initial condi-

tions and precipitation are used as input in an event-based hydrological model. Another feature of the approach is that when

event-based
:::::
event-

:::::
based

:
models are used, a critical duration defined as the

:::::::
duration

::
of

:::
the

:
storm that results in the highest

peak flow , needs to be set. Advantages
:::::::
included.

::::
Two

::::::::::
advantages of this method over statistical flood frequency analysis is

::
are

:
that rainfall records are often widely available (e.g in the form of gridded datasets) and that the event hydrograph is gener-20

ated in addition to the flood peak magnitude
::::::::
magnitude

::
of

:::
the

:::::
flood

::::
peak. This approach has been traditionally used due to its

simplicity (e.g. Kjeldsen, 2007; Wilson et al., 2011). However, its application often involves the assumption that the simulated

flood event has the same return period as the rainfall used as input in the hydrological model. This assumption is not realistic

and, depending on the initial conditions, the return period of the rainfall and the corresponding runoff can differ by orders of

magnitude (e.g. Salazar et al., 2017). A reason for this is that flood events are often caused by a combination of a high level25

of saturation, rainfall and snowmelt, and a
::::::
factors,

::::
such

::
as

::
a
::::
high

::::::
degree

::
of

:::
soil

:::::::::
saturation

::
in

:::
the

:::::::::
catchment,

:::::
heavy

::::::
rainfall

::::
and

:::::::
seasonal

::::::::
snowmelt.

::
A
:
joint probability distribution

:
,
::::::::
therefore,

:
needs to be considered if one is to fully describe the relationship

between the return period of rainfall and of runoff.

The third possible approach is the derived flood frequency method in which the distribution function of peak flows is

derived from the distribution of other random variables such as rainfall depth and duration , and different soil moisture states.30

Although a statistical distribution or
::
of

::::
flow

::::::
values

::
or

::::
their

:
plotting positions are then used to calculate the required quantiles,

as in conventional flood frequency analysis, a hydrological model can be used to derive discharge values and thus extend and

complement
:::::::
simulate

:::
an

::::::::
unlimited

:::::::
number

::
of

::::::::
discharge

::::::
values

:::::
under

::::::::
differing

:::::::::
conditions,

::::
thus

::::::::
extending

::::
and

:::::::::
enhancing the

observed discharge record. The
:::::
Under

::::
very

:::::::
stringent

:::::::::::
assumptions,

:::
the derived distribution can

:::::::
actually be solved analytically by

using a simple rainfall-runoff model (e.g. a unit hydrograph), assuming independence between rainfall intensity and duration,35
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and considering only a few initial soil moisture states. However, because of these simplifying assumptions, the method can

produce poor results (Loukas, 2002). For this reason, methods based on simulation techniques are most often used, and these

range from continuous simulations to event-based simulations with Monte Carlo methods.

In the continuous simulation approach, a stochastic weather generator is used to simulate long synthetic series of rainfall and

temperature, which serve as input in a continuous rainfall-runoff model. The resulting long series of simulated discharge are
::
is5

then used to estimate the required return periods, usually using plotting positions (e.g. Calver and Lamb, 1995; Camici et al.,

2011; Haberlandt and Radtke, 2014). A disadvantage of these methods is that they are computationally inefficient in that long

periods between extreme events are also simulated
:::::::::
demanding,

:::
as

::::
long

:::::::::
continuous

:::::::
periods

::::
need

::
to

:::
be

::::::::
simulated

::
to
::::::::

estimate

::
the

::::::::
extreme

::::::::
quantiles. Several newer methods, therefore, use a continuous weather generator coupled with an event-based

hydrological model. For example, the hybrid-CE (causative event) method uses a continuous rainfall –runoff
::::::::::::
rainfall-runoff10

simulation to determine the inputs to an event-based model (Li et al., 2014). Another disadvantage,
::::::::
however,

:
of continuous

simulation models is that stochastic weather generators require the estimation of a large number of parameters (e.g. Onof et al.,

2000; Beven, Keith & Hall, 2014). In addition, models such as the modified Barlett-Lewis
::::::
Barlett-

:::::
Lewis

:
rectangular pulse

model have limited capacity to simulate extreme rainfall depths, which can lead to an underestimation of runoff (Kim et al.,

2017). In order to avoid the limitations of the continuous weather generators, the semi-continuous method SCHADEX (Paquet15

et al., 2013) uses a probabilistic model for centered
::::::
centred rainfall events (MEWP; Garavaglia et al. (2010)), identified as over

threshold values that are larger than the adjacent rainfall values. Using this approach, millions of
::::::::
synthetic rainfall events can be

sampled
::::::::
generated,

::::::::
assigned

:
a
:::::::::
probability

::::::::
estimated

:
from the MEWP model

:
, and inserted directly into the historic precipitation

series to replace observed rainfall events. In this manner, the SCHADEX method is similar to the hybrid-CE methods because

a continuous hydrological model
::::::::
long-term

:::::::::::
hydrological

:::::::::
simulation is used to characterize observed hydrological conditions20

, and synthetic events are only inserted into the precipitation record for periods selected from the observed record. Despite

the many advantages of the hybrid-CE and SCHADEX methods over continuous simulation methods, they still
::::::::::
nevertheless

require sufficient data for the calibration of the hydrological model, modelling of the extreme precipitation distribution and for

ensuring that an exhaustive range of initial hydrological conditions are sampled during the simulations.

Another method for derived flood frequency analysis is the joint probability approach (e.g. Muzik, 1993; Loukas, 2002;25

Svensson et al., 2013; Rahman et al., 2002). In this approach, Monte Carlo simulation is used to generate a large set of

initial conditions and meteorological variables, which serve as input to an event-based hydrological model. This approach

requires that the important variables are first identified and any correlations between the variables are quantified. Most often,

the random variables that are considered are related to properties of the rainfall (intensity, duration, frequency) and to the soil

moisture deficit. Some of these methods, such as the Stochastic Event Flood Model (SEFM, (Schaefer and Barker, 2002)),30

similarly to SCHADEX, require the use of a simulation based on a historical period to generate data series of state variables

from which the random variables are sampled. Although the contribution of snowmelt can be important in some areas, it is

rarely incorporated as it requires the generation of a temperature sequence for the event
:::
that

::
is
:::::::::
consistent

::::
with

:::
the

:::::::
rainfall

:::::::
sequence

:::::
used and a snow water equivalent as an initial condition. The assumption of a fixed rate of snowmelt

:::::
which

::
is

:::::
based

::
on

::::::
typical

:::::::::::
temperatures, as is often used in

:::::::
Norway

:::
for

:
the single event-based design method, can introduce a bias in the35
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estimatesand a joint probability model .
::::
The

::::
joint

:::::::::
probability

:::
of

::::
both

::::::
rainfall

::::
and

::::::::
snowmelt

:
needs to be considered to obtain

a probability neutral value (Nathan and Bowles, 1997). One of the few methods that incorporates snowmelt is the SEFM

which has been applied in several USGS
:::::
USBR

::::
(US

:::::::
Bureau

::
of

::::::::::::
Reclamation) studies and uses the semi-distributed HEC-1

hydrological model (Schaefer and Barker, 2002). Considering that, most often, simple event-based hydrological models are

used (e.g. unit hydrograph), the joint probability approach is particularly advantageous in ungauged catchments or data-poor5

catchments, where the use of parsimonious models is preferred.

::::
Even

::::::
though

:::::::
methods

:::
for

::::::
derived

:::::
flood

::::::::
frequency

:::::::
analysis

:::
are

::::::::
becoming

:::::
more

::::::::
commonly

:::::
used

:
in
:::::::
practice

::
as

::::
they

:::
can

:::::::
provide

:::::
better

::::::::
estimates

::
of

:::
the

::::
high

:::::
flood

::::::::
quantiles

::::
(e.g.

:::::::::
Australian

:::::::
Rainfall

:::
and

:::::::
Runoff

::::
2016

:::
(?)

:
,
::::::::::
SCHADEX

::::::::
method),

:::
this

:::::::
method

:::
has

:::
not

:::
yet

::::
been

:::::::::
established

::
in
::::::::
Norway. The purpose of this study is

:::::
hence to develop a derived flood frequency method using

a stochastic event-based approach to estimate design floods, including those with a significant contribution from snowmelt.10

In this way, the results for any return period can be derived, taking into account the probability of a range of possible initial

conditions.
::
A

::::::::
sensitivity

:::::::
analysis

::
is

::::
then

:::::::::
performed

::
to

:::::::::
understand

:::
the

:::::::::
uncertainty

::
in

:::
the

:::::::::
stochastic

::::::
PQRUT

::::::
model

:::
and

::::::::
establish

::
the

:::::::
relative

::::
roles

:::
of

::::::
several

::::::
factors,

::::::::
including

:::::::
rainfall

::::::
model,

:::::::::
snowmelt,

:::::
initial

:::
soil

::::::::
moisture

:::::::::
parameters

:::
of

:::
the

:::::
model

::::
and

:::
the

:::::
length

::
of

:::
the

::::::::::
simulation. The results are then compared with results from an event-based modelling method based on a single

design precipitation sequence and assumed initial conditions and with statistical flood frequency analysis of the observed15

annual maximum series for a set of catchments in Norway . The methods give different results in many of the catchments due

to the large uncertainty in both the event-based model and the statistical flood frequency analysis. To better understand the

differences between these methods, a sensitivity analysis of the stochastic PQRUT is performed by considering the effect of

the initial conditions, model parameters and rainfall intensity on the flood frequency curve.
:::
for

:::
the

::::
100-

:::
and

:::::
1000

::::
-year

::::::
return

::::::
period.20

2 Stochastic event-based flood model

The stochastic event-based model proposed here involves the generation of several hydrometeorological variables: precipita-

tion depth and sequence, temperature
:::
the

::::::::::
temperature

::::::::
sequence during the precipitation event, antecedent discharge,

:::
the

:::::
initial

::::::::
discharge,

::::
and

:::
the

:::::::::
antecedent

:
soil moisture conditions and antecedent snow water equivalent. A simple 3-parameter flood

model PQRUT (Andersen et al., 1983) is used to simulate the streamflow hydrograph for a set of randomly generated
:::::::
selected25

conditions based on the hydrometeorological variables
::::
these

:::::::::::::::::
hydrometeorological

::::::::
variables.

:::::
After

:::
this

:::::::::
procedure

::
is

:::::::::
completed

:::::::
100,000

::::
times

:::
for

::::
each

:::
of

::
the

::::
four

:::::::
seasons,

:::
the

::::::
results

:::
are

::::::::
combined

:
and a flood frequency curve is constructed from all of the

simulations using
:::
their

:
plotting positions. As the method requires initial values for soil moisture and snow water equivalent,

i.e variables which
:::::::
generally

:
cannot be sampled directly from climatological data and which depend on the sequence of pre-

cipitation and temperature over longer periods, the Distance Distribution Dynamics (DDD) hydrological model (Skaugen and30

Onof, 2014) was calibrated and run for a historical period to produce a distribution of possible values for testing the approach.

The
::::::
method

::::
(also

::::::
shown

::
in

:::
Fig.

:::
1)

:::
can

::
be

:::::::
outlined

::
in

::::::::
summary

:::::
form

::
as

:::::::
follows:
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1.
::::::
Extract

::::
flood

::::::
events

:::
for

:
a
:::::
given

:::::::::
catchment

:::
and

:::::::
identify

:::
the

::::::
critical

:::::
storm

:::::::
duration

:

:::
For

::::
each

::::::
season:

:

2.
::::::::
Aggregate

:::
the

:::::::::::
precipitation

::::
data

::
to

:::::
match

:::
the

::::::
critical

:::::::
duration

:::
for

:::
the

:::::::::
catchment

3.
::::::
Extract

::::
POT

:::::::::::
precipitation

:::::
events

::::
and

::
fit

:
a
:::
GP

::::::::::
distribution

4.
::
Fit

::::::::::
probability

::::::::::
distributions

:::
for

:::
the

:::::
initial

:::::::::
discharge,

:::
soil

:::::::
moisture

::::::
deficit

:::
and

:::::
SWE

::::::
values

::
for

:::
the

::::::
season

:
5

5.
:::::::
Generate

:::::::::::
precipitation

:::::
depth

::::
from

:::
the

:::::
fitted

:::
GP

:::::::::
distribution

:

6.
:::::::::::
Disaggregate

::
the

:::::::::::
precipitation

:::::
depth

::
to

:
a
::
1

::::
hour

::::
time

::::
step

::
by

::::::::
matching

:::
the

::::
dates

:::
of

::
the

::::::::
identified

:::::
POT

::::
flood

::::::
events

:::::
(from

:::
step

::
3)

::
to
:::::::::
dataseries

::
of

:::::::::::
precipitation

::::
with

:::::
hourly

::::::::
timestep

7.
::::::
Sample

:
a
:::::::::::
temperature

:::::::
sequence

:::
by

::::::::
matching

:::
the

::::
dates

:::
of

:::
the

::::::::
identified

::::
POT

:::::
flood

:::::
events

:::::
(from

::::
step

::
1)

::
to

:::
the

:::::::::
dataseries

::
of

::::::::::
temperature

::::
with

:::::
hourly

::::::::
timestep10

8.
::::::
Sample

:::::
initial

:::::::::
conditions

::
for

:::::
snow

:::::
water

::::::::
equivalent

:
(
::::
SWE

::
),

:::
soil

:::::::
moisture

::::::
deficit

:::
and

:::::
initial

::::::::
discharge

::::
from

::::
their

:::::::::::
distributions

::::
(step

:::
5),

:::::::::
accounting

:::
for

::::::::::
co-variation

:::::
using

:
a
::::::::::
multivariate

::::::
normal

::::::::::
distribution

9.
:::::::
Simulate

:::::::::
streamflow

::::::
values

:::::
using

:::
the

::::::::
calibrated

:::::::
PQRUT

::::::
model

::
for

:::
the

:::::::
sample

::::
event

:

10.
::::::
Repeat

::::
steps

::::
6.-9.

::::
100

:::
000

:::::
times

:

11.
:::::::
Estimate

:::
the

::::::
annual

::::::::::
exceedance

:::::::::
probability

::::
from

:::
the

::::
total

:::
of

:::
400

::::
000

::::
(100

:::
000

:::
for

:::::
each

::::::
season)

:::::::
samples

:::::
using

:::::::
plotting15

:::::::
positions

:

:::
The

:
study area and data requirements

::
for

:::
the

::::::::
proposed

:::::::
method

:
are described in section 2.1, while section 2.2 describes

the method for determining the critical duration, and section 2.3 and 2.4 describe the generation of antecedent conditions

and meteorological data series. The hydrological model is presented in section 2.5and ,
:
the method for constructing the flood

frequency curve is outlined in section 2.6
:::
and

:::
the

:::::::::
sensitivity

:::::::
analysis

::
is

::::::::
presented

::
in

::::::
section

:::
2.7.20

2.1 Study Area and Data requirements

2.1.1 Catchment selection and available streamflow data

The study area consists of a set
:
in

::::::::
Norway,

:::::::::
consisting

::
of

:
a
:::::::

dataset of 20 catchments located throughout Norway (fig 2)
:::
the

:::::
whole

:::::::
country,

::
is

::::::
shown

::
in

:::
Fig

::
2. All catchments have at least 10 years of hourly discharge data, and in all cases the length

of the daily flow record is considerably longer than 10 years. All selected catchments are members of the Norwegian Bench25

Mark dataset (Fleig, 2013), which ensures that the data series are unaffected by significant streamflow regulation and have

discharge data of sufficiently high quality suitable for the analyses of flood statistics. The catchment size was restricted to

small and medium-sized catchments (maximum area is 854 km2), as the structure of the 3-parameter PQRUT model does not
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take into account all of the storage processes within the catchment which possibly
::
the

::::::::::
longer-term

:::::::
storage

::::::::
processes

::::::
which

:::
can contribute to delaying runoff

::
the

:::::
runoff

::::::::
response during storm events. Previous applications of PQRUT in Norway indicate

that this shortcoming is most problematic for larger catchments. Discharge datasets with both daily and hourly time steps were

obtained from the national archive of streamflow data held by NVE (https://www.nve.no/).
:::
The

:::::::::
catchments

:::::
were

:::::::::
delineated

:::
and

::::
their

:::::::::::::::
geomorphological

:::::::::
properties

::::
were

::::::::
extracted

:::::
using

:::
the

:::::::::
NEVINA

::::::::::::::::::::
tool:http://nevina.nve.no,

::::::
except

:::
for

:
Q

:
,
:::::
which

::::
was5

::::::::
calculated

:::::
using

:::
the

::::::::
available

:::::::::
streamflow

::::
data

::::
and

::
P,

::::::
which

::::
was

::::::::
calculated

:::::
using

::::::::
available

:::::::
gridded

::::
data

:::::::
(further

::::::
details

:::
are

::::
given

:::
in

::::
2.1.2

:::::::
below).

:
In order to illustrate the application of the method, we have selected three catchments which can be

considered representative for different flood regimes in Norway: Krinsvatn in western Norway, Øvrevatn in northern Norway

and Hørte in southern Norway (fig
:::
Fig.

:
2).

Table 1 summarises the climatological and geomorphological properties of these three catchments, including: area (
:
A

::
in10

::::
km2), mean annual runoff (Q in mm /year

:::::
year-1), mean annual precipitation (P in mm /year

::::::
year-1), mean elevation (Hm50),

percent of
::::::::
percentage

:
forest-covered area (For), percent of

:::::::::
percentage marsh-covered area (M), percent

:::::::::
percentage area with

sparse vegetation above three
:::
tree line (B), ‘effective’ lake percent

:::::::::
percentage (Lk)and ,

:::::::::
catchment

::::::::
steepness

:
(
::
Hl

:
)
:::
and

:::
the mean

annual temperature
::
in

:::
the

::::::::
catchment

:
(Temp). The effective lake percent (Lk) is used to describe the ability of water bodies to

attenuate peak flows such that lake areas which are closer to the catchment outlet have a higher weight than those near the15

catchment divide. It is calculated as
∑

Ai×ai

A2 × 100, where ai
:
a
:i is the area of lake i, Ai i:is the catchment area upstream of

lake i and A is the total catchment area. The dominant land cover for Krinsvatn and Øvrevatn is sparse vegetation over tree

lineB, while the land cover for Hørte is mainly forestFor. The effective lake percent Lk is insignificant for Hørte and Øvrevatn
:
,

but for Krinsvatn,
::
the

:
Lk

:
is

::::::
higher and the area covered by marsh, M, is more than 10

:
9%. The catchment Krinsvatn

::::::::
steepness

:::
(Hl)

::::::::
(defined

::
as

:::::::::::::::
(Hm75-Hm25)/L,

:::::
where

::
L

::
is

:::
the

:::::::::
catchment

:::::
length

::::
and

::::::
Hm25

:::
and

::::::
Hm75

:::
are

:::
the

::
25

::::
and

:::
75

:::::::
quantiles

:::
of

:::
the20

::::::::
catchment

:::::::::
elevation)

::
is

::::::
highest

:::
for

:::::
Hørte

:::::
(18.7

::::::
m/km)

:::
and

::::::
lowest

:::
for

::::::::
Krinsvatn

::::
(5.4

::::::
m/km).

::::
The

:::::::::
catchment

::::::::
Krinsvatn, being

located near the western coast of Norway, has
:
a
:
much higher mean annual precipitation (P), i.e. an average of 2354 mm

/year, compared to
:::::
year-1,

:::
in

:::::::::
comparison

:::::
with Hørte (1261mm/year

::::
1261

::::
mm

::::::
year-1) and Øvrevatn (1558 mm /year

::::::
year-1).

The dominant flood regime for Krinsvatn is primarily rainfall-driven high flows, as the catchment is located in a coastal area

and is characterised by high precipitation values and an average annual temperature of around 40
:

◦
:
C. The highest observed25

floods, however, also have a contribution from snowmelt. The season of the AMAX (annual maxima flood) is the winter

period, i.e. December – February, although high flows can occur throughout the year. Hørte has a mixed flood regime with

most of the AMAX flood events in the period September–November, but in some years annual flood events occur in the period

March–May and are associated with rainfall events during the snowmelt season. Øvrevatn has a predominantly snowmelt flood

regime with most AMAX flood events occurring in the period June – August, due to the lower temperatures in the region such30

that precipitation falls as snow during much of the year. The catchments were delineated and their geomorphological properties

were extracted using the NEVINA tool:http://nevina.nve.no, except for Q, which was calculated using the available streamflow

data and P, which was calculated using available gridded data (further details are given in 2.1.2 below).
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2.1.2 Available meteorological data

Data for temperature and precipitation with daily time resolution were obtained from seNorge.no. This dataset is derived by in-

terpolating station data on a 1 km2 grid and is corrected for wind losses and elevation (Mohr, 2008). In addition, meteorological

data with a sub-daily time step is needed for calibrating the PQRUT model, as many of the catchments have fast response times.

For this, precipitation and temperature data with a three-hour resolution, representing a disaggregation of the 24-hour gridded5

seNorge.no data using the HIRLAM hindcast series (Vormoor and Skaugen, 2013), were used. The HIRLAM atmospheric

model for northern Europe has
:
a 0.1 degree resolution (around 10 km2) and

:::
we

::::
used

:
a
::::::::
temporal

:::::::::
distribution

::
of

:::::
three

:::::
hours.

::::
The

::::::::
HIRLAM

::::
data

::
set

:
was first downscaled to match the spatial resolution of the seNorge data (Vormoor and Skaugen, 2013). The

:::
and

:::
the precipitation of the HIRLAM data was rescaled to match the 24-hour seNorge data , and

::::::::::::::::::::::::
(Vormoor and Skaugen, 2013)

:
.
:::::
Then, these rescaled values were used to disaggregate the seNorge data to a 3-hour time resolution. The method was validated10

against
:::::
3-hour

:
observations, and the correlation of the method was found to be higher than that obtained by simply dividing the

seNorge data into eight equal parts
:
3
:::::::
-hourly

:::::
values

:::::::::::::::::::::::::
(Vormoor and Skaugen, 2013). These datasets were further disaggregated

to a 1-hour time step using a uniform distribution
::
by

:::::::
dividing

::::
into

::::
three

:::::
equal

::::
parts

:
to match the time resolution of the discharge

data, although a 3-hour time step could also be used
::::::::
streamflow

::::
data.

2.1.3 Initial conditions15

The stochastic PQRUT method requires time series of soil moisture deficit, SWE and initial discharge. These data series are

used to generate initial conditions , which serve as input in
:::::::
construct

::::::::::
probability

:::::::::
distribution

::::::::
functions

:::
for

:::::::::
generating

::::::
initial

::::::::
conditions

:::
for

:
the event-based PQRUT model

:::::::::
simulations. Sources of these data can be e.g. remotely sensed data

::::
(see,

:::
for

:::::::
example,

:::
the

::::::
review

::::::::
provided

::
in
:::::::::::::::::

Brocca et al. (2017)
:
) or gridded hydrological models, which can be used for modelling in

ungauged basins. In this study, the DDD hydrological model was used to simulate these data series. The DDD model is a20

conceptual model that includes snow, soil moisture and runoff response routines and is calibrated for individual catchments

using a parsimonious set of model parameters. The snowmelt routine of DDD model uses a temperature-index method and

accounts for snow storage and melting for each of 10 equal area elevation zones. The soil moisture routine is based on one

dynamic storage reservoir, in which we find both the saturated- and the unsaturated zone, having capacities which vary in time.

The flow percolates to the saturated zone if the water content in the unsaturated zone exceeds 0.3 of its (dynamic) capacity. The25

response routine includes routing of the water in the saturated zone using a convolution of unit hydrographs which are based

on the distribution of distances to the nearest river channel within the catchment
:::
and

::::
from

:::
the

::::::::::
distribution

::
of

::::::::
distances

::::::
within

::
the

:::::
river

::::::
channel.

2.2 Critical Duration

When simulating flood response with an event-based model, it is important to specify the so-called critical duration
::::::::::::::::::::::::
(Meynink and Cordery, 1976)30

to ensure that the complete flood hydrograph is modelled
:::::
flood

::::
peak

::
is

:::::::
correctly

:::::::::
modelled.

:::
The

::::::
critical

:::::::
duration

::
is

::
an

:::::::::
important

:::::::
quantity

:::::
which

::::::::::
effectively

::::
links

::::
the

:::::::
duration

::::
and

:::
the

::::::::
intensity

::
of

:::::::::::
precipitation

::::::
events

:::
of

:
a
::::::

given
:::::::::
probability. In order to
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determine the length of the precipitation input series producing the most extreme flows, a critical duration for storm events,

defined as the duration that results in the highest observed peak value, had to be determined for each catchment. To determine

the critical duration, flood events over a certain
::::
from

:::
the

:::::
daily

::::
time

:::::
series

:::::
over

:
a
:
quantile threshold (

:
in

::::
this

::::
case,

:
0.9) were

extracted. The POT (peak over threshold) flood events were considered to be independent if they were separated by at least

seven days of lower values than
:::::
values

:::::
below

:
the threshold. The day with the maximum value (peak ) of the

:::
peak

:::::
value

:::
of5

streamflow was then identified for each event. The peak values were tested for correlations with the precipitation on the day of

the peak flow and on days -1, -2 and -3 before the peak. The critical duration was determined as the number of days in which

the correlation between the precipitation and the streamflow was higher than 0.25. This threshold value was selected because

it gave realistic durations for the catchments in the study area. At first
::
As

::
an

:::::::::
alternative

::::::::
approach, the critical duration was

:::
also

set to equal the number of days for which the correlation was significant at p=0.01
:
.
::::
This

:::::::
method

:::::::
resulted,

::::::::
however, which10

howeverresulted in very long durations
:
,
:
in some cases. A possible reason

::
for

::::
this is that if there are only a few observations,

even relatively low Pearson correlation coefficients can produce statistically significant p-values. In some catchments (mostly

those having
:
a snowmelt flood regime), no significant correlation was found between discharge and precipitation, and in this

case the critical duration was fixed to 24 hours
:::::::::
determined

::
by

::::::::::
considering

::::
only

:::::
flood

:::::
events

::
in

:::
the

::::::::::::::::::
September-November

::::::
(SON)

:::::
season

::
in
::::::
which

::::
most

::::::
events

:::
are

::::::
caused

::
by

::::::
rainfall

:::
(in

:::
this

:::::
case,

::::::
during

:::
the

:::::::
autumn). If the critical duration was more than one15

day, the precipitation was aggregated to the critical duration by applying a moving window to the data series. For Hørte and

Øvrevatn, the critical duration was set to
:::::
found

::
to

::
be 24 hours and for Krinsvatn to

:
it

:::
was

:::::
found

::
to
:::
be 48 hours (fig

:::
Fig.

:
3).

2.3 Precipitation and temperature sequence generation

In addition to the critical duration of the event, the sequence of the input data must be prescribed
:::::::
generated

:
for the stochastic

simulation. Snowmelt can be important in the catchments considered in this study, so both the sequence of precipitation and20

temperature must be considered. In order to account for seasonality, the meteorological data series were first split into standard

seasons: DJF, MAM, JJA and SON. In this way, we ensure that more homogeneous samples are used to fit the statistical

distributions. Although the season at risk could have been defined for each catchment individually (e.g. Paquet et al., 2013), the

standard season definition was used for all catchments. Precipitation events over a threshold (POT events) were identified in the

24h precipitation data
::::::::::
precipitation

:::::::::
dataseries and a Generalized Pareto distribution was fitted to the series of selected events.25

In order to select
:::::
choose

:
a threshold value for event selection, two criteria were used: 1) the threshold must be higher than

the 0.93 quantile, and 2) the number of selected events must be between two to
:::
and three per season. Although other methods

for threshold selection exist, such as the use of mean life residual plots, the described method gives adequate
:
is
:::::
much

:::::::
simpler

::
to

:::::
apply

:::
and

:::::
gives

:::::::::
acceptable

:
results (e.g. Coles, 2001). The selected threshold varied between the 0.93 to 0.99 quantiles,

depending on the season and catchment. In addition, storm hyetographs and
:::
the

::::::::::
exponential

:::::::::
distribution

::
is
:::::
often

::::
fitted

:::
to

::::
POT30

::::::
events,

::
as

:
it
::::
can

:::
give

:::::
more

::::::
robust

:::::
results

::::
than

:::
the

:::
GP

::::::::::
distribution.

::::::
Figure

::
4

:::::
shows

:::
the

:::::
return

:::::
levels

:::::::::
calculated

::::
from

:::
the

:::
GP

::::
and

::::::::::
Exponential

::::::::::
distributions

::::
and

:::
the

::::::::
empirical

::::::
return

:::::
levels

:::
and

::::::::::::
demonstrates

:::
that

::
it
::
is

::::::::::
appropriate

::
to

:::
use

:::::
these

:::::::
models.

::
In

::::
this

::::
case,

:::
we

::::
have

::::::::
preferred

::
to

:::
use

:::
the

:::
GP

::::
due

::
to

:::
the

::::::::
inclusion

::
of

:::
the

:::::
shape

:::::::::
parameter

:::
for

:::::::::
describing

:::
the

::::::::
behaviour

::
of

:::
the

:::::::
highest

::::::::
quantiles.

::
A

::::::::::
exponential

::::::::::
distribution,

::::::::
however,

:::::
could

::::
also

:::
be

::::
used,

:::
as

:::::
could

:
a
:::::::::

compound
:::::::

weather
::::::::::::

pattern-based
::::::::::
distribution
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::::
such

::
as

:::
the

::::::
MEWP

::::::::::
distribution

:::::::::::::::::::::::::::::::::::::::::
(e.g. Garavaglia et al., 2010; Blanchet et al., 2015).

::
In

::::::::
addition,

:
a
:
temperature sequence with a

1-hour time resolution were
:::
was

:
identified from the disaggregated seNorge data, introduced in section ??

::::
2.1.2, and extracted

for each POT events. Using the fitted Generalized Pareto (GP) distribution,
:::::
event.

::::
The

:
precipitation depths were simulated

and the storm
::::::::
generated

::::
(for

:::::::
100,000

::::::
events)

::::
from

:::
the

:::::
fitted

:::
GP

::::::::::
distribution

:::
for

::::
each

::::::
season.

::::::
Storm hyetographs were used to

disaggregate the precipitation values as follows: a storm hyetograph was first sampled (fig 9)
:::
from

:::
the

::::::::
extracted

:::::::::::
hyetographs5

::
for

:::
the

:::::::
selected

:::::
POT

::::::::::
precipitation

::::::
events

:::
(by

::::::::
matching

:::
the

::::
dates

:::
of

:::
the

:::::::
selected

::::
POT

:::::::::::
precipitation

:::::
events

::
to

:::
the

::::::::::::
disaggregated

:::::::
seNorge

:::::::::::
datataseries),

:::::
taking

::::
into

::::::
account

::::::::::
seasonality, and the ratios between the 1-hour and the total precipitation for the event

were calculated according to:

Phsim=
Pi

sum(PPi
::

)
Pdsim (1)

where Phsim is the
::::::::
simulated 1-hour precipitation intensityand ,

:
Pdsim is the daily intensity

:::::::
simulated

:::::
daily

:::::::
intensity

::::
and

::
Pi

::
is10

::
the

::
1
:::::
-hour

:::::::::::
disaggregated

::::::::
SeNorge

:::::::
intensity. The calculated ratios were then used to rescale the simulated values(fig 9).

2.4 Antecedent snow water equivalent, streamflow and soil moisture deficit conditions

In order to determine the underlying distribution for various antecedent conditions, the relevant quantities were extracted from

simulations using
:::::
based

::
on

:
the DDD hydrological model of Skaugen and Onof (2014).

:::
The

::::::
model

::::
was

::::::::
calibrated

::::
for

:::
the

::::::
selected

::::::::::
catchments

::
at

:
a
:::::

daily
:::::::
timestep

:::::
using

::
a
:::::::
MCMC

::::::
routine

:::::::::::::
(Petzoldt, 2010)

:
. Output from DDD model runs were used to15

extract values for
::
the

:
initial streamflow, snow water equivalent (SWE) and soil moisture deficit, prior to the seasonal

::
at

:::
the

::::
onset

::
of
:::

the
:::::::::

previously
:::::::

selected
::::::::

seasonal
:::::
flood POT events.

:
It

::
is

::::::::
important

::
to

::::
note

::::
that

::::::::
simulated

::::::
values

:::
for

:::
the

:::
soil

::::::::
moisture

:::::
deficit

:::
are

:::::
used.

::::::::
However

::
as

::::::::
described

:::
in

:::::::::::::::::::::
Skaugen and Onof (2014),

::::
the

:::::
model

::::::::
provides

:::::::
realistic

:::::
values

:::
in

::::::::::
comparison

::::
with

::::::::
measured

::::::::::
groundwater

::::::
levels.

:
The POT event series used for this is the same as that used for identifying the critical duration

(described in section 2.2).20

After extracting the initial conditions, the correlation between the variables was tested for each season for each catchment.

As the correlation between the variables is in most cases significant, the variables were jointly simulated using a truncated mul-

tivariate
::::::::::
multivariate normal distribution. In order to achieve a normality for the marginals

:::::::
marginal

::::::::::
distributions, the SWE and

the discharge were log-transformed. In the spring and summer, the SWE is often very low or 0 in some catchments. If the

proportion of non-zero values, p
:
p, was greater than 0.3 (around 15 observations), the values were simulated using a mixed25

distribution as:

F (x) = pG1(x)+ (1− p)G2(x) (2)

where G1 and G2 represent
::::::::
represents

:
the multivariate normal distribution with discharge, soil moisture deficit and SWE as

variables and
:::::::
(denoted

:::
as

::
x)

:::
and

:::
G2 the bivariate normal distribution for the discharge and soil moisture, respectively.

:
.
::::
The

:::::::::
probability

:
p
:::
for

::::::::
switching

:::::::
between

:::
the

::::::::
trivariate

:::
and

::::::::
bivariate

::::::::::
distributions

::
is

:::::
based

::
on

:::
the

::::::::
historical

::::
data

:::
for

::::
SWE

:::::
higher

::::
than30

::
0. In addition, because the initial conditions are not expected to include extreme values, the values of the initial conditions

were truncated to be between the minimum and maximum of the observed ranges. The correlation between the observed and
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simulated variables is shown in Figure 5 for the Krinsvatn catchment, and although the distribution of simulated values exhibits

a very good resemblance to that of the observed, there is not a perfect correspondence between the two. A reason for this may

be that the variables (even after log transformation) do not exactly follow a normal distribution. We considered using copulas

for the correlation structure of the initial conditions Hao and Singh (2016) however
::::::::::::::::::
(Hao and Singh, 2016)

:
.
::::::::
However, as the

data were limited
::
are

::::::
limited

::
in

:::::::
number (around 50 observations per season), these were much more difficult to fit. Similarly,5

nonparametric methods such as kernel density estimation were not deemed to
:::::::
deemed

::
to

:::
not

:
be feasible due to the limited

number of observations. Therefore, the multivariate normal distribution was chosen as the best alternative for modelling the

joint dependency between the variables comprising the initial conditions for the stochastic modelling.

2.5 PQRUT model

The PQRUT10

:::
The

:::::::
PQRUT

::::::::::::::
(P-precipitation,

::::::::::
Q-discharge

::::
and

:::::::::::
RUT-routing)

:
model was used to simulate the streamflow for the selected

storm events. The PQRUT model is a simple, event-based, 3-parameter model (fig
:::
Fig.

:
6) which is used, amongst other things,

for estimating design floods and safety check floods for dams in Norway
:::::::::::::::::
(Wilson et al., 2011). In practical applications, a

hypothetical precipitation design sequence of a given return period is routed through the PQRUT model, usually under the

assumption of full catchment saturation. For this reason, only the hydrograph response is simulated, and there is no simulation15

of subsurface and other storage components, such as are found in more complex conceptual hydrological models. Of the three

model parameters, K1 corresponds to the fast hydrograph response of the catchment, and the parameter K2 is the slower or

‘delayed’ hydrograph response. The parameter Trt is the threshold above which K1 becomes active.

The PQRUT model was calibrated for flood events for each catchment
::
the

:::
45

::::::
highest

:::::
flood

:::::
events

:
by using the DDS (Dy-

namically Dimensioned Search) optimization (Tolson and Shoemaker, 2007) ,
::::::
routine

::::::::::::::::::::::::::
(Tolson and Shoemaker, 2007) and the20

Kling Gupta efficiency (KGE) criterion (Gupta et al., 2009) was used as the objective function. The general procedures used for

the PQRUT calibration are described in Filipova et al. (2016). As described in that work, an additional parameter,
::
An

:::::::::
additional

:::::::
variable,

:::
the

::::
soil

::::::
deficit, lp, was introduced to account for initial losses to the soil zoneand is necessary if one is to achieve

calibration of the model to actual events (rather than hypothetical events in which the catchment is fully saturated).
:
.
:::
The

::::::
reason

::
for

::::
this

::
is

::::
that,

::::
even

::::::
though

::::
fully

::::::::
saturated

:::::::::
conditions

:::
are

:::::::
assumed

:::::
when

:::
the

::::::
model

::
is

::::
used

::
to

:::::::
estimate

:::::
PMF

::
or

:::::
other

:::::::
extreme25

:::::
floods

::::
with

::::
low

:::::::::::
probabilities,

:::
the

:::::
model

:::::
needs

::
to
:::::::

account
:::
for

:::::
initial

::::::
losses

:::::
when

:::::
actual

:::::
(more

::::::::
frequent)

::::::
events

:::
are

:::::::::
simulated.

::::
This

::::::::
procedure

::
is
::::::::
described

:::
in

::::
more

::::::
detail

::
in

:::::::::::::::::
Filipova et al. (2016)

:
.
::
In

::::::::
addition,

:::::::
regional

::::::
values

:::
can

::
be

:::::
used

::
in

::::::::
ungauged

:::
or

:::::
poorly

::::::::::
catchments

::::::::::::::::::::::::::::::::::::
(Andersen et al., 1983; Filipova et al., 2016).

:

For the work presented here, the value of this parameter
::
lp was set to the initial soil moisture deficit, estimated using DDD.

This parameter
::::::
variable

:
functions as an initial loss to the system, such that the input precipitation to the reservoir model is 030

until the value of lp is exceeded by the cumulative input rainfall. In order to model flood events involving snowmelt, a simple

temperature index snow melting rate was used:

S = Cs(T −TL) (3)
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where S is the snow melting rate in mm/hour, Cs is a coefficient accounting for the relation between temperature and snowmelt

properties and TL is the temperature threshold for snowmelt (here fixed at 00 C). The model used regional
:::::::
Regional

:
values for

the Cs parameters related to the
::
as

:
a
:::::::
function

::
of

:
catchment properties, based on the ranges given in Midtømme and Pettersson

(2011)
::::
were

::::::
applied. In addition, the temperature threshold between rain and snow was set to TX =0.50C

:
, which is typically

used in Norway
:::::::::::::
(Skaugen, 1998).5

2.6 Flood frequency curves

Seasonal and annual flood frequency curves were constructed by extracting the peak discharge for each event and estimating

the plotting positions of the points using the Gringorten plotting position formula:

Pe =
(m− 0.44)

(N +0.12)k
(4)

wherePe10

:::::
where

:::
Pe is the exceedance probability of the peak, m is the rank

::::::
(sorted

::
in

:::::::::
decreasing

:::::
order)

:
of the peak value, N is the

number of years, k is the number of events per year. The number of events per year, k, was set to be equal to the average

number of extracted POT storm (precipitation) events per year. These simulated events were compared with the POT flood

events extracted from the observations (fig
:::
Fig.

:
7). After calculating the probability of the simulated events using Eq. 4, the

initial conditions and seasonality for a return period of interest can be extracted. For example, the events with return period15

between 90 and 110 years were extracted (representing around 80 events), and the hydrological conditions for those events

were identified (table
::::
Table

:
2). The results show that there is a large variation in precipitation values

:::
the

::::
total

:::::::::::
precipitation

:::::
depths

:
and initial conditions that can produce flood events of a given magnitude and this is the reason why it is difficult to

assign initial conditions in event-based models. However, it is still useful to extract the distribution of these values in order to

ensure that the ranges are reasonable and the catchment processes are properly simulated. For example, the average snowmelt20

is negative (
::
i.e.

:
there is snow accumulation) for Krinsvatn, which means that in most cases snowmelt does not contribute to

the extreme floods. This is reasonable as the catchment is located in western Norway, where the climate is warmer (the mean

temperature is around 40
:

◦ C) and the mean elevation is low. The average snowmelt contribution for Øvrevatn is much higher as

this catchment has a predominantly snowmelt flood regime. The soil moisture deficit for the three catchments is larger than 0,

even though fully saturated conditions are used in the event-based PQRUT model
:::::
floods

::::
with

::::::::
relatively

::::
long

:::::
return

::::::
periods

::::
(i.e.25

:::::::
between

::
90

::::
and

:::
100

::::::
years)

:::
are

:::::
being

:::::::
sampled

::::
here. The seasonality of the simulated values is consistent with the seasonality

of the observed annual maxima (table
::::
Table

:
1).

2.7 Sensitivity analysis

A sensitivity analysis was performed for the three test catchments, Hørte, Øvrevatn and Krinsvatn, in order to determine the

relative importance of the initial conditions, precipitationand ,
:

the parameters of PQRUT
:
,
:::
the

:::::
effect

::
of

:::
the

:::::::
random

::::
seed

::::
and30

:::::
length

::
of

:::::::::
simulation

:
on the flood frequency curve.

::
To

::::
test

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::
model,

:::
we

::::
have

:::::
used

::::::
several

:::::::
different

::::::
model

:::
runs

::::
and

:::::::::
calculated

:::
the

:::::::::
percentage

:::::::::
difference

::
of

::::
each

::
of

:::::
these

::::::
model

::::
runs

::::::
relative

:::
to

:::
the

:::::::
standard

::::::
model

::::
setup

::
,
::
as

::::::
shown

::
in

11



:::::
Fig.8.

:::::
More

:::::::
detailed

::::::::::
information

::
on

:::
the

:::
set

:::
up

::
is

:::::
given

::
in

:::::
Table

::
3.

:
As these catchments are located in different regions and

exhibit different climatic and geomorphic characteristics, we hypothesize that the flood frequency curve will be sensitive to

different parameters ,
:::
and

:
hydrological states, precipitation, snow and catchment charateristics

:
as

:::::
well

::
as

:::::
local

::::::
climate

::::
and

::::::::
catchment

::::::::::::
characteristics. The results are presented in figure 8 and summarised in table

::::::::::
summarised

::
in

:::::
Table 4.

Considering the effect of the initial conditions, using fully saturated conditions results in the slight overestimation for5

all catchments of flood values, as expected, and the impact is higher at lower return periods. In addition, Øvrevatn shows

higher sensitivity (around 30% for Q1000) to the initial soil moisture conditions than the other two catchments. A possible

explanation is that the baseflow index (BFI) is higher (BFI=0.6) for Øvrevatn, than the BFI for Krinsvatn (BFI=0.4) and Hørte

(BFI=0.5). This indicates that the runoff at Øvrevatn is less responsive to the rainfall input. Similarly, a sensitivity analysis by

Svensson et al. (2013) shows that high sensitivity of floods to soil moisture deficit is more present for permeable catchments,10

where the BFI is also high. The initial discharge value does not seem to have a large impact for any of the catchments.

This means that in ungauged catchments the median value can be used. If no snow component (no snowmelt and no snow

accumulation) is used, there is not much difference in the results for Øvrevatn and Hørte, but the seasonality of the flood events

is changed. For example, the season when the Q1000 is simulated for Øvrevatn is SON instead of JJA when most of the AMAX

values are observed. Due to the change of seasonality, the precipitation values that produce Q1000 are higher (the median is15

around 30% higher). The soil moisture deficit, as expected, is also somewhat higher and shows much more spread with values

up to 60 mm. In addition, Krinsvatn shows high sensitivity to snowmelt (29% higher ) and also a step change in the frequency

curve, even though the soil moisture deficit is higher. This can also be explained by the fact that the snowmelt contribution is

negative, as can also be seen in table 2.

:::
The

::::::
results

:::
for

:::
the

::::::::
sensitivity

::
to

:::
the

::::::
rainfall

::::::
model

:::
are

::::::::
presented

::
in

:::
Fig

:::
8a. The results show that the temporal patterns of the20

rainfall input have high
:
a
::::
large

:
impact (up to 50 %) on the flood frequency curve for Hørte and Krinsvatn, as these catchments

have a predominantly rainfall-dominated flood regime, but the
:
.
:::
The

:
impact is very little for Øvrevatn. High

:
A

::::
high

:
sensitivity

to the shape of the hyetograph was also found in Alfieri et al. (2008). They found that using rectangular hyetograph results in a

significant underestimation of the flood peak while the Chicago hyetograph (e.g. Chow et al., 1988) resulted in overestimation.

::
by

::::::::::::::::
Alfieri et al. (2008)

:
. In addition, Øvrevatn and Hørte showed sensitivity (28.9

:::::
around

:::
20%) to the choice of the statistical25

distribution for modelling precipitation. This means that the uncertainty in fitting the rainfall model can propagate to the final

results of the stochastic PQRUT, and therefore, it is important to ensure that the choice of distribution and parameters should

be
:
is

:
carefully considered. A high sensitivity to the parameters of the rainfall model was also described by Svensson et al.

(2013), who suggest that this is a main source of uncertainty. Both Hørte and Krinsvatn showed relatively lower sensitivity to

the threshold value for the GP distribution, compared to Øvrevatn. A reason for the high sensitivity to the threshold value for30

Øvrevatn is that using a higher quantile for the threshold leads to selecting fewer events, which are less representative and the

fit of the GP becomes more uncertain
::::::
leading

::
to

:
a
::::::
higher

::::::
degree

::
of

:::::::::
uncertainty

::
in

:::
the

:::
GP

:::
fit.

In general
:::::::
addition, all catchments are very sensitive to the parameters of the PQRUT model

:::
(Fig

:::
8b)

:
and there is a high

::::
large

uncertainty in these values. Because of the higher sensitivity to the calibration of the rainfall-runoff model, a conclusion can

be made that, in practice, if streamflow data is available it is important that this is used for calibrating the PQRUT model.35
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::::::::::
Considering

:::
the

:::::
effect

::
of

:::
the

:::::
initial

:::::::::
conditions

::::
(Fig

::::
8c),

:::::
using

::::
fully

::::::::
saturated

::::::::
conditions

::::::
results

::
in
:::
the

:::::
slight

:::::::::::::
overestimation

::
for

:::
all

:::::::::
catchments

:::
of

::::
flood

:::::::
values,

::
as

::::::::
expected,

:::
and

:::
the

::::::
impact

::
is
::::::
higher

::
at

:::::
lower

:::::
return

:::::::
periods.

:::
In

:::::::
addition,

::::::::
Øvrevatn

::::::
shows

:
a
::::::
higher

::::::::
sensitivity

:::::::
(around

:::::
26%

:::
for

::::::
Q1000)

:::
to

:::
the

:::::
initial

:::
soil

::::::::
moisture

:::::::::
conditions

::::
than

:::
the

:::::
other

::::
two

::::::::::
catchments.

::
A

::::::
reason

::
for

::::
this

::
is

::::
that

:::
for

::::::::
Øvrevatn,

::::::
higher

::::
soil

:::::::
moisture

:::::::::
conditions

:::
are

:::::::::
associated

:::::
with

:::::
higher

:::::::
rainfall

::::::::
quantiles.

::::
For

::::::::
example,

:::
for

::::::::
Øvrevatn,

:::::::::::
precipitation

:::::
depths

::::
with

::
a
:::::::::
1000-year

:::::
return

::::::
period

:::
are

::::::::
associated

::::
with

:::::::
median

:::
soil

::::::::
moisture

:::::::::
conditions

::
of

:::
37

::::
mm,5

::::
while

:::
for

:::::::::
Krinsvatn,

::
it
::
is
:::::

30.8
:::
mm

::::
and

:::
for

::::::
Hørte,

:
it
::

is
:::::

16.7
::::
mm.

::::
The

:::::
initial

::::::::
discharge

:::::
value

:::::
does

:::
not

:::::
seem

::
to

::::
have

::
a
:::::
large

:::::
impact

:::
for

::::
any

::
of

:::
the

::::::::::
catchments.

::
If

::
no

:::::
snow

::::::::::
component

:::
(no

::::::::
snowmelt

:::
and

:::
no

:::::
snow

::::::::::::
accumulation)

::
is

::::
used,

:::::
there

::
is

:::
not

:::::
much

::::::::
difference

::
in

:::
the

::::::
results

:::
for

::::::::
Øvrevatn

::::
and

:::::
Hørte,

:::
but

:::
the

::::::::::
seasonality

::
of

:::
the

:::::
flood

::::::
events

::
is

:::::::
changed.

::::
For

::::::::
example,

:::
the

::::::
season

::::
when

:::
the

::::::
Q1000

:
is
:::::::::
simulated

:::
for

:::::::
Øvrevatn

::
is
:::::
SON

::::::
instead

::
of
::::

JJA
:::::
when

::::
most

:::
of

:::
the

::::::
AMAX

::::::
values

:::
are

::::::::
observed.

::::
Due

::
to

::::
this

::::::
change

::
of

::::::::::
seasonality,

:::
the

::::::::::
precipitation

::::::
values

:::
that

:::::::
produce

::::::
Q1000

::
are

::::::::::
accordingly

::::::
higher

:::
(the

:::::::
median

::
is

::::::
around

::::
15%

:::::::
higher).10

:::
The

::::
soil

:::::::
moisture

::::::
deficit,

:::
as

::::::::
expected,

::
is

::::
also

:::::::::
somewhat

:::::
higher

::::
and

:::::
shows

::::::
much

::::
more

:::::::
spread,

::::
with

::::::
values

::
up

::
to
:::

45
::::
mm.

:::
In

:::::::
addition,

::::::::
Krinsvatn

::::::
shows

:
a
::::
high

:::::::::
sensitivity

::
to

:::
the

::::::::
snowmelt

::::::::::
component

:::::
(21%

::::::
higher)

:::
and

::::
also

:
a
::::
step

::::::
change

::
in

:::
the

:::::::::
frequency

:::::
curve,

::::
even

::::::
though

:::
the

::::
soil

:::::::
moisture

::::::
deficit

::
is

::::::
higher.

::::
This

:::
can

::::
also

::
be

:::::::::
explained

::
by

:::
the

::::
fact

:::
that

:::
the

:::::::::
snowmelt

::::::::::
contribution

::
is

:::::::
negative

:::::
(there

::
is

:::::
snow

::::::::::::
accumulation),

:::
as

:::
can

::::
also

::
be

::::
seen

:::
in

:::::
Table

::
2. Other studies have also shown that the soil saturation

level is not as important in comparison with
::
as the parameters of the hydrological model. For example, Brigode et al. (2014)15

tested the sensitivity of the SCHADEX model using a set of block bootstrap method. In each of these experiments, different

sub-periods selected from the observation record were used in turn to calibrate the rainfall model, the hydrological model and

to determine the sensitivity to the soil saturation level. The results showed that for extreme floods (1000–year return period), the

model is sensitive to the calibration of the rainfall and the hydrological model
::::::
models, but not so much to the initial conditions.

:::
The

:::::::::
stochastic

:::::::
PQRUT

:::::
model

::::::
shows

:::::
some

:::::::::
sensitivity

::
to

:::
the

:::::::
random

:::::
seeds

::::
(Fig

::::
8d),

::::::::
especially

:::
for

::::::
higher

::::::
return

:::::::
periods.20

::::
This

:
is
::::::::

expected
::
as

:::
the

::::::
higher

::::::::
quantiles

:::
are

::::::::
calculated

:::::
using

::
a
::::::
smaller

::::::
sample

:::
of

::::::::
simulated

::::::
events.

::::::::
Similarly,

:::
the

:::::
effect

:::
of

:::
the

::::::::
simulation

::::::
length

:::
has

::
a

:::::
larger

::::::
impact

::
on

:::
the

::::::
higher

::::::::
quantiles

::::
(e.g.

:::::::
Q1000).

::::::::
However,

:::
the

::::::
length

::
of

:::
the

:::::::::
simulation

:::
will

:::::::
depend

::
on

:::
the

:::::::
required

:::::
return

:::::
level,

::
as

::::::
shorter

:::::::::
simulation

::::::
length

:::
can

:::
be

::::::::
acceptable

:::
for

:::::
lower

::::::
return

::::::
periods,

::::
e.g.

:::::
Q100.

:

3 Comparison with standard methods

3.1 Implementation of the methods and results25

The results of the stochastic PQRUT method for the 100- and 1000-year return level were compared with the results for

statistical flood frequency analysis and with the standard implementation of the event-based PQRUT method (in which full

saturation and snow melting rates are assumed a priori) for the twenty test catchments , described in section 2.1. For the

statistical flood frequency analysis, the annual maximum series were extracted from the observed daily mean streamflow series.

The GEV distribution was fitted to the extracted values using the L-moments method and the return levels were estimated. In30

order to obtain instantaneous peak values, the return values were multiplied by empirical ratios, obtained from regression

equations, as given in (Midtømme and Pettersson, 2011)
:::::::::::::::::::::::::::
Midtømme and Pettersson (2011). The ratios can vary substantially

from catchment to catchment, and in this study, the values are from 1.02 to 1.82, depending on the area and the flood generation

13



process
::::::::
(snowmelt

::
or

::::::::::::
precipitation). Although much more sophisticated methods could be used to obtain statistically-based

return levels, the procedure used here is equivalent to that currently used in standard practice in design flood analysis in Norway.

In addition, a study by Kobierska et al. (2017) showed that the GEV along with the GL(Generalised logistic) distribution gives

the most reliable results based on a sample of 280 catchments in Norway .
:::
the

:::::
length

:::
of

:::
the

::::
daily

::::::::::
streamflow

:::::
series

:::::::
justifies

::
the

::::
use

::
of

::::::
at-site

::::
flood

:::::::::
frequency

:::::::
analysis

::::::::::::::::::::
(Kobierska et al., 2017);

:::
the

:::::::::
minimum

:::::
length

::
is
:::
31

:::::
years,

:::::
while

::::
the

::::::
median

::
is

:::
655

::::
years

:::
of

::::
data.

::::::::
However,

::
it
::
is
::::::::
expected

::::
that

:::
the

::::::::::
uncertainty

:::
will

:::
be

::::
high

:::::
when

:::
the

:::::
fitted

:::::
GEV

::::::::::
distribution

::
is

::::::::::
extrapolated

:::
to

:
a
:::::::::
1000-year

:::::
return

:::::::
period.

:::
The

:::::::::
1000-year

::::::
return

::::::
period

::
is

::::
used

:::::
here,

::::::::
however,

::
as

::
it

::
is

:::::::
required

:::
for

::::
dam

::::::
safety

:::::::
analyses

:::
in

::::::
Norway

:::::
(e.g.

::::::::::
Midttømme,

::
et

:::
al.,

:::::
2011;

:::::
Table

:::
1).

:::::
More

::::::
robust,

:::
but

:::::::::
potentially

::::
less

:::::::
reliable,

::::::::
estimates

:::::
could

::
be

::::::::
obtained

:::::
using

:
a
::::::::::
2-parameter

::::::::
Gumbel,

:::::
rather

::::
than

:
a
:::::::::::

3-parameter
::::
GEV

::::::::::
distribution

::::::::::::::::::::
(Kobierska et al., 2017). The standard implementation of

PQRUT involves using a precipitation sequence that combines different intensities, obtained from growth curves based on10

the 5-year return period value
::::
fitted

:::::
using

:
a
:::::::
Gumbel

::::::::::
distribution

:::::
while

:::
the

:::::
ratios

::::::::
between

:::
the

:::::::
different

::::::::
durations

:::
are

:::::::
derived

::::
from

::::::::
empirical

::::::::::
distribution (Førland, 1992). The precipitation intensities were combined to form a single symmetrical storm

profile with the highest intensity in the middle of the storm event . Here
:::::::
whereas

:::
the

:::::
storm

::::::
profile

::
is

::::::::
randomly

::::::::
sampled

:::
for

::
the

:::::::::
stochastic

:::::::
PQRUT

::::::
model

:::
(Fig

:::
9).

::
In

:::
the

::::::::::
application

:::::::
reported

::::
here, the duration of the storm event was assumed to be the

same as that used for the stochastic PQRUT model. The initial discharge values were similarly fixed to the seasonal mean15

values ,
:::

as
::
is

::::::::
common

::
in

::::::::
standard

:::::::
practice. The snowmelt contribution for the 1000-year return period was, in this case,

assumed to be 30 mm/day for all catchments,
:
which corresponds to 70% of the maximum snowmelt, estimated as 45mm

::
45

:::
mm/day by using temperature-index factor of 4.5 mm//0

:

◦
:
C day and 100

::
/◦ C. The snowmelt contribution for the 100-year

return period was assumed to be 21 mm/day for all catchments. In addition, fully saturated conditions were assumed for both

the estimation of the 100- and 1000-year return periods. A similar implementation of PQRUT for the purpose
:::::::
purposes

:
of20

comparing different methods has also been described in (Lawrence et al., 2014)
::::::::::::::::::
Lawrence et al. (2014). The parameters of the

PQRUT were estimated by using the regional equations derived in Andersen et al. (1983), as these are still used in standard

practice.

The performance of the three models was validated by using two different tests. Test 1 assessed whether the estimated

values for the flood frequency curve
::::
100-

::::
year

:::::
return

::::::
period are within the confidence intervals of a GP distribution fitted to25

the streamflow data with a 1-hour time step. The stochastic PQRUT shows good agreement with the observations
::::
(Fig.

:::
10),

and for 15
::
18

:
of the 20 catchments, all the points of the derived flood frequency curve were inside the confidence intervals.

As expected, for most of the catchments (14
::
16 out of 20) the return levels calculated using statistical flood frequency analysis

based on the GEV distributions using daily values were within the confidence intervals. As discussed, due to the difficulty in

assigning initial conditions for the event-based
:::
For

:::
the

:::::::
standard

:
PQRUT model, it was only possible to estimate values for30

the 100- and 1000-year return periods. For this model, the
::
the

:
values of the 100-year return level were within the confidence

interval for only six of the catchments when the regional equations
:::
for

:::
the

:::::::
PQRUT

:::::
model

:
were used and for only eight of the

catchments when calibrated parameters are used. In addition
:::
test

:
2, the results of the flood frequency analysis and the Stochastic

PQRUT methods were compared, based on
:
a quantile score (QS)

::::::::
suggested

::
by

:::
E.

::::::
Paquet

::::::::
(personal

::::::::::::::
communication), this is

14



given in Eq 5:

Qscore= 1−
∑

(abs(Qmodi −Qobsi)(Qobsi −Qobsi−1)) (5)

In Eq. 5
:
5 the observed probabilities (Qobsi) are calculated using Gringorten positions for the POT series

::::
peak

:::::::
AMAX

:::::
series

:::
that

::::
were

:::::::
derived

::::
from

:::
the

::::
daily

::::::
values. The modelled probabilities that correspond to the observed events are calculated

by using the statistical flood frequency analysis and the Stochastic PQRUT model
:
,
:
as described previously. The standard5

implementation of the event-based PQRUT model was not evaluated based on QS as initial conditions could not be assigned

for low return periods.
::
As

::::
this

:::::
model

::
is
:::::::
usually

::::
used

::
to

::::::::
calculate

::::
high

::::::::
quantiles

:
(
::::
Q100

::
or

:::::::
higher),

::::
fully

::::::::
saturated

:::::::::
conditions

::
are

::::::::
assumed

:::
for

::
its

::::::::::::::
implementation.

:
The results for the quantile score show similar performance, the median is around 0.83

::::
0.65 for both methods. However, the results vary between catchments as shown in fig

:::
Fig 11. Although it is difficult to evaluate

the performance of the models when the dataseries are relatively short, based on the results of test 1, we can conclude that the10

performance of the standard PQRUT model is poorer than the performance of the statistical flood frequency analysis and the

stochastic PQRUT model for the selected catchments
:
,
:::::
while

:::
the

:::::
results

::
of

::::
test

:
2
:::::::
indicate

:::
that

::::
both

:::
the

:::::
GEV

:::::::::
distribution

::::
and

:::
the

::::::::
stochastic

:::::::
PQRUT

::::::
provide

::::::
similar

:::
fits

:::
to

:::::::
observed

::::::::
quantiles.

3.2 Discussion

A comparison of the three methods
:::::::
stochastic

::::::::
PQRUT

::::
with

:::
the

:::::::
standard

::::::::
methods

:::
for

::::
flood

:::::::::
estimation

:
shows that there is a15

large difference between the results of the different methods (fig
::::
three

::::::::
methods

::
for

:::::
both

:::::
Q100

:::
and

::::::
Q1000

::::
(Fig. 12 and 13).

The violin plots (fig
:::::::
boxplots

::::
(Fig. 12) show that the stochastic PQRUT method gives slightly lower results on average than the

standard PQRUT model for Q100
:::
and

::::::
Q1000. This is probably due to assuming fully saturated conditions when applying the

standard PQRUT for Q100, which might not be realistic for some catchments. For example, the results for the initial conditions

for the three catchments, presented in section 2.6, show that the soil moisture deficit is larger than 0. However, when the20

results are compared for
:
0
:::
for Q1000, the stochastic PQRUT gives slightly higher results. Reasons for this may be that higher

precipitation intensity or snowmelt is used.
:::::
Q100.

:
Furthermore, the absolute differences between the two methods are larger

in catchments with lower temperature (fig
:::
Fig. 12). This indicates that the performance of the standard PQRUT model is worse

in catchments with a snowmelt flood regime, which might be due
:::
may

:::
be

:::
due

:::::
either

:
to the difficulty in determining snowmelt

contribution or
:
to

:
the poorer performance of the regional parameters in catchments with a snowmelt flow regime. Although25

showing the same
:
it
::::::
shows

:
a
::::::
similar

:
pattern, the standard PQRUT model, implemented using calibrated parameters results in

much less spread than the implementation using the regionalised parameters, when compared to both the GEV distribution

and the stochastic PQRUT model. This means that the hydrological model can introduce a large amount of uncertainty, as also

indicated by the sensitivity analysis described in section 2.7
:::
and

::::::::
previous

:::::
results

::::::::
presented

:::
by

:::::::::::::::::
Brigode et al. (2014).

The difference
:::::::::
differences between the stochastic PQRUT model and GEV is

::
the

:::::
GEV

:::
fits

:::
are

:
much smaller than the30

difference
:::::::::
differences between the standard PQRUT and GEV

:::::
model

:::
and

:::
the

:::::
GEV

:::
fits, even when calibrated parameters are

used . In general, the stochastic PQRUT model gives higher values than the GEV distribution, which might be due to the

uncertainty in estimating the parameters for the GEV distribution. For example, the study by Rogger et al. (2012) shows that the

15



flood frequency analysis based on fitting a Gumbel distribution to AMAX series underestimates high flows in catchments with a

high storage capacity, where a step change in the flood frequency curve occurs. The results of the study by Rogger et al. (2012)

can be explained by the fact that the Gumbel distribution, which has a shape parameter of 0 and so is not as flexible as the GEV

distribution. In this study we find very low correlation between the difference between the stochastic PQRUT and the GEV

distribution and catchments with high values of the effective lake index or the percentage of the catchment covered by marsh5

(fig 13), where we would expect that the storage capacity is higher. In addition, the
:::
for

:::
the

:::::::
PQRUT

:::::::::
modelling.

:::
The

:
differences

are larger (
::
i.e.

:
the stochastic PQRUT results are lower,

:
as shown in fig

:::
Fig.

:
13) in western Norway where P and Q are higher

and for catchments with higher catchment steepness Hl (defined as (Hm75-Hm25)/L, where L is the catchment length and

Hm25 and Hm75 are the 25 and 75 quantiles of the catchment elevation)
:::::
steeper

::::::::::
catchments,

:::
i.e.

:::::
with

:
a
::::::
higher

::::
value

:::
of

::
Hl. A

reason
::
for

:::
this

:
might be that the empirical ratios that are used to convert daily to peak flows in these catchments are inaccurate10

and possibly too high.

Similarly to the violin plots, fig 13
::::::::
boxplots,

::::
Fig.

::
13

:
also shows that the results of the stochastic PQRUT closely match

the GEV distribution
::
fits

:
with differences within 50% for most locations. There is no clear spatial pattern in the differences

between
::::::::
estimates

::::
based

:::
on the GEV distribution and

::
on

:
the standard PQRUT model, except for the catchments in

:::::::::::
mid-Norway,

::
i.e.

:
Trøndelag (including catchment Krinsvatn),

:
where the GEV distribution produces higher results. However, a much larger15

sample of catchments is needed to assess whether there is a spatial pattern in the performance of the methods.

4 Conclusions

In this article, we have presented a stochastic method for flood frequency analysis based on a Monte Carlo simulation to gener-

ate rainfall hyetographs and temperature series
:
to

:::::
drive

:
a
::::::::
snowmelt

::::::::::
estimation, along with the corresponding initial conditions.

A simple rainfall-runoff model is used to simulate discharge, and plotting positions are used to calculate the final probabilities.20

In
:::
this

::::
way,

:::
we

::::
can

:::::::
generate

:::::::::
thousands

::
of

::::
flood

::::::
events

:::
and

::::
use

:::
the

::::::::
empirical

::::::::::
distribution

::::::
instead

::
of

:::::::::::
extrapolating

::
a

::::::::
statistical

:::::::::
distribution

:::::
fitted

::
to

:::
the

::::::::
observed

:::::::
events.

::::
The

::::::::
approach

::::::
thereby

:::::
gives

:::::::::
significant

:::::::
insights

::::
into

:::
the

:::::::
various

:::::::::::
combinations

:::
of

:::::
factors

::::
that

:::
can

:::::::
produce

::::::
floods

::::
with

::::
long

::::::
return

::::::
periods

::
in

::
a
:::::
given

:::::::::
catchment,

::::::::
including

::::::::::::
combinations

::
of

::::::
factors

::::
that

:::
are

:::
not

:::::::::
necessarily

::::
well

::::::::::
represented

::
in

:::::::
observed

::::
flow

::::::
series.

::
It

:
is
::::
thus

::
a
::::
very

:::::
useful

:::::::::::
complement

::
to

::::::::
statistical

::::
flood

:::::::::
frequency

:::::::
analysis

:::
and

:::
can

:::
be

:::::::::
particularly

:::::::::
beneficial

::
in

:::::::::
catchments

::::
with

::::::
shorter

::::::::::
streamflow

:::::
series

::::::::
compared

::
to

:::
the

:::::::::::
precipitation

:::::
record

:::
as

::::
well

::
as25

::
in

::::::::
ungauged

::::::::::
catchments.

::
In order to apply the method, we assume that the precipitation and temperature series are not significantly correlated with

the initial conditions, which allows us to simulate them as independent variables. Although we have not performed
:
a
:
sta-

tistical analysis, the independence between the flood
:::::::::::
precipitation events and the initial conditions has been verified by e.g.

Paquet et al. (2013)
::::::::::::::::
(Paquet et al., 2013). Due to the considerable seasonal variation in the initial conditions, seasonal distribu-30

tions were used. In addition to obtaining more homogeneous samples, this allows one to check
:::
for

:
a
:::::
check

::
of

:
the seasonality of

the flood events, which can be of interest in catchments with a mixed flood regime.
:
In

::::
this

:::::
study,

:::
we

::::
have

::::
used

:
a
:::
GP

::::::::::
distribution

::
to

:::::
model

:::
the

:::::::
extreme

:::::::::::
precipitation.

::::::::
However,

::
if

::::
only

::::::
shorter

:::::::::::
precipitation

::::::::
dataseries

:::
are

::::::::
available,

:::
the

::::::::::
exponential

::::::::::
distribution
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::
or

::::
even

:::::::
regional

::::::::
frequency

:::::::
analysis

::::::::
methods

::::
may

::::::
provide

:::::
more

::::::
robust

::::::
results. A limitation of the method is that PQRUT can

only be used for small and medium-sized catchments, since its three parameters cannot take into account the spatial variation

of
:::::
spatial

::::::::
variation

::
in the snowmelt and soil saturation conditions within the catchment. However, for the catchments presented

in this study (all with
:
a
:::::::::
catchment area under 850 km2), the model produces relatively good fits to the observed peaks, even

though it uses a very limited number of parameters. For example, a semi-distributed temperature-index snowmelt model, such5

as the one used in HBV (Sælthun, 1996) , may improve the results in some catchments, though this would also increase the

amount of data required.

In this study, initial conditions based on simulations using a hydrological model (DDD) were used. However, in other

applications, initial conditions may be based on remotely-sensed data, or on the output of gridded hydrological models. This

is particularly important for the application of the method in ungauged basins
::::
This

:::::::
requires

::::
that

:::
this

::::::
model

::
is

:::::::::
calibrated

::
at10

::::
each

::::::::
catchment. Considering the results of the sensitivity analysis, the quality of the initial conditions is not as important as

that of the precipitation data for the estimation of extreme floods (with return periods higher than 100 years). This means that

if no other data is available, the output of gridded hydrological model could be considered .
::
as

::
a

::::::
source

::
of

:::
this

:::::
input

:::::
data.

:::::::::::
Alternatively,

::::::::
remotely

:::::
sensed

::::
data

::::
can

::
be

::::
used

:::
for

::::
soil

:::::::
moisture

::::
and

:::
the

::::
snow

:::::
water

:::::::::
equivalent

:::::
while

:::::::
regional

::::::
values

:::
for

:::
the

:::::
initial

::::::::
discharge

:::
can

::
be

:::::::
derived.

::::
This

:::
for

::::::::
example,

:::
can

:::
be

::
an

::::::
option

::
in

::::::::
ungauged

::::::
basins.15

The stochastic PQRUT model was applied to 20 catchments, located in different regions of Norway and was compared with

the results of the
:::::::
statistical

:
flood frequency analysis and the event based PQRUT model. This comparison shows that there are

large differences between the methods. Major sources of uncertainty for the flood frequency analysis are the use of short data

series and the empirical peak to volume ratios that were used to calculate the instantaneous flow. There is also uncertainty in the

event-based rainfall-runoff simulation method because of difficulties in assigning the initial conditions and in calibrating the20

rainfall-runoff model. This first of these is a reason why the use of a stochastic model is important, as it can simulate multiple

initial conditions and easily incorporate the uncertainty associated with this choice.
:::::::::
event-based

:::::::
PQRUT

:::::::
method

::::::
which

::
is

::::
today

:::::
used

::
in

:::::::
standard

:::::::
practice.

:
Due to the high uncertainty in estimating extreme floods, the application of different methods

most often
::
the

::::::::
different

:::::::
methods produces differing results,

::
as

::
in

:::::
often

:::
the

::::
case

::
in

:::::::
practical

:::::::::::
applications.

::::::::
However,

::
in

:::
this

:::::
work

::
we

:::::
have

:::::
shown

::::
that

:::
the

::::::::
stochastic

:::::::
PQRUT

::::::
model

:::::
gives

::::::::
estimates

:::::
which

::::::::
generally

:::
are

:::::
more

::::::
similar

::
to

:::::
those

:::::::
obtained

:::::
using

::
a25

::::::::
statistical

::::
flood

:::::::::
frequency

:::::::
analysis

:::::
based

::
on

:::
the

::::::::
observed

:::::
annual

:::::::::
maximum

:::::
series

::::
than

:::
are

::::::::
estimates

:::::::
obtained

:::::
using

:
a
::::::::
standard

:::::::::::::
implementation

::
of

:::::::
PQRUT.

:::
As

:
it
::
is

:::
not

:::::::
possible

::
to

:::
test

:::
the

::::::::
reliability

::
of

::::::::
estimates

:::
for

:::
the

::::
500-

::
or

:::::::::
1000-year

::::
flood

::::
(due

::
to

::::::
length

::
of

:::
the

:::::::
observed

::::::::::
streamflow

:::::
series

::::::
relative

::
to
:::
the

::::::
return

:::::
period

:::
of

:::::::
interest),

:::
the

:::
use

:::
of

::::::::
alternative

::::::::
methods

:::
for

::::
flood

::::::::::
estimation,

::::::::
including

::::::::
stochastic

::::::::::
simulations

::::
such

::
as

::::::::
presented

:::::
here,

::
is

::
an

::::::::
essential

:::::::::
component

::
of
:::::

flood
:::::::::
estimation

::
in

:::::::
practice. A possible

way forward is to consider estimates based on different methods by calculating a weighted average of the various estimates ,30

in which the weighting is based on an assessment of the uncertainty characterizing the individual methods .

Code and data availability. The R package StochasticPQRUT (https://github.com/valeriyafilipova/StochasticPQRUT) can be installed from

github and contains sample data.
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Figure 2. Location of the selected catchments, the .
:::
The

:
catchments Hørte, Øvrevatn and Krinsvatn, for which we show the method in more

detail,
:
are plotted in red

:
.
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Figure 3. Critical
:::::::
Diagram

:::::::::
representing

:::
the

::::::
process

:::
used

::
to
:::::::
establish

:::
the

:::::
critical

:
duration for Krinsvatn,

:
.
:::
The stars represent

::
the

::::::
degree

::
of

significant correlation between Qobs and P
::
on

::
the

:::
day

::
of
:::
the

::::
peak

:::
and

::
-1,

::
-2
::::

and
::
-3

:::
days

:::::
before

:::
the

::::
peak at p=0.01. The critical duration is

set
::
in

:::
this

:::
case

:
to two days because the correlation is over 0.25 between Qobs

::::
Qobs and P

:
P and P1

::
P1

:
is
::::::
greater

:::
than

::::
0.25.
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Figure 4. Storm pattern scaling
:::::
Return

:::
level

:::::
plots for the simulated events, sampled event is shown in dark grey

:::
fitted

::::::::::
Generalised

:::::
Pareto

:::
(GP)

:
and

::::::::
exponential

:::::
(EXP)

::::::::::
distributions

::
for

::::
peak

::::
over

:::::::
threshold

:::::::::
precipitation

:::::
events

::::
(GP

:
–
:::
red;

::::
EXP

:
–
:::::
green)

:::
for the simulated storm event

in light grey
:::
three

:::::::
selected

:::::::::
catchments.
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Figure 5. Correlation scatterplot
::::::::
scatterplots

:
for initial condition

::::::::
conditions (Snow

::::
snow

:
water equivalent

:::::
(SWE), soil moisture deficit

::
(lp),

initial discharge
:::::
(Qobs)

:
)
:
for

:::
the

:::::::
Krinsvatn

::::::::
catchment

:::
for

:
POT events (flood events over 0.9 quantile),

::
57

:::::::::::
observations).

:::::::::
Scatterplots

:::
for

observed
:::::::
quantities

:::
are

:::::
shown

:
on the left ,

::
and

:
simulated on the right ,

::::
(based

:::
on

:::
100

:::
000

::::::::::
simulations).

::::
The stars represent

::
the

::::::
degree

::
of

significant correlation.
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Figure 6. Structure of the PQRUT model
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Figure 9.
:::::
Storm

::::::
patterns

:::
used

:::
for

::
the

::::::::
simulated

:::::
events

:
in
:::
the

:::::::
stochastic

:::::::
PQRUT

::::
model

::::
(left)

:::::
where

:::::
violin

::::
plots

::
are

::::
used

::
to

::::
show

::
the

::::::
density

::
of

::
the

::::::::
intensities

:::
and

:::
the

::::
storm

::::::
pattern

::::::
typically

::::
used

::::
with

::
the

:::::::
standard

::::::
PQRUT

:::::
model

::::::
(right).

:
P
::::::::
represents

:::
the

:::
ratio

::
of
:::
the

:::::
hourly

::::::::::
precipitation

:
to
:::
the

:::::
total

:::::::::
precipitation

:::::
depth

::
for

:::
the

:::::
event.
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Figure 10.
::::::
Number

::
of
::::::
models

:::::
giving

:::::::
estimates

:::
for

:::::
Q100

:::::
within

::
the

:::::::::
confidence

::::::
intervals

::
of
:::

the
:::
GP

:::::::::
distribution

::::
fitted

::
to

:::::
1-hour

:::::::::
streamflow

:::
data.
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Figure 11. Boxplots of Quantile score , calculated
::::
(Eqn.

::
5)

:
for the Flood

:::::::
estimates

:::::
based

::
on

:::::::
statistical

::::
flood

:
frequency analysis

::::
using

::
a
::::
GEV

::::::::
distribution

::::
(red)

:
and Stochastic

:
on

:::
the

::::::::
stochastic PQRUT model ,catchments are represented by different colours

:::::
(green).

:

32



Figure 12. Violin and boxplots
:::::::
Boxplots showing the distribution of the differences

::::::::
(calculated

::
by

:::::::
dividing

:::
the

:::::::
estimates

::
by

:::
the

::::::
average

::
of

::
all

::
of

::
the

:::::::
models) between the Stochastic PQRUT, PQRUT and GEV for the 100- and 1000 – year return level

:
.

33



Fi
gu

re
13

.R
es

ul
ts

of
th

e
co

m
pa

ri
so

n
be

tw
ee

n
st

oc
ha

st
ic

PQ
R

U
T,

PQ
R

U
T

an
d

G
E

V
fo

rt
he

va
lu

es
of

th
e

10
00

-y
ea

rr
et

ur
n

le
ve

l.
T

he
ab

so
lu

te
di

ff
er

en
ce

s
:
:
:
:
:
:
:

(c
al

cu
la

te
d

:
:by
:
:
:
:
:
:

di
vi

di
ng

:
:
:

th
e :

:
:
:
:
:
:

es
tim

at
e
:
:by
:
:
:

th
e :

:
:
:
:
:

av
er

ag
e :

:of
:
:al
l :

:
:
:
:
:
:

m
od

el
s)

ar
e

co
rr

el
at

ed
w

ith
ca

tc
hm

en
tp

ro
pe

rt
ie

s,
. ::

:
:
:
:
:

Po
si

tiv
e :

:
:
:
:
:
:
:
:

co
rr

el
at

io
ns

:
:
:

ar
e

:
:
:
:

gi
ve

n :
:by
:

re
d

co
lo

ur
re

pr
es

en
ts

po
si

tiv
e

co
rr

el
at

io
n

an
d :

:
:
:
:
:

ne
ga

tiv
e :

:
:

by
bl

ue
co

lo
ur

-n
eg

at
iv

e
co

rr
el

at
io

n :.

34



Table 1. Properties for the selected catchments,
::::::::
including

::::
Area

::::::::
-catchment

::::
area,

:
Q

:::::
-mean

:::::
annual

:::::::::
streamflow,

::
P

::::
-mean

::::::
annual

::::::::::
precipitation,

:
M
::::::
-percent

::::::
marsh,

:
B
::::::
-percent

::::::
sparse

::::::::
vegetation

::::
over

:::::::
treeline,

::
Hl

::::::::
-catchment

::::::::
steepness,

::
Lk

:::::::
-effective

::::
lake

::::::
percent

::::
and

:::::
Temp

::::
-mean

::::::
annual

:::::::::
temperature

Station Area,
::::
km2 Q

:
,
:::::::
mm/year P

:::::::
,mm/year Hm50

::
,m For

::
,% M

::
,% B

::
,%

:
Lk

::
,%

:
Temp

::::::
Hl,m/km

: ::::::
Temp,◦

:
C
:

Season of AMAX

Hørte 157 961 1261 501 73 3 18 0.3
:::
18.7

:
2.89 SON

Krinsvatn 207 1890 2354 348 20 9 57 1.1
::
5.4 4 DJF

Øvrevatn 526 1448 1558 564 35.2 2.5 52 0.6
:::
14.8

:
-0.14 JJA
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Table 4. Percent difference between the model runs of the sensitivity analysis to the calibrated model

Catchments Hørte Krinsvatn Øvrevatn Hørte Krinsvatn Øvrevatn Hørte Krinsvatn Øvrevatn

setup\return period Q10 Q10 Q10 Q100 Q100 Q100 Q1000 Q1000 Q1000

1 100
:

50
:

values, sampled using

latin
:
,hypercube within the 5% and 95%

confidence intervals for the regression

equations for K1,K2 and T
:
Trt

:
(min

value)

-38.4
:::
-36.7

:
-46.9

:::
-46.8

:
11.3

::
7.1 -36.8

:::
-35.3

:
-54.5

:::
-54.4

:
-1.6

::
-5.9 -38.2

:::
-36.7

:
-58.5

:::
-58.2

:
-14.8

::
-2.9

:

1 100
:

50
:

values, sampled using

latin
:
,hypercube within the 5% and 95%

confidence intervals for the regression

equations for K1,K2 and T
::
Trt

:
(max

value)

-17.0
:::
-16.9

:
4.7

::
4.3 39.0

::
33.0

:
-14.1

:::
-14.8

:
-8.4

::
-8.3 18.7

::
13.3

:
-12.6

:::
-13.4

:
-34.1

:::
-33.4

:
4.2

::
8.7

2 GPD was fitted to 0.99 quantile 0.7
:::
10.0 7.4

:::
13.5 7.8

::
2.4 10.0

::
16.5

:
1.1

::
1.4 18.6

::
17.0

:
19.3

::
22.2

:
-6.9

::
-11.3

:
60.5

::
48.1

:

3 Exponential distribution instead of GP

distribution

8.2
::
3.0

3.0
10.7

::
0.9 21.3

::
9.1 1.8

::
3.1 -0.3

::
-8.5 28.9

::
18.1

:
-2.8

::
-2.0 -13.5

:::
-22.6

:

4 Disaggregate precipitation depth using

uniform distribution (constant intensity)

instead of using temporal patterns

-24.2
:::
-23.7

:
-32.0

:::
-32.2

:
12.3

:::
-28.4 -27.5

:::
-27.6

:
-42.9

:::
-43.3

:
1.2

:::
-12.8 -29.8

:::
-29.1

:

-50.5
-7.5

::
-7.4

5 median discharge instead of randomly

generated

-7.5
::

-7.3 -2.6
::

-2.4 -24.0
:::
-31.3

:
-6.3

::
-6.0 -2.0

::
-1.6 -12.3

:::
-13.1

:
-5.1

::
-5.0 -2.1

::
-1.2 -8.8

::
-1.4

6 no snowmelt modelled -2.4
::

-2.3 15.1
::
14.8

:
-21.2

:::
-18.7

:
-0.7

::
-0.5 14.4

::
17.3

:
-2.1

::
-4.2 4.1

::
2.9 29.1

::
21.2

:

1.2

7 fully saturated conditions 20.6
::
20.9

:
25.3

::
24.9

:
48.1

::
41.2

:
14.4

::
14.6

:
13.8

::
14.0

:
36.2

::
33.0

:
10.5

::
10.1 8.9

::
8.0 29.1

:::
26.2

:::::
different

::::::
simulation

::::
length

::
40

::
000

:
to
:::
400

::
000

:::::::
simulations

::
by

::
40

:::
000

:::::::
simulations

::::
(range)

::::::
4.9%-7.3%

: ::::::
1.6%-2.2%

: :::
-0.8%

::::
-

:::
5.8%

::::::
2.2%-3.5%

: :::
0.4%

::::
-

:::
2.3%

:::
-4.6%

:
-
::
6%

: ::
-4%

:
-
:::
5.4%

: :::::::
-0.1%-6.4%

::
-2%

:
-
:::
8.7%

:

:
50
::::::::

simulations
:::
with

::::::
different

:::::
random

:::
seeds

::::
(range)

:

:::
-0.6%

::::
-

:::
0.8%

:::
-1.2%

::::
-

:::
0.6%

::::::
1.9%-3.5%

: :::
-1.3%

::::
-

:::
0.9%

:::
-0.2%

::::
-

:::
3.5%

:::
-0.6%

::::
-

:::
3.3%

::
-5%

:
-
:::
2.6%

: :::
-3.9%

:::
-5.5%

:

:::
-7.5%

::::
-

::::
10.3%
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