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Abstract: Landslide statistics is characterized by a power-law frequency-size distribution (FSD) with power exponent α 

centered on 2.2-2.4, independently of the landslide trigger. So far, the origin of the α-value, critical to probabilistic hazard 

assessment, remains hypothetical. We present a generic landslide cellular automaton (LSgCA) based on the rules of Self 10 
Organized Criticality and on the Factor of Safety (FS) concept. We show that it reproduces the power-law FSD for realistic 

parameter ranges (i.e. cohesion, soil unit weight, soil thickness, angle of friction, slope angle, pore water pressure) with 

LSgCA simulations yielding α = 2.17±0.49, which is in agreement with α = 2.21±0.53 obtained from an updated meta-

analysis of the landslide literature. The parameter α remains stable despite changes in the landslide triggering process, with 

the trigger only influencing the spatial extent of the landslide initiation phase defined from an FS contour. Furthermore, 15 
different FS formulations do not significantly alter the results. We find that α is constrained during the initiation phase of the 

landslide by the fractal properties of the topography, as we observed a positive correlation between fractal dimension and α 

while α did not change during the propagation phase of the LSgCA. Our results thus suggest that α can be estimated directly 

from the FS map for probabilistic landslide hazard assessment. However full modeling (including the propagation phase) 

would be required to combine the spatial distributions of landslide and exposure in probabilistic risk analysis.  20 

1. Introduction 
 
Landslides are a secondary natural hazard (Lee and Jones, 2004; Petley, 2012) that is potentially triggered by weathering 

(Fuhrmann et al., 2008; Dykes, 2002), rainstorms (Salciarini et al., 2008, Lin et al., 2011), earthquakes (Guzzetti et al., 2005; 

Corominas and Moya, 2008; Mignan et al., 2016), volcanic eruptions (Siebert, 1984; Iverson, 1995), or human activities 25 
(Ives and Messerli, 1989; Van Den Eeckhaut et al., 2007). The displaced masses due to landslide are categorized as falling, 

toppling, sliding, spreading, flowing, or by their combination (Sidle and Ochiai, 2006). Landslides represent a dynamic 

system based on local interactions between the physical characteristics of slope, ground shaking parameters (earthquake 

case), and/or ground water saturation (e.g., rainfall case). 
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The landslide statistics is best described by the frequency-size distribution (FSD), which, despite the variety of triggers, 

appears to systematically follow a power-law probability density function of the form 

𝑝𝑝 𝑥𝑥 = (𝛼𝛼 − 1)𝑥𝑥!"#!!!𝑥𝑥!!                             (1) 

with α the power exponent, valid for x ≥ xmin. Examples based on published landslide inventories are shown in Fig. 1. The 

rollover behaviour observed below xmin can be described by a double Pareto distribution (Stark and Hovius, 2001) or by the 5 
inverse Gamma distribution (Malamud et al., 2004). The different behaviour below xmin is likely due to a combination of data 

incompleteness (Stark and Hovius, 2001), as extensively studied in the earthquake case (Mignan, 2012; Kijko and Smit, 

2017), and of physical changes (Turcotte et al., 2002; Malamud et al., 2004; Van Den Eeckhaut et al., 2007; Guthrie et al., 

2008). However all those models provide similar estimates of α, as illustrated in Fig. 1. As such, we only consider Eq. (1) in 

the present study. While Malamud et al., (2004) suggested a universal value α = 2.4 based on three inventories, a review of 10 
about thirty studies found considerable variations with α = 2.3±0.6 (Van Den Eeckhaut et al., 2007). Cases of rock fall 

inventories exhibit different frequency-size distributions (i.e. α=1.1) with no rollover effect observed (Malamud et al., 

2004). Those cases are not considered in the present study. 

Of the sheer number of strategies to model landslides (e.g., Densmore et al., 1998; Hergarten and Neugebauer, 1998), 

cellular automata (CA) that follow some of the rules of Self-Organized Criticality (SOC) provide a simple and natural 15 
approach to generate power-laws. Indeed, SOC, epitomised by the Bak-Tang-Wiesenfeld CA (Bak et al., 1987) and 

generalized by the Olami-Feder-Christensen CA (Olami et al., 1992), is characterized by the emergence of a power-law FSD 

due to a simple bottom-up triggering process analogue to an avalanche. Although SOC CAs and other CA variants are 

broadly used for landslide modelling (e.g., D’Ambrosio et al., 2006), the sandpile model (Bak et al., 1987), with slope α = 

1.0-1.2 does not explain the steeper slope observed for landslides (Hergarten and Neugebauer, 2000; Turcotte et al., 2002). 20 
Pelletier et al., (1997) retrieved α = 2.6±0.1 from a percolation model controlled by a threshold shear stress dependent on a 

slope based on physical parameters, but only considered the area of the landslide initiation phase, not of the landslide itself. 

Interestingly, Hergarten and Neugebauer (2000) obtained α = 2.1 by applying a two-variable product in a SOC system with 

one relaxation variable and one time-dependent weakening variable, which was related to the factor of safety as an ad-hoc 

assumption in Hergarten (2013). Piegari et al., (2006; 2009) only obtained reasonable α estimates by allowing arbitrary 25 
parameter variations to match the data (see discussion in Hergarten, 2013). It goes the same with Guthrie et al., (2008), who 

calibrated their input parameters to fit an observed landslide FSD. Those SOC models (Hergarten and Neugebauer, 2000; 

Piegari et al., 2006; 2009), but also other models (e.g., Densmore et al., 1998), neglected changes in topography by 

considering only one individual slope, questioning their validity for landslide inventories whose events take place on 

complex topography. Moreover, none of those models lead to landslides that seem very realistic (Hergarten, 2013). 30 
Hergarten (2012) proposed a simple model inspired from the basic models of SOC where avalanches propagate on the 

surface when a certain threshold is exceeded (Bak et al., 1987; Olami et al., 1992) and applied it on real topographies. It was 

however limited to rock falls and did not define any physical trigger (“random impacts” were used instead). So far it remains 
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unclear why the landslide FSD seems to be independent of the triggering mechanism and what process or specific physical 

parameter explains α = 2.3±0.6. Finally, the available models remain mostly abstract and difficult to implement in 

probabilistic multi-hazard assessment (as in, e.g., Mignan et al., 2014; Liu et al., 2015). 

The aim of this article is to present a generic landslide cellular automaton (in short, LSgCA) that is consistent with the broad 

range of α-values observed in Nature and is realistic enough for inclusion in future generic multi-risk (GenMR) analyses 5 
(e.g. Mignan et al., 2014; 2017; 2018; Komendantova et al., 2014; Liu et al., 2015; Matos et al., 2015). The purpose of the 

LSgCA is not to replace more sophisticated existing landslide modelling tools but to provide a transparent and simple, yet 

robust, approach to understand what parameter has the greatest influence on α. This is of importance in the probabilistic 

hazard assessment of landslides to be able to extrapolate the size of larger potentially damaging events (e.g., Guzzetti et al., 

2005). We first present the LSgCA approach, where the initiation phase of landslides, the propagation phase and topography 10 
simulation are described (section 2). We then update the meta-analysis originally made by Van Den Eeckhaut et al., (2007) 

by adding about 40 new cases, hence more than doubling the number of data points available to estimate α (section 3.1). 

Finally we investigate at what stage of the LSgCA process and for what parameterizations the α distribution observed in 

Nature is retrieved (section 3.2). 

2. Landslide generic Cellular Automaton (LSgCA) 15 

2.1. Initiation phase (slope failure) 
 
The initiation phase of landslides can be conveniently quantified via the static factor of safety (FS) (e.g., Crosta, 1998 and 

references therein). FS ≤ 1 represents an unstable slope and can be used for both rainstorm (e.g., Crosta, 1998; Iverson, 

2000) and earthquake triggers (e.g., Newmark, 1965; Jibson, 2007). We test different FS formulations (Table 1) to 20 
investigate the role of different conditions of the slope instability in the following states: dry infinite slope, submerged 

infinite slope, infinite slope with seepage parallel to slope and infinite slope with seepage and tree roots (Cruikshank, 2002; 

Lambe and Whitman, 1969; Turner and Schuster, 1996; Budhu, 2000; Abramson et al., 1995). The following parameters are 

involved in the quantification of FS: C, cohesion of dry soil; C, cohesion of saturated soil; t, thickness of the slide; d, vertical 

distance of the sliding body; γ, unit weight of dry soil; θ, slope gradient; ϕ, angle of internal friction of dry soil; γt, total unit 25 

weight material; γw, unit weight of water; ϕ, angle of internal friction of saturated soil,  !
!

𝐹𝐹!!
!!! , tree roots coefficient. The 

range of typical material values of the parameters involved in the FS analysis is extracted from the table of soil 

characteristics by Hall et al., (1994) (Table 2). 
An FS map can then be produced that depends mainly on the spatial distribution of θ, i.e., on the topography. The impact of 

earthquake shaking can be modelled via the concept of Newmark displacement (Newmark, 1965): 30 

log𝐷𝐷! = −2.710 + log!" 1 − !!
!!"#

!.!!" !!
!!"#

!!.!"#
+ 0.424𝑀𝑀        (2) 
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function of the critical acceleration ratio ac/amax and earthquake magnitude M, with critical acceleration 𝑎𝑎! = 𝐹𝐹𝐹𝐹 − 1 𝑔𝑔sin𝜃𝜃 

and g = 9.81 m/s2  (Jibson, 2007). Landslides are initiated at locations that exceed DN = 15 cm (Jibson et al., 2000). The 

earthquake peak ground acceleration amax is derived from empirical relationships, here using 

log!" 𝑎𝑎!"# = 𝑏𝑏! + 𝑏𝑏!𝑀𝑀 + 𝑏𝑏!𝑀𝑀! + 𝑏𝑏! + 𝑏𝑏!𝑀𝑀 log!" 𝑅𝑅!"! + 𝑏𝑏!! + 𝑏𝑏!𝑆𝑆! + 𝑏𝑏!𝑆𝑆! + 𝑏𝑏!𝐹𝐹! + 𝑏𝑏!"𝐹𝐹!   (3) 

with b1 = 1.43525, b2 = 0.74866, b3 = -0.0652, b4 = -2.7295, b5 = 0.25139, b6 = 7.74959, b7 = 0.0832, b8 = 0.00766, b9 = -5 
0.05823, b10 = 0.07087, SS = 0, SA = 1, FN = 0 and FR = 1 (Akkar and Bommer, 2010). 

As investigated in section 3, we do not expect the use of different FS models, nor different triggers, to have an impact on the 

landslide FSD α-value since they only impact the spatial extent of the landslide initiation zones defined by the thresholds FS 

≤ 1 or DN ≥ 15 cm. Indeed, a power law behaviour can emerge whether at the initiation phase by a percolation process on a 

fractal lattice (e.g., Pelletier et al., 1997) or during the propagation phase in a SOC-style process (see review by Mignan 10 
(2011) for the case of earthquake power laws). In the first case, α depends on the fractal dimension of the lattice, in the 

second, on the propagation rules that depend on soil conditions, and not on the triggering mechanism, at least not at the 

lowest-order. 

2.2. Propagation phase (post-failure motion) 
 15 
The proposed CA is based on the concept of sandpile (Bak et al., 1987) and defined for a square grid composed of cells (x,y) 

binned in Δs increments. Variables are the altitude z(x,y) and soil depth h(x,y). Input parameters are the initial topography (z, 

h) and soil conditions (φ, C, γ, etc.) from which FS is computed (Tables 1-2). We use the Moore neighbourhood 

nomenclature (Gray and New, 2003), and compute the maximum slope θmax in the direction dirMoore(θmax). In contrast to the 

SOC random field where triggering occurs at random cells, triggering is here initiated in cells for which conditions FS ≤ 1 or 20 
DN ≥ 15 cm are satisfied (section 2.1). The landslide footprint is defined as LSRS(x,y | FS ≤ 1) = 1 for rainstorm triggers and 

as LSRS(x,y | DN ≤ 15 cm) = 1 for earthquake triggers, and with LS(x,y) = 0 elsewhere. 

 For LS(x,y) = 1 and h(x,y) > 0, the propagation rule is 

𝑧𝑧 𝑥𝑥, 𝑦𝑦 = 𝑧𝑧 𝑥𝑥, 𝑦𝑦 − ∆ℎ
ℎ 𝑥𝑥, 𝑦𝑦 = ℎ 𝑥𝑥, 𝑦𝑦 − ∆ℎ

𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑!""#$ 𝜃𝜃!"#(𝑥𝑥, 𝑦𝑦) = 𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑!""#$ 𝜃𝜃!"#(𝑥𝑥, 𝑦𝑦) + ∆ℎ
ℎ 𝑑𝑑𝑑𝑑𝑑𝑑!""#$ 𝜃𝜃!"#(𝑥𝑥, 𝑦𝑦) = ℎ 𝑑𝑑𝑑𝑑𝑑𝑑!""#$ 𝜃𝜃!"#(𝑥𝑥, 𝑦𝑦) + ∆ℎ

     (4) 

where the mass movement is defined by  25 
Δℎ = 𝑧𝑧 𝑥𝑥, 𝑦𝑦 − 𝑧𝑧 𝑑𝑑𝑑𝑑𝑑𝑑!""#$ 𝜃𝜃!"# 𝑥𝑥, 𝑦𝑦 − Δ𝑠𝑠  tan(𝜃𝜃!"#$%&) /2    (5) 

The mass is progressively transferred from cells to cell by Δh such that a stable slope θstable, if h is high enough, is reached. If 

h is too low, i.e., h < Δh, a scarp forms equivalent to h = 0 once the propagation rule is applied. θstable is the angle for which 

FS tends to 1 from above for rainstorms or when DN tends to 15 cm from below for earthquakes. For each modified cell 

dirMoore(θmax), LS(dirMoore(θmax)) = 1. The process continues until the above condition fails at all cells or when the number of 30 
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unstable cells reaches a plateau (i.e., stability criterion to avoid infinite loops). It should be noted that the process is non-

SOC since it naturally dies off after any event. However, the constant load defined from successive earthquakes and/or 

rainstorms might lead to a SOC-like behaviour on the long-term (Hergarten, 2003). 
Figure 2 shows a landslide generated by the LSgCA in a smooth virtual region, as defined in Komendantova et al., (2014), 

Liu et al., (2015) and Mignan et al., (2017) for generic multi-hazard testing, here with an earthquake as trigger (black 5 
segment). Note that the propagation phase, in itself, does not lead to a power-law distribution (nor does the initiation phase 

for the matter, as explained in the previous section). In contrast to SOC where the spatial field is random and the load 

increased by random increments, the proposed CA can apply on smooth surfaces and produce relatively realistic landslide 

footprints. Loading, by an increase or addition of an elliptic instability patch (for the earthquake trigger), may yield only one 

landslide, as shown in Fig. 2 (see video in the supplementary materials).  10 
For the rest of this study, we will apply the LSgCA on more realistic topographies and investigate whether the α distribution 

observed in Nature is explained from the topography itself (i.e., percolation model) and whether it is altered by the landslide 

propagation phase (i.e., SOC-like model). We model the fractal topography using the diamond-square algorithm (Fournier et 

al., 1982), based on fractional Brownian motion with σn = 2-nHδ, δ being the z-deviation at first iteration, n the iteration 

number, and H the Hurst exponent. The fractal dimension is simply Df  = 3-H. We will test 2.1 ≤ Df ≤ 2.9, representing 15 
increased terrain roughness with 7 iterations leading to a 27+1 = 129 × 129 cells grid with the constant thickness h. The 

resulting topography is considered “pristine” and is unrealistic due to its many steep peaks (Miller, 1986) and to the constant 

h. However, we can then apply the LSgCA to “erode” the topography, which yields a new topography that is more realistic 

(i.e., scarps become devoid of soil while basins contain more soil). We define the topography on a 10 by 10-km grid with a 

10-meter resolution. Individual landslides are defined as continuous patches verifying LS(x,y) = 1. The α parameter is then 20 
calculated using Maximum Likelihood Estimation (MLE), as described in Clauset et al., (2009). 

3. Results 

3.1 Updated meta-analysis 
 
To validate our model based on FSD statistics (section 3.2), we first update the review made by Van Den Eeckhaut et al., 25 
(2007). We do so by adding observations made during the last decade. Inputs are listed in Table 3 and the resulting 

distribution plotted in Fig. 3. This new meta-analysis includes a total of 70 cases, including 40 new compared to the 2007 

study. Note that α = αcum+1 when the FSD is cumulative but also that α = 1.5αV when the landslide size is volume V instead 

of area A (with V ~ A3/2). When compared to other models, α = α2+1 = ρ+1 with α2 from the double Pareto distribution 

(Stark and Hovious, 2001) and ρ from the inverse Gamma distribution (Malamud et al., 2004). 30 
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We finally obtain the distribution α = 2.21±0.53, in very close agreement with the original result α = 2.3±0.6 of Van Den 

Eeckhaut et al., (2007). The ρ+1 values obtained for the three landslide inventories shown in Fig. 1 (Harp and Jibson, 1995; 

Xu et al., 2015; Bucknam et al., 2001) are also plotted. 

3.2. LSgCA application on fractal topography 
 5 
We ran simulations in which the ground parameters were drawn randomly from the range of values presented in Table 2. 

The four FS formulations of Table 1 were systematically tested for sensitivity analysis. We first evaluated α at different 

steps of the landslide process (with constant Df = 2.4): (1) at the initiation phase, directly based on the FS map, assuming that 

the landslide area limits itself to FS < 1 patches. This is equivalent to a percolation model where a FSD is defined from a 

certain metric threshold (e.g., Pelletier et al., 1997); (2) at the end of the propagation phase on an “eroded” topography, i.e., 10 
after the LSgCA has already stabilized all slopes from the pristine modelled topography. Landslides observed afterwards can 

be explained from weathering, occurring in places that remain unstable (such as scarps); (3) as in (2) but with the water 

saturation increased to mimic a rainstorm. The propagation phase, being based on a SOC-like process, has in theory the 

potential to create or alter the landslide FSD. All those steps are illustrated in Fig. 4. 

We observe that a power law distribution with a median α = 2.2, as observed in Nature (section 3.1), already emerges at the 15 
initiation phase, just based on the FS map, which is in agreement with e.g. Pelletier et al., (1997). Since the FS map directly 

depends on the topography, we also investigated the role of the fractal dimension on α (see below). Comparison of the FS 

maps in the left column of Fig. 4 shows that the number of instabilities indeed decreases from pristine topography to 

“eroded” topography (after application of the LSgCA) and that new instable areas appear if the LSgCA uses the factor of 

safety where the slope is completely submerged or the water table is present at the surface, instead of the factor of safety in 20 
the dry condition where pore water pressures are zero. We also find that whatever the triggering process, such as weathering 

in the second row or rainfall in the third one, a similar power law distribution is obtained with again a median α = 2.2 (here 

for 100 simulations). 

We did a more systematic analysis based on 1,000 simulations per FS formulation and per step in the landslide process 

(representing a total of 12,000 simulations). The resulting α distributions are plotted in Fig. 5, and compared with the real 25 
distribution. The boxplot indicates the range, the lower quartile, the median, and the upper quartile of the produced α. Once 

again, we find a good match between the LSgCA and the observations. We also verify that α remains stable over the 

different steps of the landslide process, demonstrating that the SOC-like behaviour of landslides is not at the origin of α ≈ 

2.2. Taking into account all the simulation results shown in Fig. 5, we obtain α = 2.17±0.49. Regarding the inherent 

variations of α, they are due to the stochasticity of the process, meaning the random variations in the ranges of tested input 30 
parameters (Table 2) and in the simulated topography. 

Despite the fact that the distribution of α isn’t solely dependent on a single parameter, rather to a combination of sets of input 

parameters and complex geometries, it must be the roughness that plays an important role in the FSD statistics of landslides 
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(as identifiable from the FS maps in Fig. 4). In a second test, we evaluated the role of Df changes (in the range of 2.1 ≤ Df ≤ 

2.9) on the estimation of α in the percolation phase (i.e., initiation phase, no propagation). The higher values of Df in the 

percolation phase imply an increase in the surface roughness. This suggests that we limit the range of our analysis to 2.2 ≤ Df 

≤ 2.5 to produce more realistic topographies in order to interpret the behaviour of α (lower and higher values represent either 

too smooth or too rough topographies – see below). Similar to the analysis in the previous sections, the ground parameters 5 
were chosen randomly from the typical range of parameters in Table 2. Once again, the four FS formulations were tested 

(Table 1). Results are shown in Fig. 6. The boxplot indicates the range, the lower quartile, the median, and the upper quartile 

of the produced α obtained from a total of 36,000 simulation (1,000 per FS, per Df). The surface topography of the case Df = 

2.1 is too smooth to trigger landslide and produce a meaningful α distribution. The median of the α values observed in the 

range 2.2 ≤ Df ≤ 2.5 tend to increase for all FS equations. For the case of Df = 2.6, the median value of the α drops down to 10 
an approximate value of α = 1.5, due to the high instability of fractal topography and therefore the failure of an individual 

mega large landslide. A similar result is obtained for Df = 2.7. Above, the fractal topography fails to produce a realistic 

surface where landslides analysis is able to produce valid results. In the acceptable range of the fractal dimension (2.2 ≤ Df ≤ 

2.5), a higher Df   means an increase of the ratio of small landslides to the larger ones until they coalesce onto the full 

topography grid, explaining our observations. 15 

4. Conclusions 
 
In this study, we presented a landslide generic cellular automaton (LSgCA) that models the propagation phase of landslides. 

After revisiting the literature, we updated the observed power-law exponent distribution to α = 2.21±0.53 and validated our 

LSgCA by obtaining a similar distribution in simulations with α = 2.17±0.49. Although realistic values had already been 20 
obtained in previously published models (e.g., Pelletier et al., 1997; Hergarten and Neugebauer, 2000), we here 

demonstrated that α remains at first-order constant at the different stages of the landslide process. Moreover, despite the 

α  variability being due to different input parameter values and different topography iterations, an increasing trend in the 

median α was observed as a function of increasing fractal dimension Df, suggesting this parameter as the main parameter 

influencing α. Indeed, since α ≈ 2.2 is already observed in the initiation phase where the only information is the FS map, α 25 
can only find its origin in the underlying fractal topography. As a corollary, it also explains why the landslide trigger type 

(e.g., weathering, rainfall, earthquake) does not seem to influence α. 

We believe that the LSgCA solves the existing problem of abstract physical-based scenario analyses, unrealistic 

topographies and/or the lack of landslide propagation phase in the landslide CA literature (Piegari et al., 2006; Hergarten and 

Neugebauer, 1998; Densmore et al., 1998; Guthrie et al., 2008). LSgCA provides a simple tool for further studies in 30 
probabilistic multi-hazard assessments by defining landslide footprints that could be included in stochastic landslide sets 

conditional on rainstorm or earthquake triggers (e.g., Mignan et al., 2014; 2018; Liu et al., 2015; Matos et al., 2015). But by 
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proving that the origin of α lies in the topography, landslide hazard can be approximated directly from the FS maps, before 

any dynamic modelling.  
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Table 1. List of Factor-of-safety equations used in the present study (Cruikshank, 2002). 

Infinite slope in the dry soil condition FS1 =
!!!" !"# ! !"#  (!)

!" !"# !
 

Infinite slope in the submerged condition FS2 =
!!!(!!!!!) !"# ! !"#  (!)

!(!!!!!) !"# !
   

Infinite slope with seepage parallel to slope FS3 =
!!!(!!!!!) !"# ! !"#  (!)

!!! !"# !
 

Infinite slope with seepage and tree roots 
FS4 =

!!  !! !!
!
!!! !!(!!!!!) !"# ! !"#  (!)

!!! !"# !
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Table 2. Range of typical material values used for FS estimation (Hall et al., 1994). 

Material Saturated unit 

weight (KN/m3) 

Dry unit weight 

(KN/m3) 

Friction angle 

(degrees) 

Cohesion 

(kPa) 

Soft Bentonite  13 6 7-13 10-20 

Soft organic clay 14 6 12-16 10-30 

Soft glacial clay  17 12 27-32 30-75 

Stiff glacial clay 20 17 30-32 75-150 

Glacial till, mixed size 23 20 32-35 150-250 

Loose uniform sand  19 14 18-34 - 

Dense uniform sand 21 17 32-40 - 

Loose mixed sand  20 16 34-40 - 

Dense mixed sand  21 18 38-46 - 

Granite 20 17 45-50 - 

Limestone 19 16 35-40 - 

Sandstone 17 13 35-45 - 

Shale 20 16 30-35 - 
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Table 3. Landslide power-law frequency-size distribution statistics in the literature. 

# Reference Country Triggering factor α  Eq. Type 

1 Fujji, 1969 Japan Heavy Rainfall 1.96 pl Multiple 

2 McEwen, 1989* Mars/Moon-Extra 

terestial 

Unknown 1.5 pl Rockslide-Rock 

avalanche 

3 Hayashi and Self, 1992* - Volcanic and non 

volcanic flows 

1.65 pl Proclastic/debris 

flow 

4 Pelletier et al., 1997 Akaishi Ranges, central 

Japan. 

Historical 3 pl Landslide** 

5 Pelletier et al., 1997 Eastern Cordillera, 

Bolivia 

Historical (Heavy 

rainfall) 

2.6-3 pl Landslide 

6 Pelletier et al., 1997 Northridge, California, 

USA 

Earthquake 2.6 pl Landslide 

7 Hovius et al., 1997 Southern alps in New 

Zealand 

Historical 2.16 pl Landslide 

8 Larsen and Torres-Sanchez, 

1996* 

Puerto Rico, USA Historical 

(rainfall) 

2.85 pl Soil slide and 

debris flow 

9 Malamud and Turcotte, 

1999 

Northridge, California 

USA 

Earthquake 2.3 pl Landslide 

10 Malamud and Turcotte, 

1999 

Akaishi Ranges of 

central Japan 

Historical 3 pl Landslide 

11 Malamud and Turcotte, 

1999 

Eastern Cordillera, 

Bolivia 

Historical 2.6 pl Landslide 

12 Malamud and Turcotte, 

1999 

Eden Canyon area of 

Alameda county, 

Historical 3.3 pl Landslide 
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California 

13 Hungr et al., 1999 British Columbia, 

Canada 

Multiple 1.75±

0.30 

pl Rockfall 

14 Hovius et al., 2000 Ma-An and Wan-Li 

catchments-Taiwan 

10 Yrs old 

historical LS 

1.7 pl Landslide 

15 Dai and Lee, 2001 Hong -Kong Rain 2.19 pl Rockfall and 

lanslide 

16 Baum et al., 2000 Washington, USA Rain 1.95 pl Shallow 

landslides 

17 Erismann and Abele, 2001* Non volcanic flow Rain 1.65 pl Rockfall and 

Debris flow 

18 Stark and Hovius, 2001 New Zealand Historical 2.15 pl Multiple 

19 Stark and Hovius, 2001 Taiwan Historical 1.7 pl Multiple 

20 Stark and Hovius, 2001 New Zealand Historical 2.48 dp Multiple 

21 Stark and Hovius, 2001 Taiwan Historical 2.11 dp Multiple 

22 Guzzeti et al., 2002 Northridge, USA Earthquake 2.3 pl Rockfall 

23 Guzzeti et al., 2002 Central Italy due to 

Snowmelt 

Snowmelt 2.5 pl Landslide 

24 Guzzeti et al., 2002 Umbria Marche old 

modern data 

Historical 2.5 pl Landslide 

25 Dussauge-Peisser et al., 

2002 

Grenoble, French Alps Rockfall 1.62 pl Multiple 

26 Dussauge-Peisser et al., 

2002 

Yosemite Valley, USA Rockfall 1.69 pl Multiple 

27 Dussauge-Peisser et al., Arlygorges,French Alps Rockfall 1.68 pl Multiple 
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2002 

28 Martin et al., 2002 Queen Charlotte, Canada Historical 1.83 pl Shallow 

landslides 

29 Legros, 2002* Various regions Unknown and event 

based 

1.65 pl Submarine,Tere

stial, 

Moon,Mars 

30 Iwahashi et al., 2003 Higashikubiki area, 

Japan 

Historical 2.17 pl Slump, slide, 

and creep 

31 Iwahashi et al., 2003 Higashikubiki area, 

Japan 

Historical 2.24 dp Slump, slide, 

and creep 

32 Malamud et al., 2004 1994 Northridge 

earthquake, USA 

Earthquake 2.4 ig Rockfall 

33 Malamud et al., 2004 1997 Umbria snowmelt, 

Italy 

Snowmelt 2.4 ig Landslide 

34 Malamud et al., 2004 1998 Hurricane Mitch, 

Guatemala 

Hurricane 2.4 ig Landslide 

35 Guzzetti et al., 2004 Italy Rainfall 2.03 pl Shallow 

landslides 

36 Guzzetti et al., 2004 Italy Earthquake 2.8 pl Rockfall 

37 Chau et al., 2003 Hong -Kong City Historical 1.945 pl Landslide 

38 Crosta et al., 2003 Valtellina , Northern 

Italy 

Rainfall 1.85 pl Shallow 

landslides 

39 Dussauge et al., 2003 Worldwide inventory of 

142 rockfalls 

Multiple 1.78 pl Rockfall 

40 Dussauge et al., 2003 Mahaval, La Reunion Multiple 2.5 pl Rockfall 
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41 Brardinoni and Church, 

2004 

Capi- lano watershed, 

British Columbia 

Historical 3.75 pl Soil slide and 

debris flow 

42 Guthrie and Evans, 2004 Brooks Peninsula, 

Vancouver, CA 

Historical 2.7 dp Multiple 

43 Guthrie and Evans, 2004 Brooks Peninsula, 

Vancouver, CA 

Historical 2.77 dp Multiple 

44 Guthrie & Evans, 2004 Loughborough, 

Vancouver, CA 

Rainfall 2.24 dp Multiple 

45 Evans et al., 2005 Clayoquot, Vancouver, 

CA 

Historical 2.54 dp Multiple 

46 Korup, 2005 New Zeland (southwest) Historical 2.5 pl Multiple 

47 Catani et al., 2005 Arno basin, Italy Historical 3.36 pl Multiple 

48 Havenith et al., 2006 Mailuu-Suu, Kyrgyztan Historical 1.9 pl Landslide 

49 Havenith et al., 2006 Suusamyr Historical 1.94 pl Landslide 

50 Chien-Yuan et al., 2007 Shihmen watershed, 

Taiwan 

Historical 

(Typhoon and 

Earthquake) 

1.65 pl Shallow 

landslides 

51 Chien-Yuan et al., 2007 Chushui Creek 

catchment, Taiwan 

Typhoon Toraji 

(2001) 

1.42 pl Shallow 

landslides 

52 Chien-Yuan et al., 2007 Chushui Creek 

catchment Taiwan 

Typhoon Minndule 

(2004) 

1.6 pl Shallow 

landslides 

53 Chien-Yuan et al., 2007 Chushui Creek 

catchment 

Historical 

(Typhoon and 

Earthquake) 

1.5 pl Shallow 

landslides 

54 Van Den Eeckhaut et al., Anthropogenic,Belgium Historical 0.58 pl Multiple 
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2007 

55 Van Den Eeckhaut et al., 

2007 

Secular, Belgium Historical 2.31 pl Multiple 

56 Galli et al., 2008 Reconnaissance 

inventory Umbria, Italy 

Multiple 2.94 dp Multiple 

57 Galli et al., 2008 Reconnaissance 

inventory Umbria, Italy 

Multiple 2.87 ig Multiple 

58 Galli et al., 2008 Detailed landslide map- 

Umbria,Italy 

Multiple 2.35 dp Multiple 

59 Galli et al., 2008 Detailed landslide map- 

Umbria,Italy 

Multiple 2.46 ig Multiple 

60 Galli et al., 2008 Collazzone area,Umbria Multiple 2.18 dp Multiple 

61 Galli et al., 2008 Collazzone area,Umbria Multiple 2.17 ig Multiple 

62 Korup and Clague, 2009 China, 20th century Historical 2.92 pl Landslide 

63 Korup and Clague, 2009 Southern Alps, 

NewZealand 

Historical 2.35 pl rock avalanches 

64 Korup and Clague, 2009 European alps, Holocene Historical 1.98 pl Landslide 

65 Dykes and Warburton, 

2008* 

Peat slides, Shetland Is., 

UK 

Multiple 2.25 pl peat slide/soil 

slide 

66 Guzzetti et al., 2009 Worldwide landslides Historical 1.75 pl Multiple 

67 Hurst et al., 2013 North Yorkshire, UK Historical 1.61 dp Landslide 

68 Hurst et al., 2013 North Yorkshire, UK Historical 1.71 ig Landslide 

69 Frattini and Crosta, 2013 Trento,Italia Historical 2.56 dp Landslide 

70 Frattini and Crosta, 2013 Trento,Italia Historical with 

Lidar technique 

2.56 dp Landslide 
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pl: power law, dp: double pareto distribution, ig: inverse gamma function; * The values of α are adopted from Brunetti et al., (2009); ** 

The term “landslide” here represents a generic term for any mass movement. 
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Figure 1: Frequency-size distribution (FSD) of published landslide inventories: 1994 Northridge earthquake (Harp and Jibson, 

1995), 2013 Lushan earthquake (Xu et al., 2015), and 1998 Hurricane Mitch (Bucknam et al., 2001). Lines with slope αα  = 2.3 are 

shown as visual guides to the apparent universality of αα . Parameters of the power law (Eq. (1), in red), double Pareto (in purple) 

and inverse Gamma (in blue) were estimated using the maximum likelihood estimation (MLE) method. Note that the different 5 

models lead to a similar scaling above xmin. 
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Figure 2: LSgCA application in a virtual region, defined in a 100 km by 100 km grid with smooth topography (as defined in 

Komendantova et al., (2014), Liu et al., (2015) and Mignan et al., (2017) for generic multi-hazard illustrations). See section 3.2 for 

the testing of more realistic, fractal, topographies and the supplementary material for the animated version of this landslide. 
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Figure 3: Updated αα  distribution with αα  = 2.21±0.53, based on an updated literature survey (see Table 3). 
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Figure 4: Effects of different steps of the landslide process on the αα  distribution. Red cells represent unstable patches in the FS 

maps. Brown patches represent the thickness of landslides in the landslide maps (scarps are represented in dark grey). FSDs are 

shown for 100 simulations with the median highlighted in black. 

 5 
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Figure 5: Distribution of αα  obtained at different steps of the landslide process, for different FS formulations. Each distribution 

was estimated from 1,000 simulations. Note the stability of αα  and the match with observations. 
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Figure 6: Relationship between fractal dimension Df and power-law exponent αα . Each distribution was estimated from 1,000 

simulations. Note the increase of αα  in the range 2.2 ≤ Df ≤ 2.5. 
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